Monday, August 29, 2022

1 A Bit of Notation

In this course RY is the Euclidean space. Elements of RY are points (or vectors)
x = (21,...,0N), with 2, € R, n=1,..., N. The inner product of ¢, y € RN

is given by
N
T Y= Z TnlYn
n=1
and the Fuclidean norm is

ol i= vz = fad + -+ 0%

The open ball centered at & € RY and radius 7 > 0 is given by B(z,r) := {y €
RY : ||y — z|| < r} and the open cube centered at x and side-length 7 > 0 is
given by Q(z,7) :={y € RN : |y, — x| <7/2 for every n =1,...,N}.

A set I C Ris an interval if for every x, y € I, we have that tx+ (1 —t)y € [
for every t € (0,1). The length of I is given by length I := sup I — inf I. The
empty set (), the real line R are intervals. Given N bounded intervals Iy, ...,
In CR, a rectangle in RY is a set of the form

R::le-~-><IN.

The set N of natural numbers starts from 1, while Ny := NU {0}.

2 Outer Measures

Consider a set X, for example the Euclidean space RY or an interval I C R.
We want to measure an arbitrary set £ C X.

The idea is to try to approximate F as closely as possible with unions of
“nice” sets whose measure we know, for example in RY we could use cubes or
rectangles or balls, in an interval I we could use intervals (a,b) or (a,b].

So let’s take a family G C P (X). An element of G will be called an elemen-
tary set. What are the properties that we need on the family G? We want to
be able to cover every set of X. This is possible if we can cover X. Thus, let
us assume that there exists sequence {X,}, in G such that X = J,—, X,,, and
let’s throw in G also the empty set.

Then we need a way to measure our elementary sets. So let’s consider a
function p : G — [0, 00] such that p (@) = 0. For every set £ C X we try to
cover F in the best possible way, that is, we define

w (F):= inf{Zp(En) : E,eGforeveryneN, EC U En} (1)
n=1

n=1

Let’s see some important examples. The most important is given by the
Lebesgue outer measure.



Example 1 (Lebesgue Outer Measure) In the Euclidean space R we take
as family of elementary sets G the family of all rectangles and we define the
elementary measure of a rectangle R as

measy R :=length I - --- - length I'y.
For each set E C RN define

o0 o0
Ef)v (E) :=inf {Z measy R, : R, rectangles, E C U Rn} . (2)
n=1

n=1
Another important example is given by Lebesgue—Stieltjes outer measures.

Example 2 (Lebesgue—Stieltjes outer measure) Let I C R be an open in-
terval and let f : I — R be an increasing function. Take G to be the family of all
intervals (a,b], where a,b € I, with a < b, and define the elementary measure
p:G—10,00) by

pl(a,b]) = F(b) — f(a).

Given E C I the Lebesgue-Stieltjes outer measure of E generated by f is given
by

105 (B) = inf {Z(f(bn) — f(an)) : an,bp €1, an < by, EC | (an,bn]} :
n=1 n=1

3)

More generally, we are interested in the case of functions f : I — RY or
f:I —-Cor f:I—Y, where Y is a normed space. In this case we can still
define p((a,b]) := f(b) — f(a) but (3) makes no sense now. We will need to do
something else.

Another important example is given by the Hausdorff outer measure in RY.
Loosely speaking the Hausdorff outer measure is a measure that is adapted to
measure sets of lower dimensions in RY, say a curve in the plane or a surface
in R3. It is also used to measure fractals.

Example 3 (The Hausdorff Outer Measure) Let 0 < s < oo0. For 0 <
0 < oo consider the family of elementary sets

Gs == {F C RY : diamF < &}

and for every F € G5 define the elementary measure

diam F\°
ps (F) := ag ( > ,

2
where as > 0 is a constant. For each set E C RN we define

s . > diamFE,, \ ° o .
H; (F) := inf {Z Qs <2> : EC U E,, diamFE, < 5} , (4)

n=1 n=1



where, when s = 0, we only sum only over those E, # (.
Since for each set E C RN the function § — Hg (E) is decreasing, there
exists

H; (E):= lim Hj(E)=supH; (E). (5)
60+ 6>0

H? s called the s-dimensional Hausdorff outer measure of E.

The particular value of the constant a is not important and in a lot of books
it is taken to be 1. Here, we define

s/2
As = 7>

I+

where I' is the Euler Gamma function
L(t):= / e "xldr, 0<t< oo
0

Note that I' (n) = (n — 1)! for all n € N. The reason for this choice of constants
is that when N € N, then ayy is the Lebesgue measure of the unit ball in RV,
so that LY (B (z,7)) = anr" for every open ball B (x,7) C RV,

Exercise 4 Prove that in the definition (5) it is possible to restrict the class of
admissible sets in the covers {F,} to closed and convex sets (open and convex,
respectively), and that the condition diamFE,, < ¢ can be replaced by diamFE,, < ¢,
without changing the value of HE (E).

What are the properties of the function p* defined in (1)? It turns out that

* is an outer measure.

I

Definition 5 Let X be a nonempty set. A map p* : P (X) — [0, 00] is an outer
measure if

(i) p* (0) = 0;
(ii) p* (E) < p* (F) for all EC F C X;

(i) p* (Up—y En) < ooy p* (Ey) for every countable collection {E,} C
P (X) (countable subadditivity).

Remark 6 In several books, outer measures are called measures.
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Let’s prove that the function p* defined in (1) is an outer measure.

Proposition 7 Let X be a nonempty set and let G C P (X) be such that ) € G
and there exists {X,} C G with X = Uy~ X,,. Let p: G — [0,00] be such
that p(0) = 0. Then the map p* : P(X) — [0,00] defined in (1) is an outer
measure. Moreover,

W (E) < p(E) (6)

for every E € G.



Proof. Since @ € G we have that p* (§) =0. If E C F C X then any sequence
{Ey,}n of elements of G admissible for F in (1) is also admissible for F, and so
p* (E) < p* (F). Finally, let {F}}r be a sequence of subsets of X. Fix ¢ > 0
and for each k find a sequence {E, 1}, in G admissible for F} in (1) and such

that

o0 . €
>0 (Enk) < p (F) + o
n=1

Since N x N is countable, we may write {En k}, oy = {Rj};cn- Note that

[} o oo 0
UFRQURJ:U UEn,ka

k=1 j=1 k=1n=1

and so (see Exercise 8 below)

w (U Fk) <Y pR) =D p(Bng) <Y p* (Fi) +e.
Jj=1 k=1

k=1 k=1n=1

By letting ¢ — 07 we conclude the proof of (iii).
Finally, if E € G, then taking F; := E, E, := 0 for all n > 2, it follows from
the definition of u* that p* (E) < p(F). =

Exercise 8 Double series.

(i) Let ay, > 0, for k,n € N. Prove that

oo oo 0o oo
DD k=) ank

k=1n=1 n=1k=1

(ii) Let any > 0, for k,n € N and define ¢, := Yo ank=01mt+
n+k=m-+1
Q1. Prove that
oo

Qn, k-
m=1 n=1k=1
(iii) Let
1 if k=n,
Ank = -1 ifk=n+1,
0 otherwise.
Prove that

Z Z Anjk 7é Z Z Ank-

k=1n=1 n=1k=1

Corollary 9 The set functions LY, wy, and Hy defined in (2), (3), (5), re-
spectively, are outer measures.



Proof. The fact that LY, w3, and ‘H§ are outer measures follow from Propo-
sition 7. It remains to show that H$ is an outer measure. Since Hj (0)) = 0 for
every ¢ > 0, letting § — 0T gives H§ (0) = 0.

If E C F, then H; (E) < Hj(F), and so letting § — 0 gives HS (E) <
HE (F).

To prove countable subadditivity, let {E,} C RY. Since Hj is an outer
measure, we have that

H; <© En> < iHE(En) < > Ho (En),

n=1 n=1 n=1

where in the last inequality we have used (5). Letting § — 0% and using (5)
once more gives the desired inequality. m

Next we discuss under what conditions the elementary measure p coincides
with the outer measure u* on elementary sets, that is, when we have equality
in (6).
Proposition 10 Let X be a nonempty set and let G C P (X) be such that ) € G
and there exists {X,,}, in G with X = J;_, X,,. Let p: G — [0,00] be such
that p(0) =0 and let p* : P (X) — [0, 0] be defined in (1). Then

w*(E) = p(E)

for every E € G if and only if p is countably subadditive, that is,
p(E) <> p(En)
n=1

for all E C U,,OLO:1 E, with E,E, € G, n € N.

Proof. Let ¥ € G and assume that
p(E) <Y p(E,)
n=1

for all £, € G, n € N, with £ C |J7, E,,. Taking the infimum over all such
{En}n we get p(E) < p*(F), which, together with (6) implies that p*(E) =
p(E).

Conversely, if u*(E) = p(F) for every for every E' € G, then by properties
(ii) and (iii) of an outer measure,

n=1 n=1 n=1

forall B, €eG,neN, with ECJ,_ E,. =



Exercise 11 Prove that

oo
measy R < E measy R,

n=1

for every R, R, rectangles in RN, with R C |J R,,. Conclude that

n=1
LY (R) = measy R
for every rectangle in RN .

In general we have strict inequality in (6) for Lebesgue-Stiljies outer mea-
sures.

Theorem 12 Let I C R be an interval and let f : I — R be a monotone
function. Then for every x € I° there exist the left and right limit
[ (@)= lim f(y), [T (2):= lim f(y).

Moreover f = fT = = for all but countably many x. In particular, f has at
most countably many discontinuity points.

Proof. It’s in the real analysis notes. m

Theorem 13 Let I C R be an open interval, let f: I — R be increasing. Then
for all a,b € I, with a <b,

wi (b)) = £(0) = f (@) = D (F7 (@) = f(2)): (7)

z€(a,b)

Moreowver,

pr({a}) = fla) = f~ (a). (8)
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3 o0-Algebras and Measures

In the previous section we have given the definition of outer measures and
provided a general method for constructing outer measures. The next question
is what to do with an outer measure. If we want to measure sets, an important
property that is desirable is that if we take two disjoint sets, then the measure
of the union should be the sum of the measures.

Unfortunately, in general an outer measure does not have this property. To
circumvent this problem Carathéodory proposed to restrict an outer measure
p* P (X) — [0,00] to a smaller class of subsets for which additivity of disjoint
sets holds. The class that we chose is the following:



Definition 14 Let X be a nonempty set and let p* : P(X) — [0,00] be an
outer measure. A set E C X 1is said to be y*-measurable if

i (F) = " (F A E) + " (F\ E)

for all sets FF C X.

Remark 15 By the subadditivity of p* the inequality
W (F) < 5" (FOE) + * (F\ E)

holds for all sets F C X. Hence, to prove that a set E C X s pu*-measurable,
it suffices to show that

W' (F) 2 w* (FOE) + " (F\ E) (9)

for all sets F C X. Moreover, it is enough to consider sets F' C X such that

*

p* (F) < oo, since otherwise the inequality (9) is automatically satisfied.
We will see below in Theorem 20 that the restriction of p* to the class
M*:={E C X: Eis p"-measurable}

is additive, actually countably additive and that the class 9* has some impor-
tant properties, precisely it is a o-algebra.

Definition 16 Let X be a nonempty set. A collection MM C P (X) is an algebra
if

(i) O Mm;
(i) if E € M then X \ E € M;
(iii) if By, Eo € 9 then Eq U Ey € M.
M is said to be a o-algebra if it satisfies (i)-(ii) and
(i) if {E,} C M then |, E,, € M.

To highlight the dependence of the o-algebra 9t on X we will sometimes
use the notation 9 (X). If M is a o-algebra then the pair (X, M) is called a
measurable space. For simplicity we will often apply the term measurable space
only to X.

Using De Morgan’s laws and (ii) and (iii)’, it follows that a o-algebra is
closed under countable intersection.

Definition 17 Let X be a nonempty set and let M C P (X) be an algebra. A
map p: MM — [0, 00] is called a (positive) finitely additive measure if

(@) =0, p(E1UE) = p(Er)+ p(E)

for all By, By € M with By N Ey = (.



Definition 18 Let X be a nonempty set, let M C P (X) be a o-algebra. A map
p: M — [0,00] is called a (positive) measure if

() =0, u(U En) => u(En)

for every countable collection {Ey,}, in I of pairwise disjoint sets. The triple
(X, 90, 1) is said to be a measure space.

Definition 19 Given a measure space (X, 0, 1), the measure p is said to be
complete if for every E € M with p (E) = 0 it follows that every F C E belongs
to M.

Theorem 20 (Carathéodory) Let X be a nonempty set and let p* : P (X) —
[0,00] be an outer measure. Then

M :={E C X: E is u*-measurable} (10)
is a o-algebra and p* : M* — [0, 00] is a complete measure.
Proof. Step 1: Since p* (0) =0, for any F C X,
pt (F) = p" (FO0)+p" (F\0),
thus () € 90*.
Step 2: To prove that if £ € 9t*, then X \ E € 9", it suffices to observe that
FN(X\E)=F\E, F\(X\E)=FnE.

Step 3: We show that if Ey, Fs € 91", then F1 U Ey € MM*. Fix aset F C X
with p* (F) < oo. Using the fact that Eq, E2 € I* we have that

00 > p* (F) = p* (FNEy) +p* (F\ E),
pt(F\ Er) = p® ((F\ Ey) N Ey) +p* (F\ Ey)\ E).

We now add these two inequalities and cancel p* (F'\ Ey) < oo from both sides.
We get,

p' (F) = p" (F O Ey) 4 p” ((F\ Ev) N Ey) +p” ((F\ Er) \ E2)

> p (FNE)U(F\ E)NEy) +p (F\ E)\ Ep)
— it (F 1 (By U ER) + i (F\ (B U By)),
where in the second inequality we have used the subadditivity of p*.
Thus 2* is an algebra.

Step 4: To prove that p* : 9* — [0, 00| is a finitely additive measure, let Eq,
E5 € M* be disjoint sets and let FF C X. Since F; € M* and E;, F, are sets,
we obtain

p* (N (B U Ey)) = p* (FN (B U E))NE) +p™ (FN (B UER))\ Er)
=p" (FOE)+p" (FNEy),



which implies finite additivity (take F:= X).
Using an induction argument we have that if Fq,..., E, € 9", m € N, are
pairwise disjoint and F' C X, then |J"_, E,, € 9M* and

n=

s (Fﬂ 0 E) = i;ﬁ (FNE,). (11)
n=1

n=1

Remark 21 Adam’s alternative proof of Step 3: We show that if E1, 5 €
™, then By U Ey € M*. Fiz a set F C X with pu* (F) < co. Using the fact
that Eq, Ey € ON* we have that
00 > p* (F) = p* (FNE) +p" (F\ Ev),
pt (F\ Er) = p” ((F\ Ey) N Ey) +p* (F\ Ey) \ E)

We now add these two inequalities and cancel p* (F'\ E1) < oo from both sides.
We get

p' (F) = p" (FOEy) 4 p” (F\ E1) N Ey) +p” (F\ Er) \ Ep). (12)
Using again the fact that 1 € 9*, we have that
pt (FN(ErUEy)) =p" (FN(ELUER))NE) + p" (FN(ELUEy)) \ Er)
=p (FNE)+p" (F\E)NEy),

where we used the fact that (FN(Ey U Ey))NEy = FNEy and (FN(EL U E))\
E, = (F\ Ey) N Ey. Using this identity in (12), we obtain We now add these
two inequalities and cancel p* (F'\ E1) < oo from both sides. We get

i (F) = i (F 0 (By U By)) + i* (F\ (By U B)).
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Proof.
Step 5: We are now ready to prove that p* : 9* — [0,00] is a countably
additive measure. Let {E,,} C 9" be any sequence of pairwise disjoint sets and
let F C X. Since ", E,, € M* for any m € N, we have that

w(F) = p* (Fﬂ UEn> + (F\ (U En>>
crorys (1 (0)5))
p (FNE,)+ p* (F\ ([j En>>7

-

n

>

NE

n



by (11) and the subadditivity of p*. Letting m — oo in the previous inequality

yields
pr(F) =) p* (F N E,) + p* (F\<UEn>> (13)
n=1

n=1

By the properties of outer measures, the right-hand side of the previous inequal-
ity is greater than or equal to

on(@)) o (1 (05)
W (F) > (Fﬂ @E>> e (F\ @E>>

which implies that |J7- , E,, € 9M*. On the other hand, taking F := (J,—, E,

n=1
in (13) gives
w (U En) > ZN* (En)a

n=1 n=1

and so

and so p* : M* — [0, 00] is a countably additive measure.
Step 6: To prove that 9* is a o-algebra, let {E,} C 9t*. Then the sets

Fy = Ey, Frz+1 = E7L+1 \ U Ly
k=1

belong to M* and are pairwise disjoint. Hence,

e (e
n=1 n=1

Step 6: Finally, if p* (E) = 0, then by the monotonicity of the outer measure,
pw* (FNE) =0 for all sets FF C X. Hence E is p*-measurable and p* : 9* —
[0, 0] is a complete measure. m

Example 22

(i) The class of all LY -measurable subsets of RN is called the o-algebra
of Lebesgue measurable sets, and by Carathéodory’s theorem, LY re-
stricted to this o-algebra is a complete measure, called the N —dimensional
Lebesgue measure and denoted by LY. Given a Lebesque measurable set
E CRYN, we will write indifferently

LY (B)

for the Lebesgue measure of E.

10



(i) By Carathéodory’s theorem, HE restricted to the o-algebra of all H:-measurable
subsets of RN is a complete measure denoted H* and called s-dimensional
Hausdorff measure.

(iii) Let I C R be an open interval and let f : I — R be an increasing func-
tion. By Carathéodory’s theorem, py restricted to the o-algebra of all
py-measurable subsets of I is a complete measure denoted py and called
the Lebesgue-Stieltjes measure generated by f.

Using Carathéodory’s theorem, we have created a large class of complete
measures. The next problem is to understand the class 9t* of the p*-measurable
sets. For instance, in the case of the Lebesgue measure £V, it is important to
determine if a ball, or a cube, or an open set is Lebesgue measurable.

Let X be a nonempty set. Given any subset F C P (X) the smallest (in the
sense of inclusion) o-algebra that contains F is given by the intersection of all
o-algebras on X that contain F.

If X is a topological space, then the Borel o-algebra B(X) is the smallest
o-algebra containing all open subsets of X.

Definition 23 Let X be a metric space and let p* : P (X) — [0, 00] be an outer
measure. Then p* is said to be a metric outer measure if

p(EUFE)=p"(E)+p" (F)
for all sets B, F C X, with
dist (B, F) :=inf{d(z,y): v € E, y € F'} > 0.

Proposition 24 The outer measures H; ,0 < s < 00, p}, and LY are metric
outer measures.

Proof. We only prove it for LY. Let B, F C R¥ be such that d := dist (E, F) >
0 and consider a sequence {R,}, of rectangles such that

EUFC GRn.

n=1

By partitioning each rectangle R,, into smaller rectangles, if necessary, we can
assume that diam R,, < g for every n. Hence, if R,, N E # (), then necessarily,
R,NF =0, while if R, N F # ), then necessarily, R, N E = (). Thus, we can
divide the sequence {R,}, into two subsequences, one covering E and one F'.
It follows that

Z measy R, = Z measy R, + Z measy R, > LY(E) + LY (F).
n=1 RnNE#) RuNF#D

Taking the infimum over all sequences { R, },, covering E U F gives

LY(EUF) > LY (E) + L) (F).

11



The other inequality follows from the fact that £ is an outer measure. Thus,
we have shown that £ is a metric outer measure. m
Friday, September 9, 2022

Proposition 25 Let X be a metric space and let p* : P(X) — [0,00] be a
metric outer measure. Then every Borel set is p*-measurable.

Proof. Since closed sets generate the Borel o-algebra B (X), to show that 9*
contains B (X), it is enough to prove that 9* contains all closed sets. Thus let
C C X be a closed set and let F C X be such that u* (F) < co. For n € N
define

Ey:={zxe F\C: dist(z,C) > 1}

1 1
E, = F < di —
n {:176 \C n+1_dlst(x,0)<n}

Note that the sets F,, are disjoint. Moreover, since C'is closed we have that
o0
U E,=F\C.
n=0

Indeed, if z € F'\ C, then dist (z,C) > 0, and so we may find n € N such that
x e F,.
If x € Fs, and y € E,,, where n > 2k + 2, then

1
< di < i —
T dist (z,C) < d(z,y) + dist (y,C) < d (z,y) + -
and so d (z,y) > ﬁ — % > 0, which implies that dist (Fak, E,) > 0 for all
k >0 and all n > 2k + 2. By the fact that p* is a metric outer measure, for all
k e N,

k k
D o (Byy)=p [ | By | < (F) < o0
7=0 Jj=0
Similarly
k
ZM (Eaj—1) < p* (F) < oo
j=1

Thus the series Y772 pu* (Ez;) and 3772, pu* (Ez;-1) are convergent. In turn,
the series Y 2 pu* (E,) is convergent.
n
Next observe that the sets F'NC and |J E; have positive distance, since if
=0

ze FNnCandye€ |J Ej, then
j=0

S dist (5,C) Sd ().

12



Hence, using again the fact that p* is a metric outer measure, we have that

W (FNC)+ it (F\NC) =" (FNC)+ | | B
7=0
n—1 00
=p (FnC)+p | |JE U Ej)
j=0 j=n
n—1 e’}
<pt(FNC)+p* Ej | +u | JE;s
j=0 j=n
n—1 00
<w (FnC) +p | JE | +Dw(B)
j=0 j=n
n—1 oo
=p" | (FNC)U E; +ZN*(EJ)
7=0 j=n
Su(F) + Yo pt (B
j=n

Letting n — oo, we conclude that p* (FNC) 4+ p* (F\C) < p* (F) and the
proof is complete. m

It follows from the previous two propositions that open sets, closed sets,
and Borel sets are Lebesgue measurable and HJ-measurable, and, when N =1,
py-measurable.

Proposition 26 Let (X,9M, u) be a measure space.
(i) If {E,},, is an increasing sequence of subsets of M then
M (U En) = nlggoﬂ (En).
n=1

(it) If {Ey,},, is a decreasing sequence of subsets of MM and p(E,) < oo then
L (m En> = lim p(E,).
n=1

Example 27 Without the hypothesis p(E1) < oo, property (ii) may be false.
Indeed, let E,, := [n,00). Then {E,}, is a decreasing sequence, L' (E,) = oo
for allm € N, but

L (ﬁ En> =L'(0)=0# lim £'(E,) = .

n—oo

13
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Let’s prove the proposition.
Proof. (i) Define
Fn = En \ En—la

where Ey := (). Since {E,}, is an increasing sequence, it follows that the sets
F, are pairwise disjoint with |J,2, E,, = |J,—; F», and so by the properties of
measures we have

00 0o 0o l
M(U En) :M<U Fn) :ZM(FTL): lim ZM(FTL)

n=1 n=1
l
-t (5) - pmeres

(ii) Apply part (i) to the increasing sequence {E; \ E,}, to get

Jim (p(Er) = p(En)) = lim p(Ex\ Bp) = p ( (£1\ En)>
:M<E1\ ﬂ En) :M(El)—/i<m En> .

Since p (E7) < 00, we get

e (Bn) = (ﬂ E) -
n=1

4 Lebesgue integration of nonnegative functions

We are now in a position to introduce the notion of integral. Let (X, 9, u) be
a measure space. Given a set E C X the characteristic function of E is the
function x g, defined by

{1 HrEE
XE 1 0 otherwise.

Let E, F C X belong to the o-algebra 9t. We define the integral of xg over F
as

/ Xgdp = p(FNE).
F

14



Definition 28 Let (X,9M) be a measurable space and E € M. A simple func-
tion is a function s : E — R that can be written as

14
s = E CnXE, >
n=1

where c1,...,ce € R and the sets E,, are measurable.

Let (X, 91, 1) be a measure space, E € MM, and s : E — [0,00) be a nonneg-
ative simple function. If s # 0, we can write

14
s = E CnXE, >
n=1

where the sets E, C E are measurable, pairwise disjoint, and ¢, > 0 for all
n=1,...,0. Given F' € 9 with FF C E, we define the Lebesgue integral of s

over F' as
0

/Fsdu = chu(FﬂEn). (14)

n=1

We leave as an exercise to show that the integral does not depend on the par-
ticular representation of s, that is, that if

m
s = Z deFm
k=1

where the sets Fj, C F are measurable, pairwise disjoint, and d > 0, then
/ sdp=>_ dpu(F N Fy).
F k=1
We set [, 0dp := 0.

Proposition 29 Let (X, 9, ) be a measure space, E,F € M, with F C F,
and s, t: E — [0,00) be simple functions. Then

/(s+t) dM:/sdﬂ+/tdu
F F F
/csdu:c/sdu
F F

for every ¢ > 0, where we set 0 - oo := 0.

and

Proof. Exercise. m
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Proposition 30 Let (X,9, 1) be a measure space and s : X — [0,00) be a
simple function. Then the set function

v(E) ::/ sdy, E eI,
E
1S a4 measure.

Proof. If s = 0, then ¥ = 0 and there is nothing to prove. Assume s # 0 and
let s = Zizl cnXE, , Where the sets F, are measurable, pairwise disjoint, and
¢p, >0 foralln=1,...,0. Let {F}}, be a sequence of measurable, pairwise
disjoint sets. Then v(()) = [, sdp = 0 and

[e's) 0 [eS)
V<UFk>:/ sd,u:chu<EnﬂUFk>:
k=1 U/io=1 Fi n=1 k=1 n

L

Cnlt ([j (Fp N En)>
1 k=1

¢ ) oo £

:ch M(FkﬂEn):ZZCnM<kaEn>
n=1 k=1 k=1n=1

:Z/ sduzzl/(Fk%
k=17 Tk k=1

where we used the fact that p is a measure, the sets Fj are pairwise disjoint,
and Exercise 8. m

Definition 31 Let (X,9) be a measurable space, E € M, and f: E — [0, 0].
We say that f is Lebesgue measurable if there exists a sequence of simple func-

tions s, : E — [0,00) such that s, < f for every n and s, — f pointwise in
E.

Proposition 32 Let (X,9M) be a measurable space, E € M, and f : E — [0, 0]
and g : E — [0,00] be two measurable functions. Then [+ g, fg, min{f, g},
max {f, g} are measurable.

Proof. Exercise. m

Proposition 33 Let (X,9M) be a measurable space, E € M, and f, : E —
[0,00], n € N, be measurable functions. Then sup,, fn, inf, f,, iminf, . fn,
and limsup,,_, ., fn are measurable.

Proof. Exercise. m
Wednesday, September 14, 2022

Remark 34 Let (X,9) be a measurable space, E € M, and f : E — [0,00]
be Lebesgue measurable. Then there exists a sequence of simple functions s, :
E — [0,00) such that s, < f for every n and s, — [ pointwise in E. By taking
t, = max{si,...,S,}, we have that t,, is still a simple function, 0 < t, < f, and
tn, — f pointwise in E by the squeeze theorem. Thus, in what follows, without
loss of generality, we can assume that the sequence {s,}n of simple functions
approximating a measurable function has the property that s, < sp41 in E.
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Definition 35 Let (X, 9, 1) be a measure space. Given E,F € M with F C E
and a measurable function f : E — [0,00], the (Lebesgue) integral of f over F'

is
/fdu::sup{/sdu: ssimple,0<s<finF}.
F F

We list below some basic properties of Lebesgue integration for nonnegative
functions.

Proposition 36 Let (X,9, 1) be a measure space, let E,F € M with F C E
and let f, g : E — [0,00] be two measurable functions.

(i) If f < g, then [, fdu < [ gdp.

(ii) If ¢ € [0,00), then [ncf du=c [, fdp (here we set 0o := 0).
(iii) [, fdu=0if and only if f () =0 for i a.e. & € F (even if p (F) = 00).
(iv) If 1 (F) = 0, then [, fdp =0, (even if f = 00 in E).

(v) If [ fdp < oo then f(x) < 00 for p a.e. x € F.

(vi) [pfdp= [pxrfdp.

Proof. (i) If s is a simple function with 0 < s < fin F, then s < f < gin F
and so

/sduﬁsup{/tdu:tsimple,OgthinF}:/gdu.
F F F

Taking the supremum over all such s gives f pfdp < f r9du.

(ii) Assume that ¢ > 0. If s is a simple function with Zﬁzl cnXE, and
0 <s< fin F, then cs is also a simple function and

¢ ¢
c/sdu:chnu(EnﬂF):chnu(EnﬂF):/csd,u.
F P

n=1 n=1
Since 0 < ¢s < ¢f we get
/csdug/cfdu.
F

c/sdu:/csd,ug/cfdu
F F F

or equivalently [, sdu < 1 [, cfdu. Taking the supremum over all such s
gives [ fdu <L [, cfdp, thatis, ¢ [, fdp < [, cf du. Since what we proved
holds for every f and ¢, to obtain the converse inequality it suffices to apply
what we just proved to the function h = c¢f, and with ¢ replaced by %7 namely
¢ Jphdu < [pthdp. Then ¢ [cfdu = ¢ [phdp < [pthdp = [picfdu
which gives [, cfdp < ¢ [}, f dp. The case ¢ = 0 is left as an exercise.

But

17



(iii) Assume that [ fdu = 0. For n € N define

Fn:_{xeF:f(z)zi}.

Then f > }prn, and so

1 1
0= [ Fdu= [ xndu=uF),
F Fn n

Since

F+::{x€F:f(m)>O}:GFn,
n=1

it follows that u (F}) =0. Thus f (z) =0 for u a.e. x € F.
Conversely, assume that there exists a set Fy € 9 with u(Fp) = 0 such that
f(z) =0 for all z € F\ Fy. Given a simple function 0 < s < f, we have that

s=01in F'\ Fy and so if s = Zﬁzl cnXE, , then we can assume that ¢; = 0 and
F\ Fy C E; and so

¢ ¢
/sd,u:chu(EnﬂF):0+chu(EnﬁF0)=O.
F

n=1 n=2
Since this is true for all simple functions s below f, we get [ rJdp=0.
(iv) Given a simple function 0 < s < f, if s = 22:1 cnXE,, then

L

/sd,u:chu(EnﬂF):O.
F

n=1

Since this is true for all simple functions s below f, we get fF fdu=0.
(v) Take s = nxg., where E, := {z € F': f(x) = co}. Then s is simple
and 0 < s < f. It follows that

nu(Eoo)Z/Fsdué/Ffdu<OO-

Letting n — oo we have that u(Es) = 0.
(vi) Note that if s = Zfl:1 cnXE, , then sy is a simple function with sxyp =

L ds
Zn:l CnXE,NnF and So

¢
/sd,u:chu(EnﬁF):/sxpdu.
F

n=1 E

If s is a simple function with 0 < s < f in F, then sxp is a simple function
with sxr < fxr in E. Hence,

/sdu=/sdeu§/fodu-
F E E

18



Taking the supremum over all such s gives | pfdu < / g [xF dp. Conversely,
if s is a simple function with 0 < s < fxr in E, then s = 0 outside F' and so
sxr =sand s < f in F and so

/sdu=/szdu=/sdu§/fdu-
E E F F

Taking the supremum over all such s gives fE fxrdu < fF fdu. =

Remark 37 Note that the only place where we used that M is a o-algebra is
in property (iii).

The next two results are central in the theory of integration of nonnegative
functions.

Theorem 38 (Lebesgue monotone convergence theorem) Let (X, 9, 1)
be a measure space, let E € M and let f, : E — [0,00] be a sequence of
measurable functions such that

0< fi(x) < fa(z) <...< fu(x) — f(2)

for every x € E. Then f : E — [0,00] is measurable and
lim fndp = / fdu.

Friday, September 16, 2022
Proof. By Proposition 33 the function f is measurable, and since f,, < fr41 <
f we have that [ fndp < [ fag1dp < [ fdp. In particular there exists

lim [ fpdu=:¢€]0,00]
E

n—00

and ¢ < [, i [ du. To prove the opposite inequality, let s be a simple function,
with 0 < s < fin E. Fix 0 < ¢ < 1 and for n € N define

E,={xe€E: f,(z) >cs(x)}.

Since f, and s are measurable and f,, < f,y1, it follows that F,, is measurable
and F, C E,;+1. We claim that

To see this, fix x € E. If f (z) =0, then f, () =0 for all n € N and s (z) =0,
and so x € E, for all n € N. If f(x) > 0, then f(z) > c¢s(z) and since
fn () = f(z), we may find n € N so large that f, (z) > ¢s(z). Thus z € E,,
and the claim is proved.
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Using the fact that f,, > 0 and the definition of E,, and we have that

/fndMZ/ fndMZ/ csdu:c/ sdpu.
E B, E, E

n

By Exercise 30, the set function

v(F) ::/Fsdu, Fem,

is a measure, and so by Proposition 26,

[ todnzc [ sdu—cu(Enwcu(D E> —w (B).

n n=1
Thus
> cv(F) :c/ s dy.

E

Ez/sdu,
E

and given the arbitrariness of the simple function s below f, taking the supre-
mum over all such admissible functions s yields

éz/Efdu.

Letting ¢ /' 1 we obtain that

This concludes the proof. m

Remark 39 The previous theorem continues to hold if we assume that f,, () —
f(x) for p a.e. x € E. Indeed, in view of Proposition 36(iv), it suffices to re-
define f, and f to be zero in the set of measure zero in which there is no
pointwise convergence.

Example 40 The Lebesgue monotone convergence theorem does mot hold in
general for decreasing sequences. Indeed, consider X = R and let p be the
Lebesgue measure L'. Define

1
fn = 5X[n,oo)'

Then fn, > fny1 and

lim fndm:oo;éO:/ lim f,dz.
R Rn*)OO

n—oo

Corollary 41 Let (X,9, 1) be a measure space and let f, g : X — [0,00] be
two measurable functions. Then

| tvardn= [ ran+ [ gan
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Proof. By Remark 34 there exist two sequences {s,} and {t, }of simple func-
tions such that

for every z € X. By Proposition 29,

/(sn—&—tn)du:/sndu—l—/tndu.
X X X

The conclusion follows from Lebesgue’s monotone convergence theorem. m

Corollary 42 Let (X,9, 1) be a measure space and let f,, : X — [0,00] be a
sequence of measurable functions. Then

i/xfnduzfxifndu.

Proof. Apply the Lebesgue monotone convergence theorem to the increasing
sequence of partial sums and use linearity of the integral. m

Example 43 Given a doubly indexed sequence {an i}, with a, > 0 for all n,

k € N, we have
22 k=) D an

n=1k=1 k=1n=1

To see this, it suffices to consider X = N with counting measure and to define
fn: N —=[0,00] by fn (k) :=anr- Then

fndﬂz An, K,
o= 3

and the result now follows from the previous corollary.
Monday, September 19, 2022

Lemma 44 (Fatou lemma) Let (X,9, u) be a measure space. If f, : X —
[0,00] is a sequence of measurable functions, then

f:=liminf f,

n—oo

18 a measurable function and

/fdugliminf/ fndu
X n—ee Jx
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Proof. For n € N define

= inf f.
n ggnfk

/gnduﬁ/ fn dp.
X X

Since g, < gn+1, by Lebesgue’s monotone convergence theorem

/liminffnd,u:/ lim ¢, dp = lim / gn dp
X n—oo X’n—)OO n—oo X

< liminf/ fndp.
X

n—oo

Then g, < f,, and so

Example 45 Fatou’s lemma fails for real-valued functions. Indeed, consider
X =R and let i be the Lebesgue measure L'. Define

1
Jn = —=X[o,n]-
n

Then

n—oo n—oo

liminf/fndx:—1<0:/ lim f,dz.
R R

5 Lebesgue Integration of Functions of Arbitrary
Sign
Definition 46 Let (X,9M) be a measurable space, E € M, and [ : E —

[~00,00]. We say that f is Lebesgue measurable if f+ and f~ are Lebesgue
measurable, where

fri=max{f,0}, f :=max{—f,0}.
Note that f = fT —f=, |fl=ft+ f.

Definition 47 Let (X, 9, 1) be a measure space. Given E,F € M with F C E
and a measurable function f: E — [—00, 00|, if at least one of the two integrals
Jp fTdp and [, f~ du is finite, then we define the Lebesgue integral of f over

F to be
/Ffdu:=/Ff+du—/Ff‘du~

If both [, f*du and [, f~ dp are both finite, then f is said to be Lebesgue
integrable over F.

Proposition 48 Let (X, M, u) be a measure space, let E, F € M with F C E
and let f, g: E — [—00,00] be two measurable functions.
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(i) If f and g are integrable over F' and o, B € R, then af + Bg is integrable
and
@ +pg)du=a [ fau+s [ gan
F F F

(i) | [ fdu| <[5 |f] du.

(ii) If f is Lebesgue integrable, then the set {x € F : |f (z)| = oo} has measure
zero.

(iv) If f(z) = g(x) for p a.e. © € F, then [, fXdu = [n g% dp, so that
Sz fdp is well-defined if and only if [ gdu is well-defined, and in this

case we have
[ fan=[ gdn (15)
F F

Exercise 49 Prove the previous proposition.

Property (15) shows that the Lebesgue integral does not distinguish func-
tions that coincide p a.e. in F. This motivates the next definition.

Definition 50 Let (X,9M, ) be a measure space. Given E, Fo, F € M, with
Ey,F CE and u(Eyg) =0, and f : E\ Eyg — [—00,00| a measurable function,
then we define the (Lebesgue) integral of f over the measurable set F' as the
Lebesgue integral of the function

g(z) ::{ f(z) ifzeE\ Ep,

0 otherwise,

provided ngd,u is well-defined. Note that in this case

/gdu=/Hdu,
F F

H (2) ::{ f(z) ifzeE\ Ep,

w(z) otherwise,

where

and w is an arbitrary measurable function defined on Fy. If the measure p is
complete, then ngdu 18 well-defined if and only if fE\F fdp is well-defined.

For functions of arbitrary sign we have the following convergence result.

Theorem 51 (Lebesgue dominated convergence theorem) Let (X, I, 1)
be a measure space, let E € M and let f,, : E — R be a sequence of measurable
functions such that

nh_{go fn ($) =f (x)

for all x € E. If there exists a Lebesque integrable function g : E — [0, 00] such
that

[fn (@) < g (x)
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for allx € E and all n € N, then f is Lebesgue integrable

lim fndp = / fdu.
E E

n—oo

Wednesday, September 21, 2022
Proof. The function f is measurable by Proposition 33, and by Fatou’s lemma

/Ifl duéliminf/ | fnl duﬁ/lgl dp < o0,

Thus f is integrable. Since g &+ f,, > 0, again by Fatou’s lemma we have
/ gdui/ fdu:/ (9% f) duﬁliminf/ (9 £ fn) du
E E E n—oe JE

:/gd,quliminf/ (£fn) du.
E n—oo E

Using the fact that [ g 9dp € R, we can rewrite the previous two inequalities as

[ ran<timint [ odu<tws [ fodu< [ .
E n—oo Jg n—oo JE E

and so the theorem holds. =

Example 52 If g is not integrable then the theorem fails in general. Indeed,
consider E = [0,1] and let u be the Lebesque measure L. Define

T = MX[o, 1
Then
1 1
lim fndleyéO:/ lim f,dz.
0

n—oo 0 n—oo

Exercise 53 Use Lebesgue dominated convergence theorem to calculate the limait

n T\ 1
lim (1 — 7> % dx,
n—oo [q n

where a > 0.

Corollary 54 Let (X,9, 1) be a measure space, let E € 9 and let f, : E —
[—00,00] be a sequence of measurable functions. If

Z/ |ful dp < o0,
n=1 E

then there exists a set Ey € M with p(Ey) = 0 such that the series Y o | fr ()
converges for all x € E \ Ey, the function

F@) = fu(),
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defined for x € E \ Ey, is integrable, and

gjl/Efndu: /E\Eofdu-

Proof. Define

o0

9(z) = |fulx)l, z€E.

n=1

Then g : E — [0, 00]. By Corollary 42,

gdp = /fn dp < 00
/| > [

and so g is Lebesgue integral. In particular, there exists a set Ey € 9 with
w(Ep) = 0 such that g(z) < oo for all x € E\ Ey. If g(z) := >0, | fu(2)] < 00,
then > 7, f,(z) converges. Thus, there exists

Jim 37 filw) = 3 fule) € R
k=1 k=1

for all x € E'\ Ey. Moreover,

> fr(x)
k=1

Hence, we can apply the Lebesgue dominated convergence theorem in E'\ Ey to

obtain . .
lim / Z frdp = / lim Z frdp.

\Eo ,—1 \Eo "

<A@ <D @) = g(a).
k=1 k=1

By the linearity of the integral, the left-hand side equals

lim / ixm

\Eo

Hence,
Jrdp = / fr dp.
;g;jQ\EO E\E0;£;

Finally, observe that since u(Fgy) = 0, we have fE\EO fedp =[5 frdp. =

For simplicity in what follows we write that a property P holds for p-a.e.
x € E to mean that there is a measurable set Ey with p(FEp) = 0 such that the
property P holds for all z € E'\ Ey.
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6 Product Spaces

Definition 55 Given a measure space (X,9M, ), a set E € M has o-finite
measure if it can be written as a countable union of sets of finite measure, that
is, if there exist E, € M, n € N, such that u(E,) < oo and Uf;l E,=FE.If
the entire space X has o-finite measure, we say that the measure p is o-finite.

We recall that, given two measurable spaces (X, 91) and (Y,9) we denote
by MRN C P (X x Y) the smallest o-algebra that contains all sets of the form
E x F, where E € M, F € M. Then M ® N is called the product o-algebra of
I and N.

Exercise 56 Let X and Y be metric spaces and let B(X) and B(Y) be their
respective Borel o-algebras. Prove that

B(X)®B(Y)CB(X xY).

Prove that
B(R) ® B(R) :B(RQ).

Let (X,9, 1) and (Y, M, v) be two measure spaces. For every E € X XY
define

(u X v) Gr): {Fn},, n M, {G,}, in N, (16)

/—’H
HM8
C8

(F, xG)}

n=1

By Proposition 7, (ux v)" : P(X) — [0,00] is an outer measure, and it is
called the product outer measure of p and v. By Carathéodory’s theorem, the
restriction of (1 x )" to the o-algebra 9 x M of (4 X v)"-measurable sets is a
complete measure, denoted by p X v and called the product measure of u and v.

Note that M X N is, in general, larger than the product o-algebra 9t @ N.

Theorem 57 Let (X, 9, u) and (Y,MN,v) be two measure spaces.
(i) If F € M and G € N, then F x G is (u x v)"-measurable and

(WX V) (FxG)=p(F)v(G); (17)

(ii) if p and v are complete and E has o-finite u X v measure, then for u a.e.
x € X the section

E,={yeY: (z,y) € E}
belongs to the o-algebra M, and for v a.e. y € Y the section

E,.={zeX: (z,y) € E}
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belongs to the o-algebra M. Moreover, the functions y — p(E,) and
x +— v (E,) are measurable and

o0 (B) = [ wlBy) o) = [ v(B) du(a).

X
Friday, September 23, 2022

Remark 58 If (X, 9, u) and (Y,N,v) are two measure spaces, then p X v :
MEN — [0,00] is complete. On the other hand, p X v : MR I — [0,00] is
not complete in general even if and p and v are complete. Indeed, if there exists
a nonempty set F € M such that p(F) = 0 and a set G € P(Y)\ N, then
the set F' x G belongs to MR N since F x G CF xY and (uxv)(FxY)=
w(F)v(Y)=0. On the other hand, by the previous exercise we have that F'x G
does not belong M N, since for every x € F the section

(FxG),=G

does not belong to M. In particular this can be applied to L' x L1 since we have
shown that there exist sets that are not Lebesgue measurable.

Exercise 59 Let N = m + k, where N, n, m € N. Prove that (L™ x L™)" =
o

The previous result is a particular case of Tonelli’s theorem in the case that
f=Xx8

Theorem 60 (Tonelli) Let (X, u) and (Y,9,v) be two measure spaces.
Assume that p and v are complete and o-finite, and let f : X xY — [0,00]
be an M XN measurable function. Then for p a.e. x € X the function f (x,-)
is measurable and the function fy f (- y) dv (y) is measurable. Similarly, for v
a.e. y €Y the function f (-,y) is measurable and the function [ f (x,-) du(x)
1s measurable. Moreover,

[ e awaren= [ ([ renwm)ame

:/Y</Xf(a:,y) du(x))dV(y)-

Proof. If f = xg or, more generally, if

0
f = Z CnXE,>
n=1

then the result follows from the previous theorem. If f : X XY — [0,00] is
an arbitrary 991 X 91 measurable function, then by Remark 34 there exists a
sequence {s,, }, of simple functions s,, : X XY — [0, 00) such that

0<s1(z,y) <ss(z,y) <...<s,(z,y) — f(z,y)
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for every (z,y) € X x Y. By the Lebesgue monotone convergence theorem
(applied twice) we have

/ F@y) duxv)@y)= lim [ s (@y) d(uxv)(@y)
XXY

n—oo XxXY

—tim [ ([ snw ar ) o

[ (1 [ ) o)) o)

Since by the previous theorem for all n € N and for 4 a.e. © € X the functions
yeY = s, (2,y)

are measurable, we may apply again Lebesgue monotone convergence theorem
to conclude that for p a.e. x € X,

lim Sn (z,y) dv (y) = /Yf (z,y) dv(y),

n—oo Y

and so

[t awxnen= [ ([ 1w am)ae.

Similarly, we have
/Xxyf(x,y) d(pxv)(z,y) = /Y (/Xf(x,y) du(:z:)> dv (y) .

Exercise 61 Prove that in the case that f : X XY — [0,00] is 9 @ N mea-
surable, then Tonelli’s theorem still holds even if the measures p and v are not
complete, and the statements are satisfied for every x € X and y € Y (as
opposed to for u a.e. x € X and forv a.e. y€Y).

The version of Tonelli’s theorem for integrable functions of arbitrary sign is
the well-known Fubini’s theorem:

Theorem 62 (Fubini) Let (X,9, u) and (Y,9, v) be two measure spaces. As-
sume that p and v are complete, and let f : X XY — [—o00, 00] be uxv-integrable.
Then for p a.e. © € X the function f(x,-) is v-integrable, and the function

Iy [ y) dv(y) is p-integrable.
Similarly, for v a.e. y € Y the function f(-,y) is p-integrable, and the
function [ f(x,-) dp(x) is v-integrable. Moreover,

/Xxyf(:c,y)d(uxu)(w,y)=/x(/Yf(x,y) du(y))dmx)

= [ ([ 7@ duto)) av .
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Proof. The proof is very similar to that of Tonelli’s theorem. We consider first
the case in which f is a characteristic function, then a simple function, then
an nonnegative integrable function, and finally use the fact that f = f* — f~.
Note that, since f is p X v-integrable, by Remark 48 the set

E:={(z,y) € E: [f (z,y)] > 0}

has o-finite 1 X v measure. Thus, we are in a position to apply Theorem 57(ii).
]

Exercise 63 Prove that in the case that f : X XY — [—00,00] is M @ N
measurable, then Fubini’s theorem still holds even if the measures p and v are
not complete.

Example 64 The next ezample shows that Fubini’s theorem fails without as-
suming the integrability of the function f. Consider the function

- Ty 2
f(];?y) T (a:2+y2)27 ( ’y)ER \{(070)}

We showed this in 21-269 that

1
% —y? 1 1
d :—/ —dy = —-m,
/0 </o / x2+y ) Y o y2P+1 4 4
1 1,2 2 1
— 1 1
/ /zi‘dey dx:/ ————dv = —m.

0 0o (z2+y?) 0 T2 +1 4

Since, by Tonelli’s theorem

+ +
/ 7x2—y22 dacdy:/1 /1 71:2—y22 dx | dy
0,1x[0,1] \ (2 +y?) o \Jo \(22+y?)

while

dx

and

dx,

R W oy ),
/[0,1}><[071]<(172+y2)2> ¢ dyi/o ( <($2+92)2> ! ) w
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this implies that

+ _
/ Ly: drdy = / LyQQ dady = oo,
0.1)x[0.1] \ (2 +y?) 0,1]x[0,1] \ (22 + 32)

so that the Lebesgue integral of f is not defined.

Exercise 65 Prove that the function
sin® &

W’ (a;,y) €R2\{(070)}

f (x,y) =

18 Lebesgue integrable over the set E = {(z,y) ER?: y>a% x> 0} and com-
pute

Monday, September 26, 2022

7 Lebesgue’s Differentiation Theorem

In this section we prove that a monotone function is differentiable at all points
except at most a set of Lebesgue measure zero.

Theorem 66 (Lebesgue’s Differentiation Theorem) Let I C R be an in-
terval and let f : I — R be a monotone function. Then there exists a set E C I
of Lebesgue measure zero such that f is differentiable in I \ E.

The proof relies on the following covering lemmas.

Lemma 67 Let E C R be a bounded set and let F be a family of open intervals
with the property that each x € E is the left endpoint of an interval (z,x + h,)

in F. Then for every € > 0 there exist disjoint intervals I,..., I, € F such
that
cl (E nUYJ Ik> > LYE) —e.
k=1

Proof. Define )
En::{mEE: h$>}.
n
Then F, C E,4+; and
U E.=E.

n=1

One of the properties of the Lebesgue outer measures is that (Exercise)

lim LL(E,) = LL(E).

n—oo
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Hence we can find m so large that
LY(En) > Ly(E) -
Let a :=inf E,,, by :=sup E,,, and let £ := b; — a7 > 0. Given

e
T Sme+ 1)

by the definition of infimum we can find x; € E,, with a1 < 21 < a; + 7. By
definition of E,, there exists an interval Iy = (1,21 + h1) in F, with h; > %
If 1 + h1 > by, then we stop.

If 21 + h1 < by, let

az:=inf{r € B, : > 21+ h1}.

Then by the definition of infimum we can find x5 € E,, with as < x5 < as + 7.
By definition of E,,, there exists an interval Iy = (x9, x2+hs) in F, with hg > %
If x5 + ho > by, we stop, while if x5 + hy < by we define

ag:=inf{z € E,, : © > x3+ ha}.

We continue in this way constructing intervals I until z + hi < by. Since
each interval I}, has length larger than %, we have that we will find at most n
intervals with n < mf + 1. Let

n

S = U Ik, T:= U(xk —77,1']6}.

k=1 k=1

Then zx —n < ax and so E,, C SUT. Moreover the intervals Ij are disjoint
by construction. Now

LYE) = 5 < £Y(Ew) < LY(En N S) + LY(En NT)

n

< Lo(Em 08) + Ly(T) < Lo(Em 18) + Y Lo((zx — 1, 21])
k=1

=LXE,NS)+nn < LYE,NS)+ %

and so L1(E,, NS) > LL(E) — ¢. In turn,
n
cl (E nUYJ 1k> > LYE,NS)>LYE) —¢,
k=1
which concludes the proof. m
Lemma 68 Let E C R be a bounded set and let F be a family of open intervals

with the property that each x € E is the left endpoint of an interval (z,x + hy)
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in F with h, arbitrarily small (that is, for every n > 0 there is one interval with
he <n). Then for every e > 0 there there exist disjoint intervals I, ..., I, € F
such that

Ll <E nUY Ik) > LYE)—¢, > lengthly < LY(E)+e.

k=1 k=1

Proof. Consider an open set U O E such that
LLU) < LY(E) +e.

Let F' be the subfamily of intervals (z,x + h;) in F contained in U. Note that
for each z € E C U there must exist at least one such interval, since U contains
a ball centered at x and there are intervals of arbitrarily small length.

Apply the previous lemma, to the family F’ to find disjoint intervals I, ..., I, €

F' such that
cl (E nUJ Ik> > LYE) —e.

k=1
Since the intervals are disjoint and contained in U, it follows that

Zlength]k < LHU) < LYE) +e.
k=1

This concludes the proof. m
Wednesday, September 28, 2022
The last lemma is of interest in itself.

Lemma 69 Let I CR be an interval, let f: 1 — R, and let
E:={xeI°: there exist f' (x) and f_(x) and fi(x) # f.(z)}.
Then E is countable.

Proof. Write Q = {r,, : n € N} and consider the set E_ :={z € E: f (x) <
fi(x)}. By the density of the rationals, there exist countably many rationals
in the interval (f’(x), fi(x)). Let m € N be the smallest integer such that
fL(x) <rp < fi(z). Since

fly) = f(=)

lim ——————= < T'm
y—xr~ Yy—x

let p € N be the smallest integer such that

fly) — f(=)
y—x

< Tm

for all r, <y < z. On the other hand, since

o W= 1@
y—at y—x
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let ¢ € N be the smallest integer such that

for all z < y < ry. It follows that

fy) = (@) > rm(y — @)

for all r, <y <7, with y # x.

Thus we have shown that to each x € E_ we can uniquely associate three
natural numbers (my, Py, ¢;) for which f(y) — f(x) > rm, (y — ) for all v, <
y < rq, with y # z. Next we claim that if x, z € E_ with x # z, then

(mwapwa Qw) 7& (mzapzan)-

Indeed, if (my, Py, ¢z) = (M2, D2, ¢2), then f(y) — f(x) > rm, (y—2z) forall r, <
y < 1y, with y # z. In particular, taking y = z gives f(z) — f(x) > rm, (2 — ).
But since (my, Pz, qz) = (M2, Pz, q.), we also have f(z) — f(z) > rm, (x — 2).
Adding these two inequalities gives a contradiction. Thus the claim holds.

Hence, the function x € E_ + (my,ps, ) is injective, which shows that
the cardinality of F_ is at most the cardinality of Q x Q x Q, that is, E_ is
countable. m

Next we recall the definitions of liminf and limsup. Let (X,d) be a metric
space, £ C X, and f: E — R. Assume that zy € X is an accumulation point
of E. For every r > 0 define

r) = inf .
9(r) EN(B(zo,m)\{z0}) f

Note that g(r) is —oo if f is not bounded from below in E N (B(xo,7) \ {zo}).
If 11 < 7o then g(r1) > g(r2). Hence the function g : (0,00) is decreasing. It
follows that there exists

lim g(r) = sup g=/ € R.
r—0+ ( ) (0,00)

This limit is called the limit inferior of f as x approaches xy and is denoted

liminf f(z) or lim f(z).

T—ITQ T—TQ

On the other hand, for every r > 0 define

h(r) := sup
EN(B(zo,r)\{zo})

Note that h(r) is oo if f is not bounded from above in E N (B(xg,7) \ {z0}).
If 71 < 7o then h(r1) < h(rz). Hence the function h : (0,00) is increasing. It
follows that there exists

lim A(r) = inf h=L€eR.

r—0+ (0,00)
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This limit is called the limit superior of f as x approaches xy and is denoted

limsup f(z) or lim f(z).

T—T0 T—To
The following theorem is left as an exercise.

Theorem 70 Let (X,d) be a metric space, let E C X and let f : E — R.
Assume that xg € X is an accumulation point of E. Then

liminf f(z) < limsup f(x). (18)

T—To T—x0
Moreover, there exists lim,_.., f(z) = ¢ € R if and only if

liminf f(z) = limsup f(x) = £. (19)

T—xT0 z—T0

Given a set E C R and function f : E — R, for every xy € F such that
zo € acc(E N (—o0,z0)) and zy € acc(E N (zg,0)), the four Dini’s derivatives
of f are given by

D_f (xo) := lim sup f(msz - £0($0)7 D.yf () = limsup f( :z:i”o(:co)

D_ f(zo) :=liminf M, D, f (xo) := liminf M.
T—Ty r — X9 1—’133 T — xg

Friday, September 28, 2022
We now turn to the proof of Lebesgue’s differentiation theorem.
Proof. Step 1: Assume that f is increasing and that I is bounded and let

E:={zel°: D f(z) <Dif(z)}.

We claim that E has Lebesgue measure zero. To see this we write E as a
countable union of sets

E= |J Ew Ew={acE: D, f(x)<r<s<Dif(x)}.
r,s€Q, 0<r<s

It is enough to prove that each set I, s has Lebesgue measure zero. Since

Q+f(x):hminfwz N At 1))

<r
Yzt y—T R0+ ye(z,a+R)NI y—T ’

for each = € E, 5 there exist R; > 0 (depending on x) such that
fy) = f(z)

inf LI oy
ye(@atR)NI Y — &
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for all 0 < R < Ry. Since z € I°, by taking R; smaller, we can assume that
(x,z+R1) CI,s0 (x,z+ R)NI = (x,x+ R) for all 0 < R < R;. Since r is not
a lower bound, for every 0 < R < Ry, we can find ygr € (z, 2 + R) such that

fyr) = f (x)

Yr — X

<r.

Write yr = = + hgr. In conclusion for each x € E, s we found countably many
an open intervals (z,z + h), where h > 0 is arbitrarily small, such that

fz+h) - f(z)

3 <. (20)

Let F be the family of all such intervals as x varies in E, ;. By Lemma 68 for
every ¢ > 0 there exist disjoint intervals I, ..., I, € F such that

cl <E nUYJ 1k> > Ly(Ers)—e, > lengthly < L)(E..)+e.  (21)
k=1 k=1

Write I, = (2, zk + hi). Then by (20) and (21),

n n
Z flzg + hi) — f(zg) < rz hi < TLLE,s) + e (22)
k=1 k=1

Let V := Z:l I. Note that V is open. Setting F,., := E, NV, for each

x € F, s we have that

D, f(z) = limsup fly) = f=) = lim sup f) - f=@) > s.

y—xt y—x R—0% yE(z,z+R)NI y—x
Hence, for each x € F, 5 there exist Ry > 0 (depending on x) such that

fy)—f(2)

sup e
yE€(z,z+R)NI y—x

for all 0 < R < R,. Since x € I°, by taking Rs smaller, we can assume that
(x,x+ R)) CV CI s0 (z,x+R)NI=(x,xz+ R) for all 0 < R < Ry. Since s
is not an upper bound, for every 0 < R < Ry, we can find yi € (z,x + R) such

that
f(yr) — f ()
Yr — X
Write yr = x+1tg. In conclusion for each x € F. ; we were able to find infinitely
many open interval (x,x +t) C V', where ¢t > 0 is arbitrarily small, such that

flz+1) - f=)
t

> S

> s. (23)
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Let G be the family of all such intervals. By Lemma 68 for every € > 0 there
there exist disjoint intervals Ji,...,J, € G such that

cl (F nlJ Ji> > LY (F.,) —e. (24)

i=1
Write J; = (y4,y: + ti). Then by (21), (23), and (24),

m

m m
Zf(yi—&-ti)—f(yi) > sZti > sL) (FT)S N U Ji> > sLL(F,)—se > sLE(E, ) —2s¢.
i=1 i=1 i=1

(25)
But since each J; is contained in V = UZ:1 I, and since the intervals I are
disjoint, it follows that each interval J; is contained in some interval . Since
f is increasing it follows that

m

S Fwi+t) = fyi) <D Fan+ he) — flaw).
=1

i=1

Combining this inequality with (22) and (25) gives

5£(1>(ET,S)*255 < Z f(szFtZ)*f(yz) < Z f($k+hk)*f(mk) < TL})(ET’,S)+T&

i=1 k=1

that is
(s —7)LYE,s) < 2se + 7e.

Since s — r > 0, letting € — 0" we conclude that LL(E, s) = 0.

Hence, we have shown that £1(E) = 0. It follows that for all z € I° \ E
there exists the right derivative f) (x) (possibly infinite).

With a similar proof we can show that the left derivative exist (possibly
infinite) for all z € I° except for a set of Lebesgue measure zero. It follows from
Lemma 69 that there exists f'(x) (possibly infinite) for all € I except for a
set of Lebesgue measure zero.

Step 2: Let
F={zel°: fl(z)=o00}.

We leave as an exercise to prove that LL(F) =0. m
Monday, October 3, 2022

Corollary 71 Let I C R be an interval and let f : I — R be an increasing
function. Then for every a,b € I with a < b,

/ f(z) de < F(b) - f(a).
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Proof. Let a,b € I with a < b. Consider the function g : [a,00) — R given by

o(z) = { flx) if z € la,b],

fb) ifz>b,
and define ( 1 @)
gz + 1) —g(=z
gn(@) = —"——, z€[a0]

Then g, > 0, gn(x) — ¢'(z) for L' a.e. x € [a,b]. Moreover, g,, is measurable,
since monotone functions are measurable and differences of measurable functions
are measurable. By Fatou’s lemma

b b
/ g’ (z)dz <lim inf/ gn(x) dx

On the other hand, for every h > 0,

b
i [ s - g @) de -

b+h a+h
{/b g(x)dxf/a g(m)dx} (26)

{(g(b) —g(a))h} =g(b) —g(a).

S= S

<

Hence, taking h = % gives the result for g. To conclude, observe that ¢'(x) =
f'(x) for all z € (a,b) where the derivative exists, and that f(a) = g(a) and
10) = g0).

In what follows, given an interval I C R, a partition of I is a finite set
P :={xg,...,xn} C I, where

Top <X << Tp.

Definition 72 Let I C R be an interval and f : I — RN. The pointwise
variation of f on the interval I is

Var f := sup {Z Ilf (z:) f(xi—1)|} )

i=1

where the supremum is taken over all partitions P := {xg,...,z,} of I, n € N.
A function f : I — RN has finite or bounded pointwise variation if Var F < oco.

The space of all functions f : I — RN of bounded pointwise variation is
denoted by BV (I; RN).

Remark 73 We can give a similar definition for functions f : I — X, where
(X, d) is a metric space. The only difference is that

Var f := sup {Zd(f(xz)7 f(l"z—l))}

i=1
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When X = R we write BV (I) for BV (I;RY).

To highlight the dependence on the interval I, we will sometimes write
Vary f.

A function f : I — R has locally finite or locally bounded pointwise vari-
ation if Var(g f < oo for all intervals [a,b] C I. The space of all functions
f : I — RY of locally bounded pointwise variation is denoted by BVi,e (I ‘RN )

It almost goes without saying that if I = [a,b], then

BViee ([a,b]; RY) = BV ([a,b] ; RY) .

Theorem 74 (Indefinite pointwise variation) Let I C R be an interval,
cel, and f € BVic (I;RN). For every x € I define

o Var . f ifr>c,
v(w) = { —Varg o f ifz<ec (27)

Then for all x,y € I, with x < y,
1f () = f (@) < v (y) —v(x) = Varp,, f. (28)

In particular v is increasing and f is continuous at all but countably many points
of I. Moreover, there exist

(@)= lim f(y), f7(z)= lim f(y)

y—a~ y—axt
for all x € I°. Finally, if N =1, the functions vtf are increasing.
Proof. You proved the first part in 21-269. =

Theorem 75 Let I C R be an interval. Then every function in BViye (I) is
differentiable for L'-a.e.x € I.

Proof.
]
Wednesday, October 5, 2022
We now give an example of a continuous, nowhere differentiable function.

Theorem 76 Let f(x) = |z| for x € [-1,1] and extend f to R as a periodic
function of period 2. Then the function

o0 3 n
= - 4n R
o@) =3 (1) s, e
18 real-valued, continuous, and nowhere differentiable.

Proof. Let f,(z) = (%)n f(4"x), € R. Note that f, is continuous. Consider

the series
oo
> sup | fu(z)].
n=1 z€R
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Since f is periodic, sup,cg O SUPye[—1,1] |f(y)] =1, and so | fr(z)| < (3)n
In turn >0, sup,ep | fo(2)] < 3000, (3)". Tt follows from stuff done in 21-269
that the series 2211 fn converges uniformly to a continuous function g.

Next we prove that g is nowhere differentiable. Fix x € R. We are going
to construct a sequence h,, — 0 such that w — 00 as m — 0o.

We take h,, = i2 1m» Where the sign is chosen in such a way that in the
open interval of endpoints 4™z and 4™(x + hyy,) there is no integer. Let’s

prove that we can always do this. We have 4™ (z + 3 4m) —4m(x — %;ﬂ) =

1. If both 4™(z + 5 4m) and 4™(z — § ;=) are integers, then in the interval

(4™(z — §7),4™ (@ + £ 7)) there is no integer and so we can take the sign of

hu, as we like. If 4™ (x—l—l%) and 4™ (z— 3 4},7 ) are not both integers, then in the

interval (4™ (x — 54?) 4™(z+ %)) there is exactly one integer. If this integer
is 4™z then we the sign of h,,, as we like. If the integer is in (4m(x— 1.Ly,4m),
then we take h,, = 2., while if the integer is in (4™z,4™(z + § 3)), then we
take h,, = —%4%.

We now study

fal@ +hy) = fulz)  (3)" FA" (@ + b)) — (3)" f(472)

Bom hom
B <3>" fdre £ 24n—m) — f(47x)
4 +iL

If n > m then %4”’"‘ is an even integer and so by the periodicity of f the
difference quotient is zero. If n = m then since in the open interval of endpoints

x and 4™ (z+h,,) there is no integer we have that the points (z+h,,, f (4™ (z+
hi))) and (z, f(4™x)) lie in the same line of the graph of f with slope either 1
or —1. Hence,

Jm(T + b)) = fin(2)
hm

- gt

Finally, if n < m, then using the fact that f is Lipschitz continuous with Lip-
schitz constant 1 we get

fn(T + hin) = fu(z)
hom

4

[ ||

Hence,

(x+hm - Z a :c+h — fulz)

n=1
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and using the inequality |a + b| > |b| — |a| we get

9(x + hm) — g(x)
hnL

_ fm(x + hi) m—i—h — fu(z)

pldale) 57 e e
n=1
5

fm x+h ) fm fn m+h fn(m)
hm

e 1 3 1 3
>3m_ 371,:3m_73m 7:737"1 —
= Z 90 Ty =3 Ty

as m — o0o. This concludes the proof. m

8 The Fundamental Theorem of Calculus

Next we study the fundamental theorem of calculus for Lebesgue’s integration.
The Cantor function f : [0,1] — R is a continuous, increasing function with
derivative f/(x) = 0 for £ a.e. = € [0, 1], which does not satisfy the fundamental
theorem of calculus since

1-0=f(1) - /f

It turns out that the functions which satisfy the fundamental theorem of
calculus for the Lebesgue integration are absolutely continuous.

Definition 77 Let I C R be an interval. A function f : I — RN is said to be
absolutely continuous on I if for every e > 0 there exists § > 0 such that

¢
D IIF (o) = f (an) || < (29)
k=1
for every finite number of nonoverlapping intervals (ag,br), k = 1,...,¢, with

[ak,br] €I and

M~

(bk — ak) <9
k=1

The space of all absolutely continuous functions f : I — RYN is denoted by
AC (I; RN). When N =1 we simply write AC (I).

Friday, October 7, 2022

Remark 78 Note that since £ is arbitrary, we can also take £ = oo, namely,
replace finite sums by series.
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Example 79 Let I C R be an interval. If f : I — RY s Lipschitz continuous
with Lipschitz constant L, then

4 4
STIF )~ F (@) | S LY (s —ax) <e
k=1 k=1

£

provided we take 6 = T

Next we show that absolutely continuous functions have bounded variation.

Proposition 80 Let f : [a,b] — RY be absolutely continuous. Then f has
finite variation. In particular, f is differentiable for L'-a.e. x € [a,b].

Proof. Take ¢ = 1, and let 4 > 0 be as in Definition 77. Let n be the integer

part of @ and partition [a, b] into n intervals [z;_1, x;] of equal length b;“,

a=xg<x1 <<z =

Since 2% < §, in view of (29), on each interval [z;_1,z;] we have that Var,, | .. f <
1, and so by the previous exercise

2(b—a)
8

Varp) f = ZVal”{zi_l,z,;] f<n< < 00,
=1

where we have used the fact that b:—La > %.

The last part of the statement follows from the fact that any function f :
[a,b] — R of bounded variation is differentiable for £!-a.e. x € [a, b] by Theorem
75. m

Theorem 81 Let I C R be an open interval and let f : I — RYN be an absolutely
continuous function such that there exists f' (z) =0 for L' a.e. x € I. Then f
18 constant.

Proof. Given ¢ > 0, let § > 0 be the number given in the definition of absolute
continuity. Let a,b € I with a < b. We claim that f (a) = f (b). Let E :=
{z € (a,b): f'(x) =0}. Then LL(E) =b—a.

For every x € E, we have that

i W) = f (@)

y— Yy—x

=f'(z) =0,
and so there exists h, > 0 such that [z — hy,z + h;] C (a,b) and

Hf(y)—f(ﬂf)
y—a

’ <e (30)
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for all y € I with | —y| < h,. Consider the family F of intervals (z,z + h),
where x € F and 0 < h < h;. By Lemma 68 there exist disjoint intervals

(1,21 4+ h1)y ..., (Tn, T + hy) € F such that
o5 (Em U(xn,xn—i—hn)) >b—a—0, Y hp<b—a+d
k=1 k=1

Without loss of generality assume that z; < 29 < --+ < x,. Since

thzﬁ(lg (Eﬂ U(xnaxn+hn)> Zb—@—57
k=1

k=1

the sum of the length of the intervals [a,x1], [x1 + h1,x2], ..., [€n + by, b] is
less than or equal §. Since f is absolutely continuous, we have that

£ (a) = f (z1)] + i: IF @rir) = F (@ +ha) |+ 1 (0) = F (2 + o) <e.
k=1

On the other hand by (30),

I1F (@r + i) = f (x| < eh

and so
IF (@)~ £ B < I @) — F @)l + 3 IF (o) — F (o b
k=1

+ > IF () = F (i + b [+ IF (0) = f (@0 + B
k=1

§E+Ezhk§€+€(b—a).
k=1

Letting € — 07 gives f (a) = f (b). Hence, f is constant. m

Theorem 82 Let g: [a,b] — R be a Lebesgue integrable function and let
f@)i= [ ott) .
Then f is absolutely continuous.

We begin with an auxiliary result.

Lemma 83 Let E C RN be a Lebesgue measurable set and let g : E — R be a
Lebesgue integrable function. Then for every € > 0 there exists § > 0 such that
if F C E is a Lebesgue measurable set with LN (F) < §, then

/ l9(x)|de < <.
F
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Proof. Consider the set F,, := {x € E : |g(z)] > n}. Then g,(x) :=
lg(x)|xE, () — 0 as n — oo and |g,(x)| < |g(x)| for every & € E. Thus,
by the Lebesgue dominated convergence theorem

lim lg(z)|dz = 0.

n—oo Jp
Let n. be so large that fEn lg(x)| dx < ¢ and take § = ¢/n.. f F C F is a
Lebesgue measurable set with £V (F) < §, then

/F l9(2)|dz = /F G /F o) da < / l9()|dz + nLN (F)

En.
< e+ nee/ne =2,

which concludes the proof. m
Monday, October 10, 2022
We turn to the proof of Theorem 82,
Proof. Given € > 0, let 4 be the number given by in Lemma 83. Then if for
(ag,br), k =1,...,¢, are nonoverlapping intervals with [ag, bx] C [a,b] and

M~

(bk — ax) <6,

>
Il
—

then the set F = Ui:l (ag,br) has Lebesgue measure less than or equal to ¢
and so

0 br
|f (o) — f(ar) | < l9(z)| dx = lg(x)| dz < e.
k k ;/ﬂ g //Z g €

k e—1(ax,br)

>
Il ~
—

[
We now prove that f’(z) = g(z) for £ a.e. z € [a,b].

Theorem 84 Let g : [a,b] — R be a Lebesgue integrable function and let
x
f@)i= [ ott) ar
a

Then f'(z) = g(x) for L' a.e. x € [a,b].
The proof needs a few lemmas.

Theorem 85 (Fundamental theorem of calculus for Lipschitz continuous functions)
Let I C R be an interval and f: I — R a Lipschitz continuous function. Then

b
£(b) - fla) = / f(x) da

forall a,be 1.
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Proof. Since f is Lipschitz continuous, there exists L > 0 such that

[f(z) = f(y)| < Llz -y

for all x,y € I. Let € I° and define

Then |f,(z)| < nL(z + X —2) = L. Since f is absolutely continuous, it is
differentiable for all x € I except a set of measure zero and so f,(z) — f'(x)
as n — oo for L' -a.e. x € I. Hence, by the Lebesgue dominated convergence
theorem, for all a,b € I, with a < b and b € I°,

n—oo

b b
/ f'(x) dz = lim fn(z) da.

On the other hand,

/ab fulw) dv = n/ (f<x +o)- f(w)) da
. l [ " o) da / " ) dx] — 10) - f@),

where we used the fact that f is continuous. Hence,

/ f(x) dz = f(b) - f(a)

with a <band b € I°. If supl =b € I, we can take b, = b— % in what we just
proved to get
b—1
n 1
[ @ de=s- ) - sla)
By the Lebesgue dominated convergence theorem and the continuity of f,
1

b b—1
[ r@do=tim [ @) do= im 16~ 3) - f@) = 10) - S(@).
]

n—oo a n—oo

Lemma 86 Let g: [a,b] — R be a Lebesgue integrable function such that

/:g(t)dt:()

for all x € [a,b]. Then g(z) =0 for L' a.e. z € [a,b)].
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We now turn to the proof of Theorem 85.
Proof. Step 1: Assume that g is bounded, with |g(z)| < M for all z € [a, b].
Then f is Lipschitz continuous and so by the previous theorem, for every c¢ €
[0, 8],

/ ) i = () = / 4(a) de,
that is, .
| @ = g@) dz =0

for all ¢ € [a,b]. By Lemma 86, it follows that f'(z) = g(z) for £L! a.e. x € [a, b].
Step 2: Assume that g > 0 and define

_ [ 9@) itg) <n,
gn(®) = { g if g(ac) > n.

Then
f@ = | " g(t) dt = / " gu(t) di + / C(glt) — gult)) di = Co(a) + Ho (o).

By Step 1 we have that G’,(z) = g,,(z) for all z € [a,b]\ E,, where £!(E,,) = 0.
On the other hand, since ¢ > g, we have that H, is increasing and so, by
the Lebesgue differentiation theorem, H/ (xz) > 0 for all x € [a,b] \ F,,, where
LY(F,) = 0. Hence, since f = G,, + H,,, by differentiating, we obtain that

f'(@) = G (x) + Hy(z) = gn(2) + Hp,(x) = gn(x) +0

for £ a.e. x € [a,b] \ (E, UF,). Since countable union of sets of Lebesgue
measure zero have Lebesgue measure zero, we have that £ := J,, (£, U F),) has
Lebesgue measure zero. If z € [a,b] \ E, then f'(z) > g,(z) for all n and so,
letting n — oo we obtain that f'(x) > g(x). In turn,

b b
[ r@ ez [ g do= 1) - fla)

On the other hand, by Corollary 71,

f'(@) do < f(b) — f(a),

which shows that

b b
f(x) dx :/ g(z) dx.

a

Hence, ,
[ (@) gty do =0,

but since f’ > g, it follows that f'(x) = g(x) for L a.e. z € [a,b].
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Step 3: The general case follows by writing g = g7 — ¢~ and

f@) = [ s @do~ [T @

and applying Step 2 to each integral. m
Wednesday, October 12, 2022
We are now ready to prove the fundamental theorem of calculus for Lebesgue
integration.

Theorem 87 (Fundamental Theorem of Calculus) Let f : [a,b] — R. Then
f is absolutely continuous in [a,b] if and only if f is differentiable L'-a.e. in
[a,b], [’ is Lebesgue integrable, and the fundamental theorem of calculus is valid,
that is, for all x,xo € [a,b],

f@) = fleo)+ [ T (31)

Proof. Assume that f is differentiable £!-a.e. in [a,b], f’ is Lebesgue integrable,
and the fundamental theorem of calculus is valid. Define

9= [ roa

Then by the previous lemma g is absolutely continuous. In turn, since constant
functions are absolutely continuous, it follows that the function f = f (a) + g is
absolutely continuous.

Conversely, assume that f is absolutely continuous. Then f has finite point-
wise variation and so f is given by the difference of two increasing functions.
Since by Corollary 71 the derivative of increasing functions is Lebesgue inte-
grable, it follows that f’ is Lebesgue integrable, since difference of Lebesgue
integrable functions. In turn, by Theorem 82 the function

g~ [ "rwdt yelab,

belongs to AC ([a,b]) with ¢’ (y) = f’ (y) for L' a.e. y € [a,b]. Since f —g €
AC (Ja,b]) and

(f=9) W) =1f-fy=0
for £! a.e. y € [a,b], by Theorem 81, we have that f — g is constant in [a, b].
Thus, there exists ¢ € R such that

(f—9)(y) =c
for all y € [a, b], that is,

f(y)=c+/yf’(t)dt

for all y € [a,b]. m
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Corollary 88 (Integration by parts) Let f,g: [a,b] — R be absolutely con-
tinuous. Then

b b
/ fdz=— / f'gdz + g(b) F(5) — F(a)g(a).

Proof. I leave as an exercise to check that fg is absolutely continuous. By the
fundamental theorem of calculus,

b b
/ (f + f'g)da = / (fg) dz = g(b)F(b) — f(a)g(a).

9 The Area Formula

In this section, given n € N we denote by || - ||, the Euclidean norm in R™.
Given E C R* and ¢ : E — RY, assume that ¢ is differentiable at some

point y € E. We recall that the Jacobian matriz of ¢ at y is the N x k matrix

given by

Ve (y)

Jo(y) = Ve(y) = : (32)

ch&(y)

Definition 89 Given 1 < k < N, a nonempty set M C RY s called a k-
dimensional differential parametrized surface or parametrized manifold if there
exists an open set W C R¥ and a differentiable function o : W — RN such that

(1) M = (W),

(ii) ¢ : W — M is a homeomorphism, that is, it is invertible and continuous
together with its inverse o~ : M — W,

(1) the Jacobian matriz J, (y) has mazimum rank k for all y € W.

The function ¢ is called a chart or a system of coordinates or a parame-
trization. We say that M is of class C™, m € N, (respectively, C*) if ¢ is of
class C™ (respectively, C*).

Friday, October 14, 2022
Given k, N € N and a linear function L : R¥ — RY_ the adjoint of L is the
linear function L' : RN — R¥ such that

y-L'(z) =L(y) =z (33)

for all y € RF and € RY. The matrix representing L’ is simply the transpose
of the matrix representing L.
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Definition 90 Given k, N € N and a linear function L : R* — RY, we say
that L is orthogonal if L(y,) - L(y,) = y, - Yo for all y;,y, € RE.

Remark 91 An orthogonal function L : R*¥ — RN preserves inner products
and distances, since

IL(y2) — L(wa) v = /L(w1 — w2) - L(w; — v2)

- \/(’!/1 —¥2) (Y1 — ¥2) = ly1 — Yallr-

Thus, L is Lipschitz continuous with Lipschitz constant one and it is injec-
tive with L™ : L(R¥) — R¥ Lipschitz continuous with Lipschitz constant one.
Observe also that L' o L = Ij,.

Definition 92 Given N € N and a linear function L : RN — RN, we say that
L is

(i) symmetric if L = L',
(ii) diagonal if the corresponding matriz is diagonal,
(iii) positive definite if L(z) - & > 0 for all z € RV \ {0}.

Theorem 93 (Decomposition) Let 1 < k < N and let L : R¥ — RY be a
linear function. Assume that the corresponding matriz has rank k. Then there
exist an orthogonal linear function P : RF — RF, q positive definite, diagonal
linear function D : R¥ — RF, and an orthogonal linear function @ : R¥ — RN
such that

L=QoDoP.

Proof. We claim that the function L' o L : R¥ — R¥ is symmetric and positive
definite. Indeed by (33),

(Lt oL)(yy) ys = (Lt(L(yl))) *Ys
=L(y,)  L(ys) =y (Lt(L(yz))) =Y (Lt oL)(y,)

and

(L'oL)(y) -y = (L'(L(y))) -y = L(y) - L(y) = |L(y)||% >0

for all y € R*\ {0}, since the matrix corresponding to L has rank k. It follows
that the eigenvalues u; of L oL are all positive and that there exists an orthonor-
mal basis {b1, ..., by} of eigenvectors. Let A; := \/ft;. Then (L*oL)(b;) = A?b;
foralli=1,..., k. Let {ej,..., ex} be the canonical basis in R¥.

Given any two vector spaces of dimension k each with a given basis, there
is a linear function between these two vector spaces that maps one basis into
the other. Let P : R¥ — R¥ be the linear function that maps {bi, ..., by} into
{e1,..., e}, let D : R¥ — RF be the linear function that maps {e,..., e}
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into {\e1,...,\zex}, and let Q : R¥ — R be the linear function that maps
{\e1,..., \pex} into {L(by),...,L(bg)}. Note that since Jr has rank k, the
vector space L(R*) C RY has dimension k and {L(by),..., L(by)} is a basis in
L(RF).
Since P(b;) = e;, the function P is orthogonal. To verify that Q is orthog-
onal, note that
1 2
= b (LYL(b)) = 22 b; - b; = 4, .
)\zAJ )\Z)\j 7 ( ( ( ]))) )\2)\.] J 1,]

It remains to show that L = Qo D o P. We have
(QoDoP)(b) =(QoD)(e;) = Q(Aie;) = L(by),

and thus the result follows by linearity. =

Qe - Q(e;) = L(b;) - L(b;)

Monday, October 24, 2022
Given £ C R* and ¢ : E — R", assume that ¢ is differentiable at some
point y € E. The Jacobian of ¢ at y is the number

1o (@)1 1= /det(J(y) T (1), (34)
where J,(y) is the transpose of J,(y). Note that when k = N,
o (Il = | det Jo(y)]- (35)

We recall that H” stands for the k-dimensional Hausdorff outer measure and
H* is the k-dimensional Hausdorff measure obtained by restricting H* to the
o-algebra of all H¥-measurable sets (see the Carathéodory Theorem 20). We
will use the following theorem, which we did not prove (maybe I will prove it at
the end of the semester if I have time).

Theorem 94 Let HY be the N-th dimensional Hausdorff measure in R . Then
HY =LY

Exercise 95 Giwen k, N € N with 1 < k < N and a linear function L : RF —
RN, prove that if E C R¥ is Lebesque measurable, then L(E) is HY-measurable.

Proposition 96 Let L : R¥ — RY be an orthogonal function. If E C R, then
Hy(L(E)) = L5(E). (36)
Proof. By your homework and Theorem 94,
My (L(E)) < Ho(E) = L3(E).

On the other hand, since L™ : L(RF) — R is Lipschitz continuous with
Lipschitz constant one,

Ly(E) = Hg(E) = Ho(L™(L(E))) < Hg(L(E))

and thus (36). =
We are now ready to prove the area formula for injective linear functions.
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Theorem 97 (Area formula for linear functions) Let 1 < k < N and let
L :RF — RN be a linear function. Assume that Jy, has rank k. Then for every
Lebesgue measurable E C R¥ L(E) is H¥-measurable and

H*(L(E)) =/ 1 7cll dy = |IIlJz][[£"(E).
E

Proof. Step 1: Assume first that £ = N and that L is a positive definite
diagonal linear function D : R¥ — R*. Then

D(y) = (My1,- -+, Akyr)-
Consider a rectangle R = I; X - -+ x I. Then by Fubini’s theorem and (35),
LE(D(R)) = A1 -+ M LY (R) = det JpL¥(R) = |||Jp|||L*(R).

If V C R” is an open set, then we can write V as a countable union of disjoint
rectangles R,,, and since D is injective, the sets D(R,,) are also disjoint and
so LF(D(V)) = |||Jp|||£*(V). By approximating Lebesgue measurable sets
with open sets we obtain that £¥(D(E)) = |||Jp|||£*(E) for every Lebesgue
measurable set F C RF,

Step 2: Given now L : R¥ — R¥ such that Jz, has rank k, by Theorem 93 there
exist an orthogonal linear function P : R¥ — R¥, a positive definite diagonal
linear function D : R¥ — R*, and an orthogonal linear function Q : R* — RV
such that L = Qo D o P. For every Lebesgue measurable set £ C R*, by
Exercise 95, Theorem 94, (36), and Step 1,

HM(L(E)) = H*(Q(D(P(E)))) = H*(D(P(E))) (37)
= LY(D(P(E))) = |||Jp|||£*(P(E)) = |||Jp|[|L"(E).
Now since Q' o Q = I,
L'oL=(QoDoP)o(QoDoP)=P'oD'oQ'cQoDoP
=P'oD'oDoP,

and so
det(L' o L) = det P" det(D" o D) det P.

Since det P! = det P = 41 we have det(L’ o L) = det(D" o D). Hence,

12l = \/det(L* o L) = y/det(D* o D) = |||
which concludes the proof of the formula. m
Wednesday, October 26, 2022

Consider the function

flz) = msin%, xz € (0,1].
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Let’s study the Holder continuity of f. We have

and so
1 2

|f'(@)] < I+-=-

Let 0 < z < y < 1. We consider two cases. Assume that there exists n € N
such that m <z<y< ﬁ Then by the mean value theorem
2
c

[f(@) = fW)l =1y —2) < =(y —2) <dr(n+1)(y — )

< 8mn(y — x)

oy . _ 1 _ 1
and so, writing « = 5—, ¥ = 55,53, where 0 < s,¢ < 27, we have

f(z) = f()] 1 1\
LN LYY _ — _
|z —yl©  — §mnly — o) s 2rn+t  2mn+s

-«
s—t n
—3 <o
s <(27m +t)(2mn + s)> - p2-a)

and so we want 2(1 — a) = 1 that is, o = %
On the other hand 1f Py <z< 27m < 27r(z+1) <y< 2 5.7, then by the

previous step
7(@) — F)] < 'f(m) -1 (50 )|+ 10 -1 (5555 )

1/2 1/2

+ -
’y 27(0+ 1)
g C |Z' |1/2
Next assume that a > % and consider two sequences z,, and ¥, such that
sin 3% =0 and sin yi =1, that is,

r—- —

2mn

1 q 1

T, = — an = —

" 2mn Yn Z+2nm’

then
) = S _ 1 L |
[T — yn|® *+2mr I T b 5 +2nm iy «
2mn - F+nm 2rn (% +2n7)
2mn (Z + 2
_[ (5 +2nm)]” ]'aNn2oc—1_)OO
5+ 2nm ’%|
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The general case is more complicated. Let a > 0 and b > 0 and consider the
function

1
flx)= x"’sinﬁ, z € (0,1].

We have
f'(x) = az® 'sin 1o bx® <1> cos 1
20 2o+l b
If a > b+1, then the derivative of f is bounded and so f is Lipschitz continuous.
Since the domain is bounded, it follows that f is Holder continuous of any
exponent less than one. Thus assume that a < b+ 1. Then

C
7@ < <

Let 0 < z < y < 1. We consider two cases. Assume that there exists n € N

such that W <zr<y< m Then by the mean value theorem

7@) ~ FOI = 1Fly — ) < sy — ) < OnlH9/oy )

and so, writing x = i where 0 <t < s < 27, we have

1 _ 1
2mn+s)l/b? y= (2mn4t)1/b?

[f(x) = fy)l _ CnH=a)/b(yy_gyl=a _ Cpb+i=a)/b < 1 _ 1

|z —yl® (2rn+ )Y/ (2mn+s

So we need to compute the limit

1 1 e
i (b+1—a)/b _ '
oo ! (2mn+ )0 (27n + s)1/0

Using the fact that (14 z)Y =1+ vz + o(z), we have

1 _ “1/b ~1/b s \“Ub “1/b 1
1 i 1 ¢ 1

S - 1o(=)).

(27'['71 ¥ t)l/b ( 7Tn) ( b 27T7’L +o0 <n>)

Hence,

1 1

_ 1 s 1 1t
- = (2mn) V01— - )= (1--—
(2mn +t)1/0 (2rn 4 s)l/0 (2mn) [ b27m+0(n> < bomn O

1 1t—s N 1
= — [0} —
(27n)'/® [0 27n n

and so

s
2mn

11—«
pb+1-a)/b 1 _ 1 _ 1)/ 1 lt—s Yo
(2mn + )Y/ (2mn + s)1/0 (2rn)'/? [ b 27n

nb+1—a)/b
b (o)

92
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and so we want (b+1—a)/b= (141/b)(1 — ), that is a = ;%5
1

+1°
. 1 1 1

On the other hand if Brmt D7 <z< Brn]i7b < BT <Y < B
then by the previous step

@)= 1001 < 1)~ 1 (G )|+ 700~ 1 (50557 )

(6% 1 (e
< -
=¢ ( T )

* ’y Tt )
<Clz—y|”.
Consider two sequences z, and y, such that

_a_
b1
sin mi =0 and sin yi =1, that is,

Next assume that o >

1 q 1
n = 75 ~17; an = 7T o__N1/b°
xZ (Qﬂ'n)l/b a Yn (g i 2,,,”7)1/1)
then
|f(xn)_f(yn)| _ 1 1
_ a T or a/b a
‘In yn| (5 + 27’L7T) ’(27”];)1/1, - (%+2:17T)1/b
Using the fact that (1+ z)Y =1+ vz + o(z), we have
1 B 1 _ (Z + 2nm)Y/b — (27n)1/° _ (2nm) Vo [(Z + 1)1/° — 1]
2mn)l/b (2 +2nm)l/b  (2an)YY(E 420V (2mn)V/o(S + 2n) /P
1 = s
_tmatolas) |1
(5 + 2nm)1/b nit1/b’
Hence,
|f(20) — fyn)l _ 1 1 - n(1+1/b)a — p+1/b)a=a/b _
_ «a - a/b @ a/b
|xn yn| (5 + 2TL7T) }(27”1)1”, - (g+27117r)1/b "

b+1
Monday, October 31, 2022
Next we extend the area formula to C! functions.

provided (1+ 1/b)a—a/b=Fla— ¢ =41 (a - L) >0, that is a > %5

Theorem 98 (Area formula) Let 1 <k < N, let V C R¥ be an open set and
let o : V. — RN be a function of class C' such that J,(y) has rank k for every
yeV. Let E CV be a Lebesgue measurable set and assume that ¢ is injective
i E. Then

Hk<so<E>>=/E\|u¢<y>|udy.

Exercise 99 Let f : [a,b] — RY be continuous. Prove that

/abf(w)dfc S/abllf(x)lldx-
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In what follows given an N x k matrix A we define its norm as

A
| Alln s == sup { 14y[l~ . y e RF\ {o}} .
llyllx
Note that
|Aylln < [|[Allnxkllylls  for all y € R¥. (38)

We divide the proof in a few lemmas.

Lemma 100 Let1 <k < N, letV C R* be an open set and let ¢ : V — RN be
a function of class C* and let y, € V. Assume that J,(y,) has rank k. Then
for every € > 0 there exists § > 0 such that

(1 =) IL(y; — yo)llv < lle(y1) —@(w2)llv < (L + o)Ly, — y2)llv
for all y,,y, € Bi(yy,6) CV, where L(y) = Jo(yo)y', y € R¥.

Proof. Since J,(y,) has rank k, L is injective, and so L(y) # 0 for all y €
R*\ {0}. Define g(y) := ||L(y)||n. By Weierstrass theorem, there exists

min = =c>0.
yeaBk(oJ)g(y) 9(Yo)

Hence, for y € R* \ {0},

|- ()], 2
lylls /Nl
It follows that
IL(y)llx = cllylls  for all y € R, (39)
Since ¢ is of class C'! there exists § > 0 such that
170 (y) = Jo(yo)lnxk < ce (40)

for every y € Bi(yy,9). Let yy,y, € Br(yy,d). By the fundamental theorem
of calculus applied to the function

h(t) == p(yit + (1 = t)ys) — Lyt + (1 — t)y,)

we have
1
P(y1) —p(y2) — L(y1 —y2) = /0 (Jo(yit + (1 =1)ys) — Ju(yo))(y1 — yz)t dt.

Hence, by (38), (39), (40), and Exercise 99,

le(y1) — e(y)lln < IL(yy — yo)llv + lle(y1) — o(y2) — Ly, — yo)llv
< L(yy — yo)llv +eellyy — yalle < (1 +¢)|| Ly, — o)~

while

le(y1) —e(y)lln > |L(yy — yo)llv — lle(y1) — o(y2) — Ly, — yo)lIn
> |L(y; — y2)lIv —cellyy — yolle > (1 =€) L(y; — yo)llN,

which completes the proof. m
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Lemma 101 Let 1 < k < N, letV C R* be an open set, let p : V — RN be
a function of class C*, and let y, € V. Assume that J,(y,) has rank k. Then
for every 0 < € < 1 there exists § > 0 such that for every Lebesgue measurable
set E C By(yq,0) CV, @(E) is HE-measurable and

(1—8)"“+1/EIIIJ¢(1/)IIIdySH’“(<P(E))§(1+5)’““/E\|\J¢(y)|\ldy-

Proof. Let L be as in the previous lemma. Since J,(y,) has rank k&, the linear
function L : R¥ — RY is injective, and so there exists L™" : L(R*¥) — RF.
Given 0 < € < 1, let § > 0 be so small that the conclusions of the previous
lemma hold and also so that

(L +2) eI < 1o (wo)lll < (1 + )l T (W)l (41)

for all y € By (y,,9), where we used the fact that ¢ is of class C!. Since by the
previous lemma,

(1 =)L(y; — y)lIn < lle(y1) — @(yo)llv < (1 +)L(y; —yo)lln  (42)
for all y,, vy, € Bi(yy,0) CV, taking y;, = L™ (2;) and y, = L™ *(x2) we get
(oL~ ") (@1) — (o L") (@2)|nv < (1 +¢)||m1 — a2l

for all &1, 2 € L(B(yy,0)). ®

Wednesday, November 2, 2022
Proof. Thus ¢ o L' is Lipschitz continuous with Lipschitz constant less than
or equal to 1 + €. It follows by your homework, the area formula for L, and
(41),

Hy (p(E)) = H((po LT (L(E))) < (1+ ) Hg(L(E)) (43)

:<1+e>k/E|\|JL\|\dys<1+s>k“[E\|\J¢<y>|\|dy.

Similarly, by (42) and the fact that L is injective it follows that ¢ is injective,
and so taking y; = ¢ (1) and y, = ¢~ (x2) we get

(Lo (@) = (Lop ") (@)llv < (1—2) 21— 22fln
for all ¢1, x2 € ¢(Bk(yy,0)). Thus L o ¢~ ! is Lipschitz continuous with

Lipschitz constant less than or equal to (1 —¢)~!. It follows by your homework,
the area formula for L, and (41),

<1+e>-1/E|\|J¢<y>\|\dysé|\|JL||\dy=H§<L<E>>
= HE(L o o )(@(E))) < (1 — &) *HE (ol E)),

which gives the other inequality since (1 —¢) < (1 +¢)~ L.
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We leave as an exercise to prove that ¢(E) is HX-measurable. m

We turn to the proof of the area formula
Proof. Fix € > 0 and cover V with countably many balls B; C V such that
for every I C B; the previous lemma apply. Given a Lebesgue measurable set
E C V, define inductively, £y := EN By, E; := (ENB;) \ U;;ll Bj. Then the
sets E; are disjoint and their union is E. By the previous lemma applied to
each F; we get

(=2 [ plldy < HoGelE) < 1+ [ 1,1
Summing over ¢ and using the fact that ¢ is injective in E gives

1 —s>k+1[E|||J¢<y>|||dySH’“«o(E)) < <1+e>’f+1/E\||J¢<y>|\|dy.

We now let e — 07. m

Example 102 Let I C R be an open interval and let ¢ : I — RY be a function
of class C*. Assume that ¢ is injective and that ¢'(t) # 0 for every t € I.
Then the set M = @(I) is a 1-dimensional manifold of class C* (why?). Since

det (¢'(1))"¢'(1)) = I’ ()17,

we have that the length of M is given by

H(M) = / I ()] dt.

Moreover, for every Lebesgue measurable set E C I,

H(p(E)) = /E I/ ()] dt.

Example 103 Given an open set V.C RN and a function f : V — R of class
C", consider the graph of f,

Grf:={(z,t) eV xR: t=f(y)} SRV,

We claim that Gr f is an N-dimensional manifold of class C'. Indeed, a chart
is given by the function ¢ : V — RNTL defined as ¢ (z) := (=, f (x)). Then,

0= (G )

which has rank N. Note that ¢ is one-to-one and that p (V) = Gr f. Hence,
there exists ¢~ : Gr f — V. Moreover, ¢! is continuous, since the projection

IT: RV — RN

(z,t) — x
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is of class C* and ¢! is given by the restriction of II to Gr f. Hence, Gr f is

an N-dimensional manifold of class C*. Moreover,

N /5 2
Jaerap @), (@) = 1+ 3 ($E @) =i s @i
i=1 ¢
Hence, the surface area of Gr f is

HN(Gr f) = /V 1+ 17 @)% de,

and for every Lebesgue measurable set E C V,

HN(p (B)) = /E V14197 @) de.

Friday, November 4, 2022

Theorem 104 (Area formula, general case) Let 1 < k < N, let V C R¥
be an open set and let o : V — RN be a function of class C*. Let E C'V be a
Lebesgue measurable set and assume that @ s injective in E. Then

Hk<so<E>>=/E\|u¢<y>|udy.

Theorem 105 (Cauchy—Binet formula) Let 1 <k < N, let A be a N x k
matriz, and let B be a k x N matrixz. Then

det BA= Y det(an, ;)f;_; det(bia,)F;_;, (44)
a€AN K

where
AN’k::{aeNk: 1<y <ag<--<ap <N}

In particular,

det A'A =3 (det(an, ;)f;-1)%

a€AN K

Proof. Not done in class. We only give a sketch of the proof. Using the
fact that for square matrices the determinant of the product of two matrices is
given by the product of the determinants of the two matrices, we have

I A I -A I A I -A
det(I+AB)det(0 I><B I>det<0 I)det(B I>
I -A I A
:det<B I>(O I)zdet(I+BA),

where I and 0 are identity matrices and zero matrices of whatever dimension is
needed to make sense of the previous expressions. The identity

det(In + AB) = det(I + BA)
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is called the Sylvester determinant identity. If we now let t € R and rescale
everything, we obtain

det(tIy + AB) = tV =k det(tI), + BA).

Since both the left-end and right-end sides are polynomials of degree NNV in ¢, by
equating the coefficients of the ¢V =% terms we get (44). m

Remark 106 The last formula shows that to compute det A A one should con-
sider all the k x k submatrices of A, compute their determinant and take the
sum of their squares.

Example 107 Consider a 2-dimensional parametrized surface of class Ct in
R3 parametrized by @ : V — R3, where V.C R%. Then

9p1  Op1

Oy1  Oyz

Toly)= | 352 552

¥ Jy1  Oy2

9ps  Ops

Oy1  Oy2

and so

) Op1 O ) Op1 Oy ) Opa  Op2
t _ 5] o o1 01 0o 0
det(Jo(y)) Jp(y) =det™ [ 54 542 |+det” | 54 5% |+det™ | 5L 5%
Y1 Oy2 Y1 0y2 oy1 0y2

We can now prove the area formula in the general case.
Proof. Step 1: Let ¥ := {y € V : J,(y) has rank less than k}. We claim
that H*(¢(X)) = 0. To see this, assume first that V is bounded and that J, is
bounded in V, say, ||J,(y)|| < M for all y € V. For ¢ > 0 consider the function
p.: V= RY x R* given by ¢_(y) := (¢(y),cy). Then

T (y) = ( Jo(y) )

EIk

and so J,_(y) has rank k for every y € V. Then by the Cauchy-Binet formula
(see Theorem 105),

2
.l = 3 (e 28y

QEAN 1|,k

< T (II? + (1 + M?)e
for some constant ¢ > 0. If particular, if y € 3, then
17, (II]* < e, (45)

where as usual the constant ¢ changes from line to line. Since ¢ = Ilo¢p,, where
I1: RY x R? — R¥ is the projection operator given by Il(z, y) :=  and since IT
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is Lipschitz continuous with Lipschitz constant one, it follows from Proposition
??, the area formula, and (45),

HE(p(2)) = H* (. (5))) < 17 (p.(S))
:/z'”‘] (W)l dy < esLH(V).

Letting ¢ — 0 gives H*(p(2)) = 0.

The general case in which V' and J, are not bounded follows by writing V'
as an increasing sequence of open bounded sets V,, with V,, C V,,;1 C V for all
n and by applying what we just did in each set V.

Step 2: Since V \ ¥ is open, we can apply the special case of the area
formula (Theorem 98) to obtain that

BN ) = [ o)l

E\S

On the other hand, by the previous lemma, H*(¢(X)) = 0, and so

H*(p(E)) = 1" (p(E\D)Up(BENY)) = H*(p(B\3)) = /E\E 1o (9]l dy = /E 17 (W)l dy,
where in the last equality we used the fact that |||J,(y)||| =0forally € . m

As a consequence of the area formula we have the following change of vari-
ables formula for surface integrals.

Theorem 108 Let 1 < k < N, let V C R* be an open set and let p:V - RN
be a function of class Ct. Let E C (V) be a Borel set and let f : E — R be
a Borel function, which is either H* integrable or has a sign. Assume that @ is
injective in @ 1(E). Then

/ f(w) dHE () = / Fe@)I o @)l dy. (46)
B o1 (E)

Proof. Assume first that f = xg, where G C F is a Borel set. Then ¢~ 1(G)
is a Borel set and so by Theorem 104,

/E f(@) dH* (@) = HE(G) = HE (91 (G)))
:/ |||J¢<y>|||dy=/ xa(@@)I17o @)l dy.
e~ 1(G) pH(E)

Next take f to be a simple function, f = Y"1 | ¢;xq,;, where the Borel sets G;
are disjoint. Then by what we just proved and the linearity of integrals

/f ) dHH (z Zcﬂk Z/ o, el
- / @)1 ()] dy.
e 1(E)
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For a nonnegative Borel function f, construct an increasing sequence of Borel
simple functions converging pointwise to f and apply the Lebesgue monotone
convergence theorem on both sides.

Finally, if the Borel function f : E — R is H" integrable, then as usual
we can write f = f* — f, apply (46) to f* and f~, and use the linearity of
integrals to deduce (46) for f. m

Exercise 109 Prove that the previous theorem continues to hold if we assume
that ¢ is injective in @~ (E) \ Eo, where L*(Ey) = 0.

Since HY = LV (see Theorem 94) in the case k = N we obtain the classical
change of variables for Lebesgue integration.

Corollary 110 (Change of variables) Let @ C RN be an open set and let
@ : Q — RY be a function of class C1. Let E C p(2) be a Lebesgue measurable
set and let f : E — R be a Lebesque measurable function, which is either
Lebesgue integrable or has a sign. Assume that ¢ is injective in ¢~ (E). Then

s@de= [ Setw)denso)dy

Monday, November 7, 2022
We now consider some important examples.

Example 111 Let M be a 1-dimensional parametrized manifold of class C!
and ¢ : I — RN be a parametrization. Then

det(¢'(t)) ' (t) = ||’ (1.

If E C o(I) is a Borel set and f : E — R a Borel function, which is either
H1-integrable or has a sign, then

/ /(@) dH’(z) = / Fle)lle' @)l dt.
o o (B)

Example 112 Given an open set V.C R¥ and a function f : V — R of class
Ct, consider the graph of f,

Grf:={(y,t) e VxR:t=f(y)}.

We have seen that Gr f is an k-dimensional surface of class C' and that a chart
is given by the function ¢ : V — RFTY given by ¢ (y) := (y, f (y)). Moreover,

< )
which has rank k. HGTLCE,

k 2
Vet I = | 1+ 3 (5L @) =i+ 197wl

i=1

Jo(y)
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If E C ¢(V) is a Borel set and g : E — R a Borel function, which is either
HFE-integrable or has a sign, then

/ gdHF = / T OIIH IV W dy (47)
E e (E

In Theorem 108 we have seen how to compute

/Edek

in the case in which £ C M, where M is a k-th dimensional parametrized
manifold of class C'. In many examples, we have a more general situation,
where

ECE U M,, (48)

n=1

where H*(FEy) = 0 and M,, are k-th dimensional parametrized manifolds of
class C' parametrized by ¢, : V, — RY. Define B, := EN M, E, =
EnM,\ Uz;ll E). Then the sets E, are disjoint, and so, if either f > 0 or f
is H* integrable, we can write

dH* = dH*.
fora =X

Now we can apply Theorem 108 in E, to write

. k_ c-
| ran _;/Enfdu ;/nl(En)f(son(y))lllJ @l dy.

10 Manifolds

We now manifolds that cannot be parametrized by a single chart.

Definition 113 Given 1 < k < N, a nonempty set M C RY is called a k-
dimensional differential surface or manifold if for every o € M there exist an
open set U containing o and o differentiable function ¢ : V. — RY, where
V C R* is an open set such that

(i) ¢ : V. — M NU is a homeomorphism, that is, it is invertible and contin-
uous together with its inverse ' : MNU — V,

(i1) D (y) has rank k for ally € V.
The function ¢ is called a local chart or a system of local coordinates or

a local parametrization around xg. We say that M is of class C™, m € N,
(respectively, C™ ) if all local charts are of class C™ (respectively, C>).
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Roughly speaking a set M C R¥ is a k-dimensional differential surface if for
every point £y € M we can “cut” a piece of M around xy and deform it/flatten
it in a smooth way to get, say, a ball of R¥. Another way to say this is that
locally M looks like R*. Thus, a sphere in R? is a 2-dimensional surface because
locally it looks like R?, while a cone is not because near the tip it does not look
like R2. A simple way to construct k-dimensional differential surface is to start
with a set of R* and then deform it in a smooth way.

Example 114 Consider the hyperbola
M :={(z,y) eR®: 2® —y*> =1}.

To cover M we need at least two local charts, precisely, we can take the open
sets
V.= {(z,y)GRQ: x>0}, W:= {(x,y)GRQ: z <0},

and the functions o : R — M NV and ¥ : R — M NW defined by
o(t) == (\/1 —|—t2,t), W(t) = (—\/1 +t2,t), teR.

Note that both ¢ and ¢ are of class C* (the argument inside the square Toots

is never zero). Moreover, ¢'(t) = (ﬁ,l) and ' (t) := (—ﬁ,l), and

so the rank of ¢'(t) and of ¥'(t) is one. Finally, o™ : M NV — R and
Y MOW — R are given by

e @y =y, ¥ () =y,
which are continuous. Thus, M is a 1-dimensional surface of class C*°.

Remark 115 Given a k-dimensional surface M of class C™, for every € € M
there exist and open set Ug and a local chart ¢, : Vo — RN such that z €
Pe(Vz) C Uz and M N Uy = ¢, (V). Hence, M C Jycps Uz But then we
can find countably many U, and local charts ¢, such that U, Un = Ugzc s Un
so that

Mc | e, (V) € JUn
n n
Hence, if E C M we are extactly in the situation (48).
Exercise 116 Given the set
M:={(z,y,2) eR®: 2® +y* +2° =1, 2,y,2 > 0},

prove that it is a 2-dimensional surface and find its surface area.
Exercise 117 Given the set

M :={(z,y,2) ER’: z =2 +y° 2° +y*> < 1},

prove that it is a 2-dimensional surface and find its surface area.
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The next two theorems give an equivalent definition of surfaces, which are
very useful for examples. We begin by showing that a manifold can be written
locally as the graph of a function.

Theorem 118 Given 1 < k < N, a nonempty set M C RY, and m € N, the
following are equivalent

(i) M is a k-dimensional surface of class C™.

(ii) For every xg € M there exist an open set U C RN containing xo, an open
set V. .C RE, and a function f : V. — RN~k of class C™, such that, by
relabelling the coordinates, if necessary,

MNU={(y.f(y): yeV}.

Proof. Step 1: We prove that (i) implies (ii). Given &g € M, let U, V, and ¢
be as in Definition 113. Let y, € V be such that ¢ (y,) = zo. Since J, (y,) has
rank k, there is an k x k submatrix of Jy, (y,), which has determinant different
from zero. By changing the coordinates axes of RY, if necessary, without loss
of generality, we may assume for simplicity assume that

) P
o (yo) o 5t (yo)
det | : L #0.

.(9 .6 X
25 (W) - 3k (o)

Let w := (Tg11,...,2n) so that & = (z,w). Let g : V — RF be defined by

9(y) = (o1 (y),-- 0 (y))- (49)
Then
‘3*‘511 (yo) -+ 275,1 (%0)
det Jg (yo) = det | cee #£0,
Gos (wo) G (wo)

and so by the inverse function theorem there exists r > 0 such that By, (yg,r) C
V., f (Bk (yg,7)) is open, and g : By (yo,7) — g(Bk (yg,7)) is invertible, with
inverse g~ : f (B (yo,7)) — B (yo,7) of class C™. Hence, we have shown
that we can write y as a function of z, y = g~! ().

Since ¢ is a homeomorphism, the set ¢ (By (yq, 7)) is relatively open in M,
that is, it can be written as

¢ (Bk (y9,7)) =M N UL
for some open set U; € RY. Then

MnU ={¢(y): y € Br(yyr)}-
={(z, 0641 (97" (2),....on (97" (2))) : 2 € g(Br (yo,7))} -
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This shows that M NU, is given by the graph of the function z € g (B (y,, 7)) —

(@k«%l (g_l (Z)) yer s PN (g_l (Z)))

Step 2: We prove that (ii) implies (i). Given xy € M, let U, V and
f : V. — RN=F of class C™ be as such that, by relabelling the coordinates, if
necessary,

MU ={(y,f(y): yeV}.
Define ¢ : V — R by
e (y) = (y,f(y)

-1

Then ¢ is of class C™, injective, ¢ . @(V) — RF is continuous, since

¢ 'y, w) =y, and
I >
J =
which has rank k. =
Next we show that a manifold can be written locally as the set of zeros of a
function.

Proposition 119 Given 1 < k < N, a nonempty set M C RN, and m € N,
then the following are equivalent:

(i) M is a k-dimensional surface of class C™.

(ii) For every oy € M there exist an open set U C RN containing zo and a
function g : U — RN=F of class C™, such that

MnNU={xeU: g(x)=0}
and Jg () has rank N —k for allz € M NU.

Proof. Step 1: We prove that (i) implies (ii). By the previous theorem, for
every &y € M there exist an open set U C RN containing o, an open set
V C RF, and a function f : V — RY~% of class C™, such that, by relabelling
the coordinates, if necessary,

MNU={(y.f(y): yeV}.

Consider the function g : U — R¥~* of class C™ defined by

g(x) = (1 — fr(x, . 2k) s on — ok (21,0, 78)) -

Then
MNU={xzeclU: g(x)=0}.
Moreover, Jg () contains the submatrix Iy_y, since for 4,5 > k + 1,
Bgi 0
8xj (IB) = 87 (iCZ — fifk (5[,’1, ey {Ek)) = 51'71' — 0

Zj

Hence, Jg4 () hasrank N —kforall z € U;. m
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Proof. Step 2: We prove that (ii) implies (i). Since Jg (z¢) has rank N — k,
there is an (N — k) x (N — k) submatrix of Jy (xo), which has determinant
different from zero. By relabeling the coordinates, if necessary, we can assume
for simplicity that

3 3
rii (zo) amﬂi,ﬂ (zo)
det | : U #0.
OgN—k OgN —
Bk (a) o SR (ay)
Let z := (z1,...,2n—) and ¥y := (TN—k+1,.-.,ZN), SO that & = (z,y), To =

(20, Yy), and det % (zo) # 0. Consider the function f : U — RY defined by

f(z)=(g9(=),y).
Then

99 9g
det Jg (zo) = det ( 5z (Z0) 5y (@) ) = det 99 (zg) # 0,
Opx(n—r) Ik 0z

and so by the inverse function theorem there exists r > 0 such that B (zg,r) C

U, f (B(xo,r)) is open, and f : B (xzg,r) — f (B (®o,r)) is invertible, with in-

verse f ' f (B (zo,7)) — B (x0,7) of class C™. Since f (B (o, 7)) is open and

contains f () = (0,y,), we may find balls By_j, (0,79) and By, (y,,70) such

that By (0,70) X B (¥9,70) € f (B (20,7)). Then Uy := f ' (Bx_4 (0,70) X By, (yg,70))
is open. Moreover, if & € M N Uy, then f () = (0,y). Hence, the function

@ : Bi (yg,7m0) — M NU; defined by

@ (y)=F""1(0,y)

is a homeomorphism. Since f () = (g (), y), we have that ¢ (y) = f ' (0,y)
takes the form ¢ (y) = f ' (0, %) = (h (0, ) ,y), and so

Jo (y) = ( f:(y) )

which shows that J, (y) has rank & for all y € By (yg,70). ®
Next we define tangent vectors and normal vectors.

Definition 120 Let 1 < k < N, and let M be a k-dimensional differential
surface. Given xo € M, a vector t € RN is called a tangent vector to M at the
point xq if there exists a function h: (—§,5) — RY differentiable at t = 0 such
that h ((—=6,6)) C M, h(0) = xg and h' (0) = t. The set of all tangent vectors
to M at xg is called the tangent space to M at ®o and is denoted Thr (xo).

Friday, November 11, 2022
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Theorem 121 Let 1 < k < N, and let M be a k-dimensional differential
surface of class C™, m € N. Given ¢y € M, let ¢ : V — RN be a local

chart such that ¢ (yy) = o for some y, € V. Then the vectors 8— (¥o), ---

3yk £ (y,) form a basis for the tangent space Ty (o) to M at xg.

7

Proof. Step 1: We prove that

Op O
T (z0) € Span{@yl (Yo)s---s N (yo)} .

Let ¢t € Ty (xo) and let h : (=§,0) — RY be differentiable at ¢t = 0 with
h((—0,6)) € M, h(0) = o and h'(0) = t. Let ¢ : V — RY be a local
chart, with &g € (V) = M NU and let y, € V be such that ¢ (y,) =zo.
Since Jy, (yo) has rank k, there is an k x k submatrix of J, (y,), which has
determinant different from zero. By changing the coordinates axes of RY, if
necessary, without loss of generality, we may assume for simplicity assume that

% (w) - 52 (w)
det | o # 0.
?;Zf (yo) --- %yl (Yo)

Consider the function f : V x RN=% — R be defined by

fy,z)=(@1(y),. .06 (Y),or1 (y) + 21, .., o8 (Y) + 2v—k) -

Then
) f)
21 (yy) %21 (y,)
; : Ok (N —k)
6«pk ( ¢k
Yo) ] (Yo)
det J¢ (yy,0) = det gu1 )
0 Ooi (yy) .. Ok (y)
: . IN—k
BN (yg) - G (y)
261 () oo 221 (y)
9y1 Yo oYk Yo
=det | : ce #0,

%ﬁf (yo) ?)ﬁf (yo)

and so by the inverse function theorem there exists » > 0 such that By ((y,,0),7) C

VXRN"E, f (B ((y0,0),7)) is open, and f : By ((y0,0),7) — f (B ((30,0),7))
is invertible, with inverse £ : f (By ((90,0),7)) — By ((y,,0),7) of class
C™. Moreover,

F(y,0)=¢(y) e M forallyc Bi(yo,7).
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In turn for y € By (y,,7),
(3,0)=f"(f (5.0) =F " (¢ (),

which shows that for all ¢ = i,...,k, the first k& components of f ! coincide
with ¢~! on points ¢ (y). In particular, if z€ f (By ((yq,0),r)) N M, then
z=f (y,0) = ¢ (y) for some y € By, (y,,r) and so

(1), (@) = (), ()

for all i = 4,...,k. Thus, ¢! is differentiable in f (By ((yy,0),7)) N M. It
follows by the chain rule that the function ¢ ~!oh : (—6,§) — R¥ is differentiable
at 0. Writing

h=¢po (cp’loh),

it follows by the chain rule that

t="h'(0) = J, (y,) (‘Pf1 oh)

/

(0),
which shows that t € span {g—y“j (Yo)s---s % (yo)}. This shows that

Op O
T (m0) € SPan{ayl (Yo)s---s un (yo)} .

Step 2: We prove that

Op Op }
span ¢ —— ey — C Ty ().
pan{ 22 (o), 52 (3} € Tar (a0)
Since V' is open, there exists By (yy,7) C V. Let ey, ..., e be the standard
orthonormal basis of R¥. Given a vector w € R¥, let
T
0 =—7—>0
1+ [[wl],

and consider the function h : (—4,) — R¥ defined by

h(t) == ¢ (yo +tw).

Then h ((—4,6)) € ¢ (B (yg,7)) € M, h(0) = ¢ (yy) = zo. If w =0, then h
is constant and so h’ (0) = 0. This shows that 0 is a tangent vector to M at
xo. If w # 0, we have

h(t) —h(0) _ ¢ (yo+tw) —p(yy)  I¢

This shows that g—;’; (yo) is a tangent vector to M at xg. Since ¢ is differentiable,
by a theorem from a semester ago (applied to each component),

k

0 ) =S w, 2P
ow (Yo) = sz dy: (Yo) -

i=1
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This shows that each linear combination of the vectors —g‘P (Yo)s - s 22 (y,)
Y1
is a tangent vector, that is that

dp Op
— ey cT .
span { 52 (50) ... 5 (40 p € T (o)
Note that since J,, (y,) has rank k, the vectors g—i (Yo), - -» gTi (y,) are linearly

independent. m

Theorem 122 Let 1 < k < N, and let M be a k-dimensional surface of class
C™, m € N, of the form given in Proposition 119. Given xy € M, let g :
B (zo,7) — RN=F be the function given in Proposition 119 corresponding to the
point xg. Then

Ty (zo) = kerdg,, = {z € RN : Jy (zo)z =0} .

Proof. Let t € Ty (zo) and let h : (—4,6) — RY be differentiable at ¢t = 0
with h((—6,0)) € M, h(0) = z¢ and h’ (0) = ¢. Taking 0 smaller, if necessary,
we have that

g(h(t)) =0

for all t € (—6,0). It follows by the chain rule that
0 = Jg (z0) b’ (0) = Jg (o) ¢,

which shows that ¢ € ker dg,, . Hence, T (o) C kerdg,, . On the other hand,
since Jg (€o) has rank N — k, the dimension of kerdg,, is given by

N —rank J, (zo) = N — (N — k) = k.

But T () has also dimension k by the previous theorem. Hence, Ths (zo) =
kerdg, . =

Definition 123 Let 1 < k < N, and let M be a k-dimensional differential
surface. Given xo € M, a vector v € RN is called a normal vector to M at the
point z¢ if

v-t=0 forallte Ty (x).

The set of all normal vectors to M at xq is called the normal space to M at x
and is denoted Ny (o).

Since Ty (o) is a subspace of dimension k, the normal space Ny (2g) has
dimension N — K. When K = N — 1, then Ny (zo) has dimension 1, so
N (zo) = {tv : t € R}, where v # 0. Taking ||v|| = 1, at o there two choices
of unit normal vectors, v and —v.

Exercise 124 Let M be a k-dimensional surface M of class C™, m € N and
let o : V- M,y : W — M be two local charts such that ¢ (V)N (W) =:
Z is nonempty. Prove that the function ¥~ "o @ : @ 1 (Z) — ¥ ' (Z) is a
diffeomorphism of class C™, that is, ¥~ o @ and its inverse are both of class
cm.
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The function ¥ ~* o o is called a change of parameters or a change of coor-
dinates. The previous exercise leads to the definition of abstract manifolds.

Definition 125 Given k € N, a k-dimensional differential surface or manifold
is a nonempty set M together with a family of injective functions ¢,, : Vo — M,
a € A, where V, CR* is an open set, such that

(1) Us pa(Va) = M,

it) If a, 8 € A are such that ¢, (Vo) Nz (V) =: Zy g is nonempty then
« g\VB B
e (Zap) and gogl (Zwp) are open sets and the functions cpgl 0@,
0ot (Zapg) = RF and ot oy cpgl (Zap) — R¥ are differentiable.

The family {@,}aca is called an atlas.

Remark 126 A differential structure on a set induces a natural topology. We
say that U C M is open if ¢ 2(U) is open for every a € A. With this topology,
all the local charts @, are continuous and p,(Vy) are open, so that all p,, become
homeomorphisms.

Definition 127 Given k € N, a k-dimensional differential M is called ori-
entable if there exists an atlas {p,}taca such that for every a,B € A with

Po (Vo) Nps (Vg) = Zap nonempty, nglwa has positive determinant in

Pl (Za,p). Otherwise M is called non orientable.

It can be shown that an N — 1-dimensional manifold M of class C* is ori-
entable if and only if at every point & € M one can choose a unit normal vector
v(z) € Ny () in such a way that the map

M — RN\ {0}

x— v(x)

is continuous.
Monday, November 14, 2022

11 Mollifiers

Definition 128 Given a metric space (X,d), a set E C X and a function
f:E — R, the support of f is the set

supp f:=={x € E: f(z) #0}.

Definition 129 Given a metric space (X,d), the space C.(X) is the space of
all continuous functions whose support if compact.

Definition 130 Given an open set U C RN andn € N, the space C*(U) is the
space of all functions in C™(U) whose support is compact set and contained in
U. Similarly, C(U) is the space of all functions in C°°(U) whose support is
compact and contained in U.
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Consider the function

coxp (o) if ol <1,
x) = flef*—1 50
@ {o i o) > 1, 0

where the constant ¢ > 0 is chosen so that
/ p(x) de = 1. (51)
RN
We leave as an exercise to prove that ¢ € C°(RY). For every ¢ > 0 we define
1 T N

The functions . are called standard mollifiers.

Remark 131 Fiz x € RY. Using the change of variables z = =¥ we have
that

1 T—y
e (@ —y)dy=— @( )dy
/B(w,s) «(@=9) e JB(a,e) e

N
= — p(z)dz=1.
eN /3(0,1)

Given a Lebesgue measurable set £ C RY and a Lebesgue integrable function
f+E— R, we define

f- (@) = /E oo (z— 1) f (y) dy (52)

for £ € RY. Since . is bounded and continuous, and f is Lebesgue integrable,
f-(z) is well-defined. The function f. : RN — R is called a mollification of f.

Theorem 132 Let E C RY be a Lebesgue measurable set, f : E — R be a
Lebesgue integrable function. Then f. € C*(RY) and for every multi-index o,

Lz (g) = [E O (o y) 1 (y) dy.

ox™ oxr™

Proof. Let’s prove that f. is of class C'. Fix x € RN and let e;, i =1, ..., N,
be an element of the canonical basis of RY. For every h € R\ {0} consider

J(x+he) = fo@) [ O

(z—y)f(y)dy

h E 0x;
_ /E <<Pe(w -y+ he}z) —es@oy) gﬁj(m - y)> f(y) dy.

70



By the mean value theorem

Wa(m_y+h6i)_¢a($_y)_% . )
3 = %, (z —y+ Ohe;)

for some 6 € (0, 1). Since ‘3‘;’: is continuous and it is zero outside B(0, ¢), by the

Weierstrass theorem applied in the compact set B(0,¢) there exists a constant
M, > 0 such that

Ope
<
oz, (z)‘ < M,

for all z € RY. Then we have

‘(sog(w— y+ht:) —pe(z—y) gs;j(w_ y)> f(y)‘

_ ' (%0 g one) - e ) f(y)‘ < M| f(y).

Since f is Lebesgue integrable, we can apply the Lebesgue dominated conver-
gence theorem to conclude that

3 hz — Je 0 €
tiny (RIS [ Sy s an)

_ 1 Ope y_ e
~ i [ (@ g ey - 2o ) sy

B . dpe NI _
= /E lim (8% (x —y+ Ohe;) oz, (x y)) f(y)dy =0,

h—0

where we used the fact that g‘;_ is continuous. This shows that

P = [ @ fwa.

A similar but simppler argument shows that g]; = is continuous.

Note that the only properties that we have used on the function ¢, are that
0. € C°(RYN) with supp . C B(0,¢). Hence, the same proof carries over if
we replace . with ¢, := g“"f. Thus, by induction we may prove that for every

multi-index a there holds

0tz (2) = /E P (o y) f(y) dy.

oz oxr™

Exercise 133 Prove that f. and all its partial derivatives are uniformly con-
tinuous.
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Theorem 134 Let E C RY be a Lebesque measurable set, f : E — R be a
Lebesgue integrable function. Assume that f is continuous at some xy € E°.
Then fo(xo) — f(xg). Moreover, if f is continuous in E°. Then fo — f
uniformly on compact sets of E°.

Proof. Step 1: Since xy € E°, there exists B(xg,r) C E. Take 0 < ¢ < r.
Then B(zg,c) C E. Since . (g — y) = 0 for all y with ||z — y|| > &,

fa)= [ pw-pWdy= [ em-u)f
B(xo,e)NE B(zo,¢)
Using Remark 131 we can write

- (o) — f (o) = / oe (20— y) f (3) dy — 11 (z0)

B(zo,¢)

= / we (Lo — y) [f (y) — f (z0)] dy
B(xo,¢)
and so

|fe (o) — f (20) | < / oe (20— ¥)|f (w) — f (o) |dy.  (53)

B(zo,¢)

Since f is continuous at g given p > 0 there exists 6 = d(xg, p) > 0 such that

If(y) = f(zo)| <p

for all y € R with ||y — x¢|| < J. Hence, taking ¢ < J we have that

£ (o) — 1 (z0) | s/ e (z0 — ) |f (9) — f (z0) | dy

B(zo,¢)

Sp/ Soe(w(]_y)dy:pa
B(xo,e)

which proves that f. (zo) — f (o) as e — 0%,
Step 2: Assume that f is continuous in E°. Let K C E° be a compact set.
For any fixed
0 < n < dist (K,0F)

let
K, = {z eR": dist(z,K) <n}.

so that K, C E°. Since K, is compact and f is uniformly continuous on K,
for every p > 0 there exists § = 6 (1, K, p) > 0 such that

[f (@) = f ()l <p (54)
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for all z,y € K,), with ||z —y|| < 0. Let 0 < e < min {4, n}. Then for all x € K,
we have that B(z,¢) C K, and so reasoning as in the first part of the proof

\fs(w)—f(w)lé/ e (z— ) |f (y) — f (z)| dy

B(z,e)

Sp/ ¢ (z—y) dy = p,
B(x,e)

which shows that
sup |fe (z) — f(z)| < p

K

forall0 <e <min{d,n}. =
Wednesday, November 16, 2022
Given a locally integrable function f : RY — R, the (Hardy-Littlewood)
maximal function of f is defined by

M (f) () := sup

1 /
N fldy
r>0 LN(B(2,7)) JB (@, ]

for all z € RV,

Exercise 135 Prove that for every t > 0 the set {x € RY : M (f) (@) >t} is
open and that M (f) is a Borel function.

Theorem 136 Let f : RN — R be integrable. Then for every t > 0,

EN({mERN'M(f)(a:)>t})<3N/ |f| d (55)
’ — t Jrn~ v

Lemma 137 (Vitali’s covering) Let F be a finite family of be open balls in
RY. Then there exists a subfamily G of disjoint balls such that

U Bc | 3B,

BeF Beg

where 3B denotes the ball with the same center of B and three times its radius.

Proof. Let By be the ball with largest radius. If all the other balls intersect
By, we stop and take G = {B;}. Otherwise, let F; be the subfamily of balls
that do not intersect B;. Let By be the ball with largest radius in F; and add

B> to G. Inductively, assume that By, ..., B, have been chosen. If every ball
in F intersects one of the balls By, ..., B,, we stop. Otherwise, let F,, be the
subfamily of balls that do not intersect By, ..., B,. Let B, 41 be the ball with

largest radius in F,, and add B,1; to G. Since F has finitely many elements.
this process stop.

Hence, we constructed a subfamily G of disjoint balls with the property that
every ball in F intersects one ball in G.

73



Let ¢ € gz B. Then there exists B = B(zo,70) € F such that z € B. If
B belongs to G, we are done. Otherwise, B(xg,ro) had been discarded at some
point. This means that there exists B(xi,71) € G be such that B(xg,rg) N
B(z1,m1) # 0 and r1 > ro. Let y € B(xo,709) N B(x1,71). Since x € B,

|z — x| < ||& — ol + [|®o — y|| + [ly — 21| < 7ro+70+71 < 31
Thus, ¢ € B(x1,3r1). ®
Remark 138 In the previous lemma, we could have used closed balls.

We prove the theorem.
Proof. Let
Ey:={z eRY : M(f)(z) >t}
and let K C E; be a compact set. By the definition of M (f), for every & € K
we can find a ball B (z,rz), with r4 > 0, such that

1
[’N(B("Bv Tw)) /B(ac,rw) |f| dy -t (56)

Since K C (e i B (x,75) (note that we are using the open balls), by compact-
ness we can find a finite number of balls such that K C |J;_, B (2, 4, ).

By the Vitali’s covering lemma, we can find ¢ disjoint balls B (yj,, Ry) such
that

n )4
K c|JB(xi,ra,) € | B (yy.3Rs) .

i=1 k=1
Hence, by (56) and the fact that the balls B (y,, Ri) are disjoint,

EN(K)SZL’N (Y, 3Re)) —3NZLN (Y5 Rr)) <3NZ/ |f1 dy
yk,Rk
3N

" ] dy < 7/ 1 dy.
Uk By, Rr) RN

By your homework E; can be written as

E, = [j K;UF,
j=1

where K; C Kj; are compact and LN (F) = 0. By applying the previous
inequality to K, we obtain that

LY (K; <g d
(K;) < . |f| dy.
]RN

Letting 7 — oo we get

N (B) = tim £ (K )<3N/RN|f dy.

‘]HOO t
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Exercise 139 Let f : RV — R be a Lebesque integrable function. Prove that
for every € > 0 there exists g € C. (RN) such that

/ f-gldy<e.
RN

Theorem 140 (Lebesgue density theorem) Let f : RY — R be integrable.
Then there exists a Borel set Eg C RN, with LN (Ey) = 0, such that for every
x € RN \ Ey,

1

) fy )~ @]y =0 657)

In particular,
1

g, LN(B(z,7)) /Bw) o) dv =1t .

for every € € RN \ Ey.

Proof. Given ¢ > 0, by the previous exercise, we may find a function g €

C. (RN ) such that
[ r-day=e
]RN

Note that g depends on e. Since g is continuous, for every & € RV we have that

. 1
I BT o, W) 9@ dy =0 (59)

Indeed, given n > 0 there exists 6 = ¢ (n) € (0,1) such that
lg(2) —g(y)l <n
for all y € RY with |l — y|| <. Hence, for 0 < r <4,

1 1
BT /B 9w @)l S s /B L=

For every & € RY we have

1 1
‘CN(B(:E’T))/B(w,r) If(y) — f(z)| dy < ACN(B(QZ,T))/B(%T) lf (y) — g (y)| dy

1
BT o, ) 9@ dy g (@)~ @)

<M(/ - 9) @)+ 2y

(B(mﬂ’))/g(m 9 (y) — g (2)| dy + g (2) — [ ()]

Using (59), we have

) 1
lim sup

P I Sy, 0T SN ) )20~ @)

(6]



For every t > 0, define
G, ={zxzecRV: limsupNi/
r—0+t L (B(.’E,’I“)) B(z,r)
B, ={zeRY: M(f-g)(z)>t},
F.:={z¢ RN : |g(x) — f(z)| > t}.

If(y)f(w)ldy>t},

Then by the previous inequality, if & € G2, we have

2t < limsup —

ol
r—0+ L (B(.’B,T)) B(x,r)

which implies that M (f — g) (z) > t or |g(x) — f ()] > t. This shows that
Gt C By UF..

If (y) = f(z) dy <M (f —g) (z)+]g (x) — f (x)],

By (55),
3N 3Ne
N B <t [ g dy <SS
t Jpn~ ¢
while
N 1 €
MRy [ Ar-gdy<s
RN
Hence,

(BY+1)e
—

Since Go; does not depend on € > 0, we can let ¢ — 07 in the previous inequality
to conclude that £V (Gg;) = 0 for all ¢ > 0. Let

E() = D G
n=1

Then £V (Ey) = 0 and if £ € RV \ Ep, then

LN (Goy) < LY (Bye) + LY (Fye) <

|~

n

. 1
hﬂ?ﬁp LN(B(z.7) /B(m)r) [f(y) = f @)l dy < ~

for every n, that is,

. 1
llrﬁi%lip IN(B(a.r) /B(w,r) |f(y) = f(z)| dy =0,

which implies that (57) holds. m

Exercise 141 Prove that the theorem continues to hold if f is assumed to be
locally integrable, that is, integrable on compact sets.

A point & € RY for which (57) holds is called a Lebesgue point of f.
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Corollary 142 Let f : RN — R be integrable and let f. be the mollification of
f. Then f-(x) — f(x) as ¢ — 0T at every Lebesgue point x € RN of f.

Proof. Let o € RY be a Lebesgue point of f. By (53)

Ifa(ﬂfo)—f(wo)IS/B( e o= U1 (W)~ ao) dy
1

N
3 B(xo,e)

sups [
<M 1f W) =S o)y

o (=) 15 )~ F o)y

an supgw |o|

" LN(B(zg,¢)) /B(mo,s) 17 (y) = /(o) |dy =0

as € — 0. Here, ay is the measure of the unit ball. =
Friday, November 16, 2022

Remark 143 If ¢ € RN\ Ey, then given a family of Lebesgue measurable sets
{EBz.r},5o such that By, C B (z,r) and

LY (Bgr) > oL (B (z,7))

for some constant a > 0 independent of r > 0, we have that

. 1
i e Je,, 10 )
o 1
< hrni%lipm /B(mm) |f(y) = f(z)| dy

L. 1
< e B fo @) @y =0

Note that the sets Ey . need not contain x.

Lebesgue’s density theorem allows us to give a different proof of Theorem
84.

Corollary 144 Let g : [a,b] — R be Lebesgue integrable and

f(z) = /x g(t)dt, x € Ja,b].

Then for L'-a.e. x € [a,b] the function f is differentiable and f'(z) = g(z).

Proof. Extend g to be zero outside [a,b]. By Lebesgue’s density theorem, for
Ll-ae. z €R,

1 x4r
lim */ l9(y) — g(x)|dy = 0.

-r
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In view of the previous remark, for every Lebesgue point z € R of g,

1 x+r
lim ~ — g(z)|dy =0
Tirélw/w l9(y) — g(z)|dy =0,
| 1/95 19(y) — g(x)|dy = 0
m — — T = U.
Jim, = lo(y) = g(@)ldy

In turn,

r—0+ r r—0+ T

() — f(z—7) v
lim = lim dy = .
lim, . Jm [ gly)dy = g(x)

Hence, f is differentiable at z and f'(z) = g(z). =
An important application of the theory of mollifiers is the existence of smooth
partitions of unity.

Theorem 145 (Smooth partition of unity) Let U C RY be an open set
and let {Va},cp be an open cover of U. Then there exists a sequence {1y}, of
nonnegative functions in in C° (RN) such that

(i) each 1, has support in some Vo NU;
(i) > tn(x)=1 forallxecU;
n=1

(iii) for every compact set K C U there exists an integer £ € N and an open
set V., with K C'V CU, such that

forallx eV.

Proof. Let S be a countable dense set in U, for example, S := {z € QN N U},
and consider the countable family F of closed balls

F:={B(z,r): r€(0,1)NQ, z €S, B(x,r) CV,NU for some a € A}.

Since F is countable we may write F = {B (,,r,) : n € N}. We claim that
U= B(zn.%). (60)
n=1

Indeed, given & € U, since {Va}aeA is an open cover of U, we can find Vj3
such that £ € V3. Since Vg NU is open, there exists 0 < r < 1 such that
B(z,r) C V3N U. By the density of Q in R there exist y € QV such that
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|z — y|| < 5 and g € Q such that & < ¢ < Z*. Then B (y,q) C B(z,r), since
if z € B(y,q), then

e
lz—z| <|z—yl+z—yl| <qg+=< = ++=
8 8 8

Hence, B (y,q) € F. Moreover, |z —y|| < £ < % and so z € B (y, ). This
shows that U C U B (a:,z, %) The other inclusion follows from the fact that

each ball in F is contalned in U.
For each n € N consider

¢ —SO’WL *XB(wn;47n)

Tn

where @ru are standard mollifiers (with e := 7). By Theorem 132 ¢, €
(Ohad (RN). Moreover, if x € B (mn, Tz") then

bn (T) = /RN ¢ (€= Y) Xp(a, 2r,) (Y) Y

_ /B o) P Y X 10) W)

=/B(mm)ml(w—y)dy=1,

where we have used (51) and the fact that if z € B (:I:n, o ) then B ( ) C
B (:z:n,i n) Since 0 < XB(2,,2r,) < 1 a similar calculation shows that 0 <

¢n < 1. On the other hand, if « ¢ B (x,,r,), then
0n(@) = [ o @ 0)\n(e, 30,) () dy
= P (T —y) X - (¥) dy =0,
/B(E,TI) 4 B(wn74 n)

where we have used the fact that if ¢ ¢ B (z,,7,), then B ( )ﬂB (mn, n) =

(. In particular, ¢, € C° (RN) and supp ¢, C B (xpn,Tn)- Note that in view
of the definition of F, supp ¢, C V,, NU for some « € A. m

Monday, November 22, 2022
Proof. Define 1, := ¢ and

Un = (1_¢1)"'(1_¢n71)¢n (61)

for n > 2, n € N. Since 0 < ¢ <1 and and supp ¢y, C B (xk, 7)) for all k € N
we have that 0 < ¢, < 1 and suppv,, C B (x,,r,). This gives (i). To prove
(ii) we prove by induction that

7/}1+"'+w’n:1_(1_¢1)"'(1_¢n) (62)
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for all n € N. The relation (62) is true for n = 1, since 91 := ¢7. Assume that
(62) holds for n, then by (61)

w1+"'+wn+wn+l:1_<1_¢1)"'(1_¢n)+wn+1
=1-(1=¢1) - (1=¢n)+(1=0¢1) (1 = ¢n) Pnt1
=1-(1—=¢1) (1 - ny1)-

Hence (62) holds for all n € N.
Since ¢, = 1 in B (@, %) for all k € N it follows that from (62) that

(z)+--+Y,(x)=1 forall z e UB(:I:]C,%). (63)
k=1

Thus, in view of (60) property (ii) holds.
Finally, if K C U is compact, again by (60), we may find £ € N so large that

l
U B(zy, %) > K
k=1

and so (iii) follows by (63). m

12 Divergence Theorem

Given i € {1,...,N} and z € RY let #; € RV~! be the vector obtained
from z by removing the i-th component z; of . With an abuse of notation

we write £ = (x;,2;) € R¥Y~! x R. When i = N we use the usual notation
z=(z,zn) ERN"I xR

Definition 146 Given an open set U C RN we say that its boundary OU is of
class C™, m € N if for every g € OU there exist i € {1,...,N}, r > 0, and
a function h : RN=1 — R of class C™ such that, writing * = (x;,x;), we have
either

UﬂB(IL’o,’I“) = {II: eB (JJQ,T) : h(azz) < .%‘i}

UNB (xg,r) :={x € B(xo,7): h(z;) > x;}.

Note that 4, h, and r depend on xq. If QU is of class C™ for m € N, then
OU is an (N — 1)-dimensional surface of class C™. Also, instead of balls we can
use cubes. Note that Tpy (x) is given by the N — 1 dimensional vector space
given by ker Vg, where g(z) = z; — h(x;).

Definition 147 Given an open set U C RY with boundary of class C™, m € N,
a unit normal vector v to OU at xg is called a unit outward normal to U at
xo if there exists 6 > 0 such that ¢y —tv € U and xo + tv € RV \ U for all
0<t<é.
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We are ready to prove the divergence theorem.

Theorem 148 (Divergence Theorem) Let U C RY be an open, bounded set
with boundary of class C* and let f : U — RN be such that f is continuous in
U and there exist the partial derivatives of f in RN at all & € U and they are
continuous and bounded. Then

/ divf(z)de= [ f vdH™ !,
U

oU

where

div f = Z gg{l

Remark 149 In physics [y, f (x) - v (z) dHN ! (z) represents the outward
flux of a vector field f across the boundary of a region U.

Corollary 150 (Integration by Parts) Let U C RY be an open, bounded,
set with boundary of class C* and let f: U — R and g : U — R be such that f
and g are continuous in U and there exist the partial derivatives of f and g in R
at all x € U and they are continuous and bounded. Then for everyi=1,..., N,

9
/f o :_/Ug(m) a;i- () de + | fousdHV .

ou

Proof. Fix i € {1,...,N}. We apply the divergence theorem to the function
f :U — RY defined by

fi () ._{ f(@)g(z) ifj=i,

0 if j #1.

Then

af; _0(fg) _ .09 . Of

divf = Zaxj - 8% f@mi +g@xi’
and so

/ <f3g +gaf> dm:/divfda::/ f~udHN’1:/ fovi dHN L.
v\ Oz; T O0x; U U oU

[

If ECRYN and f : E — RY is differentiable, then f is called a divergence-
free field or solenoidal field if
divf = 0.

Thus for a smooth solenoidal field, the outward flux across the boundary of a

regular set U is zero. Examples of solenoidal fields are the magnetic field in

Maxwell’s equations, the velocity of an incompressible fluid, the vorticity.
Monday, November 28, 2022
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Exercise 151 Calculate the outward flux of the function
f @y, 2) = (0,yz,2)
across the boundary of the region
U:={(z,y,2) ER®: 2? +¢y* < 2%, 2 +y* + 2° < 2y, 2 > 0}.

Definition 152 Given an open set U gRN and an integer m € N, we say that
a function f: U — R is of class C™ (U) if f can be extended to a function of
class C™ (V), where V is an open set containing U.

Lemma 153 Let R := (a1,b1) x -+ x (an,by) and f : R — RN be such that f
is continuous in R and there exist the partial derivatives of f at all x € R and
they are continuous and bounded. Then

/Rdivf (x) de = /aRf cvdHN T

Proof. Given k € {1,...,N} write Ry := IIixx (@i, b;) C RN-! and =z =
(z1, x1), where x;, € RV~ is the vector obtained by removing the k-th compo-
nent from x. Then by Fubini’s theorem,

Of / P O fr
Ik (2) de = DIk (g, ap) da, | d
- O (z) dz . < O (zk, 1) day | dezy,

:/R (fr (2, bx) — fr (Tk, 1)) dey,

= f(zr,br) - e dxy + I (zi,ar) - (—ex) dzy,
Rk Rk

:/ f-udHN*1+/ f-vdHN 1,
RkX{bk} ka{ak}

where in the third equality we have used the fundamental theorem of calculus
applied to the function of one variable xy, € [ak, bi] — fi (2, xx) with @y fixed,
and in the last equality we have used formula (47). Summing the resulting
identities gives the desired result. m

Lemma 154 Let
U:={(z',an) € Ry xR: h(z') < zny < by},

where Ry = (a1,b1) x --- x (an_1,by_1), h : Ry — R is of class C' and
maxg-h < by and let f : U — RY be such that f is continuous in U and
there exist the partial derivatives of f at all x € U and they are continuous and
bounded. Assume that there exists an open set V containing OU \ graph h such
that f =0 in UNV. Then

/divf(m) de = f-vdHN 1,
U Grh
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Proof. Since maxgz_h < by and there exists an open set V' containing OU \
graph h such that f = 0 in U NV, we have that f = 0 in Ry x (by — 6,by).
Hence, if we define f (x) = 0 for zy > by, we have that f is continuous in the

closed set o
{(',2x) € Ry xR: h(z') < ay < oo} (64)

and the partial derivatives are continuous and bounded in the open set
{(z',zn) € Ry X R: —c0 < zy < h(z')}. (65)

Since a chart for graphh a chart is given by o(z’) = (z’, h(x')), by Theorem
121, a basis for the tangent space is given by g—;’l(w’), Jp—eL -(z'). Note that

? BzN_
O @ /

and so a vector orthogonal to all %(w’), i=1,...,N—1,is (Vh(z'),-1).
Hence, the unit normal is

(Vhz),-1)
\/1+HVh Mo

Assume that the domain is of the the type (64). Then,

1+ || VA (2|
fovddV T = [ fvdnN T = [ f (@ h(2) - (Vh(2), - \/ ;V - da!
oU Grh Ry \/1 + ||Vh )”Nfl

- RNfN(m h(z')) da’ +Z fz (', h (x)) gfi (z') d'.

]
Wednesday, November 30, 2022
Proof. The change of variables

yv:=zny —h(z'), vy ==z
maps the set U into the set
W .= {(y/,yN) ERNXR: 0<yn < beh(y’)}.

Let R := Ry x (0,¢n), where cy > by + maxz—h, and consider the function

g(y)=f W, yn +1(y))
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By the chain rule, if y € W,

divg (y) = g% (¥, yn +h(y))

=1 3y1
N—-1
of; oh
. ! ! !/ !
=divf (¢, yn +h(¥)) + 8xN(y,yzv+h(y))ayi(y)-

By Step 1 applied to g in the set R,

| dvg dy= [ dvgw dy= [ gwvw) d @)=~ [ a0 dy
w R OR Ry

Hence, we can rewrite (66) as

/W divf (y,yvn +h(y) dy=— [ fn (. h(y)) dy

Ry
fZ/ Ly 0w 5 () dy.

Consider the change of variables
k:RY - RV,
y— (y,yv +h(y).
Note that k is invertible, with inverse given by

k' RY S RY

z— (2',zy — h(zZ)).
Moreover, we have
IN—l .
Jx (y) = ) )

—Ph(y) - - (y) 1

which implies that det Jx (y) = 1. Hence, by changing variables (see Theorem
?7),

/Udivf(m) Z/ ;mf; amz( o) dz— | fn (@, h(2) da.

RN
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By the fundamental theorem of calculus,

ofi oh , , NOof oh
/U&TN (x) oz, (') de = /RN (/h(w/) pr. (', zn) dey oz, (z') dx

oh
= [ (@b - 5@ @) o (&) e
oh
= [ 0 i@ h@) 5 @) d
and so
. ey oh
/waf(m) do=— [y ni)) i’ + ; [ g o @) de
= [ fovdn T (a),
oU

where in the last equality we have used formula (47). This concludes the proof
in this case. m
Friday, December 2, 2022
We turn to the proof of the divergence theorem
Proof. By Definition 146 for every xy € OU thereexist i € {1,..., N}, Rp, > 0,
and a function hg, : RV~! — R of class C* such that

UNB (III(),R@O) = {:II €eB <$07Rm0) : hmo (Iﬂl) < ZC,} (67)

or
UNB (xg,Rz,) :={x € B(®o, Rz,) : hay (x;) > 24} (68)

By continuity, find 0 < rg, < \/11%\%1 such that

Ra,
4

hay (i) = hay (®0.0) | < (69)

for all ; € Bny_1(%0,i;T2,)- On the other hand, if € U, which is open, then
there exists B (x,75) C U.

Since U C U,cp B (®,72/2), by compactness, we can find finitely many
balls that cover U. Let 11, ..., 1, be a partition of unity subordinated to the
family of open balls B (wl,rl/Q), ..., B(x",r,/2). For every k = 1,...,n, if
B (a:k, Tk> C U, we consider the rectangle T of side-length 7, centered at x*.
Since T C B (;ck'7 rmk) and the function ¥ f has compact support contained in
B (a:’“,rk/Q), it is zero in T\ B (:ck,rk/Q). Thus we can apply Step 1 to ¥ f
in T to conclude that

/div(wkf) dm:/div(z/;kf)da::/ Urf -vdHY =0 (70)
U T oT

since Y f = 0 on OT.
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On the other hand, if U N B (x*, R) is of the form (67) or (68), using the
notation = = (x;, ;) and @ = (x¥, hy (x¥)), define the rectangle

re TE\N-L R X R
T (w§+ (-2 ) « (hk () - 2 (ah) +;>.

Note that T C B (:ck,Rk) since if & € T, then

k|2 k\2 k\\2 7"1% R% Ri Ri 2
|z —z"|| :Z(xrxj) +(2i—hi (2))? < (N=1)f+ < 4+ F < RL
J#i
Thus, by (67),
N-1 R
UﬁT::{m:wiwa+(—?n2k7r;) ,hk(mi)<xi<hk(mf)+2k}
or
_ ) & TE TR\N1 Ry, &
UﬂT.z{x.wiEwi+(—272) ,hk(:ci)—7<xi<hk($i)

Moreover, if @; € zf + (-2 T—k)Nfl, then by (69), hi (z;) < hy (2F) +

2072
% < hyg (wf) + %. Since the function ¥ f has compact support contained

in B (mk, rk/2), it is zero on an open set that contains in 9T \ graph hy. Thus,
we can apply Lemma 154 to conclude that

/div(wkf)d:c:/div(wkf)d:c:/ Urf -vdHNT (T1)
U T Tz, (graph ha, )

= | wf-vdH¥
ouU

where we have used the fact that ¢, f is zero outside B (zj, 7z, /2). Summing
(70) and (71) over k and using the fact that >_;_, 1, =1 in U, we have

/Udivfdm:/Udiv (kzlq,z;kf> da;kZl/Udiv(zpkf) dz

:Z/a wkf-udHN’lz/a S nfvdHN T = [ fvdnNT,
k=179U U k=1

ou

which is what we wanted. m
Monday, December 5, 2022

13 Conservative and Irrotational Vector Fields

Definition 155 Given two intervals I,J C R, and two functions ¢ : I — RN
and v : J — RN of class C*, k € Ny, we say that they are equivalent if there
exists a bijective function h : I — J with h and h™' of class C* such that

@ (t) = (h(1)
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forallt € I. We write ¢ ~ v and we call ¢ and 1p parametric representations
of class C* and the function h a parameter change of class C*. A curve v of
class C* is an equivalence class of parametric representations of class C*, that
is, (@] :={vY: Y ~f}. The set ¥ = @ (I) is called the range of the curve.

Definition 156 A curve v of class C* is closed if it has a parametric repre-
sentation ¢ : [a,b] — RY with p(a) = p(b).

Similarly we can define C'°° curves, Lipschitz curves, analytic curves, and so
on.

Remark 157 Note that given a curve v of class C* with parametric represen-
tation @ : I — RN the function @ : I — RY is not in general a local chart for
a one-dimensional manifold, since we are not assuming that @ is injective or
that @'(t) # 0 for every t € I. In particular, a curve could self intersects but a
one-dimensional manifold cannot.

Next we introduce the notion of an oriented curve.

Definition 158 Given a curve v in RY of class C*, k € Ny, with parametric
representations @ : I — RN and v : J — RN, we say that ¢ and 1 have the
same orientation if the parameter change h : I — J is increasing and opposite
orientation if the parameter change h : I — J is decreasing. If ¢ and v have
the same orientation, we write ¢ ~ .

Exercise 159 Prove that ~ is an equivalence relation.

Definition 160 An oriented curve v in RN of class C*, k € Ny, is an equiva-
lence class of parametric representations with the same orientation.

Note that any curve ~ in RY gives rise to two oriented curves. Indeed, it
is enough to fix a parametric representation ¢ : I — R and considering the
equivalence class T of parametric representations with the same orientation of
¢ and the equivalence class v~ of parametric representations with the opposite
orientation of .

Definition 161 Given a Lipschitz continuous oriented curve v in RN and a
function g : E — RN, where E contains the range of v, we define the curve (or
line) integral of g along the curve ~ as the number

/vg - /Ig (e(0) - /(1) dt.

provided the function t € I — g(p(t)) - ¢'(t) is Lebesgue integrable for every
parametric representation @ : I — RN of v and the value of the integral does
not change with the representation.
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Exercise 162 Let~ be an oriented Lipschitz continuous curve in RY with para-
metric representations ¢ : [a,b] — RY and 4 : [c,d] — RN . Given a continuous
function g : E — RN, where E contains the range of ~, prove that

b d
/gwwywwﬁz/gww»wwﬂm

Also, a result analogous to Proposition ?? continues to hold for this type of
line integral.

Proposition 163 Let v be an oriented Lipschitz continuous curve and f, g :
E — RN, where E contains the range of v. Then

(i) if f,yf and f,y g are well defined, then for all a,b € R,

[t g =a[s+0]q
v ¥ v
(i) If fvf is well defined and @ : I — RY is a parametric representation of

/f

(iii) If f'rf is well defined, @ : I — RY is a parametric representation of v, c €
I1°, and v, and 4 are the oriented curves of parametric representations
w1 : 1N (—0o,c] = RY and ¢, : IN[c,00) — RN, then

[r=ho 1,

Definition 164 Let U C RY be an open set and let g : U — RY. We say that
g 1s conservative vector field if there exists a differentiable function f:U — R
such that

v, then < Varj psupy. ||f ||, where X is the range of v,

Vi(z)=g(z)
for all £ € U. The function f is called a scalar potential for g.

Wednesday, December 7, 2022

Theorem 165 (Fundamental Theorem of Calculus for Curves) LetU C
RN be an open set, let f € CY(U), let x, y € U and let v a Lipschitz oriented
curve with parametric representation @ : [a,b] — RN such that ¢ (b) = =z,

p(a) =1y, and ¢ ([a,b]) CU. Then

/szﬂm—fw»

~
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Proof. Define p(t) := f (¢(t)) and observe that p is Lipschitz with

for £ a.e. t € [a,b]. Hence,

a

b N b
[vi=[ XL eupewa= [ voa=po) -pw=r@-1w.
v a =1 """

where we have used the fundamental theorem of calculus for Lebesgue integral.
]

The previous theorem shows that if a conservative vector field is continuous,
then its integral along a curve joining two points depends only on the value at
the two points and not on the particular curve. If U is patwise connected, then
this condition turns out to be equivalent to the vector field being conservative.

Definition 166 A set E C RY is pathwise connected if for every x,y € E
there exists a conlinuous curve with range in E joining x with y, that is, v = [¢],
and @ : [a,b] — RY is such that ¢ (b) =z, ¢ (a) = y.

Exercise 167 Prove that if U C RY is open and pathwise connected, then for
every ¢,y € E there exists a polygonal path with range in U joining x with y.

Theorem 168 Let U C RN be an open pathwise connected set and let g : U —
RY be a continuous function. Then the following conditions are equivalent.

(i) g is a conservative vector field,

(ii) for every x, y € U and for every two Lipschitz oriented curves vy, and =y,
with parametric representations ¢, : [a,b] — RY and ¢y : [c,d] — RY,
respectively, such that @, (b) = py(d) = @, p,(a) = py(c) = y, and

@1 (0,8]) s (fe,d)) < U,
I

(iii) for every Lipschitz closed oriented curve v with range contained in U,

/g:O.
~

Proof. We prove that (i) implies (ii). Assume that g is a conservative vector
field with scalar potential f : U — R, let =, y € U and let ¢, : [a,b] — RY and
@5 : [c,d] — RY be as in (ii). Then by the previous theorem

[o=[vi-t@-sw=[vi-] s
Y1 Y1 Y2 Y2
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Conversely assume that (ii) holds. We need to find a scalar potential for g. Fix
a point &y € U and for every € U define

/(=) ::/f”

where « a Lipschitz continuous oriented curve with parametric representation
@ : [a,b] — RY such that ¢ (b) = z, ¢ (a) = zo, and ¢ ([a,b]) C U. We claim
that there exist

of

o, (z) =gi(x).

Since U is open and & € U, there exists B (z,r) C U. Fix |h| < r, then the
segment joining the point « + he; with « is contained in B (x,7). Define the
curve 1 : [a,b+ 1] — RY as follows

B (t) if t € [a,b],
P(t) ~—{ S;Jr(tfb)hei iftebb+1].

Using (ii), we have that
b+1 N
@+ hey) :/ g:f(:n)+/ S g5 (@ + (£ — b)hes) ho; dt
" b

Jj=1

b+1
=f@0+l: gi (¢ + (t — ) he;) hdt =

h
:f(:c)—i—/o gi (x + se;) ds,

where in the last equality we have used the change of variable s = (¢ — b) h. It
follows by the mean value theorem that

N h
f(m+h(2) f(m)zi/o gi (T + se;) ds = g; (z + spe;),

where s, is between 0 and h. As h — 0, we have that s, — 0 and so ¢+ s,e; —
x. Using the continuity of g;, we have that there exists

i £ @ he) — (@)
h—0 h

= Aii%gi (x +snei) = gi(z),
which proves the claim.

The equivalence between (ii) and (iii) is left as an exercise. ®

Remark 169 The previous theorem is used to prove that a vector field is not
conservative. Indeed, if U C RN is an open pathwise connected set and g : U —
RN is a continuous function, if you can construct a Lipschitz closed oriented
curve v with range contained in U such that

Lg#m

then g cannot be conservative.
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Friday, December 9, 2022
Next we give a simple necessary condition for a field g to be conservative.

Definition 170 Let U C RY be an open set and let g : U — RY be differen-
tiable. We say that g is an irrotational vector field or a curl-free vector field
if

dg; _ Oy
8xj r)= 8%1 <:I:>

foralli,j=1,...,N and all x € U.

Theorem 171 Let U C RN be an open set and let g : U — RY be a conserva-
tive vector field of class C'. Then g is irrotational.

Proof. Since g is a conservative vector field, there exists a a scalar potential
f:U — R with Vf = g in U. But since g is of class C', we have that f is of
class C?. Hence, we are in a position to apply the Schwartz theorem to conclude
that

dg; 07 _0*f 9y,
al'j (il! o 81']3:101 €)= 8%18.%] (CC) o 81172 (:1:)

foralli,j=1,...,Nandallz €¢U. =m
The next example shows that there exist irrotational vector fields that are
not conservative.

Example 172 Let U :=R?\ {(0,0)} and consider the function

(z,y) y -
z,Y) = |-, | -
g Y x2_~_y2 x2+y2

Then g is irrotational but not conservative. Indeed,

o Yy B $27y2
dy <_a?2+y2> B _(x2+y2)2
0 T z? —y?
oz (m2+y2) T @)

but, taking the oriented curve v parametrized by ¢(t) = (cost,sint), t € [0, 27],
we get

/ g= / g (cost,sint) - (—sint,cost) dt
-y 0

27
I sint cost

:/ ( >~(—sint,cost)dt:27r7é0.
0

 cos?t +sin?t’ cos?t + sin’t

Hence, by Theorem 168(iii), g cannot be conservative.

The problem here is the fact that the domain has a hole.
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Definition 173 A set E C RY is starshaped with respect to a point ¢y € RN
if for every © € E, the segment joining € and xg is contained in E.

Theorem 174 (Poincaré’s Lemma) Let U C RY be an open set starshaped
with respect to a point xq and let g : U — RN be an irrotational vector field of
class C1. Then g is a conservative vector field.

f () /g

where « is the curve given by the parametric representation ¢ : [0,1] — RY is
defined by

Proof. For every € U define

p(t) :==zo +t(x— x).

Note that
1 N

f(z) = / S g5 (o + t (% — 20) (5 — o) .

j=1

Since g is of class C! we can differentiate under the integral sign to get

0 L9
63{1’ (m):/o 0x; ;gj (o +t (@ — m0)) (xj — woy) | dt

N

:/OZ

Nt (x; —xo5) + gi (o +t (T —x0)) 1 | dt

1 N

09,

:/ 89 (0 + ¢ (2 — 20)) t (a; — o) + gs (o +t(z — z0)) 1 | dt,
0 1 9%

where we have used the fact that g is an irrotational vector field. Define

h(t) == tgi (zo +t(z — o)) -

By the chain rule,

9gi
Zaz $0+t.’B*.’Bo))t(l’j71’0j)+gi($0+t($7m0>).
J

Hence, by the fundamental theorem of calculus,

o (@)= [ WO@=na) o) =19, -,

which completes the proof. m

92



Definition 175 Given a set E CRY, z, y € E, and two continuous oriented
curves vy, and vy with range in E and parametric representations ¢, : [a,b] —
RY and @, : [a,b] — RY, respectively, such that ¢(a) = @y(a) = = and
p1(b) = po(b) = y, we say that v, and ~, are path homotopic in E if there
exists a continuous function h : [0,1] X [a,b] — RN such that h ([0,1] x [a,b]) C
E’

h(0,t) = @q(t) for allt € [a,b], h(l,t) = y(t) for allt € [a,b],
h(s,a) =z, h(s,b) =y for all s € [0,1].

The function h is called a path-homotopy in E or fixed endpoint homotopy
between the two curves.

Roughly speaking, two curves are path homotopic in E if it is possible to

deform the first continuously until it becomes the second without leaving the set
E.

Definition 176 Given a set E CRY and x € E, a continuous oriented closed
curve v, with range in E and parametric representation ¢y : [a,b] — RY such
that p1(a) = ¢1(b) = x, we say that v, is null homotopic in E if it is path ho-
motopic in E to the continuous oriented curves vy, parametrized by the constant
function p,(t) := x.

Definition 177 A set E C RY is simply connected if it is pathwise connected
and if every continuous closed curve with range in E is null homotopic in E.

Example 178 A star-shaped set is simply connected. Indeed, let E C RN be
star-shaped with respect to some point xg € E and consider a continuous closed
curve v with parametric representation ¢ : [a,b] — RN such that ¢ ([a,b]) C E.
Then the function

h(s,t) :=sp(t)+ (1 —s) o

18 an homotopy between ~ and the point xg.

Theorem 179 Let U C R be an open set, let v, and v be two oriented closed
Lipschitz continuous curves which are path homotopic in U and let g : U — RN
be of class C' and irrotational. Then

Lo=te
Y1 Y2

In particular, if U is simply connected, then

fo=
A

for every Lipschitz continuous closed oriented curve vy with range in U.
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