
Monday, December 5, 2022

1 Conservative and Irrotational Vector Fields

Definition 1 Given two intervals I, J ⊆ R, and two functions ϕ : I → RN and
ψ : J → RN of class Ck, k ∈ N0, we say that they are equivalent if there exists
a bijective function h : I → J with h and h−1 of class Ck such that

ϕ (t) = ψ (h (t))

for all t ∈ I. We write ϕ ∼ ψ and we call ϕ and ψ parametric representations
of class Ck and the function h a parameter change of class Ck. A curve γ of
class Ck is an equivalence class of parametric representations of class Ck, that
is, [ϕ] := {ψ : ψ ∼ f}. The set Σ = ϕ (I) is called the range of the curve.

Definition 2 A curve γ of class Ck is closed if it has a parametric represen-
tation ϕ : [a, b]→ RN with ϕ(a) = ϕ(b).

Similarly we can define C∞ curves, Lipschitz curves, analytic curves, and so
on.

Remark 3 Note that given a curve γ of class Ck with parametric representation
ϕ : I → RN , the function ϕ : I → RN is not in general a local chart for a one-
dimensional manifold, since we are not assuming that ϕ is injective or that
ϕ′(t) 6= 0 for every t ∈ I. In particular, a curve could self intersects but a
one-dimensional manifold cannot.

Next we introduce the notion of an oriented curve.

Definition 4 Given a curve γ in RN of class Ck, k ∈ N0, with parametric
representations ϕ : I → RN and ψ : J → RN , we say that ϕ and ψ have the
same orientation if the parameter change h : I → J is increasing and opposite
orientation if the parameter change h : I → J is decreasing. If ϕ and ψ have
the same orientation, we write ϕ ∗∼ ψ.

Exercise 5 Prove that ∗∼ is an equivalence relation.

Definition 6 An oriented curve γ in RN of class Ck, k ∈ N0, is an equivalence
class of parametric representations with the same orientation.

Note that any curve γ in RN gives rise to two oriented curves. Indeed, it
is enough to fix a parametric representation ϕ : I → RN and considering the
equivalence class γ+ of parametric representations with the same orientation of
ϕ and the equivalence class γ− of parametric representations with the opposite
orientation of ϕ.
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Definition 7 Given a Lipschitz continuous oriented curve γ in RN and a func-
tion g : E → RN , where E contains the range of γ, we define the curve (or
line) integral of g along the curve γ as the number∫

γ

g :=

∫
I

g (ϕ(t)) ·ϕ′(t) dt.

provided the function t ∈ I 7→ g (ϕ(t)) · ϕ′(t) is Lebesgue integrable for every
parametric representation ϕ : I → RN of γ and the value of the integral does
not change with the representation.

Exercise 8 Let γ be an oriented Lipschitz continuous curve in RN with para-
metric representations ϕ : [a, b]→ RN and ψ : [c, d]→ RN . Given a continuous
function g : E → RN , where E contains the range of γ, prove that∫ b

a

g (ϕ(t)) ·ϕ′(t) dt =

∫ d

c

g (ψ (τ)) ·ψ′ (τ) dτ.

Proposition 9 Let γ be an oriented Lipschitz continuous curve and f , g : E →
RN , where E contains the range of γ. Then

(i) if
∫
γ
f and

∫
γ
g are well defined, then for all a, b ∈ R,∫

γ

(af + bg) = a

∫
γ

f + b

∫
γ

g,

(ii) If
∫
γ
f is well defined and ϕ : I → RN is a parametric representation of

γ, then

∣∣∣∣∫
γ

f

∣∣∣∣ ≤ VarI ϕ supΣ ‖f‖, where Σ is the range of γ,

(iii) If
∫
γ
f is well defined, ϕ : I → RN is a parametric representation of γ, c ∈

I◦, and γ1 and γ2 are the oriented curves of parametric representations
ϕ1 : I ∩ (−∞, c]→ RN and ϕ2 : I ∩ [c,∞)→ RN , then∫

γ

f =

∫
γ1

f +

∫
γ2

f .

Definition 10 Let U ⊆ RN be an open set and let g : U → RN . We say that
g is conservative vector field if there exists a differentiable function f : U → R
such that

∇f (x) = g (x)

for all x ∈ U . The function f is called a scalar potential for g.

Wednesday, December 7, 2022
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Theorem 11 (Fundamental Theorem of Calculus for Curves) Let U ⊆
RN be an open set, let f ∈ C1 (U), let x, y ∈ U and let γ a Lipschitz oriented
curve with parametric representation ϕ : [a, b] → RN such that ϕ (b) = x,
ϕ (a) = y, and ϕ ([a, b]) ⊂ U . Then∫

γ

∇f = f (x)− f (y) .

Proof. Define p(t) := f (ϕ(t)) and observe that p is Lipschitz with

p′(t) =

N∑
i=1

∂f

∂xi
(ϕ(t))ϕ′i(t)

for L1 a.e. t ∈ [a, b]. Hence,∫
γ

∇f =

∫ b

a

N∑
i=1

∂f

∂xi
(ϕ(t))ϕ′i(t) dt =

∫ b

a

p′(t) dt = p (b)− p (a) = f (x)− f (y) ,

where we have used the fundamental theorem of calculus for Lebesgue integral.

The previous theorem shows that if a conservative vector field is continuous,
then its integral along a curve joining two points depends only on the value at
the two points and not on the particular curve. If U is pathwise connected, then
this condition turns out to be equivalent to the vector field being conservative.

Definition 12 A set E ⊆ RN is pathwise connected if for every x,y ∈ E there
exists a continuous curve with range in E joining x with y, that is, γ = [ϕ],
and ϕ : [a, b]→ RN is such that ϕ (b) = x, ϕ (a) = y.

Exercise 13 Prove that if U ⊆ RN is open and pathwise connected, then for
every x,y ∈ E there exists a polygonal path with range in U joining x with y.

Theorem 14 Let U ⊆ RN be an open pathwise connected set and let g : U →
RN be a continuous function. Then the following conditions are equivalent.

(i) g is a conservative vector field,

(ii) for every x, y ∈ U and for every two Lipschitz oriented curves γ1 and γ2

with parametric representations ϕ1 : [a, b] → RN and ϕ2 : [c, d] → RN ,
respectively, such that ϕ1 (b) = ϕ2 (d) = x, ϕ1 (a) = ϕ2 (c) = y, and
ϕ1 ([a, b]) ,ϕ2 ([c, d]) ⊂ U , ∫

γ1

g =

∫
γ2

g.

(iii) for every Lipschitz closed oriented curve γ with range contained in U ,∫
γ

g = 0.
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Proof. We prove that (i) implies (ii). Assume that g is a conservative vector
field with scalar potential f : U → R, let x, y ∈ U and let ϕ1 : [a, b]→ RN and
ϕ2 : [c, d]→ RN be as in (ii). Then by the previous theorem∫

γ1

g =

∫
γ1

∇f = f (x)− f (y) =

∫
γ2

∇f =

∫
γ2

g.

Conversely assume that (ii) holds. We need to find a scalar potential for g. Fix
a point x0 ∈ U and for every x ∈ U define

f (x) :=

∫
γ

g,

where γ a Lipschitz continuous oriented curve with parametric representation
ϕ : [a, b] → RN such that ϕ (b) = x, ϕ (a) = x0, and ϕ ([a, b]) ⊂ U . We claim
that there exist

∂f

∂xi
(x) = gi (x) .

Since U is open and x ∈ U , there exists B (x, r) ⊆ U . Fix |h| < r, then the
segment joining the point x + hei with x is contained in B (x, r). Define the
curve ψ : [a, b+ 1]→ RN as follows

ψ(t) :=

{
ϕ(t) if t ∈ [a, b] ,
x+ (t− b)hei if t ∈ [b, b+ 1] .

Using (ii), we have that

f (x+ hei) =

∫
ψ

g = f (x) +

∫ b+1

b

N∑
j=1

gj (x+ (t− b)hei)hδij dt

= f (x) +

∫ b+1

b

gi (x+ (t− b)hei)h dt =

= f (x) +

∫ h

0

gi (x+ sei) ds,

where in the last equality we have used the change of variable s = (t− b)h. It
follows by the mean value theorem that

f (x+ hei)− f (x)

h
=

1

h

∫ h

0

gi (x+ sei) ds = gi (x+ shei) ,

where sh is between 0 and h. As h→ 0, we have that sh → 0 and so x+shei →
x. Using the continuity of gi, we have that there exists

lim
h→0

f (x+ hei)− f (x)

h
= lim
h→0

gi (x+ shei) = gi (x) ,

which proves the claim.
The equivalence between (ii) and (iii) is left as an exercise.
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Remark 15 The previous theorem is used to prove that a vector field is not
conservative. Indeed, if U ⊆ RN is an open pathwise connected set and g : U →
RN is a continuous function, if you can construct a Lipschitz closed oriented
curve γ with range contained in U such that∫

γ

g 6= 0,

then g cannot be conservative.

Given a curve γ in RN of class Ck, k ∈ N0, with parametric representation
ϕ : I → RN , where I ⊆ R is a proper interval, the multiplicity of a point
x ∈ RN is the (possibly infinite) number of points t ∈ I such that ϕ (t) = x.
Since every parameter change h : I → J is bijective, the multiplicity of a point
does not depend on the particular parametric representation. The range of γ
is the set of points of RN with positive multiplicity, that is, ϕ (I). If one of the
endpoints of I belongs to I, its image through ϕ is called an endpoint of the
curve.
A point in the range of γ with multiplicity one is called a simple point. If

every point of the range is simple, then γ is called a simple arc. A closed curve
is called simple if every point of the range of γ is simple, with the exception of
ϕ (a), which has multiplicity two.

Remark 16 Note that in view of Exercise 13, we can replace item (iii) with
the weaker requirement that ∫

γ

g = 0

for every simple closed polygonal path γ with range contained in U , where ϕ :
[a, b]→ RN with ϕ(a) = ϕ(b)

Friday, December 9, 2022
Next we give a simple necessary condition for a field g to be conservative.

Definition 17 Let U ⊆ RN be an open set and let g : U → RN be differentiable.
We say that g is an irrotational vector field or a curl-free vector field if

∂gi
∂xj

(x) =
∂gj
∂xi

(x)

for all i, j = 1, . . . , N and all x ∈ U .

Theorem 18 Let U ⊆ RN be an open set and let g : U → RN be a conservative
vector field of class C1. Then g is irrotational.

Proof. Since g is a conservative vector field, there exists a a scalar potential
f : U → R with ∇f = g in U . But since g is of class C1, we have that f is of
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class C2. Hence, we are in a position to apply the Schwartz theorem to conclude
that

∂gi
∂xj

(x) =
∂2f

∂xj∂xi
(x) =

∂2f

∂xi∂xj
(x) =

∂gj
∂xi

(x)

for all i, j = 1, . . . , N and all x ∈ U .
The next example shows that there exist irrotational vector fields that are

not conservative.

Example 19 Let U := R2 \ {(0, 0)} and consider the function

g (x, y) :=

(
− y

x2 + y2
,

x

x2 + y2

)
.

Then g is irrotational but not conservative. Indeed,

∂

∂y

(
− y

x2 + y2

)
= − x2 − y2

(x2 + y2)
2

∂

∂x

(
x

x2 + y2

)
= − x2 − y2

(x2 + y2)
2

but, taking the oriented curve γ parametrized by ϕ(t) = (cos t, sin t), t ∈ [0, 2π],
we get∫

γ

g =

∫ 2π

0

g (cos t, sin t) · (− sin t, cos t) dt

=

∫ 2π

0

(
− sin t

cos2 t+ sin2 t
,

cos t

cos2 t+ sin2 t

)
· (− sin t, cos t) dt = 2π 6= 0.

Hence, by Theorem 14(iii), g cannot be conservative.

The problem here is the fact that the domain has a hole.

Definition 20 A set E ⊆ RN is starshaped with respect to a point x0 ∈ RN if
for every x ∈ E, the segment joining x and x0 is contained in E.

Theorem 21 (Poincaré’s Lemma) Let U ⊆ RN be an open set starshaped
with respect to a point x0 and let g : U → RN be an irrotational vector field of
class C1. Then g is a conservative vector field.

Proof. For every x ∈ U define

f (x) :=

∫
γ

g,

where γ is the curve given by the parametric representation ϕ : [0, 1] → RN is
defined by

ϕ(t) := x0 + t (x− x0) .
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Note that

f (x) =

∫ 1

0

N∑
j=1

gj (x0 + t (x− x0)) (xj − x0j) dt.

Since g is of class C1 we can differentiate under the integral sign to get

∂f

∂xi
(x) =

∫ 1

0

∂

∂xi

 N∑
j=1

gj (x0 + t (x− x0)) (xj − x0j)

 dt

=

∫ 1

0

 N∑
j=1

∂gj
∂xi

(x0 + t (x− x0)) t (xj − x0j) + gi (x0 + t (x− x0)) 1

 dt

=

∫ 1

0

 N∑
j=1

∂gi
∂xj

(x0 + t (x− x0)) t (xj − x0j) + gi (x0 + t (x− x0)) 1

 dt,

where we have used the fact that g is an irrotational vector field. Define

h(t) := tgi (x0 + t (x− x0)) .

By the chain rule,

h′(t) =

N∑
j=1

∂gi
∂xj

(x0 + t (x− x0)) t (xj − x0j) + gi (x0 + t (x− x0)) .

Hence, by the fundamental theorem of calculus,

∂f

∂xi
(x) =

∫ 1

0

h′(t) dt = h (1)− h (0) = 1gi (x)− 0,

which completes the proof.

Definition 22 Given a set E ⊆ RN , x, y ∈ E, and two continuous oriented
curves γ1 and γ2 with range in E and parametric representations ϕ1 : [a, b]→
RN and ϕ2 : [a, b] → RN , respectively, such that ϕ1(a) = ϕ2(a) = x and
ϕ1(b) = ϕ2(b) = y, we say that γ1 and γ2 are path homotopic in E if there
exists a continuous function h : [0, 1]× [a, b]→ RN such that h ([0, 1]× [a, b]) ⊆
E,

h (0, t) = ϕ1(t) for all t ∈ [a, b] , h (1, t) = ϕ2(t) for all t ∈ [a, b] ,

h (s, a) = x, h (s, b) = y for all s ∈ [0, 1] .

The function h is called a path-homotopy in E or fixed endpoint homotopy
between the two curves.

Roughly speaking, two curves are path homotopic in E if it is possible to
deform the first continuously until it becomes the second without leaving the set
E.
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Definition 23 Given a set E ⊆ RN and x ∈ E, a continuous oriented closed
curve γ1 with range in E and parametric representation ϕ1 : [a, b] → RN such
that ϕ1(a) = ϕ1(b) = x, we say that γ1 is null homotopic in E if it is path ho-
motopic in E to the continuous oriented curves γ2 parametrized by the constant
function ϕ2(t) := x.

Definition 24 A set E ⊆ RN is simply connected if it is pathwise connected
and if every continuous closed curve with range in E is null homotopic in E.

Example 25 A star-shaped set is simply connected. Indeed, let E ⊆ RN be
star-shaped with respect to some point x0 ∈ E and consider a continuous closed
curve γ with parametric representation ϕ : [a, b]→ RN such that ϕ ([a, b]) ⊆ E.
Then the function

h (s, t) := sϕ(t) + (1− s)x0

is an homotopy between γ and the point x0.

Theorem 26 Let U ⊆ RN be an open set, let γ1 and γ2 be two oriented closed
Lipschitz continuous curves which are path homotopic in U and let g : U → RN
be of class C1 and irrotational. Then∫

γ1

g =

∫
γ2

g.

In particular, if U is simply connected, then∫
γ

g = 0

for every Lipschitz continuous closed oriented curve γ with range in U .

Wednesday, January 18, 2023
In what follows, given the unit square Q = [0, 1] × [0, 1], we consider the

oriented closed simple curve obtained by moving along ∂Q counterclockwise
starting from (0, 0). Denote by ϕ0 : [0, 4] → ∂Q the parametric representation
obtained by using arclength.

Theorem 27 Let U ⊆ RN be an open set, let h : Q → U be Lipschitz con-
tinuous, let γ be the Lipschitz continuous oriented closed curve parametrized by
h ◦ϕ0 : [0, 4]→ U , and let g : U → RN be of class C1 and irrotational. Then∫

γ

g = 0.

Proof. Assume by contradiction that∫
γ

g = c 6= 0.
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By replacing g with g/c, without loss of generality, we may assume that c = 1.
Divide Q into four squares Q1,1, Q1,2, Q1,3, Q1,4 of side-length 1

2 and para-
metrize their boundaries as we did for ∂Q. Let ϕ1,1, ϕ1,2, ϕ1,3, ϕ1,4 be the
corresponding parametric representations and let γ1,1, γ1,2, γ1,3, γ1,4 be the
oriented closed curve parametrized by h ◦ ϕ1,k : [0, 4/21] → U , k = 1, . . . , 4,
respectively. Since integrals over opposite curves cancel out, we have that

1 =

∫
γ1,1

g +

∫
γ1,2

g +

∫
γ1,3

g +

∫
γ1,4

g

and thus there exists k1 ∈ {1, . . . , 4} such that∣∣∣∣∣
∫
γ1,k

g

∣∣∣∣∣ ≥ 1

4
.

Let Q1 := Q1,k1 and γ1 := γ1,k1
. We now divide Q1 into four squares Q2,1,

Q2,2, Q2,3, Q2,4 of side-length 1
16 . Proceeding as before we find k2 ∈ {1, . . . , 4}

such that ∣∣∣∣∣
∫
γ2,k2

g

∣∣∣∣∣ ≥ 1

16
.

Inductively we obtain a decreasing sequence of closed squares Qn of side-length
1

2n such that ∣∣∣∣∣
∫
γn

g

∣∣∣∣∣ ≥ 1

4n
. (1)

where γn is the oriented closed curve parametrized by h ◦ϕn : [0, 4
2n ]→ U and

ϕn : [0, 4
2n ] → ∂Qn. By Cantor’s theorem there exists (r0, t0) ∈ Qn for all n.

Let x0 = h((r0, t0)). Since g is differentiable, we can write

g(x) = g(x0) + Jg(x0)(x− x0) +R(x),

where

lim
x→x0

R(x)

‖x− x0‖
= 0. (2)

Since g is irrotational, the Jacobian matrix Jg(x0) is symmetric. Hence, the
affi ne function g(x0) + Jg(x0)(x − x0) is conservative, since a scalar potential
is given by

f(x) = g(x0) · x+
1

2
(Jg(x0)(x− x0))T · (x− x0).

It follows by the fundamental theorem of calculus,∫
γn

g =

∫
γn

∇f +

∫
γn

R = 0 +

∫
γn

R.
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Let Γn be the range of γn. If x ∈ Γn = h(ϕn([0, 4
2n ])), we can find (r, t) ∈ ∂Qn

such that x = h(r, t). Hence, if L > 0 is the Lipschitz constant of h, we have
that

‖x−x0‖ = ‖h(r, t)−h(r0, t0)‖ ≤ L
√

(r − r0)2 + (t− t0)2 ≤ LdiamQn = L

√
2

2n
.

In turn, by (2),

‖R(x)‖ = o (‖x− x0‖) = o

(
1

2n

)
,

where εn → 0+. Hence,∣∣∣∣∣
∫
γn

g

∣∣∣∣∣ =

∣∣∣∣∣
∫
γn

R

∣∣∣∣∣ =

∣∣∣∣∣
∫ 4

2n

0

R((h ◦ϕn)(s)) · (h ◦ϕn)′(s) ds

∣∣∣∣∣
≤
∫ 4

2n

0

‖R((h ◦ϕn)(s))‖‖(h ◦ϕn)′(s)‖ ds

≤ o
(

1

2n

)∫ 4
2n

0

‖(h ◦ϕn)′(s)‖ ds

≤ o
(

1

2n

)
L

∫ 4
2n

0

‖ϕ′n(s)‖ ds = o

(
1

2n

)
L

∫ 4
2n

0

1 ds = o

(
1

2n

)
4L

2n
.

Using (2) we get
1

4n
≤
∣∣∣∣∣
∫
γn

g

∣∣∣∣∣ ≤ o
(

1

4n

)
as n→∞, which is a contradiction.

Friday, January 20, 2023
Next we consider the case in which h is only continuous.

Theorem 28 Let U ⊆ RN be an open set, let h : Q → U be continuous, let
γ be the oriented closed curve parametrized by h ◦ ϕ0 : [0, 4] → U , and let
g : U → RN be of class C1 and irrotational. If h ◦ ϕ0 : [0, 4] → U is Lipschitz
continuous, then ∫

γ

g = 0.

Proof. Subdivide Q into small subsquares of side-length 1
n , define hn = h at

the vertex of each subsquare and interpolate linearly in each subsquare. The
corresponding function hn will be Lipschitz continuous. Homework.

Corollary 29 Let U ⊆ RN be an open set, let h : Q → U be continuous and
such that h(s, 0) = h(s, 1) for all s ∈ [0, 1], let γ be the oriented closed curve
parametrized by h ◦ ϕ0 : [0, 4] → U , and let g : U → RN be of class C1 and
irrotational. Assume that the curves γ1 and γ2 parametrized by h◦ϕ0 : [1, 2]→
U and h ◦ϕ0 : [3, 4]→ U are Lipschitz continuous, then∫

γ1

g +

∫
γ2

g = 0.
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Proof. Since h(s, 0) = h(s, 1) for all s ∈ [0, 1], by your homework we will have
hn(s, 0) = hn(s, 1) for all s ∈ [0, 1]. Hence, the Lipschitz curves parametrized
by h ◦ ϕ0 : [0, 1]→ U and h ◦ ϕ0 : [2, 3]→ U are one the opposite of the other
and so their corresponding integrals will cancel each other. In turn,∫

γ1,n

g +

∫
γ2,n

g = 0.

Letting n→∞ will give the desired result.
We turn to the proof of Theorem 26

Proof of Theorem 26. Let ϕ1 : [0, 1] → U and ϕ2 : [0, 1] → U be para-
metric representations of γ1 and γ2, respectively, and let h : [0, 1] × [0, 1]
be a corresponding homotopy. Then h ◦ ϕ0 is composed of four curves: first
s ∈ [0, 1]→ h(s, 0) followed by γ1, then the opposite of s ∈ [0, 1]→ h(s, 1) and
finally the opposite of γ2. Since the first and the third of these four curves are
the opposite to each other, the corresponding integrals will cancel out. Hence,
in view of Corollary 29, ∫

γ1

g +

∫
−γ2

g = 0.

Part I

Fixed Point Theorems and
Applications
2 Brouwer’s Fixed Point Theorem

Theorem 30 (Brouwer’s fixed point theorem) Let K ⊂ RN be a non-
empty compact convex set and let g : K → K be a continuous function. Then
there exists x ∈ K such that g (x) = x.

We begin with a preliminary lemma.

Lemma 31 There is no function f : B(0, 1)→ ∂B(0, 1) such that f(x) = x for
all x ∈ ∂B(0, 1) and which is continuous together with all its partial derivatives.

Proof. Assume by contradiction that f exists and for t ∈ [0, 1] define

f t(x) := tf(x) + (1− t)x.

Then for every x ∈ B(0, 1),

‖f t(x)‖ ≤ t‖f(x)‖+ (1− t)‖x‖ ≤ 1,
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thus f t : B(0, 1)→ B(0, 1). Moreover, f t(x) = x for every x ∈ ∂B(0, 1).
Monday, January 23, 2023

Proof. Define h(x) := f(x)−x. Since the derivatives of h are bounded, by the
mean value theorem applied to each component, we obtain that h is Lipschitz
continuous with Lipschitz constant L ≥ 1. We claim that f t is injective for every
0 < t < 1/L. Indeed, assume by contradiction that there exist x1, x2 ∈ B(0, 1)
such that f t(x1) = f t(x2) and x1 6= x2. Since f t(x) = x + th(x) it follows
that

‖x2 − x1‖ = ‖t(h(x2)− h(x1))‖ ≤ tL‖x2 − x1‖ < ‖x2 − x1‖,

which is a contradiction. Hence, the claim holds.
Since Df t = IN + tDh and Dh is bounded in B(0, 1), by taking t0 smaller,

if necessary, we can assume that detDf t(x) > 0 for all x ∈ B(0, 1). To see
this, note that the function

ξ ∈ RN×N 7→ det ξ

is continuous and so, taking ε = 1
2 > 0 we can find 0 < δ < 1 such that

|det ξ − det IN | ≤
1

2

for all ξ ∈ RN×N , with ‖ξ − IN‖N×N < δ. Then ‖Df t(x) − IN‖N×N =
|t|‖Dh(x)‖N×N ≤ |t|L < δ, for |t| < δ/L.
Since detDf t(x) > 0 for all x ∈ B(0, 1) and all 0 ≤ t < δ/L =: t0. It

follows by the inverse function theorem that the set Ut := f t(B(0, 1)) is open
for all 0 < t < t0.
We claim that Ut = B(0, 1) for every 0 < t < t0. Indeed, assume that this is

not the case. Since Ut ⊆ B(0, 1) by what we proved above, then ∂Ut ⊆ B(0, 1),
and so if Ut 6= B(0, 1), then there must exist y0 ∈ ∂Ut such that y0 ∈ B(0, 1).
Let yn ∈ Ut be such that yn → y0 and find xn ∈ B(0, 1) such that yn = f t(xn).
By compactness, up to a subsequence, we may assume that xn → x0 ∈ B(0, 1)
with f t(x0) = y0, by the continuity of f t. Note that x0 cannot belong to B(0, 1)
as otherwise y0 = f t(x0) would belong to f t(B(0, 1)) = Ut, so, necessarily
x0 ∈ ∂B(0, 1). But then f t(x0) = x0 and so x0 = y0, which is again a
contradiction since y0 ∈ B(0, 1). This proves that Ut = B(0, 1) for every
0 < t < t0.
For t ∈ [0, 1] define the function

g(t) :=

∫
B(0,1)

detDf t(x) dx =

∫
B(0,1)

det(IN + tDh(x)) dx.

Since for every 0 < t < t0 the function f t : B(0, 1) → B(0, 1) is a bijection
and det Jft > 0, it follows by the theorem on change of variables that g(t) =
meas(B(0, 1)) for all 0 < t < t0. Since g is a polynomial of degree N , we have
that g(t) = meas(B(0, 1)) for all 0 ≤ t ≤ 1. In particular,

0 < meas(B(0, 1)) = g(1) =

∫
B(0,1)

detDf(x) dx. (3)
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On the other hand, since by hypothesis ‖f(x)‖2 = f(x) · f(x) = 1 for every
x ∈ B(0, 1), if x ∈ B(0, 1) and v ∈ RN , then by replacing x with x + sv
differentiating with respect to s we get

(Df(x)v) · f(x) = 0,

which shows that the range of Df(x) is orthogonal to the vector f(x). In turn,
Df(x) has rank less than or equal to N − 1 and so detDf(x) = 0, which
contradicts (3). This concludes the proof.

Wednesday, January 25, 2023

Remark 32 The previous lemma continues to hold for any ball. There is no
function f : B(0, r) → ∂B(0, r) such that f(x) = x for all x ∈ ∂B(0, r) and
which is continuous together with all its partial derivatives. Just consider the
function fr(x) := f(rx), x ∈ B(0, 1).

Lemma 33 There is no continuous function f : B(0, 1) → ∂B(0, 1) such that
f(x) = x for all x ∈ ∂B(0, 1).

Proof. Assume that f exists. Extend f to be the identity outside B (0, 1).
Then f is continuous. Define g(x) := f(x) − x and consider the mollification
gε of g. Since g(x) = 0 for all x outside B (0, 1), we have that gε(x) = 0 for
all x outside B (0, 1 + ε). Moreover, gε → g uniformly on compact sets. Take
ε = 1

n and define fn(x) := g1/n(x) + x. Then fn is in C
∞ (RN ;RN

)
, fn is

the identity outside B
(
0, 1 + 1

n

)
and fn → f uniformly in RN . Hence, for all

n large,

sup
x∈RN

‖fn(x)− f(x)‖ < 1

2

Since ‖f(x)‖ ≥ 1 for all x ∈ B
(
0, 1 + 1

n

)
, it follows that

‖fn(x)‖ ≥ ‖f(x)‖ − ‖fn(x)− f(x)‖ ≥ 1− 1

2
.

Define

hn(x) := (1 +
1

n
)
fn(x)

‖fn(x)‖ .

Then hn is C∞, ‖hn(x)‖ = 1 + 1
n for all x ∈ B

(
0, 1 + 1

n

)
, and if ‖x‖ = 1 + 1

n ,
then

hn(x) = (1 +
1

n
)
x

‖x‖ = x.

This is a contradiction in view of the previous lemma.
We now turn to the proof of Brouwer’s fixed point theorem.

Proof of Theorem ??. Step 1: Assume first that K = B(0, 1) and that
f : B(0, 1)→ B(0, 1) is continuous. We claim that f has a fixed point. Indeed,
if not then f(x) 6= x for all x ∈ B(0, 1). For each x ∈ B(0, 1) let g(x) be the

13



point where the ray from f(x) to x meets ∂B(0, 1). To be precise, we consider
the ray

f(x) + s(x− f(x)), s ≥ 0,

through f(x) in the direction x− f(x) 6= 0 and then find s ≥ 0 such that

1 = ‖f(x) + s(x− f(x))‖2

= s2‖x− f(x)‖2 + 2sf(x) · (x− f(x)) + ‖f(x)‖2.

Note if we let s ∈ R then the previous equation must have two distinct roots
since the line intersects the boundary of the ball in two distinct points. Hence,
the discriminant of the quadratic equation must be strictly positive. Solving for
s we find

s(x) :=
−f(x) · (x− f(x))

‖x− f(x)‖2

+

√
(f(x) · (x− f(x)))2 + ‖x− f(x)‖2(1− ‖f(x)‖2)

‖x− f(x)‖2 .

Since the discriminant is strictly positive the function s is continuous and s(x) =
1 if ‖x‖ = 1. Hence, the function g : B(0, 1)→ ∂B(0, 1), defined by

g(x) := f(x) + s(x)(x− f(x)),

is continuous and is the identity on the unit sphere since s(x) = 1 if ‖x‖ = 1.
This contradicts the previous lemma.
Step 2: Let K = B(0, R) for some R > 0 and let f : B(0, R) → B(0, R) be
a continuous transformation. To obtain a fixed point, it suffi ces to apply the
previous step to the rescaled function fR(x) := R−1f(Rx), x ∈ B(0, 1).
Step 3: Let K ⊂ RN be a nonempty compact convex set and let f : K → K
be a continuous transformation. Find R > 0 such that K ⊆ B(0, R) and for
each x ∈ B(0, R) consider the continuous transformation h(x) := f(Π(x)),
x ∈ B(0, R), where Π : RN → K is the projection onto the convex set K.
Note that h(K) ⊆ K ⊆ B(0, R), and so by the continuity of Π we have that
h : B(0, R) → B(0, R) is continuous. By the previous step there exists x ∈
B(0, R) such that x = h(x) = f(Π(x)). On the other hand, since h(K) ⊆ K,
we have that x ∈ K, and so Π(x) = x. Thus, the previous identity reduces to
x = f(x) and the proof is completed.

Remark 34 If a set K ⊂ RN is homeomorphic to a closed ball, then a contin-
uous function f : K → K has a fixed point. To see this, let g : K → B(0, 1)
be a homeomorphism. Then the function g ◦ f ◦ g−1 : B(0, 1) → B(0, 1) has a
fixed point x ∈ B(0, 1), so that,

g(f(g−1(x))) = x.

By applying g−1 to both sides we get that y := g−1(x) ∈ K is a fixed point for
f .

14



We present some examples that show the importance of the hypotheses in
the Brouwer fixed point theorem.

Example 35 In R2 consider the annulus

K := {x ∈ R2 : ε ≤ ‖x‖ ≤ 1}.

This set is compact, path-connected, but not convex. Consider the function given
in polar coordinates by

f(r, θ) = (r, θ + π), r ∈ [ε, 1], θ ∈ [0, 2π].

It is continuous, maps K into itself but has no fixed point.

Example 36 If E = [0, 1) then f(x) = (x+ 1)/2 has no fixed point. The set E
is bounded, convex, but not closed.

Example 37 If E = R then f(x) = x + 1 has no fixed points. The set E is
closed, convex, but not bounded.

In the proof of the Brouwer fixed point theorem we used the following result.

Theorem 38 Let C ⊆ RN be a nonempty closed convex set. Then for every
x ∈ RN there exists a unique point Π (x) ∈ C such that

‖x−Π (x) ‖ ≤ ‖x− y‖ for all y ∈ C. (4)

Moreover, the mapping Π : RN → C is Lipschitz continuous with Lipschitz
constant less than or equal one, that is

‖Π (x1)−Π (x2) ‖ ≤ ‖x1 − x2‖

for all x1, x2 ∈ RN .

Proof. Fix x0 ∈ RN . For r > 0 suffi ciently large, the set B (x0, r) ∩ C is
compact and nonempty. Hence the continuous function

x ∈ RN 7→ ‖x0 − x‖

attains a minimum on this set, say at y0 ∈ B (x0, r) ∩ C. Hence

‖x0 − y0‖ ≤ ‖x0 − x‖ for all x ∈ B (x0, r) ∩ C.

If x ∈ C \B (x0, r), then ‖x0−x‖ > r ≥ ‖x0−y0‖, and so we have shown (4).
The remaining of the proof will be in your homework.

Friday, January 27, 2023
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3 Application I of BrFTT: Invariance of Domain

Theorem 39 Let U ⊆ RN be open and let f : U → RN be continuous and
injective. Then f(U) is open.

Lemma 40 Let f : B(x0, r) → RN be continuous and injective. Then f(x0)
belongs to the interior of f(B(x0, r)).

Proof. By replacing f with f1(x) := f(rx+x0), without loss of generality we
may assume that x0 = 0 and r = 1.
Since f is continuous and B(0, 1) is compact, f−1 : f(B(0, r))→ B(0, 1) is

continuous. By your homework, there exists a continuous function g : RN → RN
which extends f−1. Note that g(f(0)) = 0. We begin by showing a stability
result.
Step 1: Let h : f(B(0, 1))→ RN be a continuous function such that

‖g(y)− h(y)‖ ≤ 1

for all y ∈ f(B(0, 1)). We claim that there exists y ∈ f(B(0, 1)) such that
h(y) = 0. To see this, we apply Brouwer’s fixed point theorem to the function

F (x) := x− h(f(x)) = g(f(x))− h(f(x)), x ∈ B(0, 1).

Note that F maps B(0, 1) into B(0, 1) since

‖F (x)‖ = ‖g(f(x))− h(f(x))‖ ≤ 1 for all x ∈ B(0, 1).

It follows that there is x1 ∈ B(0, 1) such that x1 = F (x1) = x1−h(f(x1)) and
so h(f(x1)) = 0.
Step 2: Assume by contradiction that f(0) does not belong to the interior

of f(B(0, 1)). We are going to construct a perturbation h of g which has no
zeros, thus contradicting Step 1. Since g(f(0)) = 0, by continuity we can find
δ > 0 such that

‖g(y)− 0‖ = ‖g(y)− g(f(0))‖ ≤ 1

10

for all y ∈ RN with ‖y − f(0)‖ ≤ 2δ. Since f(0) is not an interior point of
f(B(0, 1)), there exists c ∈ RN with ‖f(0)−c‖ < δ such that c does not belong
to f(B(0, 1)). Note that

‖g(y)‖ ≤ 1

10
(5)

for all y ∈ RN with ‖y−c‖ ≤ δ (since ‖y−f(0)‖ ≤ ‖y−c‖+‖f(0)−c‖ < 2δ).
Consider the set K := K1 ∪K2, where

K1 := {y ∈ f(B(0, 1)) : ‖y − c‖ ≥ δ}, K2 := {y ∈ RN : ‖y − c‖ = δ}.

Then K is compact and f(0) /∈ K since ‖f(0) − c‖ < δ. Since g = f−1

on f(B(0, 1)), we have that g 6= 0 in K1. Since K1 is compact there exists
0 < 2η < 1

10 such that

‖g(y)‖ ≥ 2η for all y ∈ K1.
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By mollification we can find ε > 0 so small that

‖g(y)− gε(y)‖ < η for all y ∈ K.

In particular, gε does not vanish on K1, since

‖gε(y)‖ ≥ ‖g(y)‖ − ‖g(y)− gε(y)‖ > 2η − η.

However, gε could vanish on K2. To fix this, observe that K2 has Lebesgue
measure zero. Since gε is smooth, it follows that LNo (gε(K2)) ≤ CLNo (K2) = 0
(exercise) and thus there exists d ∈ B(0, η) \ gε(K2). Consider the function
p := gε − d. Then p does not vanish on K2 by construction and

‖g(y)− p(y)‖ ≤ ‖g(y)− gε(y)‖+ ‖d‖ < η + η for all y ∈ K, (6)

so ‖p(y)‖ ≥ ‖g(y)‖ − ‖g(y)− p(y)‖ > 2η − 2η. Thus p does not vanish on K.

Monday, January 30, 2023
Proof. Consider the function

q : f(B(0, 1))→ RN

given by

q(y) := c+ max

{
δ

‖y − c‖ , 1
}

(y − c). (7)

Note that if y ∈ f(B(0, 1)) and ‖y − c‖ ≥ δ, then δ
‖y−c‖ ≤ 1, so q(y) =

c+ y − c = y ∈ K1, while if y ∈ f(B(0, 1)) and ‖y − c‖ < δ, then δ
‖y−c‖ > 1,

so q(y) = c+ δ y−c
‖y−c‖ , and

‖q(y)− c‖ = δ,

so q(y) ∈ K2. Thus, q : f(B(0, 1))→ K. Moroever, the function q is continu-
ous, since c /∈ f(B(0, 1)). Define h : f(B(0, 1))→ RN as follows

h(y) := p(q(y)), y ∈ f(B(0, 1)).

By construction h does not vanish since p does not vanish on K and q :
f(B(0, 1))→ K.
It remains to show that is close to g. If y ∈ f(B(0, 1)) is such that ‖y−c‖ >

δ, then q(y) = y ∈ K1 (see (7)) and so by (6),

‖g(y)− h(y)‖ = ‖g(y)− p(y)‖ < 2η <
1

10
,

while if y ∈ f(B(0, 1)) is such that ‖y − c‖ ≤ δ, then ‖q(y)− c‖ = δ (see (7))
and so by (5) we have that

‖g(y)‖ ≤ 1

10
, ‖g(q(y))‖ ≤ 1

10
.
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In turn, by (6),

‖g(y)− h(y)‖ ≤ ‖g(y)‖+ ‖g(q(y))‖+ ‖g(q(y))− h(y)‖
= ‖g(y)‖+ ‖g(q(y))‖+ ‖g(q(y))− p(q(y))‖

≤ 1

10
+

1

10
+ 2ε <

3

10
.

Thus we have contradicted Step 1.
We now turn to the proof of Theorem 39.

Proof. Let y0 ∈ f(U). Then there is x0 ∈ U such that f(x0) = y0. Since
U is open, we can find a ball B(x0, δ) ⊆ U . In turn, f : B(x0, δ) → RN is
continuous and injective. Thus by the previous lemma f(x0) = y0 belongs to
the interior of f(B(x0, δ)), that is, there is B(y0, r) ⊆ f(B(x0, δ)) ⊆ f(U).

Wednesday, February 1, 2023

Remark 41 The previous theorem fails if the dimensions of the space and
codomain are different. For example the function f : (0, 1) → R2, given by
f(t) = (t, 0), is continuous and injective but the image is not open in R2. It
also fails for infinitely dimensional spaces. Indeed if we consider the space `∞

of all bounded sequences, endowed with the sup norm, then the shift function
f : `∞ → `∞ given by f((x1, xn, . . .)) := (0, x1, x2, . . .) is continuous and injec-
tive but the image is not open.

An important consequence of the previous theorem is the invariance of the
domain.

Theorem 42 (Dimension Invariance Theorem) If N > M and U ⊆ RN
is an open set, then there is no continuous injective function g : U → RM . In
particular, RM and RN are not homeomorphic.

Proof. Assume that such function exists. Define Π : RM → RN as

Π(y) = (y1, . . . , yM , 0, . . . , 0)

and f : U → RN as f := Π ◦ g. Then f is continuous and injective. However,
f(U) = Π(g(U)) ⊆ Π(RM ) and Π(RM ) has empty interior. This contradicts
the previous theorem.
Another important application of Brouwer fixed point theorem is Jordan’s

curve theorem. Before we discuss it, we need to introduce connected sets.

4 Connectedness and Pathwise Connectedness

Definition 43 Let (X, τ) be a topological space.

(i) A set E ⊆ X is disconnected if it can be written as union of two disjoint
nonempty relatively open sets, that is, if there exist two open sets U1, U2 ⊆
X such that E ∩ U1 6= ∅, E ∩ U2 6= ∅,

E = (E ∩ U1) ∪ (E ∩ U2), E ∩ U1 ∩ U2 = ∅.
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(ii) A set E ⊆ X is connected if it is not disconnected.

Next we show that continuous functions preserve connectedness.

Proposition 44 Consider two topological spaces (X, τX) and (Y, τY ) and a con-
tinuous function f : E → Y , where E is connected. Then f (E) is connected.

Proof. Assume by contradiction that f (E) is disconnected. Then there exist
two open sets V1, V2 ⊆ Y such that f (E) ∩ V1 6= ∅, f (E) ∩ V2 6= ∅,

f (E) = (f (E) ∩ V1) ∪ (f (E) ∩ V2), (f (E) ∩ V1) ∩ (f (E) ∩ V2) = ∅.

Since f is continuous, f−1(V1) and f−1(V2) are relatively open in E, that is,
there exist open sets U1 and U2 ⊆ X such that f−1(V1) = E ∩ U1, f−1(V2) =
E ∩U2. Since f (E)∩ V1 6= ∅, f (E)∩ V2 6= ∅, it follows that E ∩U1 and E ∩U2

are nonempty. If x ∈ E, then f(x) ∈ f(E) and so either f(x) ∈ f (E) ∩ V1 or
f (E)∩V2, and so either x ∈ f−1(V1) = E∩U1 or x ∈ f−1(V2) = E∩U2. Hence,

E = (E ∩ U1) ∪ (E ∩ U2).

Finally, if there existed x ∈ E ∩U1 ∩U2, then f(x) ∈ f (E)∩V1 ∩V2 = ∅, which
is a contradiction. This shows that E is disconnected, which is a contradiction
and completes the proof.

We recall that I ⊆ R is an interval if for every x, y ∈ I with x ≤ y, we have
that [x, y] ⊆ I.

Theorem 45 A set E ⊆ R is connected if and only if it is an interval.

Proof. Recitation.
We now introduce another notion of connectedness, which is simpler to verify.

Definition 46 Given a topological space (X, τ), a set E ⊆ X is called pathwise
connected if for all x, y ∈ E there exists a continuous function f : [0, 1] → E
such that f(0) = x and f(1) = y.

Proposition 47 Let (X, τ) be a topological space and let E ⊆ X be pathwise
connected. Then E is connected.

Proof. We claim that E is connected. If not, then there exist two open sets
U1, U2 ⊆ X such that E ∩ U1 6= ∅, E ∩ U2 6= ∅,

E = (E ∩ U1) ∪ (E ∩ U2), E ∩ U1 ∩ U2 = ∅.

Let x ∈ E ∩ U1 and y ∈ E ∩ U2. By hypothesis we can find a continuous
function f : [0, 1] → E such that f (0) = x and f (1) = y. By Proposition 44
and Theorem 45, we have that f ([0, 1]) is connected. On the other hand,

f ([0, 1]) ⊆ E ⊆ U1 ∪ U2, x ∈ f ([0, 1]) ∩ U1, y ∈ f ([0, 1]) ∩ U2,

which is a contradiction.
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Proposition 48 Let (X, τ) be a topological space and let E ⊆ X be a connected
set. Then E is connected.

Proof. Recitation
The next example shows that in RN a connected set may fail to be pathwise

connected, unless the set is open.

Example 49 Let E ⊂ R2 be the set given by

E1 =
{

(x, y) ∈ R2 : x = 0, −1 ≤ y ≤ 1
}
,

E2 =

{
(x, y) ∈ R2 : 0 < x ≤ 1

π
, y = sin

1

x

}
,

E = E1 ∪ E2.

The set E is connected but not pathwise connected.

Definition 50 Given a normed space (X, ‖·‖), a polygonal path is a continuous
curve represented by a continuous function f : [a, b]→ X for which there exists
a partition a = t0 < t1 < · · · < tn = b with the property that f : [ti−1, ti] → X
is affi ne for all i = 1, . . . , n, that is,

f (t) = ci + tdi for t ∈ [xi−1, xi] ,

for some ci, di ∈ X.

Theorem 51 Given a normed space (X, ‖·‖), let O ⊆ X be open and connected.
Then O is pathwise connected.

Proof. Recitation.

Exercise 52 Prove that the set R2 \Q2 is connected.

Next we show that if a set is not connected, we can decompose it uniquely
into a disjoint union of maximal connected subsets.

Proposition 53 Let (X, τ) be a topological space and let E ⊆ X. Assume that

E =
⋃
α∈Λ

Eα,

where each Eα is a connected set. If
⋂
α∈ΛEα is nonempty, then E is connected.

Proof. We claim that E is connected. If not, then there exist two open sets
U1, U2 ⊆ X such that E ∩ U1 6= ∅, E ∩ U2 6= ∅,

E = (E ∩ U1) ∪ (E ∩ U2), E ∩ U1 ∩ U2 = ∅.

Since each Eα is connected, we must have that either Eα ⊆ U1 or Eα ⊆ U2. On
the other hand, if α 6= β, then Eα∩Eβ is nonempty, while E∩U1∩U2 = ∅. Thus,
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all Eα either belong to U1 or to U2. This contradicts the fact that E ∩ U1 6= ∅
and that E ∩ U2 6= ∅.
Let (X, τ) be a topological space and let E ⊆ X. For every x ∈ E, let

Ex be the union of all the connected subsets of E that contain x. Note that
Ex is nonempty, since {x} is a connected subset of E. In view of the previous
proposition, the set Ex is connected. Moreover, if x, y ∈ E and x 6= y, then
either Ex ∩ Ey = ∅ or Ex = Ey. Indeed, if not, then again by the previous
proposition the set Ex ∪ Ey would be connected, contained in E, and would
contain x and y, which would contradict the definition of Ex and of Ey. Thus,
we can partition E into a disjoint union of maximal connected subsets, called
the connected components of E.

Friday, February 3, 2023

Proposition 54 Let (X, τ) be a topological space and let C ⊆ X be a closed
set. Then the connected components of C are closed.

Proof. Let Cα be a connected component of C. Then Cα ⊆ Cα ⊆ C = C. By
Proposition 48, Cα is connected, and so by the maximality of Cα, Cα = Cα,
i.e., Cα is closed.

Proposition 55 Let (X, ‖·‖) be a normed space and let U ⊆ X be an open set.
Then the connected components of U are open.

Proof. Let Uα be a connected component of U . If Uα is not open, then
there exists x ∈ Uα ∩ ∂Uα. Since U is open, we can find B(x, r) ⊆ U . But
then Uα ∪ B(x, r) is still connected by Proposition 53, which contradicts the
maximality of Uα.

Example 56 Consider the metric space X = Q with the metric induced by
the one on the real line. Then Q is open (since it is the entire space) but the
connected components of Q are singletons (why?) which are not open.

Proposition 57 Let (X, d) be a metric space and let E1, E2 ⊆ X be two con-
nected sets. If E1 ∩ E2 is nonempty, then E1 ∪ E2 is connected.

Proof. Let E := E1 ∪E2. If E is disconnected, then there exist two nonempty
open sets U1, U2 ⊆ X such that

E ⊆ U1 ∪ U2, E ∩ U1 ∩ U2 = ∅, E ∩ U1 6= ∅, E ∩ U2 6= ∅.

Since E1 is connected, we must have that either E1 ⊆ U1 or E1 ⊆ U2, say,
E1 ⊆ U1. But then, E2 ∩ U2 6= ∅, and since E2 is connected, it follows that
E2 ⊆ U2. But since there exists x ∈ E1 ∩ E2 and E1 ⊆ U1, we have that
x ∈ U1 ∩ E2, which implies that there exists y ∈ E2 such that y ∈ U1, this
contradicts the fact that E ∩ U1 ∩ U2 is empty.

Exercise 58 Let (X, τ) be a topological space and let E1, E2 ⊆ X be two con-
nected sets. If E1 ∩ E2 is nonempty, then E1 ∪ E2 is connected.
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5 Application II of BrFTT: Jordan’s Curve The-
orem

Another important application of Brouwer fixed point theorem is Jordan’s curve
theorem.

Theorem 59 (Jordan’s curve theorem) Given a continuous closed simple
curve γ in R2 with range Γ, the set R2\Γ consists of two connected components.

Lemma 60 Let a < b, c < d and let f : [−1, 1]→ [a, b]× [c, d] and g : [−1, 1]→
[a, b] × [c, d] be two continuous functions such that f1(−1) = a, f1(1) = b, and
g2(−1) = c, g2(1) = d. Then there exists t0, s0 ∈ [0, 1] such that f(s0) = g(t0).

Proof. Assume by contradiction that f(s) 6= g(t) for all s, t ∈ [−1, 1]. Let
Q := [−1, 1] × [−1, 1] and consider the continuous function h : Q → Q defined
by

h(s, t) :=

(
g1(t)− f1(s)

‖f(s)− g(t)‖∞
,
f2(s)− g2(t)

‖f(s)− g(t)‖∞

)
,

where ‖x‖∞ = max{|x|, |y|}. Note that h(s, t) ∈ ∂Q. By the Brouwer fixed
point theorem there exists (s0, t0) ∈ Q such that h(s0, t0) = (s0, t0). But since
h(Q) ⊆ ∂Q, necessarily, (s0, t0) ∈ ∂Q. Hence, s0 = ±1 or t0 = ±1. If s0 = 1,
then

1 =
g1(t0)− f1(1)

‖f(1)− g(t0)‖∞
=

g1(t0)− b
‖f(1)− g(t0)‖∞

≤ 0,

while if s0 = −1, then

−1 =
g1(t0)− f1(−1)

‖f(−1)− g(t0)‖∞
=

g1(t0)− a
‖f(−1)− g(t0)‖∞

≥ 0,

which give a contradiction.
On the other hand, if t0 = 1, then

1 =
f2(s0)− g2(1)

‖f(s0)− g(1)‖∞
=

f2(s0)− d
‖f(s0)− g(1)‖∞

≤ 0,

while if t0 = −1, then

−1 =
f2(s0)− g2(−1)

‖f(s0)− g(−1)‖∞
=

f2(s0)− c
‖f(s0)− g(1)‖∞

≥ 0,

which give again a contradiction. This completes the proof.

Remark 61 Since Γ is bounded, the set R2 \ Γ has only one unbounded com-
ponent. Indeed, let Γ ⊂ B(0, r). The set R2 \ B(0, r) is open and pathwise
connected and so it is connected. Moreover, R2 \B(0, r) ⊆ R2 \ Γ, and so there
is a connected component that contains R2 \B(0, r).

Monday, February 6, 2023
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Lemma 62 Given a continuous closed simple curve γ in R2 with range Γ, if
R2 \Γ is not connected and U is a bounded connected component of R2 \Γ, then
∂U = Γ.

Taking for granted Lemma 62, let’s prove Jordan’s curve theorem.
Proof. Since Γ is compact, there exist a, b ∈ Γ such that‖a− b‖ = diam Γ. By
changing coordinates, without loss of generality we may assume that a = (1, 0)
and b = (−1, 0). Then the rectangle R = [−1, 1] × [−2, 2] contains Γ and has
only a and b on its boundary. Let n = (0, 2) and s = (0,−2). By Lemma
60 the segment −→ns intersects Γ. Let l be the point in Γ ∩ −→ns with maximal
y-component.
The points a and b divide Γ in two arcs, let Γn be the one containing l

and let Γs be the other one. Let m be the point in Γn ∩ −→ns with minimal
y-component.
Then the segment −−→ms intersects Γs, since otherwise, denoting by l̂m the

subarc contained in Γn with endpoints l andm, the curve given by
−→
nl+l̂m+−−→ms

would not intersect the curve Γs, contradicting Lemma 60. Let p and q be
the points in Γs ∩ −−→ms be the points with maximal and minimal y-component,
respectively. Finally let z0 be the middle point of the segment

−−→mp. Note that
m 6= p since γ is simple. Hence, z0 does not belong to Γ. Let U be the
connected component of R2 \Γ which contains z0. We claim that U is bounded.
Assume by contradiction that U is unbounded. Since U is open and con-

nected, it is path-connected and so we can find a polygonal path in U joining
z0 to a point outside R. Let w be the point at which this polygonal path
first intersects ∂R and denote with γ1 the portion of this polygonal arc join-
ing z0 and w. If w is on the lower half of R, let ŵs the subarc contained in
∂R with endpoints w and s and not intersecting a, b. Then the curve given
by
−→
nl + l̂m + −−→mz0 + γ1 + ŵs would not intersect the curve Γs, contradicting

Lemma 60. On the other hand, if w is on the upper half of R, let ŵn the sub-
arc contained in ∂R with endpoints w and n and not intersecting a, b. Then
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the curve −−→sz0 + γ1 + ŵn would not intersect the curve Γn, contradicting again
Lemma 60.
This shows that U is bounded. It remains to show that U is the only bounded

connected component of R2 \ Γ. Assume by contradiction that there is another
one, say, V . Then V ⊂ R, since R2\R is pathwise connected and thus contained
in the unbounded connected component of R2 \ Γ. Since the segments

−→
nl \ {l}

and −→qs \ {q} are contained in the unbounded connected component of R2 \ Γ,
it does not intersect V . Similarly, since z0 ∈ U , the segment −−→mp \ {m,p}
is contained in U , and thus it does not intersect V . It follows that the curve
γ2 given by

−→
nl + l̂m + −−→mp + p̂q + −→qs, where p̂q the subarc contained in Γs

with endpoints p and q, does not intersect V . Since a and b are not in γ2,
there are balls B(a, r) and B(b, r) which do not intersect γ2. By Lemma 62,
∂V = Γ and so a and b belong to ∂V . Hence, there exist a1 ∈ V ∩B(a, r) and
b1 ∈ V ∩ B(b, r). Let â1b1 be a polygonal path in V joining a1 and b1. Then
the curve −−→aa1 + â1b1 +

−→
b1b does not intersect γ2, contradicting again Lemma

60. This concludes the proof.
Wednesday, February 8, 2023

We prove Lemma 62.
Proof of Lemma 62. Step 1: We claim that ∂U ⊆ Γ. Indeed, if not then
there would exist x0 ∈ ∂U ∩ (R2 \ Γ). Since U is open, x0 does not belong to
U , so there is another connected component V of R2 \Γ with x0 ∈ V . But then
U ∩ V 6= ∅ and so by Proposition 57, U ∪ V is connected, which contradicts the
maximality of U . Thus ∂U ⊆ Γ.
Step 2: Assume by contradiction that ∂U ⊂ Γ. Let x0 ∈ Γ \ ∂U . Since

R2 \ U is open, there exists B(x0, δ) ⊂ R2 \ U . Consider a simple arc whose
range C ⊆ Γ is closed and contains ∂U but does not intersect B(x0, δ). Let V
be the unbounded connected component of R2 \ Γ. Take p ∈ U . Let r > 0 be
so large that B(p, r) ⊃ Γ. Then ∂B(p, r) is contained in V . Define f(x) := x
for all x ∈ C. Since C is homeomorphic to [0, 1], by Tietze’s extension theorem
we can extend f to a continuous function f : R2 → C. Define

g(x) :=

{
f(x) if x ∈ U,
x if x ∈ R2 \ U,

Then g : B(p, r)→ B(p, r) \ {p}. Indeed, p belongs to U and g is mapped into
C ⊆ Γ. Moreover, since ∂U ⊆ C and g(x) = x for all x ∈ C, we have that g is
continuous. Note that g(x) = x for all x ∈ ∂B(p, r). It follows that the map

h(x) =
g(x)− p
‖g(x)− p‖r + p

maps B(p, r) into ∂B(p, r) and is the identity on ∂B(p, r). However, this con-
tradicts Lemma 33.
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6 Banach Fixed Point Theorem

Definition 63 Given a metric space (X, d) and a sequence {xn}n in X, we say
that {xn}n is a Cauchy sequence if for every ε > 0 there exists Nε ∈ N such
that

d (xn, xm) < ε

for all n,m ≥ Nε,

Proposition 64 Given a metric space (X, d) and a sequence {xn}n in X, if
{xn}n converges to some x ∈ X, then {xn}n is a Cauchy sequence.

Proof. Since {xn} converges to x ∈ X, given ε > 0, consider ε2 in the definition
of convergence. Then there exists Nε ∈ N such that

d (xn, x) <
ε

2

for all n ≥ Nε. Hence, by the triangle inequality and symmetry of d, if n,m ≥
Nε,

d (xn, xm) ≤ d (xn, x) + d (x, xm) = d (xn, x) + d (xm, x) <
ε

2
+
ε

2
.

The opposite is not true, that is, there are Cauchy sequences that do not
have a limit.

Example 65 Consider X = (0, 1) with the metric d (x, y) = |x− y| and con-
sider the sequence xn = 1

n . Then xn → 0 which does not belong to X = (0, 1),
but {xn}n is a Cauchy (just applied the previous proposition in the metric space
R).

Exercise 66 Let {xn}n be a sequence in a metric space (X, d).

(i) Prove that if {xn}n is a Cauchy sequence and if a subsequence {xnk}k of
{xn}n converges to some x ∈ X, then {xn}n converges to x.

(ii) Prove that if there exists x ∈ X such that for every subsequence {xnk}k
of {xn}n there exists a further subsequence {xnkj }j that converges to x,
then {xn}n converges to x.

Definition 67 A metric space (X, d) is said to be complete if every Cauchy
sequence has a limit in X.

Example 68 Let X = (0, 1) with the metric d (x, y) = |x− y|. The sequence{
1
n

}
n∈N converges to 0 in R, and so it is a Cauchy sequence in R. In particular,

it is a Cauchy sequence in X. However, it does not converge to an element of
X, since 0 /∈ X.

Theorem 69 RN is a complete metric space.
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Proof. Step 1: Let {xn}n be a Cauchy sequence. We claim that {xn}n in RN
is bounded. Fix ε = 1. By the definition of Cauchy sequence, there is exists
N1 ∈ N such that

‖xn − xm‖ < 1

for all n,m ≥ N1. In particular, taking m = N1, we have that

‖xn − xN1
‖ < 1,

for all n ≥ N1. Taking

R := max {1, ‖x1 − xN1
‖+ 1, . . . , ‖xN1−1 − xN1

‖+ 1} ,

we have that xn ∈ B (xN1
, R) for all n ∈ N.

Step 2: We claim that {xn}n in RN admits a convergent subsequence.
Consider the set E := {xn : n ∈ N}.
Case 1: There exists ` ∈ RN such that xn = ` for infinitely many n. In this
case we can find a subsequence {xnk}k such that xnk = ` for all k ∈ N and so
xnk = `→ ` as k →∞.

Friday, February 10, 2023
Proof. Case 2: Since no element of E is repeated infinitely many times, the set
E has infinitely many distinct elements. Since E is bounded and has infinitely
many distinct elements, the set E has an accumulation point ` ∈ RN .
Take ε1 = 1. Since ` is an accumulation point of E there exists xn1

∈
B(`, ε1) with xn1

6= `. Let

ε2 := min

{
1

2
,min{‖xn − `‖ : n = 1, . . . , n1, xn 6= `}

}
> 0.

Since ` is an accumulation point of E there exists xn2
∈ B(`, ε2) with xn2

6= `.
It follows from the definition of ε2 that necessarily n2 > n1.
Inductively, assume that n1 < n2 < · · · < nk−1 have been chosen so that

0 < ‖xni − `‖ ≤ 1
i−1 for all i = 1, . . . , k − 1. Let

εk := min

{
1

k
,min{‖xn − `‖ : n = 1, . . . , nk−1, xn 6= `}

}
> 0.

Since ` is an accumulation point of E there exists xnk ∈ B(`, εk) with xnk 6= `.
It follows from the definition of εk that necessarily nk > nk−1.
Thus, by induction we have constructed a subsequence {xnk}k such that

0 < ‖xnk − `‖ ≤
1

k
for all k ∈ N.

By the squeeze theorem xnk → ` as k →∞.
Step 3: We claim that lim

n→∞
xn = `. Let ε > 0. Since {xn}n is a Cauchy

sequence, there exists nε ∈ N such that

‖xn − xm‖ ≤ ε
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for all n,m ≥ nε. On the other hand, since xnk → ` as k → ∞, there exists
kε ∈ N such that

‖xnk − `‖ ≤ ε

for all k ≥ kε. Let k∗ ≥ kε be so large that nk∗ ≥ nε. Then for all n ≥ nk∗ , we
have

‖xn − `‖ ≤ ‖xn − xnk‖+ ‖xnk∗ − `‖ ≤ ε+ ε.

This implies that {xn}n converges to `.

Definition 70 A normed space (X, ‖·‖) is a Banach space if it is a complete
metric space.

Theorem 71 Given a nonempty set X, consider the space

`∞(X) := {f : X → R : f is bounded}

with the norm
‖f‖∞ := sup

x∈X
|f (x)| .

Then `∞(X) is a Banach space.

Proof. Let {fn}n in `∞(X) be a Cauchy sequence. Let ε > 0 and find nε ∈ N
so large that

sup
x∈X
|fn (x)− fm (x)| = d∞ (fn, fm) ≤ ε

for all n,m ≥ nε. This implies that for every fixed x ∈ E, the sequence of real
numbers {fn (x)}n is a Cauchy sequence in R and so there exists

lim
n→∞

fn (x) = f (x) ∈ R.

Since
|fn (x)− fm (x)| ≤ ε

for all n,m ≥ nε, letting n→∞ gives (why?)

|f (x)− fm (x)| ≤ ε

for all m ≥ nε. This holds for every x ∈ X. Hence, taking the supremum over
all x ∈ `∞(X) gives

sup
x∈X
|f (x)− fm (x)| = d∞ (f, fm) ≤ ε

for all m ≥ nε; that is d∞ (f, fm)→ 0 as m→∞. Moreover, for every x ∈ X,

|f (x)| ≤ |f (x) + fnε (x)− fnε (x)| ≤ sup
x∈X
|f (x)− fnε (x)|+sup

x∈X
|fnε (x)| ≤ ε+sup

x∈X
|fnε (x)| ,

which implies that f ∈ `∞(X).
The next theorem shows that uniform convergence preserves continuity.
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Corollary 72 Let (X, d) be a metric space and let

Cb (X) := {f : X → R : f is continuous and bounded}

with then norm
‖f‖∞ := sup

x∈X
|f (x)| .

Then Cb (X) is a Banach space.

Proof. Let {fn}n be a Cauchy sequence in Cb (X). By the previous theorem
there exists a bounded function f ∈ `∞(X) such that fn → f in `∞(X). Let’s
prove that f is continuous. Let x0 ∈ X and let ε > 0. Since fn → f in `∞(X),
there exists nε ∈ N so large that

sup
x∈X
|fn (x)− f (x)| ≤ ε

for all n ≥ nε. Since the function fnε is continuous at x0, there exists δ > 0
such that

|fnε (x)− fnε (x0)| ≤ ε
for all x ∈ X with d(x, x0) ≤ δ. In turn,

|f (x)− f (x0)| ≤ |f (x)− fnε (x)|+|fnε (x)− fnε (x0)|+|fnε (x0)− f (x0)| ≤ 3ε

for all x ∈ X with d(x, x0) ≤ δ. This completes the proof.

Theorem 73 (Banach’s contraction principle) Let (X, d) be a nonempty
complete metric space and let f : X → X be a contraction, that is f is Lipschitz
with Lipschitz constant less than one. Then f has a unique fixed point; that is,
there is a unique x ∈ X such that f (x) = x.

Proof. Step 1: Let’s first prove uniqueness. Assume that x1 and x2 are fixed
points of f . Then

d (x1, x2) = d (f (x1) , f (x2)) ≤ Ld (x1, x2) ,

which implies that
(1− L) d (x1, x2) ≤ 0.

Since L < 1, we have that d (x1, x2) = 0, and so x1 = x2.
Step 2: To prove existence, fix x0 ∈ X and define inductively

x1 := f (x0) , xn+1 := f (xn) .

We claim that {xn}n is a Cauchy sequence. Indeed, note that

d (x1, x2) = d (f (x0) , f (x1)) ≤ Ld (x0, x1)

and by induction

d (xn, xn+1) = d (f (xn−1) , f (xn)) ≤ Lnd (x0, x1) .
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Hence, for every m,n ∈ N, by the triangle inequality

d (xn, xn+m) ≤
n+m−1∑
i=n

d (xi, xi+1) ≤ d (x0, x1)

n+m−1∑
i=n

Li

≤ d (x0, x1)

∞∑
i=n

Li = d (x0, x1)
Ln

1− L.

Letting n → ∞, we have that {xn}n is a Cauchy sequence. Since the space
is complete, there exists x ∈ X such that {xn} converges to x. But by the
continuity of f ,

x← xn+1 = f (xn)→ f (x) ,

which shows that f (x) = x.

Example 74 The function f(x) = x + 1, x ∈ R, has Lipschitz constant 1 but
no fixed points.

Monday, February 13, 2023

7 Application I of BaFTT: The Inverse Function
Theorem

Theorem 75 (Inverse Function) Let U ⊆ RN be open, let f : U → RN , and
let x0 ∈ U . Assume that there exists B (x0, r0) ⊆ U such that f is continuous
in B (x0, r0) and that for all x ∈ B (x0, r0) there exist ∂fj∂xi

, i, j = 1, . . . , N , and
that they are continuous at x0. If

det Jf (x0) 6= 0,

then there exists 0 < r1 < r0 such that the function

f : B (x0, r1)→ f (B (x0, r1))

is invertible, f (B (x0, r1)) is open, and f−1 : f (B (x0, r1)) → B (x0, r1) is
Lipschitz continuous in f (B (x0, r1)) and differentiable at f (x0), with

Jf−1 (f (x0)) = (Jf (x0))
−1
.

Proof. Step 1: Assume that x0=0, that f(0) =0, and that Jf (0) = IN , the
identity matrix. Write

f (x) = x+h (x) .

Then h(0) =0 and Jh (0) = 0N . Since
∂hj
∂xi

are continuous at 0, there exists

r > 0 such that B (0, r) ⊂ U and

‖∇hj(x)‖ ≤ 1

2
√
N

for all x ∈ B (0, r).
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By the mean value theorem for all x1,x2 ∈ B (0, r) and j = 1, . . . , N ,

|hj (x1)− hj (x2)| ≤ ‖∇hj(zi,j)‖ ‖x1 − x2‖ ≤
1

2
√
N
‖x1 − x2‖ ,

where zi,j = θi,jx1 + (1− θi,j)x2, and so

‖h (x1)− h (x2)‖ =

√√√√ N∑
j=1

|hj (x1)− hj (x2)|2 ≤ 1

2
‖x1 − x2‖ .

This shows that h : B (0, r)→ RN is a contraction. Moreover, since h (0) = 0,
‖h (x)‖ ≤ 1

2 ‖x‖ for all x ∈ B (0, r).

Fix y ∈ B
(
0, 1

2r
)
and consider the function

hy (x) := y − h (x) .

Then hy is a contraction, and for all x ∈ B (0, r),

‖hy (x)‖ ≤ ‖h (x)‖+ ‖y‖ ≤ 1

2
‖x‖+ ‖y‖ ≤ 1

2
r +

1

2
r.

Thus, we can apply the Banach fixed point theorem to hy : B (0, r)→ B (0, r)

to conclude that hy has a unique fixed point x ∈ B (0, r), that is,

y − h (x) = hy (x) = x.

In turn,
f (x) = x+h (x) = y.

Hence, we proved that for every y ∈ B
(
0, 1

2r
)
there exists a unique x ∈ B (0, r)

such that f (x) = y. This means that we can define f−1 : B
(
0, 1

2r
)
→ B (0, r).

To prove that f−1 is continuous, let y1,y1 ∈ B
(
0, 1

2r
)
and define x1 :=

f−1 (y1) and x2 := f−1 (y1). Then

x1+h (x1) = y1,

x2+h (x2) = y2,

and since ‖h (x1)− h (x2)‖ ≤ 1
2 ‖x1 − x2‖, we have

‖x1 − x2‖ ≤ ‖y1 − y2‖+ ‖h (x1)− h (x2)‖ ≤ ‖y1 − y2‖+
1

2
‖x1 − x2‖ ,

and so
1

2
‖x1 − x2‖ ≤ ‖y1 − y2‖ ,

which shows that ∥∥f−1 (y1)− f−1 (y2)
∥∥ ≤ 2 ‖y1 − y2‖ .
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Thus, f−1 is Lipschitz continuous in B
(
0, 1

2r
)
with Lipschitz constant at most 2.

In particular, since f−1(0) =0, we have that f−1 maps the open ball B
(
0, 1

2r
)

into a subset of B (0, r). To prove that f−1 is differentiable at 0, let y ∈
B
(
0, 1

2r
)
and define x := f−1 (y). Then

x+h (x) = y,

and so
f−1 (y) = y − h

(
f−1 (y)

)
. (8)

Since h is differentiable at 0, h(0) =0 and Jh (0) = 0N , we have that

0 = lim
x→0

h (x)− h (0)− Jh (0) (x− 0)

‖x− 0‖ = lim
x→0

h (x)

‖x‖ .

Thus given ε > 0 there exists δ > 0 such that

‖h (x)‖
‖x‖ ≤ ε

for all x with 0 < ‖x‖ ≤ δ. But since f−1 is Lipschitz continuous, it follows
that 0 <

∥∥f−1 (y)
∥∥ ≤ 2 ‖y‖ ≤ δ for all 0 < ‖y‖ ≤ δ/2. Hence,∥∥h(f−1 (y))

∥∥
‖y‖ =

∥∥h(f−1 (y))
∥∥∥∥f−1 (y)
∥∥
∥∥f−1 (y)

∥∥
‖y‖ ≤ 2ε

for all 0 < ‖y‖ ≤ δ/2. In turn, by (8),∥∥f−1 (y)− f−1 (0)− IN (y − 0)
∥∥

‖y − 0‖

=

∥∥f−1 (y)− 0− y
∥∥

‖y − 0‖ =

∥∥y − h(f−1 (y))− y
∥∥

‖y − 0‖

=

∥∥h(f−1 (y))
∥∥

‖y‖ ≤ 2ε,

which implies that f−1 is differentiable at 0 with Jf−1 (0) = IN .
Wednesday, February 15, 2023

Proof. Next we claim that f (B (0, r/3)) is open. Take y1 ∈ f (B (0, r/3)).
Then there is x1 ∈ B (0, r/3) such that y1 = f(x1). Since f is Lipschitz
continuous with Lipschitz constant 3

2 and f (0) = 0 we have that ‖y1‖ =

‖f(x1)‖ = ‖f(x1)− f(0)‖ ≤ 3
2 ‖x1‖ < 1

2r and so y1 ∈ B(0, r/2) and f−1 is
defined at y1. Since f

−1 is Lipschitz continuous with Lipschitz constant 2, we
have that ∥∥f−1 (y)− f−1 (y1)

∥∥ ≤ 2 ‖y − y1‖ <
r

3
−
∥∥f−1 (y1)

∥∥ ,
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provided ‖y − y1‖ < min
{
r
6 −

1
2

∥∥f−1 (y1)
∥∥ , 1

2r
}

=: δ. In particular,∥∥f−1 (y)
∥∥ ≤ ∥∥f−1 (y)− f−1 (y1)

∥∥+
∥∥f−1 (y1)

∥∥ < r

3

for all y ∈ B(y1, δ). This implies B(y1, δ) ⊆ f (B (0, r/3)), and so f (B (0, r/3))
is open. Hence we take r1 := r

3 .
Step 2: In the general case, since det Jf (x0) 6= 0, we have that the ma-
trix Jf (0) is invertible. Hence, we can apply Step 1 to the function g(x) =

(Jf (x0))
−1

(f(x+x0)−f(x0)). We obtain that g :g−1
(
B
(
0, 1

2r
))
→ B

(
0, 1

2r
)

is a homeomorphism. Consider the invertible linear mapping T : RN → RN
given by T (y) = (Jf (x0)) (y + f(x0)). Since T is invertible, it follows that
T ◦ g : g−1

(
B
(
0, 1

2r
))
→ T

(
B
(
0, 1

2r
))
is a homeomorphism, but

(T ◦ g)(x) = f(x+ x0),

so f is locally invertible.

Corollary 76 Let U ⊆ RN be open, let f : U → RN , and let x0 ∈ U . Assume
that f ∈ Cm (U) for some m ∈ N and that

det Jf (x0) 6= 0.

Then there exists B (x0, r) ⊆ U such that f (B (x0, r)) is open, the function

f : B (x0, r)→ f (B (x0, r))

is invertible and f−1 ∈ Cm (f (B (x0, r))).

Proof. By the previous theorem there exists 0 < r1 < r0 such that the function

f : B (x0, r1)→ f (B (x0, r1))

is invertible, f (B (x0, r1)) is open, and f−1 : f (B (x0, r1)) → B (x0, r1) is
Lipschitz continuous in f (B (x0, r1)) and differentiable at f (x0), with

Jf−1 (f (x0)) = (Jf (x0))
−1
.

Assume that det Jf (x0) > 0. Since Jf is continuous at x0 there exists r2 > 0
such that det Jf (x) > 0 for all x ∈ B (x0, r2). Take r := min{r1, r2} and
consider f−1 : f (B (x0, r)) → B (x0, r). Since det Jf (x) > 0, for every x ∈
B (x0, r) we can apply the inverse function theorem at the point x to that the
function

f : B (x, rx)→ f (B (x, rx))

is invertible and the inverse is differentiable at y = f(x). Taking 0 < rx < r1−
‖x−x0‖, we have that the two inverse functions coincide (this is an important
point, this theorem only provides a local inverse function so the inverse functions
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could be different) and so we have shown that f−1 : f (B (x0, r)) → B (x0, r)
is differentiable. To prove that f−1 is of class Cm, we use the fact that

Jf−1 (y) =
(
Jf
(
f−1 (y)

))−1

for every y ∈ f (B (x0, r)). If m ≥ 2, then since f−1 and Jf are differentiable,
it follows that Jf−1 is differentiable and we can apply the chain rule to compute
the second order order derivatives of f−1. Note that on the right-hand side they
will appear second order derivatives of f computed at f−1 (y) and ONLY first
order derivatives of f−1. Hence, if m ≥ 3 we can apply the chain rule one more
time to obtain that the second order derivatives of f−1 are differentiable. We
will continue in this way.

Given a function f of two variables (x, y) ∈ R2, consider the equation

f (x, y) = 0.

We want to solve for y, that is, we are interested in finding a function y = g (x)
such that

f (x, g (x)) = 0.

We will see under which conditions we can do this. The result is going to be
local.
In what follows given x ∈ RN and y ∈ RM and f (x,y), we write

∂f

∂x
(x,y) :=


∂f1

∂x1
(x,y) · · · ∂f1

∂xN
(x,y)

... · · ·
...

∂fM
∂x1

(x,y) · · · ∂fM
∂xN

(x,y)


and

∂f

∂y
(x,y) :=


∂f1

∂y1
(x,y) · · · ∂f1

∂yM
(x,y)

... · · ·
...

∂fM
∂y1

(x,y) · · · ∂fM
∂yM

(x,y)

 .

Theorem 77 (Implicit Function) Let U ⊆ RN × RM be open, let f : U →
RM , and let (a, b) ∈ U . Assume that f ∈ Cm (U) for some m ∈ N, that

f (a, b) = 0 and det
∂f

∂y
(a, b) 6= 0.

Then there exist BN (a, r0) ⊂ RN and BM (b, r1) ⊂ RM , with BN (a, r0) ×
BM (b, r1) ⊆ U , and a unique function

g : BN (a, r0)→ BM (b, r1)

of class Cm such that f (x, g (x)) = 0 for all x ∈ BN (a, r0) and g (a) = b.
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Friday, February 17, 2023
In 21-269 we have seen how the implicit function theorem follows from the

inverse function theorem. Now we give a second proof of the implicit function
theorem which does not use the inverse function theorem.
Proof. We present a proof in the case M = 1.
Step 1: Existence of g. Since ∂f

∂y (a, b) 6= 0, without loss of generality, we

can assume that ∂f∂y (a, b) > 0 (the case ∂f
∂y (a, b) < 0 is similar). Using the fact

that ∂f∂y is continuous at (a, b), we can find r > 0 such that

R := QN (a, r)× [b− r, b+ r] ⊆ U,

where QN (a, r) = (a1 − r, a1 + r)× · · · × (aN − r, aN + r),

∂f

∂y
(x, y) > 0 for all (x, y) ∈ R.

Consider the function h (y) := f (a, y), y ∈ [b− r, b+ r]. Since

h′ (y) =
∂f

∂y
(a, y) > 0 for all y ∈ [b− r, b+ r] ,

we have that h is strictly increasing. Using the fact that h (b) = f (a, b) = 0, it
follows that

0 > h (b− r) = f (a, b− r) , 0 < h (b+ r) = f (a, b+ r) .

Consider the function k1 (x) := f (x, b− r), x ∈ QN (a, r). Since k1 (a) < 0 and
k1 is continuous at a, there exists 0 < δ1 < r such that

0 > k1 (x) = f (x, b− r) for all x ∈ QN (a, δ1).

Similarly, consider the function k2 (x) := f (x, b+ r), x ∈ QN (a, r). Since
k2 (a) > 0 and k2 is continuous at a, there exists 0 < δ2 < r such that

0 < k2 (x) = f (x, b+ r) for all x ∈ QN (a, δ2).

Let δ := min {δ1, δ2}. Then for all x ∈ QN (a, δ),

f (x, b− r) < 0, f (x, b+ r) > 0.

Fix x ∈ QN (a, δ) and consider the function k (y) := f (x, y), y ∈ [b− r, b+ r].
Since

k′ (y) =
∂f

∂y
(x, y) > 0 for all y ∈ [b− r, b+ r] ,

we have that k is strictly increasing. Using the fact that k (b− r) = f (x, b− r) <
0 and k (b+ r) = f (x, b+ r) > 0, it follows that there exists a unique y ∈
(b− r, b+ r) (depending on x) such that 0 = k (y) = f (x, y).
Thus, we have shown that for every x ∈ QN (a, δ) there exists a unique

y ∈ (b− r, b+ r) depending on x such that f (x, y) = 0. We define g (x) := y.
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Step 2: Continuity of g. Fix x0 ∈ QN (a, δ). Note that b−r < g (x0) < b+r.
Let ε > 0 be so small that

b− r < g (x0)− ε < g (x0) < g (x0) + ε < b+ r.

Consider the function j (y) := f (x0, y), y ∈ [b− r, b+ r]. Since

j′ (y) =
∂f

∂y
(x0, y) > 0 for all y ∈ [b− r, b+ r] ,

we have that j is strictly increasing. Using the fact that j (g (x0)) = f (x0, g (x0)) =
0, it follows that

f (x0, g (x0)− ε) < 0, f (x0, g (x0) + ε) > 0.

Consider the function j1 (x) := f (x, g (x0)− ε), x ∈ QN (a, δ). Since j1 (x0) <
0 and j1 is continuous at x0, there exists 0 < η1 < δ such that

0 > j1 (x) = f (x, g (x0)− ε) for all x ∈ QN (x0, η1).

Similarly, consider the function j2 (x) := f (x, g (x0) + ε), x ∈ QN (a, δ). Since
j2 (x0) > 0 and j2 is continuous at x0, there exists 0 < η2 < δ such that

0 < j2 (x) = f (x, g (x0) + ε) for all x ∈ QN (x0, η2).

Let η := min {η1, η2}. Then for all x ∈ QN (x0, η),

f (x, g (x0)− ε) < 0, f (x, g (x0) + ε) > 0.

But f (x, g (x)) = 0 and y ∈ [b− r, b+ r] 7→ f (x, y) is strictly increasing. It
follows that

g (x0)− ε < g (x) < g (x0) + ε

and so g is continuous at x0.
Step 3: Differentiability of g. Fix x0 ∈ QN (a, δ) and i = 1, . . . , N . Consider
the open segment S joining (x0 + tei, g (x0 + tei)) and (x0, g (x0)). By the
mean value theorem there exists (x̄, ȳ) ∈ S such that

0 = f (x0 + tei, g (x0 + tei))− f (x0, g (x0)) =
∂f

∂xi
(x̄, ȳ) (x− x0)

+
∂f

∂y
(x̄, ȳ) (g (x0 + tei)− g (x0)) .

Hence,
g (x0 + tei)− g (x0)

t
= −

∂f
∂xi

(x̄, ȳ)
∂f
∂y (x̄, ȳ)

letting x→ x0 and using the continuity of g and of
∂f
∂x and of

∂f
∂y , we get that

(x̄, ȳ)→ (x0, g (x0)) as t→ 0+ and so

lim
t→0

g (x0 + tei)− g (x0)

t
= −

∂f
∂x (x0, g (x0))
∂f
∂y (x0, g (x0))

.
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This shows that
∂g

∂xi
(x0) = −

∂f
∂xi

(x0, g (x0))
∂f
∂y (x0, g (x0))

.

Since the right-hand side is continuous, it follows that ∂g
∂xi

is continuous. Thus
g is of class C1.
Step 4: The case M ≥ 2 is done using induction on M .

Assuming the implicit function theorem, we can give an alternative proof of
the inverse fuction theorem.

Corollary 78 Let U ⊆ RN be open, let f : U → RN , and let x0 ∈ U . Assume
that f ∈ Cm (U) for some m ∈ N and that

det Jf (x0) 6= 0.

Then there exists B (x0, r) ⊆ U such that f (B (x0, r)) is open, the function

f : B (x0, r)→ f (B (x0, r))

is invertible and f−1 ∈ Cm (f (B (x0, r))).

Second proof. Step 1: We apply the implicit function theorem to the function
h : U × RN → RN defined by

h (x,y) := f (x)− y.

Let y0 = f (x0). Then h (x0,y0) = 0 and

det
∂h

∂x
(x0,y0) = detJf (x0) 6= 0.

Hence, by the implicit function theorem there exists B (x0, r0) ⊂ RN and
B (y0, r1) ⊂ RN such that B (x0, r0) × B (y0, r1) ⊆ U × RN and a function
g : B (y0, r1) → B (x0, r0) of class Cm such that h (g (y) ,y) = 0 for all
y ∈ B (y0, r1), that is,

f (g (y)) = y

for all y ∈ B (y0, r1). This implies that g = f−1. Moreover,

∂g

∂yk
(y) = −

(
∂h

∂x
(g (y) ,y)

)−1
∂h

∂yk
(g (y) ,y) ,

that is,
∂f−1

∂yk
(y) =

(
Jf
(
f−1 (y)

))−1
ek.

Monday, February 18, 2023
Proof. Assume that det Jf (x0) > 0. Since Jf is continuous at x0 there exists
r2 > 0 such that det Jf (x) > 0 for all x ∈ B (x0, r2). Take r := min{r1, r2}
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and consider f−1 : f (B (x0, r)) → B (x0, r). Since det Jf (x) > 0, for every
x ∈ B (x0, r) we can apply the inverse function theorem at the point x to that
the function

f : B (x, rx)→ f (B (x, rx))

is invertible and the inverse is differentiable at y = f(x). Taking 0 < rx < r1−
‖x−x0‖, we have that the two inverse functions coincide (this is an important
point, this theorem only provides a local inverse function so the inverse functions
could be different) and so we have shown that f−1 : f (B (x0, r)) → B (x0, r)
is differentiable. To prove that f−1 is of class Cm, we use the fact that

Jf−1 (y) =
(
Jf
(
f−1 (y)

))−1

for every y ∈ f (B (x0, r)). If m ≥ 2, then since f−1 and Jf are differentiable,
it follows that Jf−1 is differentiable and we can apply the chain rule to compute
the second order order derivatives of f−1. Note that on the right-hand side they
will appear second order derivatives of f computed at f−1 (y) and ONLY first
order derivatives of f−1. Hence, if m ≥ 3 we can apply the chain rule one more
time to obtain that the second order derivatives of f−1 are differentiable. We
will continue in this way.

Exercise 79 Under the hypotheses of Corollary 78, prove that if 0 < r < r0 is
suffi ciently small, then

f : B (x0, r)→ RN

is injective and f(B (x0, r)) is open.

Theorem 80 (Lagrange Multipliers) Let U ⊆ RN be an open set, let f :
U → R be a function of class C1 and let g : U → RM be a class of function C1,
where M < N , and let

F := {x ∈ U : g (x) = 0} .

Let x0 ∈ F and assume that f attains a constrained local minimum (or maxi-
mum) at x0. If Jg (x0) has maximum rank M , then there exist λ1, . . . , λM ∈ R
such that

∇f (x0) = λ1∇g1 (x0) + · · ·+ λM∇gM (x0) .

Monday, February 20, 2023
Proof. Assume that f attains a constrained local minimum at x0 (the case of
a local maximum is similar). Then there exists r > 0 such that f (x) ≥ f (x0)
for all x ∈ U ∩B (x0, r) such that g (x) = 0. By taking r > 0 smaller, and since
U is open, we can assume that B (x0, r) ⊆ U so that

f (x) ≥ f (x0) for all x ∈ B (x0, r) with g (x) = 0. (9)

Since Jg (x0) has maximum rank M and g is of class C1, without loss of gener-
ality, we can assume that Jg has maximum rank M in B (x0, r), which implies
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that M ∩ B (x0, r) is an (N − M)th dimensional manifold of class C1. Let
ϕ : BN−M (z0, r0)→ RN be a local chart, with ϕ(z0) = x0. Then by (9),

p (z) = f (ϕ (z)) ≥ f (x0) = f (ϕ (z0)) = p (z0)

for all z ∈ BN−M (z0, r0). Hence, the function p attains a local minimum at
z0. It follows that

0 = Jp (z0) = ∇f (x0) Jϕ (z0) .

Considering the transpose of this expression, we get

(Jϕ (z0))
T

(∇f (x0))
T

= 0,

which implies that the vector ∇f (x0), i = 1, . . . ,M belong to the kernel of
kernel of the linear transformation T : RN → RM defined by

T (x) := (Jϕ (z0))
T
x, x ∈ RN .

On the other hand, since

g (ϕ (z)) = 0 for all z ∈ BN−M (a, r0) .

by the chain rule,
0 = Jg (x0) Jϕ (z0) ,

Considering the transpose of this expression, we get

0 = (Jϕ (z0))
T

(Jg (x0))
T
,

which implies that the vectors ∇gi (x0), i = 1, . . . ,M , belong to the kernel of
T . Hence,

V := span {∇g1 (x0) , . . . ,∇gM (x0)} ⊆ kerT .

But dimV = rank Jg (x0) = M = N − rank (Jk (a))
T

= dim kerT . Hence,

V = kerT .

Since ∇f (x0) ∈ V , it follows from the definition of V that there exist λ1, . . . ,
λM ∈ R such that

∇f (x0) = λ1∇g1 (x0) + · · ·+ λm∇gM (x0) .

8 Application II of BaFPT: Differential Equa-
tions

An important application of Banach’s contraction principle is the existence and
uniqueness of solutions of ODE.
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Definition 81 Given a set E ⊆ R × Rd, and interval I ⊆ R, and a function
f : E → Rd, we say that a differentiable function u : I → Rd is a solution of
the differential equation

u′ (t) = f (t,u (t)) (10)

in I if (t,u (t)) ∈ E and (10) holds for all t ∈ I.

Definition 82 Given a set E ⊆ R × Rd, an interval I ⊆ R, a function f :
E → Rd, and (t0,u0) ∈ E we say that a differentiable function u : I → Rd is a
solution of the initial value problem or (Cauchy problem){

u′ (t) = f (t,u (t)) ,
u (t0) = u0

(11)

in I if u is a solution of (10) in I, t0 ∈ I and u (t0) = u0.

We say that the Cauchy problem (11) admits a local solution if there exists
an interval I containing t0 and a solution u : I → Rd of (11) in I.

We say that the Cauchy problem (11) admits a global solution if for every
interval I containing t0 and with the property that for every t ∈ I there exists
z ∈ Rd with (t, z) ∈ E, there exists a solution u : I → Rd of (11) in I.

Example 83 Consider the Cauchy problem{
u′(t) = u2(t),
u(0) = 1.

Since f(s) = s2 is continuous, any solution of the Cauchy problem in some
interval I will be of class C1(I). Hence, near t = 0 we have that u(t) > 0 and
so as long as this happens

u′(t)

u2(t)
= 1.

Integrating both sides we get∫ t

0

u′(s)

u2(s)
ds =

∫ t

0

1 ds = t− 0.

Using the change of variable y = u(s) gives∫ u(t)

u(0)

1

y2
dy = t.

Hence, [
−1

y

]u(t)

1

=

∫ u(t)

u(0)

1

y2
dy = t,

that is, − 1
u(t) + 1 = t. Thus, we have shown that as long at u(t) stays positive

it is given by

u(t) =
1

1− t
which exists in the interval (−∞, 1). Thus, u is a local solution but not a global
solution.
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Theorem 84 Let I = [t0, t0 + T0], where t0 ∈ R and T0 > 0, let u0 ∈ Rd and
let f : I ×Bd(u0, r)→ Rd be a continuous function such that

‖f (t, z1)− f (t, z2)‖ ≤ L ‖z1 − z2‖

for all t ∈ I, z1, z2 ∈ Bd(u0, r), and for some L, r > 0. Then there exists
0 < T ≤ T0 such that the initial value problem

u′ (t) = f (t,u (t)) ,

u (t0) = u0

admits a unique solution in some interval [t0, t0 + T ].

Proof. Consider the space X = {g : [t0, t0 + T ] → Rd continuous such that
‖g − u0‖∞ ≤ r}, where 0 < T ≤ T1 will be chosen later and consider the
operator

F : X → X

given by

F (g) (t) = u0 +

∫ t

t0

f (s, g (s)) ds

for g ∈ X and t ∈ [t0, t0 + T ]. By the Weierstrass theorem there exists M :=
max{‖f (t, z)‖ : (t, z) ∈ I ×Bd(u0, r)} ∈ [0,∞). If g ∈ X, then

‖F (g) (t)− u0‖ =

∥∥∥∥∫ t

t0

f (s, g (s)) ds

∥∥∥∥ ≤ ∫ t

t0

‖f (s, g (s))‖ ds ≤M(t−t0) ≤MT ≤ r,

provided T ≤ r/M . Thus, F is well-defined. Let’s prove that F is a contraction.
Take g1, g2 ∈ X. Then

‖F (g1) (t)− F (g2) (t)‖ =

∥∥∥∥∫ t

t0

[f (s, g1 (s))− f (s, g2 (s))] ds

∥∥∥∥
≤
∫ t

t0

‖f (s, g1 (s))− f (s, g2 (s))‖ ds

≤ L
∫ t

t0

‖g1 (s)− g2 (s)‖ ds ≤ L(t− t0) max
y∈[t0,t0+T ]

‖g1 (y)− g2 (y)‖T

≤ LT ‖g1 − g2‖∞ ,

and so taking the maximum over all t ∈ [t0, t0 + T ], we get

‖F (g1)− F (g2)‖∞ ≤ LT ‖g1 − g2‖∞ .

If we take T so small that LT < 1 and t0 ± T ∈ I, then F is a contraction.
Wednesday, February 22, 2023

Proof. By Banach’s contraction principle there exists a unique fixed point
u ∈ X, that is,

u (t) = F (u) (t) = u0 +

∫ t

t0

f (s,u (s)) ds
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for all t ∈ [t0, t0 + T ]. Since u is continuous, the right-hand side is of class C1,
and so u is actually of class C1. By differentiating both sides, we get that u is
a solution of the ODE. Moreover, u (t0) = u0. Since any other solution of the
initial value problem is a fixed point of F , we have uniqueness.

Remark 85 If u (t0 + T ) ∈ Bd(u0, r), then we can prove that the solution
exists for some time after t0 + T . Indeed, set u1 := u (t0 + T ) and consider

F1 (g) (t) = u1 +

∫ t

t0+T

f (s, g (s)) ds, t ∈ [t0 + T, t0 + T1],

where T1 ≤ T0 and F is defined on the set

X1 = {g : [t0 + T, t0 + T1]→ Rd continuous and such that ‖g − u1‖∞ ≤ r1},

where r1 = r − ‖u1 − u0‖ > 0.

Definition 86 Given a set E ⊆ R×Rd, a function f : E → Rd, and a solution
u : I → Rd of the differential equation (10), we say that u is a maximal
solution of (10) if there does not exists an interval J ⊃ I (in the strict sense)
and a solution v : J → Rd of (10) which coincides with u in I. A similar
definition can be given for the Cauchy problem (11).

To prove the existence of maximal solutions we will need to use Zorn’s lemma.
Given two nonempty sets X,Y , a (binary) relation is a subset R ⊆ X × Y .

Usually, we associate a symbol to it, say ∗, so that x ∗ y means that (x, y) ∈ R.
A partial ordering on a nonempty set X is a relation R ⊆ X ×X, denoted

≤, such that

(i) x ≤ x for every x ∈ X; that is (x, x) ∈ R (reflexivity).

(ii) For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y; that is, if (x, y) ∈ R and
(y, x) ∈ R, then x = y (antisymmetry).

(iii) For all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z; that is, if (x, y) ∈ R
and (y, z) ∈ R, then (x, z) ∈ R (transitivity).

The word “partial”means that given x, y ∈ X, in general we cannot always
say that x ≤ y or y ≤ x.

Example 87 Let X = P (R) = {all subsets of R}. Given E,F ∈ X, we say
that E ≤ F if E ⊆ F . Then ≤ is a partial ordering, but given the sets {1, 2, 3}
and {2, 3, 4}, one is not contained into the other.

Given a partially ordered set (X,≤), a totally ordered set, or chain, E ⊆ X
is a set with the property that for all x, y ∈ X, either x ≤ y or y ≤ x (or both).
In the previous example E = {{1, 2, 3} , {1, 2} , {2}} is a chain.
Given a partially ordered set (X,≤), and a set E ⊆ X, an upper bound of

E is an element x ∈ X such that y ≤ x for all y ∈ E. A set E may not have
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any upper bounds. A maximal element of E is an element x ∈ E such that if
x ≤ y for some y ∈ E, then x = y. A set E may not have maximal elements or
it may have maximal elements that are not upper bounds (it can happen that
a maximal element cannot be compared with all the elements of E).

Proposition 88 (Zorn’s lemma) Given a partially ordered set (X,≤), if every
totally ordered subset of X has an upper bound, then X has a maximal element.

Theorem 89 (Maximal Solutions) Let E ⊆ R × Rd and let f : E → Rd
be a function. Assume that there exists a solution function u : I → Rd of the
differential equation (10). Then u can be extended to a maximal solution of
(10).

Proof. Consider the set X of all functions v : J → Rd such that J is an
interval, I ⊆ J and v is a solution of (10) which coincides with u in I. The set
X is nonempty since u belongs to X. We define a partial order in X. Given
two functions v1 : J1 → Rd and v1 : J1 → Rd in X, we say thatr v1 ≤ v2 if
J1 ⊆ J2 and v2 coincides with v1 in J1.
Given a chain Y ⊆ X, write Y = {vα : Jα → Rd}α∈F , for some set F .

Define
Jmax :=

⋃
α∈F

Jα.

We claim that Jmax is an interval. Indeed, if s, t ∈ Jmax, with s < t, let Jα and
Jβ be such that s ∈ Jα and t ∈ Jβ . Since Y is a chain, Jα ⊆ Jβ or Jβ ⊆ Jα. In
both cases s and t belong to the larger interval and so does the segment [s, t].
In turn, [s, t] ⊆ Jmax.
For every t ∈ Jmax let α ∈ F be such that t ∈ Jα and define vmax(t) := vα(t).

Note that the function vmax is well-defined, since if β ∈ F is such that t ∈ Jβ ,
then vβ and vα coincide in Jα ∩ Jβ . Let’s prove that vmax is a solution of (10)
in Jmax. Let t ∈ (Jmax)◦. Then there exists (t− ε, t+ ε) ⊆ Jmax. Reasoning as
before (when we proved that Jmax is an interval), we can find α ∈ F such that
(t− ε, t+ ε) ⊆ Jα. In turn, since vmax = vα in (t− ε, t+ ε), it follows that vmax

is differentiable in (t− ε, t+ ε) and is a solution of (10) in (t− ε, t+ ε). On the
other hand, if Jmax contains one or both of its endpoints, let t ∈ Jmax \ (Jmax)◦,
then there exists α ∈ F such that t ∈ Jα and t is an endpoint of Jα. But then
the function vmax coincides with vα in Jα. In particular, it is differentiable at
t with v′max(t) = v′α(t) = f (t,vα (t)) = f (t,vmax (t)). This shows that vmax

is a solution of (10) in Jmax. By construction vmax ∈ X and vmax ≥ vα for all
α ∈ Y . Thus, Y has an upper bound.
It now follows from Zorn’s lemma that X admits a maximal element.

Theorem 90 (Gronwall’s Inequality) Let I ⊆ R be an interval, let t0 ∈ I,
let u : I → R and β : I → [0,∞) be continuous functions and let α : I → R
locally integrable. Assume that

u(t) ≤ α(t) +

∫ t

t0

β(s)u(s) ds
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for all t ∈ I with t ≥ t0. Then

u(t) ≤ α(t) +

∫ t

t0

α(r)β(r) exp

(∫ t

r

β(s) ds

)
dr

for all t ∈ I with t ≥ t0. Moreover, if α is increasing,

u(t) ≤ α(t) exp

∫ t

t0

β(s) ds

for all t ∈ I with t ≥ t0.

Proof. Consider the function

v(t) :=

∫ t

t0

β(s)u(s) ds exp

(
−
∫ t

t0

β(s) ds

)
.

Then

u(t) ≤ α(t) +

∫ t

t0

β(s)u(s) ds = α(t) + exp

(∫ t

t0

β(s) ds

)
v(t).

On the other hand,

v′(t) = β(t)

(
u(t)−

∫ t

t0

β(s)u(s) ds

)
exp

(
−
∫ t

t0

β(s) ds

)
≤ α(t)β(t) exp

(
−
∫ t

t0

β(s) ds

)
.

Since v(t0) = 0 integrating the previous inequality gives

v(t) ≤
∫ t

t0

α(r)β(r) exp

(
−
∫ r

t0

β(s) ds

)
dr,

and so

u(t) ≤ α(t) + exp

(∫ t

t0

β(s) ds

)∫ t

t0

α(r)β(r) exp

(
−
∫ r

t0

β(s) ds

)
dr

= α(t) +

∫ t

t0

α(r)β(r) exp

(∫ t

r

β(s) ds

)
dr.

If α is increasing then we can bound the right-hand side with

α(t) + α(t)

∫ t

t0

β(r) exp

(∫ t

r

β(s) ds

)
dr.

= α(t) + α(t)

[
− exp

(∫ t

r

β(s) ds

)]r=t
r=t0

= α(t) exp

(∫ t

t0

β(s) ds

)
.

This concludes the proof.
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Remark 91 To understand Gronwall’s inequality, assume that equality holds,
that is, that

u(t) = α(t) +

∫ t

t0

β(s)u(s) ds

for all t ∈ I with t ≥ t0. If α is differentiable, then by differentiating both sides
we get a linear differential equation

u′(t) = α′(t) + β(t)u(t).

To solve it, multiply both sides by exp
(
−
∫ t
t0
β(s) ds

)
. Then

exp

(
−
∫ t

t0

β(s) ds

)
u′(t)−β(t)u(t) exp

(
−
∫ t

t0

β(s) ds

)
= α′(t) exp

(
−
∫ t

t0

β(s) ds

)
which we can write as

d

dt

(
u(t) exp

(
−
∫ t

t0

β(s) ds

))
= α′(t) exp

(
−
∫ t

t0

β(s) ds

)
.

Integrating we get

u(t) exp

(
−
∫ t

t0

β(s) ds

)
= u(t0) +

∫ t

t0

α′(r) exp

(
−
∫ r

t0

β(s) ds

)
dr

= u(t0) +

∫ t

t0

α(r)β(r) exp

(
−
∫ t

t0

β(s) ds

)
dr + α(t) exp

(
−
∫ t

t0

β(s) ds

)
− α(t0)

=

∫ t

t0

α(r)β(r) exp

(
−
∫ t

t0

β(s) ds

)
dr + α(t) exp

(
−
∫ t

t0

β(s) ds

)
where we integrated by parts and used the fact that u(t0) = α(t0). In turn,

u(t) = exp

(∫ t

t0

β(s) ds

)∫ t

t0

α(r)β(r) exp

(
−
∫ r

t0

β(s) ds

)
dr + α(t)

= α(t) +

∫ t

t0

α(r)β(r) exp

(∫ t

r

β(s) ds

)
dr.

Theorem 92 (Global Existence) Let I ⊆ R be an interval,let t0 ∈ I, u0 ∈
Rd, and let f : I × Rd → Rd be a C1 function such that

‖f (t, z)‖ ≤ a(t) + β(t) ‖z‖

for all t ∈ I, z ∈ Rd, and where a : I → [0,∞) is locally integrable integrable
and β : I → [0,∞) is continuous. Then the Cauchy problem (11) admits a
global solution u : I → Rd.
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Exercise 93 Consider the Cauchy problem{
u′ = u(u− 1)(u− 2)
u(0) = u0,

where u0 ∈ R. Study local existence, uniqueness, global existence, and the as-
ymptotic behavior of solutions.

Friday, February 24, 2023
Proof. By Theorem 84 the Cauchy problem (11) admits a solution u : I0 → Rd
in some interval I0 ⊆ I. By Theorem 89 the function u can be extended to a
maximal solution u : J → Rd, where J is an interval contained in I. We claim
that J = I. Assume by contradiction that J 6= I. Then there exists T1 ∈ I \ J .
Assume T1 > t0 (the case T1 < t0 is similar). For every t ∈ J with t ≥ t0 we
have

u (t) = u0 +

∫ t

t0

f (s,u (s)) ds

and so

‖u (t)‖ ≤ ‖u0‖+

∫ t

t0

‖f (t,u (s))‖ ds ≤ ‖u0‖+

∫ t

t0

a(s) ds+

∫ t

t0

β(s) ‖u (s)‖) ds.

Thus we can apply Gronwall’s inequality with α(t) = ‖u0‖ +
∫ t
t0
a(s) ds to

conclude that

‖u (t)‖ ≤ (‖u0‖+

∫ t

t0

a(s) ds) exp

(∫ t

t0

β(s) ds

)
≤
(
‖u0‖+

∫ T1

t0

a(s) ds

)
exp

(∫ T1

t0

β(s) ds

)
=: R.

Let
M := max{‖f (t, z)‖ : (t, z) ∈ [t0, T1]×Bd(u0, R)}.

Then

‖u (t2)− u (t1)‖ =

∥∥∥∥∫ t2

t1

f (t,u (s)) ds

∥∥∥∥ ≤ ∫ t2

t0

‖f (t,u (s))‖ ds ≤M(t2 − t1)

for all t1, t2 ∈ J ∩ [t0, T1] with t1 < t2. Let b := sup J . Since u is Lipschitz
continuous, there exists

lim
t→b−

u (t) = ` ∈ Rd.

If b < T1 consider the Cauchy problem{
v′ (t) = f (t,v (t)) ,
v (b) = `.

45



By Theorem 84 there exists a solution v : [b, b+ T ] → Rd for some T > 0.
Consider the function

w (t) :=

{
u (t) if t < b,
v (t) if b ≤ t ≤ b+ T,

By L’Hôpital’s rule’

lim
t→b−

u (t)− `
t− b = lim

t→b−
u′ (t) = lim

t→b−
f (t,u (t)) = f (b, `) ,

by the continuity of f , which shows that w′− (b) = f (b, `). Similarly, w′+ (b) =
f (b, `), and so w is a solution of the Cauchy problem (11) in J ∪ [b, b+ T ],
which contradicts the fact that u is a maximal solution.

On the other hand if b = T1 /∈ J , then the function

w (t) :=

{
u (t) if t < b,
` if t = b,

satisfies w′− (b) = f (b, `) (again by y L’Hôpital’s rule’) and so is a solution of
the Cauchy problem in J ∪ {b}, which contradicts the fact that u is a maximal
solution.

Remark 94 In view of Theorem 120 below, this corollary continues to hold if
we assume that f is continuous instead of C1.

9 Schauder Fixed Point Theorem

Definition 95 Let (X, d) be a metric space. A set K ⊆ X

(i) is sequentially compact if for every sequence {xn} ⊆ K, there exist a
subsequence {xnk} of {xn} and x ∈ K such that xnk → x as k →∞,

(ii) is totally bounded if for every ε > 0 there exist x1, . . . , xm ∈ K such that

K ⊆
m⋃
i=1

B (xi, ε) .

The following theorem is one of the main results of this subsection.

Theorem 96 Let (X, d) be a metric space. A set K ⊆ X is sequentially com-
pact if and only if K is compact.

Proof. Step 1: Assume that K is sequentially compact. We claim that K is
totally bounded. Assume by contradiction that K is not totally bounded. Then
there exists ε0 > 0 such that K cannot be covered by a finite number of balls
of radius ε0. Fix x1 ∈ K. Then there exists x2 ∈ K such that d(x1, x2) ≥ ε0

(otherwise B (x1, ε0) would cover K). Similarly, we can find x3 ∈ K such that
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d(x1, x3) ≥ ε0 and d(x2, x3) ≥ ε0 (otherwise B (x1, ε0) and B (x2, ε0) would
cover K). Inductively, construct a sequence {xn} ⊆ K such that d(xn, xm) ≥ ε0

for all n,m ∈ N with n 6= m. The sequence {xn} cannot have a convergent
subsequence, which contradicts the fact that K is sequentially compact.
Next we prove that K is compact. Let {Uα}α be an open cover of K. Since

K is totally bounded, for every n ∈ N let Bn be a finite cover of K with balls
of radius 1

n and centers in K. We want to prove that there exists n ∈ N such
that every ball in Bn is contained in some Uα. Note that this would conclude
the proof. Indeed, for every B ∈ Bn fix one Uα containing B. Since Bn is a
finite family and covers K, the subcover of {Uα} just constructed has the same
properties.
To find n, assume by contradiction that for every n ∈ N there exists a ball

B
(
xn,

1
n

)
∈ Bn that is not contained in any Uα. By sequential compactness,

there exist a subsequence {xnk} of {xn} and x ∈ K such that xnk → x as
k → ∞. Since x ∈ K, there exists β such that x ∈ Uβ . But Uβ is open, and
so there exists r > 0 such that B (x, r) ⊆ Uβ . Since, xnk → x, we have that
‖xnk − x‖ < r

2 for all k suffi ciently large. In turn, if
1
nk

< r
2 , by the triangle

inequality, B
(
xnk ,

1
nk

)
⊆ B (x, r) ⊆ Uβ , which contradicts the fact that ball

B
(
xnk ,

1
nk

)
is not contained in any Uα. This shows that K is compact.

Monday, February 27, 2023
Proof. Step 2: Assume thatK is compact. By a theorem proved last semester,
K is closed, and so sequentially closed by Proposition ??. We claim that K is
sequentially compact. To see this, assume by contradiction that there exists a
sequence {xn} ⊆ K that has no subsequence converging in K. Then for every
m ∈ N the number of n ∈ N such that xn = xm is finite (otherwise, if xn =
xm for infinitely many n ∈ N, then this would be a convergent subsequence).
Moreover, the set C := {xn : n ∈ N} has no accumulation points. Indeed, if
C had an accumulation point, then since K is sequentially closed, there would
a subsequence of {xn} converging to K. Since C has no accumulation point,
it follows, in particular, that C is closed. Similarly, for every m ∈ N the sets
Cm := {xn : n ∈ N, n ≥ m} are closed. Moreover, Cm+1 ⊆ Cm and by what we
said before,

∞⋂
m=1

Cm = ∅. (12)

For every m ∈ N the set Um := X \ Cm is open, Um+1 ⊇ Um and by (12) and
De Morgan’s laws

∞⋃
m=1

Um =

∞⋃
m=1

(X \ Cm) = X \
( ∞⋂
m=1

Cm

)
= X.

In particular, {Um}m is an open cover of K. By compactness, it follows that
there m ∈ N such that

K ⊆
m⋃
m=1

Um = Um = X \ Cm,
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which implies that K ∩Cm = ∅. This is a contradiction, since Cm is nonempty
and contained in K.

Remark 97 Neither direction holds for topological spaces.

Definition 98 Given a topological space X, A set E ⊆ X is relatively compact
(or precompact) if its closure E is compact.

Example 99 A finite set K ⊆ RN is compact, sequentially compact, and totally
bounded.

Exercise 100 Let (X, d) be a metric space. Prove that a set K ⊆ X is compact
if and only if K is complete and totally bounded.

Definition 101 Given a vector space X and a set E ⊆ X, the convex hull of
E is the intersection of all convex sets that contain E. It is denoted coE

Remark 102 The convex hull is the smallest convex set that contains E. It
consists of all convex combinations of elements of E, that is

coE =

{
n∑
i=1

θiyi : θi ≥ 0,

n∑
i=1

θi = 1, yi ∈ E, n ∈ N
}
.

The proof is left as an exercise.

Theorem 103 (Schauder Fixed Point Theorem) Let X be a Banach space,
let K ⊂ X be a compact, convex set and let g : K → K be a continuous function.
Then g has a fixed point.

Proof. Fix n ∈ N then by compactness we may find x1, . . . , x`n ∈ K such that
the balls Bi := B(xi,

1
n ), i = 1, . . . , `n, cover K. Let Kn ⊆ K be the convex

hull of {x1, . . . , x`n} and consider the function fn : K → Kn given by

fn(x) :=

`n∑
i=1

dist(x,K \Bi)∑`n
j=1 dist(x,K \Bj)

xi.

Note that if x ∈ K, then x ∈ Bi for some i and so dist(x,K \ Bi) > 0 since
K \ Bi is closed. The function fn is continuous since the distance function is
Lipschitz continuous. Moreover, if x ∈ K, then

‖fn(x)− x‖ ≤
`n∑
i=1

dist(x,K \Bi)∑`n
j=1 dist(x,K \Bj)

‖xi − x‖ <
1

n
. (13)

Define

(fn ◦ g)(x) =

`n∑
i=1

dist(g(x),K \Bi)∑`n
j=1 dist(g(x),K \Bj)

xi, x ∈ Kn.
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Since (fn ◦ g)(x) is a convex combination of x1, . . . , x`n , it belongs to Kn.
Hence, fn ◦ g : Kn → Kn is a continuous function. But Kn is homeomorphic
to a compact convex set of a finite dimensional vector space. Hence, we are in
a position to apply the Brouwer xed point theorem to find yn ∈ Kn such that
fn(g(yn)) = yn. Since K is compact, there exist a subsequence of {yn}n, not
relabeled, and y ∈ K such that yn → y. By applying (13) to g(yn) we get

‖yn − g(yn)‖ = ‖fn(g(yn))− g(yn)‖ < 1

n
.

Letting n→∞ and using the fact that g is continuous gives y = g(y).
Wednesday, March 1, 2023

Given two normed spaces X and Y and a set E ⊆ X and a function f : E →
Y , we say that f is compact if for every bounded sequence {xn}n there exist a
subsequence {xnk}k and y ∈ Y such that g(xnk)→ y as k →∞.

Corollary 104 Let X be a Banach space, let K ⊂ X be a bounded, closed,
convex set and let g : K → K be a continuous and compact function. Then g
has a fixed point.

Proof. The set g(K) is relatively compact, that is, its closure is compact. Let
C be the closure of the convex hull g(K), that is,

C = co(g(K)).

Note that g(K) ⊆ K, and K is closed, so g(K) ⊆ K. Since K is convex,
co(g(K)) ⊆ K, and since K is closed, C ⊆ K. Also, g(C) ⊆ g(K) ⊆ C, so
g : C → C.

Assuming that C is compact (homework), by the previous theorem, g has a
fixed point, so there is x ∈ C ⊆ K such that g(x) = x.

Carathéodory’s theorem improves Remark 102 in that it limits the number
of terms in the convex combination to at most N + 1.

Theorem 105 (Carathéodory) Let E ⊆ RN . Then

coE =

{
N+1∑
i=1

tixi :

N+1∑
i=1

ti = 1, ti ≥ 0, xi ∈ E, i = 1, . . . , N + 1

}
.

Proof. Fix x ∈ coE and let

S := {` ∈ N : x is a convex combination of ` vectors of E} .

Note that by Remark 102, S is nonempty. Let k := minS. We claim that
k ≤ N + 1. Assume by contradiction that k > N + 1 and let

x =

k∑
i=1

tixi,
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where
∑k
i=1 ti = 1, ti ∈ (0, 1), xi ∈ E, i = 1, . . . , k. Since k − 1 > N , the

k − 1 vectors x2 − x1, . . . ,xk − x1 are linearly dependent, and so we may find
s2, . . . , sk ∈ R not all zero such that

k∑
i=2

si (xi − x1) = 0.

Let s1 := −
∑k
i=2 si. Then

∑k
i=1 sixi = 0 and

∑k
i=1 si = 0. Since not all the si

are zero, there must be positive ones. Define

c := min

{
ti
si

: si > 0, i = 1, . . . , k

}
and let m be such that c = tm

sm
. Then ti − csi ≥ 0 for all i = 1, . . . , k (if

si > 0, then this follows from the definition of c, while if si ≤ 0, then −csi ≥ 0),
tm − csm = 0, and

k∑
i=1

(ti − csi) =

k∑
i=1

ti − c
k∑
i=1

si = 1− 0.

Since

x =

k∑
i=1

tixi =

k∑
i=1

tixi − 0 =

k∑
i=1

(ti − csi)xi,

we have written x as a convex combination of less than k elements (tm− csm =
0), which contradicts the definition of k.

Exercise 106 Let K ⊂ RN be compact. Prove that coK is compact.

Exercise 107 Let (X, ‖ · ‖) be a normed space and let K ⊂ X be compact.
Prove that coK is pre-compact.

10 Application of SFPT: ODE

An important application of Schauder’s fixed point theorem is local existence
of solutions to the Cauchy problem in the case that f is only continuous. To
prove it, we need first to understand compactness in the space of continuous
functions.

Definition 108 A metric space (X, d) is separable if there exists a sequence
{xn}n in X that is dense in X.

Example 109 We discuss separability of some of the examples introduced be-
fore.

(i) RN is separable, since QN is dense in RN .
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(ii) Given a nonempty set X with discrete metric

d (x, y) :=

{
1 if x 6= y,
0 if x = y,

X is separable if and only if X is countable. Why?

(iii) Using uniform continuity, one can show that piecewise affi ne functions are
dense in C ([a, b]). By approximating a piecewise affi ne function with one
with rational slopes and endpoints, it follow that C ([a, b]) is separable.

(iv) `∞ = `∞ (N) is not separable (exercise).

(v) The space Cb (R) of continuous bounded functions f : R→ R is not sepa-
rable (exercise).

Exercise 110 Let (X, d) be a compact metric space. Prove that X is separable
and complete.

Exercise 111 Let (X, d) be a separable metric space and let E ⊆ X. Prove
that (E, d) is separable.

The previous exercise fails for topological spaces.

Example 112 Let X := C ([0, 1]). The sequence of functions

fn (x) = xn, x ∈ [0, 1]

is bounded in C ([0, 1]), but no subsequence converges uniformly to a continu-
ous function. This shows that BX (0, 1) is closed and bounded but not com-
pact. Hence, Bolzano—Weierstrass theorem fails for infinite dimensional metric
spaces.

Definition 113 Let (X, dX) and (Y, dY ) be metric spaces and let E ⊆ X. A
family F of functions f : E → Y is said to be equicontinuous at a point x0 ∈ E
if for every ε > 0 there exists δ = δ (x0, ε) > 0 such that

dY (f (x) , f (x0)) ≤ ε

for all f ∈ F and for all x ∈ E with d (x, x0) ≤ δ. The family F of functions
f : E → Y is said to be uniformly equicontinuous if for every ε > 0 there exists
δ > 0 such that

dY (f (x) , f (y)) ≤ ε

for all f ∈ F and for all x, y ∈ E with d (x, y) ≤ δ.

Remark 114 To negate equicontinuity at one point x0 it is enough to show
that there exist a sequence {xn}n in E and a sequence {fn}n in F such that
xn → x0 but dY (fn(xn), fn(x0)) 9 0.
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Example 115 The sequence of functions

fn (x) = xn, x ∈ [0, 1] ,

is not equicontinuous at x = 1. To see this, take xn = 1− 1
n → 1. Then

fn(1)− fn(xn) = 1−
(

1− 1

n

)n
→ 1− 1

e
6= 0,

and so by the previous remark, {fn}n is not equicontinuous at x = 1.

Example 116 Consider two metric spaces (X, dX) and (Y, dY ) and a family F
of functions from X into Y . If there exist α ∈ (0, 1] if there exists L > 0 such
that

dY (f (x1) , f (x2)) ≤ L (dX (x1, x2))
a

for all x1, x2 ∈ X and for all f ∈ F , then the family F is uniformly equicontin-
uous. The sequence of functions

fn (x) =
xn

n
, x ∈ [0, 1] ,

is pointwise bounded and equicontinuous at x = 1. Indeed,

f ′n (x) = xn−1, x ∈ [0, 1] ,

so that maxx∈[0,1]

∣∣xn−1
∣∣ = 1, which shows that the sequence {fn} is equi-

Lipschitz (take L = 1). Hence, it is (uniformly) equicontinuous.

Friday, March 3, 2023

Theorem 117 (Ascoli—Arzelà) Let (X, d) be a separable metric space and let
F ⊆ Cb (X) be a family of functions. Assume that F is bounded and equicontin-
uous at every point x ∈ X. Then every sequence {fn}n in F has a subsequence
{fnj}j that converges pointwise to a function g ∈ Cb(X) and uniformly on every
compact subset of X.

Proof. Without loss of generality, we may assume that F has infinite many
elements, otherwise there is nothing to prove. Since X is separable, there exists
a countable set E ⊆ X such that X = E. Since F is bounded, there exists
M > 0 such that

‖f‖∞ = sup
x∈X
|f(x)| ≤M (14)

for all f ∈ F .
Step 1: Let {fn}n be a sequence in F . We claim that there exists a subsequence{
fnj
}
j
such that the limit limj→∞ fnj (x) exists in R for all x ∈ E. The proof

makes use of the Cantor diagonal argument. Write E = {xk : k ∈ G ⊆ N}.
Since the set

{fn (x1) : n ∈ N}
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is bounded in R by (14), by the Bolzano—Weierstrass theorem we can find a
sequence {fn,1}n of {fn}n for which there exists the limit

lim
n→∞

fn,1 (x1) = `1 ∈ R.

Since the set
{fn,1 (x2) : n ∈ N}

is bounded in R by (14), again by the Bolzano—Weierstrass theorem we can find
a subsequence sequence {fn,2}n of {fn,1}n for which there exists the limit

lim
n→∞

fn,2 (x2) = `2 ∈ R.

By induction for every k ∈ G, k > 1, we can find a subsequence {fn,k}n of
{fn,k−1}n for which there exists the limit

lim
n→∞

fn,k (xk) = `k ∈ R.

We now consider the diagonal elements of the infinite matrix, that is, the se-
quence {fn,n}n. For every fixed xk ∈ E we have that the sequence {fn,n (xk)}∞n=k
is a subsequence of {fn,k (xk)}n, and thus it converges to `k as n → ∞. This
completes the proof of the claim. Set gn := fn,n and define g : E → R by

g (x) := lim
n→∞

gn (x) ∈ R, x ∈ E. (15)

Step 2: Fix ε > 0 and x ∈ X. By equicontinuity, there exists δx,ε > 0
(depending on x and ε) such that

|fn (x)− fn (y)| < ε (16)

for all n ∈ N and for all y ∈ X with d (x, y) < δx,ε. Since E is dense in X
there exists y ∈ E with d (x, y) < δx,ε. Using (15), we have that there exists an
integer nε,y ∈ N (depending on ε and y) such that

|gn (y)− g (y)| < ε (17)

for all n ∈ N with n ≥ nε,y. Using (16) and (17), we have that

|gn (x)− gm (x)| ≤ |gn (x)− gn (y)|+ |gn (y)− g (y)|
+ |gm (y)− g (y)|+ |gm (y)− gm (x)| < 4ε

for all n,m ∈ N with n,m ≥ nε,y, which shows that the sequence {gn (x)} is a
Cauchy sequence in R. Hence, there exists

g (x) := lim
n→∞

gn (x) ∈ R. (18)

Moreover, since
|gn (x)− gn (y)| < ε
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for all y ∈ X with d (x, y) < δx,ε and for all n ∈ N, letting n→∞, we conclude
that

|g (x)− g (y)| ≤ ε

for all y ∈ X with d (x, y) < δx,ε, which shows that g is continuous at x (with
the same δx,ε)
Since this is true for every x ∈ X, we have proved that {gn} converges

pointwise to a continuous function g. By (14), we have that |gn(x)| ≤M for all
x ∈ X. Letting n→∞, we conclude that

|g (x)| ≤M

for all x ∈ X. This proves that g belongs to the space Cb(X).
Step 3: It remains to show that {gn} converges to g uniformly on compact
sets. Let K ⊆ X be compact. Fix ε > 0 and let δx,ε > 0 be the number given
in (16). Since

K ⊆
⋃
x∈K

B(x, δx,ε),

by compactness there exist x1, . . . , xM ∈ K such that

K ⊆
M⋃
i=1

B(xi, δxi,ε).

Using (18), for all i = 1, . . . ,M we have that there exists an integer nε,xi ∈ N
such that

|gn (xi)− g (xi)| ≤ ε (19)

and for all n ∈ N with n ≥ nε,xi . Let nε = max{nε,x1
, . . . , nε,xM }. Let n ≥ nε

and x ∈ K. Then x belongs to B(xi, δxi,ε) for some i. Using (16) and (19), we
have that

|gn (x)− g (x)| ≤ |gn (x)− gn (xi)|+ |gn (xi)− g (xi)|+ |g (xi)− g (x)| ≤ 3ε

for all n ∈ N with n ≥ nε. Thusm, for all x ∈ K and all n ∈ N with n ≥ nε, we
have

sup
x∈K
|gn (x)− g (x)| ≤ 3ε,

which shows that {gn} converges to g uniformly on K.

Remark 118 If we assume the stronger hypothesis that F is uniformly equi-
continuous, then the function g turns out to be uniformly continuous.

Monday, March 13, 2023

Corollary 119 Let (X, d) be a compact metric space. Then F ⊆ C (X) is
compact if and only if is closed, bounded, and uniformly equicontinuous.
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Proof. If F is closed, bounded, and uniformly equicontinuous, then by the
previous theorem it follows that F is sequentially compact, and so by Theorem
96, F is compact.
Conversely, assume that F ⊆ C (X) is compact. Then by a theorem proved

last semester, F is bounded. It remains to show that F is uniformly equicon-
tinuous. Assume, by contradiction, that this is not the case. Then there exist
ε > 0, {fn}n in F , and {xn} , {yn} in X such that

|fn (xn)− fn (yn)| > ε

and d (xn, yn) ≤ 1
n . Since X is compact (and so sequentially compact), there

exist a subsequence {xnk}k of {xn}n and x0 ∈ X such that d (xnk , x0) → 0
as k → ∞. In turn, since {fnk}k is in F , again by Theorem 96, there exist a

subsequence
{
fnkj

}
j
of {fnk}k and f0 ∈ C (X) such that dC(X)(fnkj , f0) → 0

as j →∞. In particular, for all j suffi ciently large, say, j ≥ j0,

max
x∈X

∣∣∣fnkj (x)− f0 (x)
∣∣∣ < ε

4
. (20)

Using the continuity of f0 at x0, we may find δ = δ (x0, ε) > 0 such that

|f0 (x)− f0 (x0)| < ε

4
(21)

for all x ∈ X with d (x, x0) ≤ δ. Since d(xnkj , x0) → 0 and d(xnkj , ynkj ) → 0,
by taking j0 larger, if necessary, we may assume that d(xnkj , x0) ≤ δ and
d(ynkj , x0) ≤ δ for all j ≥ j0. Hence, by (20) and (21), for all j ≥ j0,

ε <
∣∣∣fnkj (xnkj )− fnkj (ynkj )

∣∣∣ ≤ ∣∣∣fnkj (xnkj )− f0(xnkj )
∣∣∣+
∣∣∣f0(xnkj )− f0(x0)

∣∣∣
+
∣∣∣f0(x0)− f0(ynkj )

∣∣∣+
∣∣∣f0(ynkj )− fnkj (ynkj )

∣∣∣ < ε

4
+
ε

4
+
ε

4
+
ε

4
= ε,

which is a contradiction.
As an application of the previous theorem and of Schauder’s fixed point

theorem, we can prove local existence of the Cauchy problem only assuming f
continuous.

Theorem 120 (Local Existence) Let I = [t0, t0 + T0], where t0 ∈ R and
T0 > 0, let u0 ∈ Rd, let r > 0, and let f : I × Bd(u0, r) → Rd be a continuous
function. Then there exists 0 < T ≤ T0 such that the Cauchy problem{

u′ (t) = f (t,u (t)) ,
u (t0) = u0

admits a solution in some interval [t0, t0 + T ].

Proof. By the Weierstrass theorem there exists

M := max{‖f (t, z)‖ : (t, z) ∈ I ×Bd(u0, r)}.
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Consider 0 < T ≤ min{T0, r/M} and let X = C([t0, t0 + T ];Rd), with the
supremum norm ‖·‖∞. Let K = {g ∈ C([t0, t0 + T ] ;Rd) : ‖g − u0‖∞ ≤ r}.
Note that K is closed and convex but not compact. Consider the the function

F : K → X

given by

F (g) (t) = u0 +

∫ t

t0

f (s, g (s)) ds

for g ∈ X and t ∈ [t0, t0 + T ]. We claim that F (K) ⊆ K. If g ∈ K, then

‖F (g) (t)− u0‖ =

∥∥∥∥∫ t

t0

f (s, g (s)) ds

∥∥∥∥ ≤ ∫ t

t0

‖f (s, g (s))‖ ds ≤M(t−t0) ≤MT ≤ r,

provided T ≤ r/M .
Let’s prove that F is a sequentially continuous. Let gn ∈ K be such that

gn → g uniformly in [a, b]. Then

‖F (gn) (t)− F (g) (t)‖ =

∥∥∥∥∫ t

t0

[f (s, gn (s))− f (s, g (s))] ds

∥∥∥∥
≤
∫ t0+T

t0

‖f (s, gn (s))− f (s, g (s))‖ ds

and so taking the maximum over all t ∈ [t0, t0 + T ], we get

‖F (gn)− F (g)‖∞ ≤
∫ t0+T

t0

‖f (s, gn (s))− f (s, g (s))‖ ds.

Since ‖f (s, gn (s))− f (s, g (s))‖ ≤ 2M and f (s, gn (s)) − f (s, g (s)) → 0, it
follows by the Lebesgue dominated convergence theorem the righ-hand side goes
to zero. This shows that F is sequentially continuous.
Next we shows that F is compact. Let gn ∈ K. We claim that the set

{F (gn) : n ∈ N} is bounded and uniformly equicontinuous in X. We have

‖F (gn) (t2)− F (gn) (t1)‖ =

∥∥∥∥∫ t2

t1

[f (s, gn (s))− f (s, gn (s))] ds

∥∥∥∥
≤
∫ t2

t1

‖f (s, gn (s))‖ ds ≤M(t2 − t1),

which proves that {F (gn) : n ∈ N} uniformly equicontinuous in X. We have
already seen that F (K) ⊆ K. Hence, we can apply the Ascoli-Arzelá’s theorem
to show that {F (gn)}n admits a convergence subsequence. This proves that F
is compact.
By Schauder’s theorem there exists a fixed point u ∈ X, that is,

u (t) = F (u) (t) = u0 +

∫ t

t0

f (s,u (s)) ds
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for all t ∈ [t0, t0 + T ]. Since u is continuous, the right-hand side is of class C1,
and so u is actually of class C1. By differentiating both sides, we get that u is
a solution of the ODE. Moreover, u (t0) = u0. Since any other solution of the
initial value problem is a fixed point of F , we have uniqueness.
In general the solution will not be unique.

Example 121 Consider the Cauchy problem{
u′(t) =

√
|u(t)|,

u(0) = 0.

One solution is u1(t) ≡ 0. To find a second assume that u(t) = 0 for all t ∈ [0, a]
and that u(t) 6= 0 for t > a. Then, since u′ > 0, it follows that u is strictly
increasing after a. In particular, for t > a,

u′(t)√
u(t)

= 1.

Integrating both sides between a+ ε and t we get∫ t

a+ε

u′(s)√
u(s)

ds =

∫ t

a+ε

1 ds = t− (a+ ε).

Using the change of variable y = u(s) gives∫ u(t)

u(a+ε)

1
√
y
dy = t− a− ε.

Hence,
[2
√
y]
u(t)
u(a+ε) = t− a− ε,

that is, 2
√
u(t)− 2

√
u(a+ ε) = t− a− ε. Since u is continuous, letting ε→ 0+

gives 2
√
u(t)− 0 = t− a. Since u > 0 for t > a, we have that

u(t) =
1

4
(t− a)2.

Thus for every a > 0, the function

u(t) =

{
0 for t ≤ a,
1
4 (t− a)2 for t > a,

is a solution.

Wednesday, March 15, 2023
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Part II

Functions Spaces
11 Continuous Functions

We have already studied completeness and compactness in the space of contin-
uous functions. It remains to study density and separability.

Theorem 122 (Stone) Let (X, d) be a compact metric space and let F ⊆
C (X) be a family of functions such that

(i) F separates points; that is, if x, y ∈ X with x 6= y, then there exists f ∈ F
such that f(x) 6= f (y),

(ii) F contains the constant functions,

(iii) F is an algebra; that is, if f, g ∈ F and t ∈ R, then f + g, fg, and tf
belong to F .

Then F is dense in C (X).

We begin with some preliminary results.

Lemma 123 (Dini) Let (X, d) be a metric space, let K ⊆ X be a compact set
and let fn : K → R be continuous functions such that fn+1(x) ≤ fn(x) for all
x ∈ K and all n ∈ N. If {fn} converges pointwise in K to a continuous function
f : K → R, then {fn} converges uniformly in K to f .

Proof. Define gn := fn − f . Then gn is continuous, 0 ≤ gn+1(x) ≤ gn(x) for
all x ∈ K and all n ∈ N and {gn} converges pointwise to zero in K. We need
to prove that {gn} converges uniformly to zero in K. Let ε > 0 and consider
g−1
n ((−∞, ε)). Since gn is continuous, there exists an open set Un such that

Un ∩K = g−1
n ((−∞, ε)).

Moreover, since gn+1 ≤ gn, if gn(x) < ε, then gn+1(x) < ε, and so g−1
n ((−∞, ε)) ⊆

g−1
n+1((−∞, ε)). Thus, we can assume that Un ⊆ Un+1 for every n. We claim that
the family of open sets Un coversK. Indeed, given x ∈ K, since limn→∞ gn(x) =
0, there exists nε,x ∈ N such that 0 ≤ gn(x) < ε for all n ≥ nε,x. Thus, x ∈ Un
for all n ≥ nε,x. This proves the claim.
Since K ⊆

⋃
n Un, by compactness, there exists N such that K ⊆

⋃N
n=1 Un.

But since Un ⊆ Un+1, if follows that K ⊆ UN ⊆ Un for all n ≥ N , that is

0 ≤ gn(x) < ε

for all x ∈ K and all n ≥ N . This implies that

sup
K
|gn| ≤ ε

for all n ≥ N , which is what we wanted to prove.
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Example 124 If the hypothesis that K is compact is dropped, then the lemma
fails. Take K = [0, 1) and fn(x) = xn. Then fn converges pointwise to 0,
fn ≥ fn+1, but we do not have uniform convergence, since sup[0,1) |fn − 0| =
supx∈[0,1) x

n = 1.

Example 125 If the hypothesis that f is continuous is dropped, then the the-
orem fails. Take K = [0, 1] and fn(x) = xn. Then fn converges pointwise
to

f(x) =

{
1 if x = 1,
0 if x < 1,

fn ≥ fn+1, but we do not have uniform convergence, since sup[0,1] |fn − f | =
supx∈(0,1) x

n = 1.

Lemma 126 For n ∈ N and x ∈ [0, 1] define recursively

p0(x) := 0, pn(x) := pn−1(x) +
1

2

[
x− p2

n−1(x)
]
.

Then {pn}n is a sequence of polynomials converging uniformly to f(x) :=
√
x,

x ∈ [0, 1].

Proof. That each pn is a polynomial follows by induction. We claim that

0 ≤ pn(x) ≤
√
x

for all x ∈ [0, 1] and all n. Indeed, assume this is true for n− 1, then

pn(x) = pn−1(x) +
1

2

[
x− p2

n−1(x)
]
≤
√
x

if and only if

(
√
x− pn−1(x))

[
1− 1

2
(pn−1(x) +

√
x)

]
≥ 0,

which holds since
√
x− pn−1(x) ≥ 0 and 1

2 (pn−1(x) +
√
x) ≤

√
x ≤ 1. Thus the

claim holds.
Since x−p2

n−1(x) ≥ 0, it follows that pn(x) ≥ pn−1(x), and thus there exists

0 ≤ lim
n→∞

pn(x) = g(x) ≤
√
x.

Letting n → ∞ in pn(x) = pn−1(x) + 1
2

[
x− p2

n−1(x)
]
gives g(x) = g(x) +

1
2

[
x− g2(x)

]
, which shows that g(x) =

√
x. Since g is continuous, by Dini’s

theorem (your homework) applied to {f−pn}n we conclude that {pn}n converges
uniformly to f .

Exercise 127 Let (X, d) be a metric space and let E ⊆ X. Then x0 ∈ E if and
only if there exists a sequence {xn}n in E such that xn → x0
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We now turn to the proof of Theorem 122.
Proof of Theorem 122. Step 1: We claim that F satisfies properties (i)-
(iii). We only need to prove property (iii). Given f, g ∈ F and t ∈ R, by the
previous exercise there exist {fn}n , {gn}n in F such that d∞ (fn, f) → 0 and
d∞ (gn, f) → 0. By property (iii), fn + gn, fngn, and tfn belong to F . Since
d∞ (fn + gn, f + g)→ 0, d∞ (fngn, fg)→ 0, and d∞ (tfn, tf)→ 0 (exercise), it
follows again by the previous exercise, that f + g, fg, and tf belong to F . It
remains to show that F . = C (X).
Step 2: We prove that if f belongs to F , then so does |f |. Since X is compact,
by the Weierstrass theorem f is bounded by some constant M > 0. Define

g(x) :=
|f(x)|
M

, x ∈ X.

Then g(x) ∈ [0, 1]. In view of (iii), it suffi ces to show that g belongs to F . By
the previous exercise there exists a sequence of polynomials pn that converges
uniformly in [0, 1] to the function h (t) :=

√
t, t ∈ [0, 1]. Define

gn(x) := pn

((
f(x)

M

)2
)
, x ∈ X.

Then gn converges uniformly in X to the function

√(
f
M

)2

= g. Since F is an

algebra, we have that gn ∈ F . Hence, using the fact that F is closed, it follows
that g belongs to F .
Step 3: We prove that if f, g belong to F , then so do max {f, g} and min {f, g}.
It is enough to observe that

max {f, g} =
1

2
[f + g + |f − g|] ,

min {f, g} =
1

2
[f + g − |f − g|] .

Step 4: We prove that if x, y ∈ X with x 6= y and α, β ∈ R, then there exists
g ∈ F such that g(x) = α and g (y) = β. To see this, use property (i) to find
f ∈ F such that f(x) 6= f (y) and define

g(z) :=
α (f(z)− f (y))− β (f(x)− f(z))

f(x)− f (y)
, z ∈ X.

Friday, March 17, 2023
Proof. Step 5: We are now ready to prove that F = C (X). Let f ∈ C (X)
and ε > 0. By the previous step, for every x, y ∈ X there exists a function
gx,y ∈ F such that gx,y(x) = f(x) and gx,y (y) = f (y). Define

Ux,y := {z ∈ X : gx,y(z) < f(z) + ε} ,
Vx,y := {z ∈ X : gx,y(z) > f(z)− ε} .
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By the continuity of gx,y and f we have that Ux,y and Vx,y are open sets contain-
ing x and y. Since {Ux,y}x∈X is an open cover of X, it follows by compactness
that there exist x(y)

1 , . . . , x
(y)
my ∈ X such that

my⋃
i=1

U
x

(y)
i ,y

= X. (22)

Define
gy := min{g

x
(y)
1 ,y

, . . . , g
x

(y)
my ,y
}.

Then gy belongs to F by Step 3 and by (22) and the definition of Uxi,y and
Vxi,y,

gy(z) < f(z) + ε for all z ∈ X, (23)

gy(z) > f(z)− ε for all z ∈ Vy :=

my⋂
i=1

Vxi,y. (24)

Since Vy is open and contains y, the family {Vy}y∈X is an open cover of X.
Again by compactness, there exist y1, . . . , yn ∈ X such that

n⋃
i=1

Vyi = X.

Define
g := max {gy1

, . . . , gyn} .

Then g belongs to F by Step 3 and by (23) and (24),

f(z)− ε < g(z) < f(z) + ε for all z ∈ X.

Hence maxz∈X |f(z)− g(z)| ≤ ε. Since g ∈ F , we may find h ∈ F such that
maxz∈X |h(z)− g(z)| ≤ ε, and thus, by the triangle inequality,maxz∈X |f(z)− h(z)| ≤
2ε. This concludes the proof.

Exercise 128 (Weierstrass) Let K ⊂ RN be a compact set. Prove that every
continuous function f : K → R is the uniform limit in K of a sequence of
polynomials.

Corollary 129 Let (X, d) be a compact metric space. Then C (X) is separable.

Proof. Since X is separable by Exercise 110, there exists a sequence {xn}n in
X such that {xn : n ∈ N} = X. For every n define

fn(x) := d (x, xn) , x ∈ X.

Then fn is continuous. We claim that {fn}n separates points. Indeed, assume
the contrary. Then there exist x, y ∈ X such that fn(x) = fn (y) for every
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n ∈ N. By density we may find a subsequence {xnk}k X of {xn}n such that
xnk → x. Hence,

d (y, xnk) = fnk (y) = fnk(x) = d(x, xnk)→ 0

as k → ∞. Thus, xnk → y. By the uniqueness of limits, it follows that x = y.
This proves the claim.
Define f0 := 1 and for every k ∈ N and n1, . . . , nk ∈ N0 define

fn1,...,nk(x) := fn1(x) · · · fnk(x), x ∈ X.

Consider the family F given by all finite linear combinations of functions of the
form fn1,...,nk . Then F satisfies the hypotheses of Stone’s theorem, and so F is
dense in C (X). On the other hand, the family F ′ given by all finite rational
linear combinations of functions of the form fn1,...,nk is countable. For every
f ∈ C (X) and ε > 0 we may find g ∈ F such that

d∞(f, g) ≤ ε.

Since g is a finite linear combinations of functions of the form fn1,...,nk , using
the density of the rationals in the real, we may find h ∈ F such that

d∞ (h, g) ≤ ε.

This shows that F ′ is dense in C (X) and, in turn, that C (X) is separable.

Exercise 130 Prove that Cb (R) is not separable.

12 Lp Spaces

Let (X,M, µ) be a measure space. For 1 ≤ p <∞, we define the space

Mp (X) :=
{
f : X → R measurable and ‖f‖Mp(X) <∞

}
,

where

‖f‖Mp(X) :=

(∫
X

|f |p dµ
)1/p

.

For p =∞, we define

M∞ (X) := {f : X → R measurable and bounded} ,

where
‖f‖M∞(X) := sup

x∈X
|f (x)| .

Note that property (ii) of the previous definition is satisfied. Indeed, for 1 ≤
p <∞ and for t ∈ R,

‖tf‖Mp(X) =

(∫
X

|tf |p dµ
)1/p

=

(
|t|p
∫
X

|f |p dµ
)1/p

= |t|
(∫

X

|f |p dµ
)1/p

.
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Next we study the triangle inequality.
Let q be the Hölder conjugate exponent of p, i.e.,

q :=


p
p−1 if 1 < p <∞,
∞ if p = 1,
1 if p =∞.

Note that, with an abuse of notation, we have

1

p
+

1

q
= 1.

In the sequel, the Hölder conjugate exponent of p will often be denoted by p′.

Theorem 131 (Hölder’s inequality) Let (X,M, µ) be a measure space, let
1 ≤ p ≤ ∞, and let q be its Hölder conjugate exponent. If f , g : X → R are
Lebesgue measurable functions, then∫

X

|fg| dµ ≤
(∫

X

|f |p dµ
)1/p(∫

X

|g|q dµ
)1/q

(25)

if 1 < p <∞, ∫
X

|fg| dµ ≤ sup
x∈X
|g (x)|

∫
X

|f | dµ (26)

if p = 1, and ∫
X

|fg| dµ ≤ sup
x∈X
|f (x)|

∫
X

|g| dµ (27)

if p =∞. In particular, if f ∈Mp (X) and g ∈Mp (X) then fg ∈M1 (X).

Monday, March 20, 2023
Proof. If ‖f‖Mp(X) = 0 or ‖g‖Mq(X) = 0, then f (x) g (x) = 0 for µ a.e. x ∈ X
and so there is nothing to prove. Thus assume that ‖f‖Mp(X), ‖g‖Mq(X) > 0.
If ‖f‖Mp(X) = ∞ or ‖g‖Mq(X) = ∞ then the right-hand side is ∞ and so the
inequality (25) holds. Hence in what follows we consider the case ‖f‖Mp(X),
‖g‖Mq(X) ∈ (0,∞).
Assume that 1 < p <∞. Since the function t ∈ [0,∞) 7→ ln t is concave and

1
p + 1

q = 1, for any a, b > 0, we have

ln

(
1

p
ap +

1

q
bq
)
≥ 1

p
ln ap +

1

q
ln bq = ln ab,

that is
1

p
ap +

1

q
bq ≥ ab,

which is known as Young’s inequality.
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If we take a = |f (x)| and b = |g (x)|, we get

|f (x) g (x)| ≤ 1

p
|f (x)|p +

1

q
|g (x)|q .

Upon integration, we obtain∫
X

|fg| dµ ≤ 1

p

∫
X

|f |p dµ+
1

q

∫
X

|g|q dµ

=
1

p
‖f‖pMp(X) +

1

q
‖g‖qMq(X) .

To obtain the desired result, it suffi ces to replace f with tf , where t > 0, to
obtain ∫

X

|fg| dµ ≤ tp−1

p
‖f‖pMp(X) +

1

tq
‖g‖qMq(X) =: h (t) .

By minimizing the function h, we find that for

t =
‖g‖q/pMq(X)

‖f‖Mp(X)

the inequality (25) holds.
If p = 1 and q =∞, then∫

X

|fg| dµ ≤
∫
X

|f | sup
x∈X
|g (x)| dµ

= sup
x∈X
|g (x)|

∫
X

|f | dµ.

The case p =∞ is similar.

Exercise 132 Prove that if f 6= 0 and the right-hand side of (25) is finite, then
the equality in (25) holds if and only if there exists c ≥ 0 such that

1. |g| = c |f |p−1 if 1 < p <∞;

2. |g| ≤ c and |g (x)| = c whenever f (x) 6= 0 if p = 1;

3. |f | ≤ c and |f (x)| = c whenever g (x) 6= 0 if p =∞.

Theorem 133 (Minkowski’s inequality) Let (X,M, µ) be a measure space,
let 1 ≤ p ≤ ∞, let X ∈M and let f , g : X → R be measurable functions. Then,

‖f + g‖Mp(X) ≤ ‖f‖Mp(X) + ‖g‖Mp(X) (28)

whenever ‖f + g‖Mp(X) is well-defined. In particular, if f , g ∈ Mp (X), then
f + g ∈Mp (X) and (28) holds.
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Proof. If ‖f‖Mp(X) = ∞ or ‖g‖Mp(X) = ∞ then the right-hand side of
Minkowski’s inequality is ∞, and so there is nothing to prove. Thus assume
that ‖f‖Mp(X), ‖g‖Mp(X) <∞.

We consider first the case 1 < p < ∞. By the convexity of the function
t ∈ [0,∞) 7→ tp, for any a, b > 0, we have

(a+ b)
p

= 2p
(
a+ b

2

)p
≤ 2p

2
ap +

2p

2
bp = 2p−1 (ap + bp) ,

and so∫
X

|f + g|p dµ ≤
∫
X

(|f |+ |g|)p dµ ≤ 2p−1

(∫
X

|f |p dµ+

∫
X

|g|p dµ
)
,

which shows that f + g ∈Mp (X). To prove Minkowski’s inequality, we observe
that

‖f + g‖pMp =

∫
X

|f + g|p dµ =

∫
X

|f + g| · |f + g|p−1
dµ

≤
∫
X

|f | · |f + g|p−1
dµ+

∫
X

|g| · |f + g|p−1
dµ.

By applying Hölder’s inequality, we get

‖f + g‖pMp(X) ≤
(∫

X

|f |p dµ
) 1
p
(∫

X

|f + g|(p−1)p′
dµ

) 1
p′

+

(∫
X

|g|p dµ
) 1
p
(∫

X

|f + g|(p−1)p′
dµ

) 1
p′

≤
(
‖f‖Mp(X) + ‖g‖Mp(X)

)
‖f + g‖

p
p′

Mp(X) ,

where we have used the fact that (p− 1) p′ = p. If ‖f + g‖Mp(X) = 0, then
there is nothing to prove, thus assume that ‖f + g‖Mp(X) ∈ (0,∞). Hence, we

may divide both sides of the previous inequality by ‖f + g‖
p
p′

Mp(X) to obtain

‖f + g‖Mp ≤ ‖f‖Mp + ‖g‖Mp ,

where we have used the fact that p− p
p′ = 1.

The cases p = 1 and p =∞ are straightforwad.
We recall that

Definition 134 Given a vector space X, a norm is a function ‖·‖ : X → [0,∞)
such that

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖tx‖ = |t|‖x‖ for all t ∈ R and x ∈ X;
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(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

In view of the previous theorem we now have that for 1 ≤ p <∞, properties
(ii) and (iii) of Definition 134 are satisfied. The problem is property (i). Indeed,
if

‖f‖Mp =

(∫
X

|f |p dµ
)1/p

= 0,

then by there exists a set E0 ∈ M with µ (E0) = 0 such that f (x) = 0 for all
x ∈ X \ E0. This does not imply that the function f is zero. For example, the
Dirichlet function

f (x) :=

{
1 if x ∈ Q,
0 otherwise,

has exactly this property.
To circumvent this proplem, given two measurable functions f , g : X → R,

we say that f is equivalent to g, and we write

f ∼ g if f(x) = g (x) for µ a.e. x ∈ X. (29)

Note that ∼ is an equivalence relation in the class of measurable functions.
Moreover, if f(x) = 0 for µ a.e. x ∈ X, then f ∼ 0, or, equivalently, f belongs
to equivalence class [0].

Definition 135 Let (X,M, µ) be a measure space, let X ∈M, and let 1 ≤ p <
∞. We define

Lp (X) := Mp (X)� ∼=
{

[f ] : f : X → R measurable and ‖f‖Mp(X) <∞
}
.

In the space Lp (X) we define the norm

‖[f ]‖Lp(X) := ‖f‖Mp(X) .

Note that ‖[f ]‖Lp does not depend on the choice of the representative. We now
have that (Lp (X) , ‖·‖Lp) is a normed space, since properties (i)-(ii) of Definition
134 are satisfied.
Indeed, if f ∈ Lp ([0, 1]) (with the Lebsgue measure), then after the identi-

fication f is actually an equivalence class. Hence, for example, talking about
the value f (1) or f

(
1
2

)
make no sense. Indeed, given any number y ∈ R, in

the equivalence class [f ] there is always a function g such that g (1) = y. Just
define

g (x) :=

{
y if x = 1,
f (x) otherwise.

Then f and g differ only at the point 1, and so f ∼ g.
Let’s now consider the case p = ∞. Unlike the case 1 ≤ p < ∞, the

supremum of a function changes if we change the function even at one point.
Thus, we cannot take as a norm ‖[f ]‖L∞(X) := supx∈X |f (x)|. What we need
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is a notion of supremum that does not change if we modify a function on a set
of measure zero.
Let (X,M, µ) be a measure space. Given a measurable function f : X → R

we define the essential supremum esssup f of the function f as

esssup f := inf {t ∈ R : f (x) ≤ t for µ a.e. x ∈ X} .

Note that if M := esssup f < ∞, then by taking tn := M + 1
n we can find

En ∈M with µ (En) = 0 such that

f (x) ≤M +
1

n
for all x ∈ X \ En.

Take

E∞ :=

∞⋃
n=1

En.

Then µ (E∞) ≤
∑∞
n=1 µ (En) = 0, and if x ∈ X \ E∞, then

f (x) ≤M +
1

n
for all n ∈ N.

Letting n→∞, we get that f (x) ≤M for all x ∈ X \E∞. Conversely, if there
are t ∈ R and E0 ∈ M with µ (E0) = 0 such that f (x) ≤ t for all x ∈ X \ E0,
then by definition of esssup f , we have that esssup f ≤ t <∞. This shows that
esssup f < ∞ if and only if the function f is bounded from above except on a
set of measure zero.
Moreover, if f ∼ g then esssup f = esssup g. This leads us to the following

definition.

Definition 136 Let (X,M, µ) be a measure space and let E ∈M. We define

L∞ (X) := {[f ] : f : X → R measurable and esssup |f | <∞} .

In the space L∞ (X) we define the norm

‖[f ]‖L∞ := esssup |f | .

Indeed, properties (i) and (ii) are satisfied. To prove property (iii), note that if
[f ] and [g] belong to L∞ (X), then there exist E0, F ∈M with µ (E0) = µ (F ) =
0 such that |f (x)| ≤ esssup |f | for all x ∈ X \ E0 and |g (x)| ≤ esssup |g| for all
x ∈ X \ F . Hence,

|f (x) + g (x)| ≤ |f (x)|+ |g (x)| ≤ esssup |f |+ esssup |g|

for all x ∈ X \ (E0 ∪ F ), which implies that esssup |f + g| ≤ esssup |f | +
esssup |g|. Thus, the triangle inequality holds.
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Remark 137 Note that in Hölder’s inequality one can replace (26) and (27)
with ∫

X

|fg| dµ ≤ esssup |g|
∫
X

|f | dµ

and ∫
X

|fg| dµ ≤ esssup |f |
∫
X

|g| dµ,

respectively. Indeed, in the first case, since |g (x)| ≤ esssup |g| for all x ∈ X\E0,
where E0 ∈M with µ (E0) = 0, we have that∫

X

|fg| dµ =

∫
X\E0

|f | |g| dµ ≤
∫
X\E0

|f | esssup |g| dµ

= esssup |g|
∫
X\E0

|f | dµ ≤ esssup |g|
∫
X

|f | dµ.

With an abuse of notation, from now on we identify a measurable function
f : X → R with its equivalence class [f ]. Note that this is very dangerous.

Wednesday, March 22, 2023
We now turn to the relation between different Lp spaces.

Theorem 138 Let (X,M, µ) be a measure space and let X ∈M. Suppose that
1 ≤ p < q <∞. Then

(i) Lp (X) is not contained in Lq (X) if and only if X contains measurable
sets of arbitrarily small positive measure;

(ii) Lq (X) is not contained in Lp (X) if and only if X contains measurable
sets of arbitrarily large finite measure.

Proof. (i) Assume that Lp (X) is not contained in Lq (X). Then there exists
[f ] ∈ Lp (X) such that ∫

X

|f |q dµ =∞. (30)

For each n ∈ N let
En := {x ∈ X : |f (x)| > n} .

Then

µ (En) ≤ 1

np

∫
X

|f |p dµ→ 0

as n→∞. Thus, it suffi ces to show that µ (En) > 0 for all n suffi ciently large.
If to the contrary, µ (En) = 0 for infinitely many n, we have that∫

X

|f |q dµ =

∫
{|f |≤n}

|f |q dµ ≤ nq−p
∫
{|f |≤n}

|f |p dµ <∞,

which is a contradiction with (30). Hence, X contains measurable sets of arbi-
trarily small positive measure.
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Conversely, assume that X contains measurable sets of arbitrarily small
positive measure. Then it is possible to construct a sequence of pairwise disjoint
sets {En}n in M such that µ (En) > 0 for all n ∈ N and

µ (En)↘ 0.

Let

f :=

∞∑
n=1

cnχEn ,

where cn ↗∞ are chosen such that

∞∑
n=1

cqnµ (En) =∞,
∞∑
n=1

cpnµ (En) <∞. (31)

Then [f ] ∈ Lp (X) \ Lq (X).
(ii) Assume that Lq (X) is not contained in Lp (X). Then there exists [f ] ∈
Lq (X) such that ∫

X

|f |p dµ =∞. (32)

For each n ∈ N let

Fn :=

{
x ∈ X :

1

n+ 1
< |f (x)| ≤ 1

n

}
and let

F∞ := {x ∈ X : 0 < |f (x)| ≤ 1} =

∞⋃
n=1

Fn.

If µ (F∞) <∞, then∫
X

|f |p dµ =

∫
{|f |≤1}

|f |p dµ+

∫
{|f |>1}

|f |p dµ

≤ µ (F∞) +

∫
{|f |>1}

|f |q dµ <∞,

which contradicts (32). Hence, µ (F∞) =∞. On the other hand, since for every
n ∈ N,

∞ >

∫
X

|f |q dµ ≥
∫
{ 1
n+1<|f |≤

1
n}
|f |q dµ ≥ 1

(n+ 1)
q µ (Fn) ,

it follows that X contains measurable sets of arbitrarily large finite measure.
Indeed, setting

Gn :=

n⋃
k=1

Fk,
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we have that µ (Gn) <∞, while by Proposition ??(i),

µ (Gn)→ µ (F∞) =∞.

Conversely, assume thatX contains measurable sets of arbitrarily large finite
measure. Then it is possible to construct a sequence of pairwise disjoint sets
{En}n in M of finite measure such that

µ (En)↗∞.

Let

f :=

∞∑
n=1

cnχEn ,

where cn ↘ 0 are chosen such that

∞∑
n=1

cqnµ (En) <∞,
∞∑
n=1

cpnµ (En) =∞. (33)

Then [f ] ∈ Lq (X) \ Lp (X).

Remark 139 Note that the previous proof works also for p, q > 0. What about
q =∞?

Exercise 140 (i) Let X = [0, 1] and let µ be the Lebesgue measure. Show
that for every 1 ≤ p <∞ the function

f(x) =
1

x1/p log2/p
(

2
x

)
is in Lp ([0, 1]) but not in Lq ([0, 1]) for all q > p.

(ii) Construct sequences cn ↗ ∞ and cn ↘ 0 for which conditions (31) and
(33) hold, respectively.

Corollary 141 Let (X,M, µ) be a measure space and let X ∈M. Suppose that
1 ≤ p < q ≤ ∞. If µ (X) <∞, then

Lq (X) ⊆ Lp (X) .

Proof. When 1 ≤ q <∞, this follows from the previous theorem. There’s also
a direct proof. By Hölder’s inequality (with q

p in place of p and |f |
p and 1 in

place of f and g)∫
X

|f |p dµ ≤ ‖|f |p‖
L
q
p
‖1‖

L( qp )
′ =

(∫
X

|f |q dµ
) p
q

‖1‖
L( qp )

′

=

(∫
X

|f |q dµ
) p
q

(µ (X))
q−p
p .
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By identifying functions with their equivalence classes [f ], it follows from
Minkowski’s inequality that ‖·‖Lp is a norm on Lp (X). Next we prove that
Lp (X) is a complete metric space, that is, that every Cauchy sequence has a
limit in Lp (X).

Theorem 142 Let (X,M, µ) be a measure space and let X ∈M. Then Lp (X)
is a Banach space for 1 ≤ p ≤ ∞.

Proof. Assume that 1 ≤ p < ∞, and let {[fn]}n be a Cauchy sequence in
Lp (X). Then for every k ∈ N we can find nk ∈ N such that

‖[fn]− [f`]‖Lp <
1

2k

for all n, ` ≥ nk. Without loss of generality, we can assume that nk+1 > nk for
every k. For j ∈ N consider the function

gj(x) :=

j∑
k=1

|fnk+1
(x)− fnk(x)|,

g(x) :=

∞∑
k=1

|fnk+1
(x)− fnk(x)|.

By Minkowki’s inequality,

‖[gj ]‖Lp ≤
j∑

k=1

‖[fnk+1
]− [fnk ]‖Lp ≤

∞∑
k=1

1

2k
.

Letting j →∞, it follows from Fatou’s lemma that

‖[g]‖Lp ≤ lim inf
j→∞

‖[gj ]‖Lp ≤
∞∑
k=1

1

2k
<∞.

Since ∫
X

|g|pdµ <∞,

there exists a set F ⊆ X with µ(F ) = 0, such that g(x) ∈ R for all x ∈ X \ F .

Friday, March 24, 2023
Proof. It follows that the partial sum

fn1
(x) +

j∑
k=1

fnk+1
(x)− fnk(x)

converges absolutely for every x ∈ X \ F to a function f . Define f(x) := 0 for
x ∈ F . We claim that [fn]→ [f ] in Lp(X).
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To see this, fix ε > 0 and let nε be such that

‖[fn]− [f`]‖Lp < ε

for all n, ` ≥ nε. In particular, if nk ≥ nε,

‖fn − fnk‖Lp < ε.

Letting k →∞, it follows from Fatou’s lemma that

‖[fn]− [f ]‖Lp ≤ lim inf
k→∞

‖[fn]− [fnk ]‖Lp ≤ ε

Exercise 143 Prove the case p =∞.

Remark 144 The proof of the previous theorem implies that if {[fn]}n con-
verges to [f ] in Lp(X), then there exist a subsequence {fnk}k that converges
pointwise to f a.e. and

|fnk(x)| ≤ g(x) for a.e. x ∈ X and for all k,

where [g] ∈ Lp(X).

Next we study some density results for Lp (X) spaces.

Theorem 145 Let (X,M, µ) be a measure space. Then the family of all simple
functions in Lp (X) is dense in Lp (X) for 1 ≤ p ≤ ∞.

Proof. Assume first that 1 ≤ p < ∞. Let [f ] ∈ Lp(X). Since f+, f− are
masurable, there exist increasing sequences {sn}n and {tn}n of simple functions
such that {sn (x)}n converges monotonically to f+ (x) for µ a.e. x ∈ X and
{tn (x)}n converges monotonically to f− (x) for µ a.e. x ∈ X. Then for each
n ∈ N the function Sn := sn − tn is still simple, belongs to Lp (X), and

|f (x)− Sn (x)|p =
∣∣f+ (x)− sn (x)−

(
f− (x)− tn (x)

)∣∣p
≤ 2p−1

(
f+ (x)− sn (x)

)p
+ 2p−1

(
f− (x)− tn (x)

)p
≤ 2p−1

(
f+ (x)

)p
+ 2p−1

(
f− (x)

)p
for µ a.e. x ∈ X. Since f (x)− Sn (x)→ 0 as n→∞ for µ a.e. x ∈ X, we may
apply the Lebesgue dominated convergence theorem to conclude that [Sn]→ [f ]
in Lp (X).
The case p =∞ is left as an exercise.
The next result gives conditions on X and µ that ensure the density of

continuous functions in Lp (X).

Theorem 146 Let (X,M, µ) be a measure space, with X a metric space and µ
a Borel measure such that

µ (E) = sup {µ (C) : C closed, C ⊆ E} = inf {µ (A) : A open, A ⊇ E}

for every set E ∈ M with finite measure. Then Lp (X) ∩ Cb (X) is dense in
Lp (X) for 1 ≤ p <∞.
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Proof. Since by Theorem 145 simple functions in Lp (X) are dense in Lp (X),
it suffi ces to approximate in Lp (X) functions χE , with E ∈M and µ (E) <∞,
by functions in Lp (X)∩Cb (X). Thus, fix E ∈M with µ (E) <∞, and for any
ε > 0 find an open set A ⊇ E and a closed set C ⊆ E such that

µ (A \ C) ≤ εp.

Find (exercise) a continuous function f : X → [0, 1] such that f ≡ 1 in C
and f ≡ 0 in X \ A. Since supp f ⊆ A and µ (A) < ∞, it follows that [f ] ∈
Lp (X) ∩ Cb (X). Moreover,∫

X

|χE − f |p dµ =

∫
A\C
|χE − f |p dµ ≤ µ (A \ C) ≤ εp,

and the result follows.

Definition 147 A measurable space (X,M) is called separable if there exists a
sequence {En}n in M such that the smallest σ-algebra that contains all the sets
En is M. In this case M is said to be generated by the sequence {En}n.

Example 148 The σ-algebra of all Lebesgue measurable sets in RN is generated
by the countable family of cubes with centers in QN and rational side length.

Exercise 149 Prove that if X is a separable metric space and M is the Borel
σ-algebra, then X is a separable measurable space.

Theorem 150 Let (X,M) be a separable measurable space withM generated by
a sequence {En}n, and assume that µ is σ-finite. Let N be the smallest algebra
containing {En}. Then simple functions of the form

n∑
i=1

ciχFi ,

where n ∈ N, ci ∈ Q, and Fi ∈ N, µ (Fi) < ∞, i = 1, . . . , n, form a countable
dense subset of Lp (X) for 1 ≤ p < ∞. In particular, Lp (X) is separable for
1 ≤ p <∞.

The proof will be likely an exercise in a future homework.
To study compactness in Lp spaces, we take X = RN with the Lebesgue

measure.

Theorem 151 Let 1 ≤ p < ∞. A set F ⊆ Lp(RN ) is totally bounded if and
only if

(i) F is bounded;

(ii) for every ε > 0 there exists R > 0 such that∫
RN\B(0,R)

|f(x)|pdx < εp

for all [f ] ∈ F
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(iii) for every ε > 0 there exists δ > 0 such that∫
RN
|f(x+ h)− f(x)|pdx < εp

for all h ∈ RN with ‖h‖ < δ and for all [f ] ∈ F .

Monday, March 27, 2023
We will use the following lemma.

Lemma 152 Let (X, dX) be a metric space. Assume that for every ε > 0 there
exist δ > 0, a metric space (Y, dY ), and a function g : X → Y such that g(X)
is totally bounded and whenever x, z ∈ X are such that dY (g(x), g(z)) < δ, then
dX(x, z) < ε. Then X is totally bounded.

Proof. Since g(X) is totally bounded, there exist y1, . . . , yn such that

g(X) ⊆
n⋃
i=1

BY (yi,
δ
2 ).

Let Ui = g−1(BY (yi,
δ
2 )). If x, z ∈ Ui, then dY (g(x), g(z)) < δ, and so dX(x, z) <

ε. Hence, if we fix xi ∈ Ui, we have that Ui ⊆ BX(xi, ε). Since

g(X) ⊆
n⋃
i=1

BY (yi,
δ
2 ),

and so

X =

n⋃
i=1

Ui ⊆
n⋃
i=1

BX(xi, ε).

We turn to the proof of the theorem.
Proof. Step 1: Assume that F satisfies items (i)—(iii). Let Q be an open cube
centered at the origin and of side-length r = δ

2
√
N
. If x ∈ Q, then ‖x‖ < δ

2 . Let
Q1, . . . , Qn be disjoint open cubes obtained by translating Q such that

B(0, R) ⊆
n⋃
i=1

Qi.

Let
Y = span{χQ1 , . . . , χQn}

and let Π : Lp(RN )→ Y be given by

Π([f ])(x) :=

{ 1
rN

∫
Qi
f(y) dy if x ∈ Qi, i = 1, . . . , n

0 otherwise.
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From (ii), we have∫
RN
|f(x)−Π([f ])(x)|pdx ≤

∫
RN\B(0,R)

|f(x)− 0|pdx+

N∑
i=1

∫
Qi

|f(x)−Π([f ])(x)|pdx

≤ εp +

N∑
i=1

∫
Qi

|f(x)−Π([f ])(x)|pdx.

By Hölder’s inequality

|f(x)−Π([f ])(x)| = 1

rN

∣∣∣∣∫
Qi

[f(x)− f(y)] dy

∣∣∣∣ ≤ 1

rN

∫
Qi

|f(x)− f(y)| dy

≤ rN/p
′

rN

(∫
Qi

|f(x)− f(y)|pdy
)1/p

,

and so∫
Qi

|f(x)−Π([f ])(x)|pdx ≤ 1

rN

∫
Qi

∫
Qi

|f(x)− f(y)|pdydx

≤ 1

rN

∫
Qi

∫
2Q

|f(x)− f(x+ h)|pdhdx

=
1

rN

∫
2Q

∫
Qi

|f(x)− f(x+ h)|pdxdh,

where we used the change of variables y = x + h and used the fact that if
x,y ∈ Qi, h ∈ 2Q. In turn, since the cubes Qi are disjoint, by item (iii),

N∑
i=1

∫
Qi

|f(x)−Π([f ])(x)|pdx ≤ 1

rN

∫
2Q

N∑
i=1

∫
Qi

|f(x)− f(x+ h)|pdxdh

≤ 1

rN

∫
2Q

∫
RN
|f(x)− f(x+ h)|pdxdh

≤ εp 1

rN

∫
2Q

dh ≤ 2Nεp.

Hence, ∫
RN
|f(x)−Π([f ])(x)|pdx ≤ εp(1 + 2N ).

It follows that
‖[f ]−Π([f ])‖Lp(RN ) ≤ ε(1 + 2N )1/p (34)

and by Minkwoski’s inequality,

‖[f ]‖Lp(RN ) ≤ ‖[f ]−Π([f ])‖Lp(RN ) + ‖Π([f ])‖Lp(RN )

≤ ε(1 + 2N )1/p + ‖Π([f ])‖Lp(RN ).
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Since Π is linear, if [f ], [g] ∈ F are such that ‖Π([f ])−Π([g])‖Lp(RN ) ≤ ε, then

‖[f ]− [g]‖Lp(RN ) ≤ ε(1 + 2N )1/p + ‖Π([f ]− [g])‖Lp(RN ) ≤ ε((1 + 2N )1/p + 1).

This proves that Π satisfies the ε-δ condition in the previous lemma.
Since F is bounded, there exists M > 0 such that ‖[f ]‖Lp(RN ) ≤ M for all

[f ] ∈ F . It follows from (34) and Minkowski’s inequality that

‖Π([f ])‖Lp(RN ) ≤ ‖[f ]−Π([f ])‖Lp(RN ) + ‖[f ]‖Lp(RN )

≤ ε(1 + 2N )1/p +M.

(Actually we can show that ‖Π([f ])‖Lp(RN ) ≤ ‖[f ]‖Lp(RN ) ≤ M but we don’t
need that here).
Consider the noremd space (Y, ‖ · ‖Lp). Since Y is finite-dimensional, we

have that all norms are equivalent. Since Y is finite-dimensional and Π(F) is
bounded, Π(F) is totally bounded. It follows by the previous lemma that F is
totally bounded.

Wednesday, March 29, 2023
Proof. Step 2: Assume that F is totally bounded. Given ε > 0, we can find
f1, . . . , fn ∈ Lp(RN ) such that

F ⊆
n⋃
i=1

BLp(fi, ε).

Since, by the Lebesgue dominated convergence theorem,

lim
R→∞

∫
RN\B(0,R)

|fi(x)|pdx = 0,

we can find R > 0 such that∫
RN\B(0,R)

|fi(x)|pdx ≤ εp

for all i = 1, . . . , n. Hence, if f ∈ F we can find i such that f ∈ BLp(fi, ε). By
Minkowski’s inequality(∫

RN\B(0,R)

|f(x)|pdx
)1/p

≤
(∫

RN\B(0,R)

|fi(x)|pdx
)1/p

+ ‖f − fi‖Lp ≤ 2ε.

This proves condition (ii). To prove (iii), we use the density of Cc(RN ) in
Lp(RN ) to find gi ∈ Cc(RN ) such that ‖[gi] − [fi]‖Lp < ε. Let Ri > 0 be such
that gi = 0 outside B(0, Ri). By the Lebesgue dominated convergence theorem

lim
h→0

∫
RN
|gi(x+ h)− gi(x)|pdx = lim

h→0

∫
B(0,2Ri)

|gi(x+ h)− gi(x)|pdx = 0.
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Hence, we can find δ > 0 such that∫
RN
|gi(x+ h)− gi(x)|pdx < εp

for all h ∈ RN with ‖h‖ < δ and all i = 1, . . . , n. In turn, by Minkowski’s
inequality and the change of variables x+ h = y,(∫

RN
|f(x+ h)− f(x)|pdx

)1/p

≤
(∫

RN
|gi(x+ h)− gi(x)|pdx

)1/p

+

(∫
RN
|gi(x+ h)− f(x+ h)|pdx

)1/p

+

(∫
RN
|gi(x)− f(x)|pdx

)1/p

≤ ε+ 4ε.

Theorem 153 (Fréchet—Kolmogorov-Riesz) Let 1 ≤ p < ∞. A set F ⊆
Lp(RN ) is compact if and only if

(i) F is closed, bounded;

(ii) for every ε > 0 there exists R > 0 such that∫
RN\B(0,R)

|f(x)|pdx < εp

for all [f ] ∈ F

(iii) for every ε > 0 there exists δ > 0 such that∫
RN
|f(x+ h)− f(x)|pdx < εp

for all h ∈ RN with ‖h‖ < δ and for all [f ] ∈ F .

Next we study mollifiers and Lp functions. Consider the function

ϕ (x) :=

{
c exp

(
1

‖x‖2−1

)
if ‖x‖ < 1,

0 if ‖x‖ ≥ 1,
(35)

where the constant c > 0 is chosen so that∫
RN

ϕ (x) dx = 1. (36)

We leave as an exercise to prove that ϕ ∈ C∞c (RN ). For every ε > 0 we define

ϕε (x) :=
1

εN
ϕ
(x
ε

)
, x ∈ RN .

The functions ϕε are called standard mollifiers.
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Remark 154 Fix x ∈ RN . Using the change of variables z = x−y
ε we have

that ∫
B(x,ε)

ϕε (x− y) dy =
1

εN

∫
B(x,ε)

ϕ

(
x− y
ε

)
dy

=
εN

εN

∫
B(0,1)

ϕ (z) dz = 1.

Given a Lebesgue measurable set E ⊆ RN and a Lebesgue integrable function
f : E → R, we define

fε (x) :=

∫
E

ϕε (x− y) f (y) dy

for x ∈ RN . Since ϕε is bounded and continuous, and f is Lebesgue integrable,
fε(x) is well-defined. The function fε : RN → R is called a mollification of f .

Theorem 155 Let Ω ⊆ RN be an open set, let ϕ be a standard mollifier, let
1 ≤ p ≤ ∞, and let [f ] ∈ Lp(Ω).

(i) fε is well-defined;

(ii) For every Lebesgue point x ∈ Ω of f (and so for LN a.e. x ∈ Ω), fε (x)→
f (x) as ε→ 0+. Moreover, fε (x)→ 0 for every x ∈ RN \ Ω;

(iii) For every ε > 0, ‖[fε]‖Lp(RN ) ≤ ‖[f ]‖Lp(Ω);

(iv) ‖[fε]‖Lp(RN ) → ‖f‖Lp(Ω) as ε→ 0+;

(v) If 1 ≤ p <∞, then

lim
ε→0+

(∫
Ω

|fε − f |p dx
) 1
p

= 0.

Proof. (i) Since [ϕε(x − ·)] ∈ Lp
′
(RN ), the fact that fε is well defined follows

from Hölder’s inequality.
(ii) Let x ∈ Ω be a Lebesgue point of f , that is,

lim
ε→0+

1

εN

∫
B(x,ε)

|f (y)− f (x)| dy = 0.

Since Ω is open, B (x, ε) ⊆ Ω for ε small enough. Using Remark 154,

fε (x)− f (x) =

∫
B(x,ε)

ϕε (x− y) [f (y)− f (x)] dy

78



and so

|fε (x)− f (x) | ≤ 1

εN

∫
B(x,ε)

ϕ

(
x− y
ε

)
|f (y)− f (x) | dy

≤ ‖ϕ‖∞
εN

∫
B(x,ε)

|f (y)− f (x) | dy → 0

as ε→ 0+.
(iii) If 1 ≤ p <∞, by Hölder’s inequality and (36) for all x ∈ RN ,

|fε (x)| =
∣∣∣∣∫

Ω

(ϕε (x− y))
1
p′ (ϕε (x− y))

1
p f (y) dy

∣∣∣∣
≤
(∫

Ω

ϕε (x− y) dy

) 1
p′
(∫

Ω

ϕε (x− y) |f (y)|p dy
) 1
p

(37)

≤
(∫

Ω

ϕε (x− y) |f (y)|p dy
) 1
p

and so by Fubini’s theorem and (36) once more∫
RN
|fε (x)|p dx ≤

∫
RN

∫
Ω

ϕε (x− y) |f (y)|p dydx

=

∫
Ω

|f (y)|p
(∫

RN
ϕε (x− y) dx

)
dy

=

∫
Ω

|f (y)|p dy.

On the other hand, if p =∞, then for every x ∈ RN ,

|fε (x)| ≤
∫

Ω

ϕε (x− y) |f (y)| dy

≤ ‖[f ]‖L∞(Ω)

∫
Ω

ϕε (x− y) dy ≤ ‖[f ]‖L∞(Ω)

again by (36), and so item (iii) holds for all 1 ≤ p ≤ ∞.
(iv) By item (iii),

lim sup
ε→0+

‖[fε]‖Lp(RN ) ≤ ‖[f ]‖Lp(Ω) .

To prove the opposite inequality, assume first that 1 ≤ p < ∞. By part (ii),
fε (x)→ f (x) as ε→ 0+ for LN a.e. x ∈ Ω, and so by Fatou’s lemma∫

Ω

|f (x)|p dx =

∫
Ω

lim
ε→0+

|fε (x)|p dx ≤ lim inf
ε→0+

∫
RN
|fε (x)|p dx.

If p = ∞, then again by part (ii) fε (x) → f (x) as ε → 0+ for LN a.e. x ∈ Ω.
Hence

|f (x)| = lim
ε→0+

|fε (x)| ≤ lim inf
ε→0+

‖[fε]‖L∞(RN )
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for LN a.e. x ∈ Ω. It follows that

‖[f ]‖L∞(Ω) ≤ lim inf
ε→0+

‖[fε]‖L∞(RN ) .

Hence, item (iv) holds also in this case.
(v) Fix ρ > 0 and find a function g ∈ Cc (Ω) such that

‖[f ]− [g]‖Lp(Ω) ≤ ρ.

Since K := supp g is compact, it follows that for every 0 < η < dist (K, ∂Ω),
the mollification gε of g converges to g uniformly in the compact set

Kη :=
{
x ∈ RN : dist (x,K) ≤ η

}
.

Since gε = g = 0 in Ω \Kη for 0 < ε < η, we have that∫
Ω

|gε − g|p dx =

∫
Kη

|gε − g|p dx ≤
(
‖gε − g‖C(Kη)

)p
|Kη| ≤ ρ,

provided ε > 0 is suffi ciently small. By Minkowski’s inequality

‖[fε]− [f ]‖Lp(Ω) ≤ ‖[fε]− [gε]‖Lp(Ω) + ‖[gε]− [g]‖Lp(Ω) + ‖[g]− [f ]‖Lp(Ω)

≤ 2 ‖[f ]− [g]‖Lp(Ω) + ‖[gε]− [g]‖Lp(Ω) ≤ 3ρ,

where we have used item (iii) for the function f − g.

Remark 156 Part (iv) does not hold for p =∞, since uniform convergence of
continuous functions would imply that f is continuous.

Friday, March 31, 2023
In what follows given [f ] ∈ Lp(Ω), we will write simply f ∈ Lp(Ω) and so, we

will identify a function with an equivalence class of functions. Please be careful
about this, because it can cause all kind of mistakes.

13 Sobolev Spaces

Consider the differential equation

f ′′(x) = g(x), x ∈ I

where I is an open interval and g : I → R is a continuous function. For this
ode to make sense, we need the solution f to be at least of class C2. Consider a
function φ ∈ C∞c (I) and multiply the equation by φ. If we integrate by parts,
we get

−
∫
I

f ′(x)φ′(x) dx =

∫
I

g(x)φ(x) dx. (38)

This integral makes sense for functions f that are less regular than C2. For
example C1 is enough.

80



If we integrate by parts once more, we get∫
I

f(x)φ′′(x) dx =

∫
I

g(x)φ(x) dx. (39)

This integral makes sense provided f : I → R is locally integrable. The integrals
(38) and (39) can be considered weak formulations of the differential equation
f ′′ = g.
Motivated by this discussion, we define the weak derivative of a function.

But first, let’s recall integration by parts in several dimensions.
If Ω ⊂ RN is an open bounded set whose boundary is of class C1 and

f, φ ∈ C1(Ω), then as a corollary of the divergence theorem, we have that for
every i = 1, . . . , N ,∫

Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)φ(x) dx+

∫
∂Ω

fφνi dHN−1,

where ν(x) = (ν1(x), . . . , νN (x)) is the outward unit normal to ∂Ω at x. Now,
if we assume that φ ∈ C1

c (Ω), then φ = 0 on ∂Ω, and so∫
Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)φ(x) dx.

In this case, we don’t need to assume that Ω is bounded or that ∂Ω is of class
C1. To be precise, let Ω ⊆ RN be an open set, let f ∈ C1(Ω) (note that f may
not be integrable) and let φ ∈ C1

c (Ω). Then there exists a compact set K ⊂ Ω
such that φ = 0 in Ω \ K. Construct an open bounded set V with boundary
of class C1 such that K ⊂ V ⊂ V ⊂ Ω. Since f ∈ C1(V ), we can apply the
divergence theorem in V to obtain∫

V

f(x)
∂φ

∂xi
(x) dx = −

∫
V

∂f

∂xi
(x)φ(x) dx.

On the other hand, since φ = 0 and ∂φ
∂xi

are zero in Ω \ V , we can write∫
Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)φ(x) dx. (40)

Thus, we have shown that given an open set Ω ⊆ RN and a function f ∈ C1(Ω),
the integration by parts formula (40) holds for all φ ∈ C1

c (Ω). We now extend
the previous formula to functions f not in C1(Ω).

Remark 157 (Important) From now on, instead of writing [f ] ∈ Lp(Ω), I
will write f ∈ Lp(Ω).

Definition 158 Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞, and f ∈ Lploc(Ω).
Given i = 1, . . . , N , we say that f admits a weak or distributional derivative in
Lp(Ω) if there exists a function gi ∈ Lp(Ω) such that∫

Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

gi(x)φ(x) dx
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for every φ ∈ C∞c (Ω). The function gi is called the weak, or distributional,
partial derivative of f with respect to xi and is denoted

∂f
∂xi
.

Remark 159 Observe that if f ∈ C1(Ω), then by the divergence theorem we
can always integrate by parts to conclude that∫

Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)φ(x) dx

for all φ ∈ C∞c (Ω). Hence, if ∂f
∂xi
∈ Lp (Ω), then the classical partial derivative

∂f
∂xi

is the weak derivative of f . We will use this fact without further notice.

Exercise 160 Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞, and Lploc(Ω). Prove
that if f admits a weak derivative ∂f

∂xi
in Lp(Ω), then the weak derivative ∂f

∂xi
is

unique.

We can now define the Sobolev space W 1,p(Ω).

Definition 161 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. The Sobolev
space W 1,p (Ω) is the space of all functions f ∈ Lp (Ω) that admit all weak
derivatives ∂f

∂xi
in Lp(Ω), endowed with the norm

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) +

N∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(Ω)

.

When p = 2 we write H1(Ω) = W 1,2(Ω). In this case, we have an inner
product, given by

(f, g)H1(Ω) := (f, g)L2(Ω) +

N∑
i=1

(
∂f

∂xi
,
∂g

∂xi

)
L2(Ω)

.

For f ∈W 1,p (Ω) we set

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xN

)
.

Remark 162 In W 1,p (Ω) we can consider the equivalent norms

‖f‖W 1,p(Ω) :=

(
‖f‖pLp(Ω) +

n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥p
Lp(Ω)

) 1
p

or
‖f‖Wm,p(Ω) := ‖f‖Lp(Ω) + ‖∇f‖Lp(Ω;RN ) ;

for 1 ≤ p <∞, and

‖f‖W 1,∞(Ω) := max

{
‖f‖L∞(Ω) ,

∥∥∥∥ ∂f∂x1

∥∥∥∥
L∞(Ω)

, . . . ,

∥∥∥∥ ∂f

∂xN

∥∥∥∥
L∞(Ω)

}
for p =∞.
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We define

W 1,p
loc (Ω) :=

{
f ∈ Lploc (Ω) : f ∈W 1,p (U) for all open sets U b Ω

}
.

Monday, April 3, 2023
We now show that W 1,p (Ω) is a Banach space.

Theorem 163 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. Then the space
W 1,p (Ω) is a Banach space.

Proof. Let {fn}n be a Cauchy sequence in W 1,p (Ω), that is,

0 = lim
l,n→∞

‖fn − fl‖W 1,p(Ω)

= lim
l,n→∞

(
‖fn − fl‖Lp(Ω) +

N∑
i=1

∥∥∥∥∂fn∂xi
− ∂fl
∂xi

∥∥∥∥
Lp(Ω)

)
.

Then {fn}n and
{
∂fn
∂xi

}
n
, i = 1, . . . , N , are Cauchy sequences in Lp (Ω). Since

Lp (Ω) is a Banach space, there exist f, gi ∈ Lp (Ω), i = 1, . . . , N , such that

lim
n→∞

‖fn − f‖Lp(Ω) = 0, lim
n→∞

∥∥∥∥∂fn∂xi
− gi

∥∥∥∥
Lp(Ω)

= 0 (41)

for all i = 1, . . . , N . Fix i = 1, . . . , N . We claim that ∂fn
∂xi

= gi. To see this let
φ ∈ C∞c (Ω) and note that∫

Ω

φ
∂fn
∂xi

dx = −
∫

Ω

fn
∂φ

∂xi
dx. (42)

Writing ∫
Ω

φ
∂fn
∂xi

dx =

∫
Ω

φ

(
∂fn
∂xi
− gi

)
dx+

∫
Ω

φgi dx =: In + II,

by Hölder’s inequality we have

|In| ≤ ‖φ‖Lp′ (Ω)

∥∥∥∥∂fn∂xi
− gi

∥∥∥∥
Lp(Ω)

→ 0

as n→∞, which shows that∫
Ω

φ
∂fn
∂xi

dx→
∫

Ω

φgi dx.

Similarly,

−
∫

Ω

fn
∂φ

∂xi
dx→ −

∫
Ω

f
∂φ

∂xi
dx.
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Hence, letting n→∞ in (42) yields∫
Ω

φgi dx = −
∫

Ω

f
∂φ

∂xi
dx

for all φ ∈ C∞c (Ω), which proves the claim. Thus f ∈ W 1,p (Ω). It follows by
(41) that fn → f in W 1,p(Ω). Hence, W 1,p(Ω) is a Banach space.
More generally, we can define higher order Sobolev spaces.

Definition 164 Let Ω ⊆ RN be an open set, let m ∈ N, and let 1 ≤ p ≤ ∞.
The Sobolev space Wm,p (Ω) is the space of all functions f ∈ Lp (Ω) such that
for every multi-index α with 1 ≤ |α| ≤ m there exists a function gα ∈ Lp (Ω)
such that ∫

Ω

f
∂αφ

∂xα
dx = (−1)

|α|
∫

Ω

gαφdx

for all φ ∈ C∞c (Ω). The function gα is called the weak or distributional partial
derivative of f with respect to xα and is denoted ∂αf

∂xα .

Exercise 165 Let Ω ⊆ RN be an open set, let m ∈ N, and let 1 ≤ p ≤ ∞.
Given f ∈ Wm,p (Ω), prove that the weak derivative of f with respect to xα is
unique.

We define

Wm,p
loc (Ω) :=

{
f ∈ L1

loc (Ω) : f ∈Wm,p (U) for all open sets U b Ω
}
.

Exercise 166 Let Ω ⊆ RN be an open set and let 1 ≤ p <∞.

(i) Prove that a subset of a separable metric space is separable.

(ii) Prove that W 1,p (Ω) is separable. Hint: Consider the mapping

W 1,p (Ω)→ Lp (Ω)× Lp
(
Ω;RN

)
f 7→ (f,∇f) .

Exercise 167 Let Ω ⊆ RN be an open set. Prove that W 1,∞ (Ω) is not separa-
ble.

Next we prove that smooth functions are dense in W 1,p (Ω)

Theorem 168 (Meyers—Serrin) Let Ω ⊆ RN be an open set and 1 ≤ p <∞.
Then the space C∞ (Ω) ∩W 1,p (Ω) is dense in W 1,p (Ω).

Lemma 169 Let Ω ⊆ RN be an open set, 1 ≤ p < ∞, and f ∈ W 1,p (Ω). For
every ε > 0 define fε := ϕε ∗ f in RN , where ϕε is a standard mollifier. Then

lim
ε→0+

‖fε − f‖W 1,p(Ωε)
= 0,
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where the open set Ωε is given by

Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε} .

In particular, if U ⊂ Ω, with dist (U, ∂Ω) > 0, then

‖fε − f‖W 1,p(U) → 0 as ε→ 0+.

Proof. By differentiating under the integral sign we have that fε ∈ C∞
(
RN
)

and for x ∈ Ωε and for every i = 1, . . . , N ,

∂fε
∂xi

(x) =

∫
Ω

∂ϕε
∂xi

(x− y) f (y) dy = −
∫

Ω

∂ϕε
∂yi

(x− y) f (y) dy

=

∫
Ω

ϕε (x− y)
∂f

∂yi
(y) dy =

(
ϕε ∗

∂f

∂xi

)
(x) ,

where we have used the definition of weak derivative and the fact that for each
x ∈ Ωε the function ϕε (x− ·) ∈ C∞c (Ω), since suppϕε (x− ·) ⊆ B (x, ε) ⊂ Ω.
The result now follows from Theorem 155 applied to the functions f and ∂f

∂xi
,

i = 1, . . . , N .

Remark 170 Note that if Ω = RN , then Ωε = RN . Hence, fε → f in
W 1,p

(
RN
)
.

Exercise 171 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. Prove that if
f ∈W 1,p (Ω) and ϕ ∈ C∞c (Ω), then ϕf ∈W 1,p (Ω).

We now turn to the proof of the Meyers—Serrin theorem.
Proof of Theorem 168. Let Ωi b Ωi+1 be such that

Ω =

∞⋃
i=1

Ωi

and consider a smooth partition of unity F subordinated to the open cover{
Ωi+1 \ Ωi−1

}
, where Ω−1 = Ω0 := ∅. For each i ∈ N let ψi be the sum of

all the finitely many ψ ∈ F such that suppψ ⊂ Ωi+1 \ Ωi−1 and that have not
already been selected at previous steps j < i. Then ψi ∈ C∞c

(
Ωi+1 \ Ωi−1

)
and

∞∑
i=1

ψi = 1 in Ω. (43)

Fix η > 0. For each i ∈ N we have that

supp (ψif) ⊂ Ωi+1 \ Ωi−1, (44)

and so, by the previous lemma, we may find εi > 0 so small that

supp (ψif)εi ⊂ Ωi+1 \ Ωi−1 (45)
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and ∥∥(ψif)εi − ψif
∥∥
W 1,p(Ω)

≤ η

2i
,

where we have used the previous exercise.
Proof. Note that in view of (45), for every U b Ω only finitely many Ωi+1\Ωi−1

cover U , and so the function

g :=

∞∑
i=1

(ψif)εi

belongs to C∞ (Ω). In particular, g ∈Wm,p
loc (Ω).

For x ∈ Ω` by (43), (44), and (45),

f (x) =
∑̀
i=1

(ψif) (x) , g (x) =
∑̀
i=1

(ψif)εi (x) . (46)

Hence

‖f − g‖W 1,p(Ω`)
≤
∑̀
i=1

∥∥(ψif)εi − ψif
∥∥
W 1,p(Ω)

≤
∑̀
i=1

η

2i
≤ η. (47)

Letting ` → ∞ it follows from the Lebesgue dominated convergence theorem
that ‖f − g‖W 1,p(Ω) ≤ η. This also implies that f − g (and, in turn, g) belongs
to the space Wm,p (Ω).

Remark 172 Note that we can adapt the proof of the Meyers-Serrin theorem
to show that if f ∈ W 1,p

loc (Ω) with ∇f ∈ Lp
(
Ω;RN

)
then for every ε > 0 there

exists a function g ∈ C∞ (Ω) ∩W 1,p
loc (Ω) such that

‖f − g‖W 1,p(Ω) ≤ ε,

despite the fact that neither f nor g need belong to W 1,p (Ω).

Wednesday, April 5, 2023

Exercise 173 Let Ω ⊆ RN be an open set and let f : Ω → R be a locally
Lipschitz continuous function (that is, f is Lipschitz continuous in each compact
set K ⊂ Ω). Prove that f ∈W 1,p

loc (Ω) and that the classical derivatives of f are
the weak derivatives.

Exercise 174 Prove that the function f (x) := |x| belongs to W 1,∞ (−1, 1) but
not to the closure of C∞ (−1, 1) ∩W 1,∞ (−1, 1).

The previous exercise shows that the Meyers—Serrin theorem is false for
p = ∞. This is intuitively clear, since if Ω ⊆ RN is an open set and {fn} ⊂
C∞ (Ω)∩W 1,∞ (Ω) is such that ‖fn − f‖W 1,∞(Ω) → 0, then f ∈ C1 (Ω) (why?).

86



Exercise 175 Let Ω = B (0, 1) \
{
x ∈ RN : xN = 0

}
. Show that the function

f : Ω→ R, defined by

f (x) = f (x1, . . . , xN ) :=

{
1 if xN > 0,
0 if xN < 0,

belongs to W 1,p (Ω) for all 1 ≤ p ≤ ∞, but cannot be approximated by functions
in C∞

(
Ω
)
.

Definition 176 Given an open set Ω ⊆ RN , we denote by C∞(Ω) the space of
all functions f ∈ C∞(Ω) that can be extended to a function in C∞(RN ).

The previous exercise shows that in the Meyers—Serrin theorem for general
open sets Ω we may not replace C∞ (Ω) with C∞

(
Ω
)
.

Theorem 177 Let Ω ⊆ RN be an open set with boundary of class C0 and let
1 ≤ p <∞. Then C∞

(
Ω
)
∩W 1,p(Ω) is dense in W 1,p (Ω).

Exercise 178 Let Ω, U ⊆ RN be open sets, let Ψ : U → Ω be invertible, with
Ψ and Ψ−1 Lipschitz functions of class C1, and let f ∈ W 1,p (Ω), 1 ≤ p < ∞.
Then f ◦Ψ ∈W 1,p (U) and for all i = 1, . . . , N and for LN -a.e. y ∈ U ,

∂ (f ◦Ψ)

∂yi
(y) =

N∑
j=1

∂f

∂xj
(Ψ (y))

∂Ψj

∂yi
(y) .

14 Absolute Continuity on Lines

The next theorem relates weak partial derivatives with the (classical) partial
derivatives. Given x = (x1, . . . , xN ) ∈ RN and i ∈ {1, . . . , N} we denote by x′i
the vector of RN−1 obtained from x by removing the i-th component xi. With
a slight abuse of notation we write

x = (x′i, xi) ∈ RN−1 × R. (48)

Given a set E ⊆ RN and x′i ∈ RN−1, we denote by Ex′i the section

Ex′i := {xi ∈ R : (x′i, xi) ∈ E}.

To state the following theorem, we will work with equivalences classes of
functions, and so we will use [f ] ∈ Lp(Ω)

Theorem 179 (Absolute Continuity on Lines) Let Ω ⊆ RN be an open
set and let 1 ≤ p < ∞. Then [f ] ∈ Lp (Ω) belongs to the space W 1,p (Ω) if and
only if f ∼ g, where g : Ω → R has the property that for every i = 1, . . . , N ,
there exists a Lebesgue measurable setMi ⊂ RN−1 with LN−1(Mi) = 0 such that
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for every x′i ∈ RN−1 \Mi for which the section Ωx′i is nonempty, the function
g(x′i, ·) is absolutely continuous on each maximal interval I ⊆ Ωx′i and∫

Ω

∣∣∣∣ ∂g∂xi (x)

∣∣∣∣ dx <∞.
Moreover,

[
∂g
∂xi

]
is the weak ith derivative of [f ].

Proof. Step 1: Assume that [f ] ∈ W 1,p (Ω). Consider a sequence of stan-
dard mollifiers {ϕε}ε>0 and for every ε > 0 define fε := f ∗ ϕε in Ωε :=
{x ∈ Ω : dist (x, ∂Ω) > ε}. By Lemma 169,

lim
ε→0+

∫
Ωε

‖∇fε (x)−∇f (x) ‖pdx = 0.

It follows by Fubini’s theorem that for all i = 1, . . . , N ,

lim
ε→0+

∫
RN−1

(∫
(Ωε)xi

‖∇fε (xi, xi)−∇f (xi, xi) ‖pdxi

)
dxi = 0,

where (Ωε)xi := {xi ∈ R : (xi, xi) ∈ Ωε}, and so, by Remark 144, we may find a
subsequence {εn}n such that for all i = 1, . . . , N and for LN−1 a.e. xi ∈ RN−1,

lim
n→∞

∫
(Ωεn )xi

‖∇fεn (xi, xi)−∇f (xi, xi) ‖pdxi = 0. (49)

Set fn := fεn and

E :=
{
x ∈ Ω : lim

n→∞
fn (x) exists in R

}
.

Since E contains every Lebesgue points of f , we have that LN (Ω \ E) = 0.
Define

g (x) :=

{
lim
n→∞

fn (x) if x ∈ E,
0 otherwise.

The function g is a representative of [f ], since by Theorem 155, {fn}n converges
pointwise at every Lebesgue point of f . It remains to prove that g has the desired
properties.
By Fubini’s theorem for every i = 1, . . . , N we have that∫

RN−1

(∫
Ωxi

‖∇f (xi, xi) ‖pdxi

)
dxi <∞

and ∫
RN−1

L1 ({xi ∈ Ωxi : (xi, xi) /∈ E}) dxi = 0,
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where Ωxi := {xi ∈ R : (xi, xi) ∈ Ω}, and so we may find a set Ni ⊂ RN−1, with
LN−1 (Ni) = 0, such that for all xi ∈ RN−1 \Ni for which Ωxi is nonempty we
have that ∫

Ωxi

‖∇f (xi, xi) ‖pdxi <∞, (50)

(49) holds for all i = 1, . . . , N and (xi, xi) ∈ E for L1 a.e. xi ∈ Ωxi . Fix any
such xi and let I ⊆ Ωxi be a maximal interval. Fix t0 ∈ I such that (xi, t0) ∈ E
and let t ∈ I. For all n large, the interval of endpoints t and t0 is contained in
(Ωεn)xi and so, since fn ∈ C∞(Ωεn), by the fundamental theorem of calculus,

fn (xi, t) = fn (xi, t0) +

∫ t

t0

∂fn
∂xi

(xi, s) ds.

Since (xi, t0) ∈ E. Then fn (xi, t0) → g (xi, t0) ∈ R. On the other hand, by
(49)

lim
n→∞

∫ t

t0

∣∣∣∣∂fn∂xi
(xi, s)−

∂fn
∂xi

(xi, s)

∣∣∣∣ ds = 0. (51)

Hencewe have that there exists the limit

lim
n→∞

fn (xi, t) = lim
n→∞

(
fn (xi, t0) +

∫ t

t0

∂fn
∂xi

(xi, s) ds

)
= g (xi, t0) +

∫ t

t0

∂f

∂xi
(xi, s) ds.

Note that by the definition of E and g, this implies, in particular, that

(xi, t) ∈ E (52)

and that

g (xi, t) = g (xi, t0) +

∫ t

t0

∂f

∂xi
(xi, s) ds (53)

for all t ∈ I. Since g (xi, ·) satisfies the fundamental theorem of calculus, it is
locally absolutely continuous in I and ∂g

∂xN
(xi, t) = ∂f

∂xi
(xi, t) for L1 a.e. t ∈ I.

We can now apply exercise 180 to conclude that g (xi, ·) is absolutely continuous
in I.

Friday, April 7, 2023
Proof. Step 2: Assume that [f ] admits a representative g that is absolutely
continuous on LN−1 a.e. line segments of Ω that are parallel to the coordinate
axes, and whose first order (classical) partial derivatives belong to Lp (Ω). Fix
i = 1, . . . , N and let xi ∈ RN−1 be such that f (xi, ·) is absolutely continuous
on the open set Ωxi . Then for every function ϕ ∈ C∞c (Ω), by the integration
by parts formula for absolutely continuous functions, we have∫

Ωxi

g (xi, t)
∂ϕ

∂xi
(xi, t) dt = −

∫
Ωxi

∂g

∂xi
(xi, t)ϕ (xi, t) dt.
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Since this holds for LN−1 a.e. xi ∈ RN−1, integrating over RN−1 and using
Fubini’s theorem yields∫

Ω

g (x)
∂ϕ

∂xi
(x) dx = −

∫
Ω

∂g

∂xi
(x)ϕ (x) dx,

which implies that
[
∂g
∂xi

]
∈ Lp (Ω) is the weak partial derivative of [f ] with

respect to xi . This shows that [f ] ∈W 1,p (Ω).

Exercise 180 Let I ⊆ R and let f : I → R be locally absolutely continuous
with f ′ ∈ Lp(I), 1 ≤ p ≤ ∞. Prove that f is absolutely continuous.

Corollary 181 Let I ⊆ R be an open interval, let 1 ≤ p < ∞, and let [f ] ∈
Lp(I). Then [f ] ∈W 1,p(I) if and only if there exists g : I → R with g ∼ f such
that g is absolutely continuous and∫

I

|g′(x)|pdx <∞.

Remark 182 In view of the previous corollary, for N = 1, we could have
defined W 1,p(I) as the set of all absolutely continuous functions g : I → R such
that ∫

I

|g(x)|pdx+

∫
I

|g′(x)|pdx <∞.

Using the previous corollary, we can prove the following embedding theorems.

Corollary 183 Let I ⊆ R be an open interval, let 1 ≤ p < ∞, and let [f ] ∈
W 1,p(I).

(i) If 1 < p < ∞, then the absolutely continuous representative g of [f ] is
Hölder continuous with exponent 1

p′ .

(ii) If p = 1 and I is unbounded then ‖[f ]‖L∞(I) ≤ ‖[f ′]‖L∞(I)

Proof. (i) Assume 1 < p <∞ and let g be the absolutely continuous represen-
tative g of [f ]. By the fundamental theorem of calculus, for x, y ∈ I with x < y,
we have

g(y)− g(x) =

∫ y

x

g′(t) dt.

Using Hölder’s inequality, we get

|g(x)− g(y)| ≤
∫ y

x

1|g′(t)| dt ≤
(∫ y

x

1p
′
dt

)1/p′ (∫ y

x

|g′(t)|pdt
)1/p

≤ |y − x|1/p
′
‖[f ′]‖Lp(I),

which proves that g is Hölder continuous.
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(ii) Assume that sup I =∞ and let g be the absolutely continuous represen-
tative g of [f ]. Since

∫
I
|g(x)| dx <∞, necessarily

lim inf
x→∞

|g(x)| = 0,

since otherwise, we would be able to find C > 0 such that |g(x)| ≥ C for all
x large, which would contradict the fact that g is integrable. Hence, we can
find xn ∈ I, xn → ∞ such that g(xn) → ∞. By the fundamental theorem of
calculus, for x ∈ I, we have

g(x) = g(xn) +

∫ x

xn

g′(t) dt.

Let n be so large that xn > x. Then

|g(x)| ≤ |g(xn)|+
∫ xn

x

|g′(t)| dt ≤ |g(xn)|+ ‖[f ′]‖L1(I).

Letting n→∞, we get
|g(x)| ≤ ‖[f ′]‖L1(I)

for all x ∈ I.
As a consequence of Theorem 179 and of the properties of absolutely con-

tinuous functions we have the following results.

Exercise 184 Let Ω ⊆ RN be an open set and let 1 ≤ p <∞. Using Theorem
179 prove the following results.

(i) (Chain rule) Let h : R→ R be Lipschitz and let f ∈ W 1,p (Ω). Assume
that h (0) = 0 if Ω has infinite measure. Then h ◦ f ∈ W 1,p (Ω) and for
all i = 1, . . . , N and for LN a.e. x ∈ Ω,

∂ (h ◦ f)

∂xi
(x) = h′

(
f (x)

) ∂f
∂xi

(x) ,

where h′
(
f (x)

) ∂f
∂xi

(x) is interpreted to be zero whenever
∂f

∂xi
(x) = 0.

What can you say about the case p =∞?

(ii) (Product rule) Let f, g ∈ W 1,p (Ω) ∩ L∞ (Ω). Then fg ∈ W 1,p (Ω) ∩
L∞ (Ω) for all i = 1, . . . , N and for LN a.e. x ∈ Ω,

∂ (fg)

∂xi
(x) = g (x)

∂f

∂xi
(x) + f (x)

∂g

∂xi
(x) .

What can you say about the case p =∞?

(iii) (Reflection) Let Ω = RN+ :=
{

(x′, xN ) ∈ RN−1 × R : xN > 0
}
and let

f ∈W 1,p
(
RN+
)
. Then the function

g (x) :=

{
f (x) if xN > 0,
f (x′,−xN ) if xN < 0
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belongs to W 1,p
(
RN
)
and for all i = 1, . . . , N and for LN a.e. x ∈ RN

∂g

∂xi
(x) =


∂f

∂xi
(x) if xN > 0,

(−1)
δiN ∂f

∂xi
(x′,−xN ) if xN < 0.

(iv) Let E ⊂ R be such that L1 (E) = 0, let f ∈ W 1,1
loc (Ω), and let f be its

precise representative given in Theorem 179. Prove that ∇f (x) = 0 for

LN a.e. x ∈
(
f
)−1

(E).

15 Embeddings: 1 ≤ p < N
Consider a function f ∈ L1

loc

(
RN
)
such that its weak gradient ∇f belongs to

Lp
(
RN ;RN

)
for some 1 ≤ p < ∞. We are interested in finding an exponent q

such that f ∈ Lq
(
RN
)
, and so we are after an inequality of the type

‖f‖Lq(RN ) ≤ c ‖∇f‖Lp(RN ;RN ) , (54)

which should hold for all such f .
Assume for simplicity that f ∈ C1

c

(
RN
)
and for r > 0 define the rescaled

function
fr (x) := f (rx) , x ∈ RN .

Applying the previous inequality to fr we get(∫
RN
|f (rx)|q dx

) 1
q

=

(∫
RN
|fr (x)|q dx

) 1
q

≤ c
(∫

RN
‖∇fr (x) ‖pdx

) 1
p

= c

(
rp
∫
RN
‖∇f (rx) ‖pdx

) 1
p

,

or, equivalently, after the change of variables y := rx,(
1

rN

∫
RN
|f (y)|q dy

) 1
q

≤ c
(
rp

rN

∫
RN
‖∇f (y) ‖pdy

) 1
p

,

that is, (∫
RN
|f (y)|q dy

) 1
q

≤ cr1−Np +N
q

(∫
RN
‖∇f (y) ‖pdy

) 1
p

.

If 1− N
p + N

q > 0, let r → 0+ to conclude that f ≡ 0, while if 1− N
p + N

q < 0,
let r →∞ to conclude again that f ≡ 0. Hence, the only possible case is when

N

q
=
N

p
− 1.
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So in order for q to be positive, we need p < N in which case

q = p∗ :=
Np

N − p .

The number p∗ is called Sobolev critical exponent.

Theorem 185 (Sobolev—Gagliardo—Nirenberg Embedding) Let 1 ≤ p <
N . Then for every f ∈W 1,p

(
RN
)
,(∫

RN
|f (x)|p

∗
dx

) 1
p∗

≤ C
(∫

RN
‖∇f (x) ‖pdx

) 1
p

,

where C = C (N, p) > 0. In particular, W 1,p
(
RN
)
is continuously embedded in

Lp
∗ (RN).
The proof makes use of the following result, which follows from Hölder’s

inequality.

Exercise 186 Let 1 ≤ p1, . . . , pn, p ≤ ∞, with 1
p1

+ · · · + 1
pn

= 1
p , and fi ∈

Lpi
(
RN
)
, i = 1, . . . , n. Prove that∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
Lp

≤
n∏
i=1

‖fi‖Lpi .

Exercise 187 Prove that if g : R→ R is measurable with
∫
R |g (t)|p dt <∞ for

some p > 0, then

lim inf
x→−∞

|g (x)| = 0, lim inf
x→∞

|g (x)| = 0

and that in general one cannot replace the limit inferiors with actual limits.

In what follows, we use the notation (48).

Lemma 188 Let N ≥ 2 and let fi ∈ LN−1
(
RN−1

)
, i = 1, . . . , N . Then the

function
f (x) := f1 (x′1) f2 (x′2) · · · fN (x′N ) , x ∈ RN ,

belongs to L1
(
RN
)
and

‖f‖L1(RN ) ≤
N∏
i=1

‖fi‖LN−1(RN−1) .

Monday, April 10, 2023
Proof. The proof is by induction on N . If N = 2, then

f (x) := f1 (x2) f2 (x1) , x = (x1, x2) ∈ R2.
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Integrating both sides with respect to x and using Fubini’s theorem, we get∫
R2

|f (x)| dx =

∫
R
|f1 (x2)| dx2

∫
R
|f2 (x1)| dx1.

Assume next that the result is true for N and let’s prove it for N + 1. Let

f (x) := f1 (x′1) f2 (x′2) · · · fN+1

(
x′N+1

)
, x ∈ RN+1,

where fi ∈ LN
(
RN
)
, i = 1, . . . , N + 1. Fix xN+1 ∈ R. Integrating both sides

with respect to x1, . . . , xN and using Hölder’s inequality we get∫
RN
|f (x)| dx1 · · · dxN

≤ ‖fN+1‖LN (RN )

(∫
RN

N∏
i=1

|fi (x′i)|
N
N−1 dx1 · · · dxN

)N−1
N

.

For every i = 1, . . . , N we denote by x′′i the N − 1 dimensional vector obtained
by removing the last component from x′i and with an abuse of notation we
write x′i = (x′′i , xN+1) ∈ RN−1 × R. Since xN+1 is fixed, by the induction

hypothesis applied to the functions gi (x′′i ) := |fi (x′′i , xN+1)|
N
N−1 , x′′i ∈ RN−1,

i = 1, . . . , N , we obtain that∫
RN

N∏
i=1

|fi (x′i)|
N
N−1 dx1 · · · dxN ≤

N∏
i=1

‖gi‖LN−1(RN−1) ,

and so ∫
RN
|f (x)| dx1 · · · dxN

≤ ‖fN+1‖LN (RN )

N∏
i=1

(∫
RN−1

|fi (x′′i , xN+1)|N dx′′i

) 1
N

.

Integrating both sides with respect to xN+1 and using Fubini’s theorem and the
extended Hölder’s inequality (see the previous exercise), with

1 =
1

N
+ · · ·+ 1

N︸ ︷︷ ︸
N

,

we get ∫
RN
|f (x)| dx ≤

N+1∏
i=1

‖fi‖LN (RN ) ,

which concludes the proof.
We now turn to the proof of the Sobolev—Gagliardo—Nirenberg embedding

theorem.
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Proof. Step 1: Assume first that p = 1. By mollification we can assume that
f ∈ C1

(
RN
)
∩W 1,1(RN ). Fix i = 1, . . . , N . By Fubini’s theorem for LN−1

a.e. x′i ∈ RN−1 we have that the function g (t) := f (x′i, t), t ∈ R, belongs to
Lp (R) ∩ C1 (R) with g′ ∈ L1 (R). By the previous exercise

lim inf
t→−∞

|g (t)| = 0,

and so we may find a sequence tn → −∞ such that g (tn)→ 0. Hence, for every
t ∈ R we have that

g (t) = g (tn) +

∫ t

tn

g′ (s) ds.

Letting n → ∞ and using the fact that g′ ∈ L1 (R), by Lebesgue dominated
convergence theorem we conclude that for each i = 1, . . . , N and x ∈ RN we
have

f (x) =

∫ xi

−∞

∂f

∂xi
(x′i, yi) dyi,

and so

|f (x)| ≤
∫
R

∣∣∣∣ ∂f∂xi (x′i, yi)

∣∣∣∣ dyi
for all x ∈ RN . Multiplying these N inequalities and raising to power 1

N−1 , we
get

|f (x)|
N
N−1 ≤

N∏
i=1

(∫
R

∣∣∣∣ ∂f∂xi (x′i, yi)

∣∣∣∣ dyi) 1
N−1

=:

N∏
i=1

wi (x′i)

for all x ∈ RN . We now apply the previous lemma to the function

w (x) :=

N∏
i=1

wi (x′i) , x ∈ RN ,

to obtain that∫
RN
|f (x)|

N
N−1 dx ≤

∫
RN
|w (x)| dx ≤

N∏
i=1

‖wi‖LN−1(RN−1)

=

N∏
i=1

(∫
RN

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ dx) 1
N−1

≤
(∫

RN
‖∇f (x) ‖ dx

) N
N−1

,

where we have used Fubini’s theorem. This gives the desired inequality for
p = 1.
Note that Step 1 continues to hold if we assume that f ∈ Lq(RN ) for some

q ≥ 1 and ∇f ∈ L1(RN ;RN ).
Wednesday, April 12, 2023

Proof. Step 2: Assume next that 1 < p < N and that f ∈ Lp
∗ (RN) ∩

W 1,p(RN ). Again by mollification we can assume that f ∈ C1
(
RN
)
. Define

g := |f |q , q :=
p (N − 1)

N − p .
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Note that since q > 1, we have that g ∈ C1
(
RN
)
. Moreover, ∇g ∈ Lp

(
RN ;RN

)
(see below), while g ∈ L1∗

(
RN
)
. Applying Step 1 to the function g we get(∫

RN
|f |

pN
N−p dx

)N−1
N

=

(∫
RN
|g|

N
N−1 dx

)N−1
N

≤
∫
RN
‖∇g‖ dx ≤ q

∫
RN
|f |q−1 ‖∇f‖ dx

≤ q
(∫

RN
|f |(q−1)p′

dx

) 1
p′
(∫

RN
‖∇f‖pdx

) 1
p

,

where in the last inequality we have used Hölder’s inequality. Since

(q − 1) p′ = p∗,

if f 6= 0 we obtain(∫
RN
|f |

pN
N−p dx

)N−1
N − p−1

p

=

(∫
RN
|f |

pN
N−p dx

)N−p
Np

≤ q
(∫

RN
‖∇f‖pdx

) 1
p

,

which proves the result. Note that here it was important to know that f ∈

Lp
∗ (RN), since we divided by (∫RN |f |(q−1)p′

dx
) 1
p′
.

Step 3: Assume that f ∈W 1,p
(
RN
)
. For n ∈ N and x ∈ RN define

gn (x) :=

 |f (x)| − 1
n if 1

n ≤ |f (x)| ≤ n,
0 if |f (x)| < 1

n ,
n− 1

n if |f (x)| > 1
n .

By the chain rule (see Exercise 184 (i) and (vi)) for LN a.e. x ∈ RN

‖∇gn (x) ‖ =

{
‖∇f (x) ‖ if 1

n < |f (x)| < n,
0 otherwise,

and so ∇gn ∈ Lp
(
RN ;RN

)
, while for every s ≥ 1,∫

RN
|gn|s dx =

∫
{|f |> 1

n}
|gn|s dx

≤
(
n− 1

n

)s
LN

({
x ∈ RN : |f (x)| > 1

n

})
<∞,

since f ∈ Lp (R). Hence, gn ∈ Lp
∗ (RN) ∩W 1,p

(
RN
)
and so by the previous

step(∫
{ 1
n≤|f |≤n}

(
|f (x)| − 1

n

) pN
N−p

dx

)N−p
Np

≤
(∫

RN
|gn|

pN
N−p dx

)N−p
Np

≤ q
(∫

RN
‖∇gn‖pdx

) 1
p

= q

(∫
{ 1
n≤|f |≤n}

‖∇f‖pdx
) 1
p

≤ q
(∫

RN
‖∇f‖pdx

) 1
p

.

Letting first n→∞ and using Fatou’s lemma we obtain the desired result.
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Exercise 189 Let k ∈ N and 1 ≤ p < ∞ be such that k ≥ 2 and kp < N .
Prove that

(i) W k+j,p
(
RN
)
is continuously embedded in W j,q

(
RN
)
for all j ∈ N and for

all p ≤ q ≤ Np
N−kp ,

(ii) W k,p
(
RN
)
is continuously embedded in Lq

(
RN
)
for all p ≤ q ≤ Np

N−kp .

Remark 190 Note that in the last step of the proof of the previous theorem
we only used the fact that f vanishes at infinity and its distributional gradient
∇f ∈ Lp

(
RN ;RN

)
. In particular, it holds if we assume that f ∈ Lq(RN ) for

some 1 ≤ q <∞ and the distributional gradiend ∇f ∈ Lp
(
RN ;RN

)
.

Remark 191 In view of Theorem 177 in Step 1 and 2 we could have assumed
that f ∈ C1

c (RN ) and so avoid Step 3. However, see the previous remark.

Next we discuss the validity of the Sobolev—Gagliardo—Nirenberg embedding
theorem for arbitrary domains.

Exercise 192 (Room and Passages) Let {hn} and {δ2n} be two sequences
of positive numbers such that

∞∑
n=1

hn = ` <∞, 0 < const. ≤ hn+1

hn
≤ 1, 0 < δ2n ≤ h2n+1,

and for n ∈ N let

cn :=

n∑
i=1

hi.

Define Ω ⊂ R2 to be the union of all sets of the form

Rj := (cj − hj , cj)×
(
−1

2
hj ,

1

2
hj

)
,

Pj+1 := [cj , cj + hj+1]×
(
−1

2
δj+1,

1

2
δj+1

)
,

for j = 1, 3, 5, . . .,

(i) Prove that ∂Ω is a rectifiable curve but Ω is not of class C.

(ii) Let

hn :=
1

n
3
2

, δ2n :=
1

n
5
2

,

and for j = 1, 3, 5, . . .,

f (x, y) :=


j

log 2j
=: Kj in Rj ,

Kj + (Kj+2 −Kj)
x− cj
hj+1

in Pj+1.

Prove that f ∈W 1,2 (Ω) but f /∈ Lq (Ω) for any q > 2.
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(iii) Let p > 1, q ≥ 1
2 (2p− 1),

h2n−1 = h2n :=
1

np
, δ2n :=

1

3pn2q+p
,

and for n ∈ N,
f (x, y) :=

1

np
in R2n−1,

and

∇f (x, y) :=

(
(n+ 1)

q − nq
1
np

, 0

)
in P2n.

Prove that ∇f ∈ L2
(
Ω;R2×2

)
but f /∈ L2 (Ω).

16 Embeddings: p = N

The argument at the beginning of the previous section shows that when p ≥ N
we cannot expect an inequality of the form

‖f‖Lq(RN ) ≤ c ‖∇f‖Lp(RN ;RN ) .

However, we could still have embeddings of the type

W 1,p
(
RN
)
→ Lq

(
RN
)

f 7→ f

that is, inequalities of the type

‖f‖Lq(RN ) ≤ c ‖f‖W 1,p(RN ) .

We now show that this is the case when p = N . We begin by observing that
when p ↗ N , then p∗ ↗ ∞, and so one would be tempted to say that if f ∈
W 1,N

(
RN
)
, then f ∈ L∞

(
RN
)
. For N = 1 this is true since if f ∈ W 1,1 (R),

then a representative f is absolutely continuous in R so that

f (x) = f (0) +

∫ x

0

f
′
(s) ds

and since f
′

= f ′ ∈ L1 (R), we have that f is bounded and continuous. For
N > 1 this is not the case, as the next exercise shows.

Exercise 193 Let Ω = B (0, 1) ⊂ RN , N > 1, and show that the function

f (x) := log

(
log

(
1 +

1

‖x‖

))
, x ∈ B (0, 1) \ {0} ,

belongs to W 1,N (B (0, 1)) but not to L∞ (B (0, 1)).

However, we have the following result.
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Theorem 194 The space W 1,N
(
RN
)
is continuously embedded in the space

Lq
(
RN
)
for all N ≤ q <∞.

Proof. Let f ∈W 1,N
(
RN
)
. Define g := |f |t, where t > 1 will be determined so

that g ∈ Lr
(
RN
)
and ∇g ∈ L1(RN ;RN ). By the Sobolev—Gagliardo—Nirenberg

embedding theorem with p = 1 and Remark 190,(∫
RN
|f |

tN
N−1 dx

)N−1
N

=

(∫
RN
|g|

N
N−1 dx

)N−1
N

≤
∫
RN
‖∇g‖ dx ≤ t

∫
RN
|f |t−1 ‖∇f‖ dx

≤ t
(∫

RN
|f |(t−1)N ′

dx

) 1
N′
(∫

RN
‖∇f‖N dx

) 1
N

,

where in the last inequality we have used Hölder’s inequality. Hence,(∫
RN
|f |

tN
N−1 dx

)N−1
Nt

≤ C
(∫

RN
|f |(t−1) N

N−1 dx

)N−1
tN
(∫

RN
‖∇f‖N dx

) 1
Nt

≤ C
[(∫

RN
|f |(t−1) N

N−1 dx

)N−1
N

1
t−1

+

(∫
RN
‖∇f‖N dx

) 1
N

]
,

(55)

where we have used Young’s inequality ab ≤ at + bt
′
for a, b ≥ 0. Taking t = N

yields(∫
RN
|f |

N2

N−1 dx

)N−1

N2

≤ C
[(∫

RN
|f |N dx

) 1
N

+

(∫
RN
‖∇f‖N dx

) 1
N

]
,

so that f ∈ L N2

N−1
(
RN
)
with continuous embedding. In turn by Theorem ??,

we conclude that
‖f‖Lq(RN ) ≤ C ‖f‖W 1,N (RN )

for all N ≤ q ≤ N2

N−1 .

Taking t = N + 1 ≤ N2

N−1 in (55) and using what we just proved gives(∫
RN
|f |

N(N+1)
N−1 dx

)
N−1

N(N+1)

≤ C
[(∫

RN
|f |

N2

N−1 dx

)N−1

N2

+

(∫
RN
‖∇f‖N dx

) 1
N

]
≤ C ‖f‖W 1,N (RN ) ,

and so the embedding

W 1,p
(
RN
)
→ Lq

(
RN
)

f 7→ f
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is continuous for all N ≤ q ≤ N(N+1)
N−1 . We proceed in this fashion taking

t = N + 2, N + 3, etc.

Exercise 195 Let k ∈ N and 1 ≤ p < ∞ be such that k ≥ 2 and kp = N .
Prove that

(i) W k+j,p
(
RN
)
is continuously embedded in W j,q

(
RN
)
for all j ∈ N and for

all p ≤ q <∞,

(ii) W k,p
(
RN
)
is continuously embedded in Lq

(
RN
)
for all p ≤ q <∞.

Exercise 196 Prove that for every function f ∈WN,1
(
RN
)
,

‖f‖L∞(RN ) ≤
∥∥∥∥ ∂Nf

∂x1 · · · ∂xN

∥∥∥∥
LN (RN )

.

Monday, April 17, 2023

17 Embeddings: p > N

We recall that, given an open set Ω ⊆ RN , a function f : Ω → R is Hölder
continuous with exponent α > 0 if there exists a constant C > 0 such that

|f (x)− f (y)| ≤ C‖x− y‖α

for all x,y ∈ Ω. We define the space C0,α
(
Ω
)
as the space of all bounded

functions that are Hölder continuous with exponent α.

Exercise 197 Let Ω ⊆ RN be an open set and let α > 0.

(i) Prove that if α > 1 and Ω is connected, then any function that is Hölder
continuous with exponent α is constant.

(ii) Prove that the space C0,α
(
Ω
)
, 0 < α ≤ 1, is a Banach space with the

norm

‖f‖C0,α(Ω) := sup
x∈Ω
|f (x)|+ sup

x,y∈Ω,x6=y

|f (x)− f (y)|
‖x− y‖α .

Note that if Ω is bounded, then every function f : Ω→ R that is Hölder con-
tinuous with exponent α > 0 is uniformly continuous and thus it can be uniquely
extended to a bounded continuous function on RN . Thus, in the definition of
C0,α

(
Ω
)
one can drop the requirement that the functions are bounded.

The next theorem shows that if p > N a function f ∈ W 1,p
(
RN
)
has a

representative in the space C0,1−Np
(
RN
)
.
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Theorem 198 (Morrey) Let N < p < ∞. Then the space W 1,p
(
RN
)
is

continuously embedded in C0,1−Np
(
RN
)
. Moreover, if f ∈ W 1,p

(
RN
)
and f̄ is

its representative in C0,1−Np
(
RN
)
, then

lim
‖x‖→∞

f̄ (x) = 0.

Proof. Let f ∈ W 1,p
(
RN
)
∩ C∞

(
RN
)
and let Qr be any cube with sides of

length r parallel to the axes. Fix x,y ∈ Qr and let

g (t) := f (tx+ (1− t)y) , 0 ≤ t ≤ 1.

By the fundamental theorem of calculus

f (x)− f (y) = g (1)− g (0) =

∫ 1

0

g′ (t) dt

=

∫ 1

0

∇f (tx+ (1− t)y) · (x− y) dt.

Averaging in the x variable over Qr yields

fQr − f (y) =
1

rN

∫
Qr

∫ 1

0

∇f (tx+ (1− t)y) · (x− y) dt dx,

where fQr is the integral average of f over Qr, that is,

fQr :=
1

rN

∫
Qr

f (x) dx.

Hence,

|fQr − f (y)| ≤
N∑
i=1

1

rN

∫
Qr

∫ 1

0

∣∣∣∣ ∂f∂xi (tx+ (1− t)y)

∣∣∣∣ |xi − yi| dt dx
≤

N∑
i=1

1

rN−1

∫ 1

0

∫
Qr

∣∣∣∣ ∂f∂xi (tx+ (1− t)y)

∣∣∣∣ dx dt
=

N∑
i=1

1

rN−1

∫ 1

0

1

tN

∫
(1−t)y+Qrt

∣∣∣∣ ∂f∂xi (z)

∣∣∣∣ dz dt,
where we have used the fact that |xi − yi| ≤ r in Qr, Tonelli’s theorem, and
the change of variables z = tx + (1− t)y (so that dz = tNdx). By Hölder’s
inequality and the fact that (1− t)y +Qrt ⊂ Qr, we now have

|fQr − f (y)| ≤
N∑
i=1

1

rN−1

∫ 1

0

(rt)
N
p′

tN

(∫
(1−t)y+Qrt

∣∣∣∣ ∂f∂xi (z)

∣∣∣∣p dz
) 1
p

dt

≤ N ‖∇f‖Lp(Qr;RN )

rN−
N
p

rN−1

∫ 1

0

tN−
N
p

tN
dt (56)

=
Np

p−N r1−Np ‖∇f‖Lp(Qr;RN ) .
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Since this is true for all y ∈ Qr, if x,y ∈ Qr, then

|f (x)− f (y)| ≤ |f (x)− fQr |+ |f (y)− fQr |

≤ 2Np

p−N r1−Np ‖∇f‖Lp(Qr;RN ) .

Now if x,y ∈ RN , consider a cube Qr containing x and y and of side length
r := 2‖x− y‖. Then the previous inequality yields

|f (x)− f (y)| ≤ C‖x− y‖1−
N
p ‖∇f‖Lp(Qr;RN ) (57)

≤ C‖x− y‖1−
N
p ‖∇f‖Lp(RN ;RN ) .

Hence, f is Hölder continuous of exponent 1−Np . To prove that f ∈ C
0,1−Np

(
RN
)
,

it remains to show that f is bounded. Let x ∈ RN and consider a cube Q1 con-
taining x and of side length one. By (56) we get

|f (x)| ≤ |fQ1
|+ |f (x)− fQ1

| ≤
∣∣∣∣∫
Q1

f (x) dx

∣∣∣∣+ C ‖∇f‖Lp(Q1;RN ) (58)

≤ ‖f‖Lp(Q1) + C ‖∇f‖Lp(RN ;RN ) ≤ C ‖f‖W 1,p(RN ) ,

where we have used Hölder’s inequality.
Next we remove the extra hypothesis that f ∈ C∞

(
RN
)
. Given any f ∈

W 1,p
(
RN
)
, let f̄ be a representative of f and let x,y ∈ RN be two Lebesgue

points of f̄ and let fε := f ∗ ϕε, where ϕε is a standard mollifier. By (57) we
have that

|fε (x)− fε (y)| ≤ C‖x− y‖1−
N
p ‖∇fε‖Lp(RN ;RN ) .

Since {fε} converge at every Lebesgue point by Theorem 155 and ∇fε =
(∇f)ε → ∇f in Lp

(
RN ;RN

)
by Theorems 155, letting ε→ 0+, we get∣∣f̄ (x)− f̄ (y)
∣∣ ≤ C‖x− y‖1−Np ‖∇f‖Lp(RN ;RN ) (59)

for all Lebesgue points x,y ∈ RN of f̄ . This implies that

f̄ : {Lebesgue points of f} → R

can be uniquely extended to RN as a Hölder continuous function f̄ of exponent
1− N

p in such a way that (59) holds for all x,y ∈ R
N .

With a similar argument from (58) we conclude that∣∣f̄ (x)
∣∣ ≤ C ‖f‖W 1,p(RN ) (60)

for all x ∈ RN . Hence,∥∥f̄∥∥
C

0,1−N
p (RN )

= sup
x∈RN

∣∣f̄ (x)
∣∣+ sup

x,y∈RN ,x6=y

∣∣f̄ (x)− f̄ (y)
∣∣

‖x− y‖1−
N
p

≤ C ‖f‖W 1,p(RN ) .
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Finally, we prove that f̄ (x) → 0 as ‖x‖ → ∞. Let {fn} ⊂ C∞c
(
RN
)
be any

sequence that converges to f in W 1,p
(
RN
)
. The inequality (60) implies, in

particular, that f ∈ L∞
(
RN
)
, with

‖f‖L∞(RN ) ≤ C ‖f‖W 1,p(RN ) .

Replacing f with f − fn gives

‖f − fn‖L∞(RN ) ≤ C ‖f − fn‖W 1,p(RN ) ,

and so ‖f − fn‖L∞(RN ) → 0 as n→∞. Fix ε > 0 and find n̄ ∈ N such that

‖f − fn‖L∞(RN ) ≤ ε

for all n ≥ n̄. Since fn̄ ∈ C∞c
(
RN
)
, there exists Rn̄ > 0 such that fn̄ (x) = 0

for all ‖x‖ ≥ Rn̄. Hence, for LN -a.e. x ∈ RN with ‖x‖ ≥ Rn̄ we get∣∣f̄ (x)
∣∣ =

∣∣f̄ (x)− fn̄ (x)
∣∣ ≤ ‖f − fn‖L∞(RN ) ≤ ε,

and, since f̄ is continuous, we get that the previous inequality actually holds
for all x ∈ RN with ‖x‖ ≥ Rn̄.

Wednesday, April 19, 2023

18 Extension Domains

You have seen in recitations that there are open sets Ω ⊂ RN and functions
f ∈ W 1,p(Ω), 1 < p < N , such that f /∈ Lq(Ω) for all q > p. This means
that the Sobolev—Gagliardo—Nirenberg theorem fails in "bad" open sets. In this
section, we are going to prove that if ∂Ω is suffi ciently regular, then we can
extend a function f ∈W 1,p(Ω) to a function g ∈W 1,p(RN ).

We begin with the case in which Ω is the half space RN+ .

Theorem 199 Let 1 ≤ p ≤ ∞ and let f ∈ W 1,p(RN+ ). Then there exists
g ∈W 1,p(RN ) such that g(x) = f(x) for LN -a.e. x ∈ RN+ and

‖g‖Lp(RN ) ≤ 2‖f‖Lp(RN+ ),

∥∥∥∥ ∂g∂xi
∥∥∥∥
Lp(RN )

≤ 2

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(RN+ )

,

for all i = 1, . . . , N .

Proof. We only do the case p < ∞. Given [f ] ∈ W 1,p(RN+ ), by Theorem 179,
there exists a representative f such that f(x′i, ·) is absolutely continuous in R
for LN−1-a.e. x′i ∈ RN−1

+ when i = 1, . . . , N − 1, and f(x′, ·) is absolutely
continuous in R+ for LN−1-a.e. x′ ∈ RN−1. Define

g(x) :=

{
f(x′,−xN ) if xN < 0,
f(x) if xN ≥ 0,
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The g ∈ C(RN ) and absolutely continuous on LN−1 every line parallel to the
axes with

∂g

∂xi
(x) =

{
∂f
∂xi

(x′,−xN ) if xN < 0,
∂f
∂xi

(x) if xN > 0,

if i = 1, . . . , N − 1, while

∂g

∂xN
(x) =

{
− ∂f
∂xN

(x′,−xN ) if xN < 0,
∂f
∂xN

(x) if xN > 0.

It follows by Theorem 179 that g ∈ W 1,p(RN ). By a change of variables we
have that

‖g‖Lp(RN ) = 2‖f‖Lp(RN+ ),

∥∥∥∥ ∂g∂xi
∥∥∥∥
Lp(RN )

= 2

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(RN+ )

.

Note that ∂g
∂xN

is discontinuous at xN = 0 and so we cannot use this extension
for function f ∈Wm,p(RN+ ) for m ≥ 2.

Exercise 200 Given m ∈ N, and 1 ≤ p ≤ ∞, let f ∈ Wm,p(RN+ ). Prove that
there exist c1, . . . , cm+1 ∈ R such that the function

g(x) :=

{ ∑m+1
n=1 cnf(x′,−nxN ) if xN < 0,

f(x) if xN > 0,

is well-defined and belongs to Wm,p(RN ). Prove also that for every 0 ≤ k ≤ m,
‖∇kg‖Lp(RN ) ≤ c‖∇kf‖Lp(RN+ ) for some constant c = c(m,N, p) > 0.

Next we consider the important special case in which Ω lies above the graph
of a Lipschitz continuous function.

Theorem 201 Let h : RN−1 → R be a Lipschitz continuous function of class
C1 and let

Ω := {(x′, xN ) ∈ RN−1 × R : xN > h(x′)}. (61)

Let 1 ≤ p ≤ ∞ and let f ∈W 1,p(Ω). Then there exists g ∈W 1,p(RN ) such that
g(x) = f(x) for LN -a.e. x ∈ Ω and

‖g‖Lp(RN ) ≤ 2‖f‖Lp(Ω),

∥∥∥∥ ∂g

∂xN

∥∥∥∥
Lp(RN )

≤ 2‖∂Nf‖Lp(Ω), (62)∥∥∥∥ ∂g∂xi
∥∥∥∥
Lp(RN )

≤ 2

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(Ω)

+ Liph

∥∥∥∥ ∂f

∂xN

∥∥∥∥
Lp(Ω)

(63)

for all i = 1, . . . , N .
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Proof. The idea of the proof is to first flatten the boundary to reduce to the
case in which Ω = RN+ and then use the previous theorem. We only prove the
case 1 ≤ p < ∞ and leave the easier case p = ∞ as an exercise. Consider
the transformation Ψ : RN → RN given by Ψ(y) := (y′, yN + h(y′)). Note
that Ψ is invertible, of class C1, with inverse of class C1 given by Ψ−1(x) =
(x′, xN − h(x′)). Moreover, for all y, z ∈ RN ,

‖Ψ(y)−Ψ(z)‖ = ‖(y′ − z′, h(y′)− h(z′) + yN − zN )‖
≤
√
‖y′ − z′‖2 + (Liph ‖y′ − z′‖+ |yN − zN |)2

≤ Liph‖y − z‖,

which shows that Ψ (and similarly Ψ−1) is Lipschitz continuous. Since h is of
class C1, we have

JΨ(y) =

(
IN−1 0
∇y′h(y′) 1

)
,

which implies that det JΨ(y) = 1. Note that Ψ(RN+ ) = Ω.
Given a function f ∈W 1,p(Ω), 1 ≤ p <∞, define the function

w(y) := f(Ψ(y)) = f(y′, yN + h(y′)), y ∈ RN+ .

By Exercise 178 the function w belongs to W 1,p(RN+ ) and the usual chain rule
formula for the partial derivatives holds. By the previous theorem the function
ŵ : RN → R, defined by

ŵ(y) :=

{
w(y) if yN > 0,
w(y′,−yN ) if yN < 0,

belongs toW 1,p(RN ) and the usual chain rule formula for the partial derivatives
holds.
Define the function v : RN → R by

g(x) := (ŵ ◦Ψ−1)(x) =

{
f(x) if xN > h(x′),
f(x′, 2h(x′)− xN ) if xN < h(x′).

(64)

Again by Exercise 178, we have that g ∈ W 1,p(RN ) and the usual chain rule
formula for the partial derivatives holds.
By a change variables and the fact that det∇Ψ = det∇Ψ−1 = 1, we have

that ∫
RN\Ω

|g(x)|pdx =

∫
RN\Ω

|f(x′, 2h(x′)− xN )|pdx =

∫
Ω

|f(y)|pdy.

Since for all i = 1, . . . , N − 1 and for LN -a.e. x ∈ RN \ Ω,

∂g

∂xi
(x) =

∂f

∂xi
(x′, 2h(x′)− xN ) +

∂f

∂xN
(x′, 2h(x′)− xN )

∂h

∂xi
(x′), (65)
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again by a change variables we have that(∫
RN\Ω

∣∣∣∣ ∂g∂xi (x)

∣∣∣∣p dx)1/p

≤
(∫

RN\Ω

∣∣∣∣∂f(

∂xi
x′, 2h(x′)− xN )

∣∣∣∣p dx)1/p

+ Liph

(∫
RN\Ω

∣∣∣∣ ∂f∂xN (x′, 2h(x′)− xN )

∣∣∣∣p dx)1/p

≤
(∫

Ω

∣∣∣∣ ∂f∂xi (y)

∣∣∣∣p dy)1/p

+ Liph

(∫
Ω

∣∣∣∣ ∂f∂xN (y)

∣∣∣∣p dy)1/p

.

Similarly, using the fact that ∂g
∂xN

(x) = − ∂f
∂xN

(x′, 2h(x′) − xN ) for LN -a.e.
x ∈ RN \ Ω, we obtain∫

RN\Ω

∣∣∣∣ ∂g∂xN
(x)

∣∣∣∣p dx =

∫
RN\Ω

∣∣∣∣ ∂f∂xN (x′, 2h(x′)− xN )

∣∣∣∣p dx
=

∫
Ω

∣∣∣∣ ∂f∂xN (y)

∣∣∣∣p dy.
Friday, April 21, 2023

Next we study the case of open bounded sets with regular boundary.

Definition 202 Given an open set Ω ⊆ RN we say that its boundary ∂Ω is of
class Cm, m ∈ N if for every x0 ∈ ∂Ω there exist i ∈ {1, . . . , N}, r > 0, and
a function h : RN−1 → R of class Cm such that, writing x = (xi, xi), we have
either

Ω ∩B (x0, r) := {x ∈ B (x0, r) : h (xi) < xi}
or

Ω ∩B (x0, r) := {x ∈ B (x0, r) : h (xi) > xi} .

Theorem 203 Let Ω ⊂ RN be an open bounded open set with ∂Ω of class C1.
Let 1 ≤ p ≤ ∞ and let f ∈W 1,p(Ω). Then there exists g ∈W 1,p(RN ) such that
g(x) = f(x) for LN -a.e. x ∈ Ω and

‖g‖Lp(RN ) ≤ C‖f‖Lp(Ω),

‖∇g‖Lp(RN ) ≤ C‖f‖W 1,p(Ω)

for some constant C = C(N, p,Ω) > 0.

We begin with two auxiliary lemmas.

Lemma 204 Let Ω ⊆ RN be an open set, let 1 ≤ p ≤ ∞, and let f ∈W 1,p(Ω).
Given x0 ∈ Ω let r > 0 be such that B(x0, 2r) ⊆ Ω. Given ψ ∈ C∞c (RN ) with
suppψ ⊆ B(x0, r), the function g : RN → R, defined by

g(x) :=

{
(fψ)(x) if x ∈ Ω,
0 if x ∈ RN \ Ω,
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belongs to W 1,p(RN ), with weak derivatives

∂g

∂xi
(x) =

{
∂(fψ)
∂xi

(x) if x ∈ Ω,

0 if x ∈ RN \ Ω

for i = 1, . . . , N .

Proof. Construct a function φ ∈ C∞c (RN ) such that φ = 1 in B(x0, r) and
φ = 0 outside B(x0, 2r). Let ϕ ∈ C∞c (RN ) and i = 1, . . . , N . Since φ = 1 in
B(x0, r), we have that

∂ϕ
∂xi

= ∂(φϕ)
∂xi

in B(x0, r). Using the fact that suppψ ⊆
B(x0, r) ⊂ Ω, we can write∫

RN
g
∂ϕ

∂xi
dx =

∫
B(x0,r)

fψ
∂ϕ

∂xi
dx =

∫
B(x0,r)

fψ
∂(φϕ)

∂xi
dx

=

∫
Ω

fψ
∂(φϕ)

∂xi
dx.

The function φϕ has support contained in B(x0, 2r) ⊆ Ω. Hence, φϕ ∈ C∞c (Ω)
and so we can integrate by parts to obtain that the right-hand side equals to

−
∫

Ω

∂(fψ)

∂xi
φϕdx = −

∫
B(x0,r)

∂(fψ)

∂xi
φϕdx = −

∫
B(x0,r)

∂(fψ)

∂xi
1ϕdx = −

∫
Ω

∂(fψ)

∂xi
ϕdx.

This shows that the weak ith derivative of g is

∂g

∂xi
(x) =

{
∂(fψ)
∂xi

(x) if x ∈ Ω,

0 if x ∈ RN \ Ω.

Lemma 205 Let Ω, U ⊆ RN be open sets, with

U = {(x′, xN ) ∈ RN−1 × R : xN > h(x′)},

where h : RN−1 → R is Lipschitz continuous and of class C1. Assume that there
exist x0 ∈ ∂Ω and r > 0 such that

Ω ∩B(x0, 2r) = U ∩B(x0, 2r).

Let 1 ≤ p ≤ ∞ and f ∈ W 1,p(Ω). Given ψ ∈ C∞c (RN ) with suppψ ⊆ B(x0, r),
the function g : RN → R, defined by

g(x) :=

{
(fψ)(x) if x ∈ U ∩B(x0, r),

0 if x ∈ U \B(x0, r),

belongs to W 1,p(U), with weak derivatives

∂g

∂xi
(x) =

{
∂(fψ)
∂xi

(x) if x ∈ U ∩B(x0, r),

0 if x ∈ U \B(x0, r)

for i = 1, . . . , N .
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Proof. Construct a function φ ∈ C∞c (RN ) such that φ = 1 in B(x0, r) and
φ = 0 outside B(x0, 2r). Let ϕ ∈ C∞c (U) and i = 1, . . . , N . Since φ = 1

in B(x0, r), we have that
∂ϕ
∂xi

= ∂(φϕ)
∂xi

in B(x0, r) ∩ U . Using the fact that
suppψ ⊆ B(x0, r), we can write∫

U

g
∂ϕ

∂xi
dx =

∫
B(x0,r)∩U

fψ
∂ϕ

∂xi
dx =

∫
B(x0,r)∩Ω

fψ
∂(φϕ)

∂xi
dx

=

∫
Ω

fψ
∂(φϕ)

∂xi
dx.

The function φϕ has support contained in B(x0, 2r)∩U = B(x0, 2r)∩Ω. Hence,
φϕ ∈ C∞c (U) and so we can integrate by parts to obtain that the right-hand
side equals to

−
∫

Ω

∂(fψ)

∂xi
φϕdx = −

∫
B(x0,r)∩Ω

∂(fψ)

∂xi
φϕdx = −

∫
B(x0,r)∩U

∂(fψ)

∂xi
1ϕdx.

This shows that the weak ith derivative of g in U is

∂g

∂xi
(x) =

{
∂(fψ)
∂xi

(x) if x ∈ U ∩B(x0, r),

0 if x ∈ U \B(x0, r).

We turn to the proof of Theorem 203.
Proof of Theorem 203. Let f ∈ W 1,p(Ω). for every x0 ∈ ∂Ω there exist
i ∈ {1, . . . , N}, r > 0, and a function h : RN−1 → R of class Cm such that,
writing x = (xi, xi), we have either

Ω ∩B (x0, 2r) := {x ∈ B (x0, 2r) : h (xi) < xi}

or
Ω ∩B (x0, 2r) := {x ∈ B (x0, 2r) : h (xi) > xi} .

If the set Ω \
⋃
x∈∂ΩB(x, rx) is nonempty, for every x0 ∈ Ω \

⋃
x∈∂ΩB(x, rx)

let B(x0, rx0
) ⊆ Ω. The family {B(x, rx)}x∈Ω is an open cover of Ω. Since Ω is

compact, there is a finite number of balls B1, . . . , B`, where Bn := B(xn, rxn),
that covers Ω. Let {ψn}`n=1 be a smooth partition of unity subordinated to B1,
. . . , B`, with suppψn ⊆ Bn. Then

∑`
n=1 ψn = 1 in Ω.

Fix n ∈ {1, . . . , `}. by Exercise 184, the function fψn belongs to W 1,p(Ω).
There are two cases. If suppψn ⊆ Bn ⊆ Ω, then if we extend fψn by zero outside
Ω, the resulting function, denoted by gn, belongs to W 1,p(RN ) by Lemma 204,
with

‖gn‖W 1,p(RN ) = ‖fψn‖W 1,p(Ω) ≤ Cn‖f‖W 1,p(Ω). (66)

If suppψn is not contained in Ω, let xn ∈ ∂Ω be such Bn = B(xn, rn). Then
writing x = (xi, xi), we have either

Ω ∩B (xn, 2rn) := {x ∈ B (xn, 2rn) : hn (xi) < xi} (67)
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or
Ω ∩B (xn, 2rn) := {x ∈ B (xn, 2rn) : hn (xi) > xi} ,

where hn : RN−1 → R is Lipschitz continuous and of class C1. Assume that
(67) holds. Let

Ωn :=
{
x ∈ RN : hn (xi) < xi

}
.

Let fn be the function obtained by extending fψn to be zero in Ωn \ (Ω ∩
B (xn, rn)). By Lemma 205, we have that fn ∈W s,p(Ωn), with

‖fn‖W 1,p(Ωn) = ‖fψn‖W 1,p(Ω) ≤ Cn‖f‖W 1,p(Ω).

By the previous theorem, we can extend fn to a function gn ∈W 1,p(RN ) with

‖gn‖W s,p(RN ) ≤ Cn‖fn‖W 1,p(Ωn) ≤ Cn‖f‖W 1,p(Ω). (68)

Define g :=
∑n
n=1 gn. If x ∈ Ω, then

g(x) =

n∑
n=1

gn(x) =

n∑
n=1

fn(x) = f(x)

n∑
n=1

ψn(x) = f(x).

Moreover, since the mapping fn 7→ gn given by Theorem 201 is linear, so is the
mapping f 7→ g. Finally, by (66) and (68),

‖g‖W 1,p(RN ) ≤
n∑
n=1

‖gn‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω).

Monday, April 24, 2023

Corollary 206 Let Ω ⊂ RN , N ≥ 2, be an open bounded set with ∂Ω of class
C1 boundary, let 1 ≤ p <∞, and let f ∈W 1,p(Ω).

(i) If 1 ≤ p < N , then f ∈ Lq(Ω) for all 1 ≤ q ≤ p∗, with

‖f‖Lq(Ω) ≤ C‖f‖W 1,p(Ω),

where C = C(N, p, q,Ω) > 0;

(ii) If p = N , then f ∈ Lq(Ω) for all 1 ≤ q <∞, with

‖f‖Lq(Ω) ≤ C‖f‖W 1,p(Ω),

where C = C(N, p, q,Ω) > 0;

(iii) If p > N , then f has a representative g wich is bounded and Hölder con-
tinuous with exponent 1−N/p, with

‖g‖∞ ≤ C‖f‖W 1,p(Ω), |g|
C0,1−N/p ≤ C‖f‖W 1,p(Ω),

where C = C(N, p,Ω) > 0.
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Proof. Since Ω satisfies the hypotheses of Theorem 203, there exists a function
h ∈W 1,p(RN ) such that h = f in Ω and

‖h‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω).

If p < N , we can apply the Sobolev—Gagliardo—Nirenberg embedding theorem
to h to get

‖h‖Lp∗(RN ) ≤ C‖∇h‖Lp(RN ).

Since f = h in Ω, we obtain

‖f‖Lp∗(Ω) = ‖h‖Lp∗(Ω) ≤ ‖h‖Lp∗(RN ) ≤ C‖h‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω).

In turn, if 1 ≤ q < p∗, we can apply Hölder inequality with exponent p
∗

q to get∫
Ω

|f |qdx ≤
(∫

Ω

|f |p
∗
dx

)q/p∗ (
LN (Ω)

)1/(p∗/q)′
.

Similarly, if p = N , we can apply Theorem ?? to obtain that for every N ≤ q <
∞,

‖h‖Lq(RN ) ≤ C‖h‖W 1,p(RN ).

Since f = h in Ω, we obtain

‖f‖Lq(Ω) = ‖h‖Lq(Ω) ≤ ‖h‖Lq(RN ) ≤ C‖h‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω).

If 1 ≤ q < p, we can apply Hölder inequality with exponent p/q. We omit the
details.
Finally, if p > N , we can apply Morrey’s embedding theorem to find a

representative g such that

‖g‖C0(RN ) ≤ C‖h‖W 1,p(RN ), |g|
C0,1−N/p(RN )

≤ C‖∇h‖Lp(RN ).

Then g restricted to Ω is a representative of f , and

‖g‖C0(Ω) ≤ ‖g‖C0(RN ) ≤ C‖h‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω),

|g|
C0,1−N/p(Ω)

≤ |g|
C0,1−N/p(RN )

≤ C‖∇h‖Lp(RN ) ≤ C‖f‖W 1,p(Ω).

19 Compactness

Given a normed space (X, ‖ ·‖), the dual of X, is the space X ′ of all continuous
linear functions L : X → R. It is a normed space, endowed with the norm

‖L‖X′ := sup

{
|L(x)|
‖x‖ : x ∈ X \ {0}

}
.
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The dual of (X ′, ‖ · ‖X′) is called the bidual of X and is denoted X ′′. It can be
shown that the linear function

J : (X, ‖·‖)→ (X ′′, ‖·‖X′′)

defined by
J (x) (L) := L (x) , L ∈ X ′

has the property that

‖J (x)‖X′′ = ‖x‖ for all x ∈ X. (69)

Thus, we can identify X with J(X). We say that a space X is reflexive if
J(X) = X.
We say that a sequence {xn}n in X converges weakly to x ∈ X, and we write

xn ⇀ x if L(xn)→ L(x) for every L ∈ X ′. One of the most important theorems
in functional analysis is the following.

Theorem 207 A Banach space (X, ‖·‖) is reflexive if and only if for every
bounded sequence {xn}n there exist a subsequence {xnk}k and x ∈ X such that
xnk ⇀ x.

Given a Lebesgue measurable set E ⊆ RN and 1 < p <∞, let [g] ∈ Lp′ (E),
where 1

p′ + 1
p = 1, so that p′ := p

p−1 ∈ (1,∞), and consider the linear function
L[g] : Lp (E)→ R defined by

L[g] ([f ]) :=

∫
E

f (x) g (x) dx, [f ] ∈ Lp (E) .

Note that by Hölder’s inequality,∣∣L[g] ([f ])
∣∣ =

∣∣∣∣∫
E

f (x) g (x) dx

∣∣∣∣ ≤ ‖[f ]‖Lp(E) ‖[g]‖Lp′ (E) .

Hence, if [f ] 6= [0], we can divide by ‖[f ]‖Lp(E) to get

‖L[g]‖(Lp(E))′ = sup

{∣∣L[g] ([f ])
∣∣

‖[f ]‖Lp(E)

: [f ] ∈ Lp
′
(E) \ {[0]}

}
≤ ‖[g]‖Lp′ (E) .

One can actually prove that there is equality, that is,

‖L[g]‖(Lp(E))′ = ‖[g]‖Lp′ (E) .

Theorem 208 (Riesz representation theorem) Given a Lebesgue measur-
able set E ⊆ RN and 1 ≤ p < ∞, for every L ∈ (Lp(E))′ there exists a unique
function [g] ∈ Lp′(E) such that

L([f ]) =

∫
E

f (x) g (x) dx, [f ] ∈ Lp (E)

and
‖L‖(Lp(E))′ = ‖[g]‖Lp′ (E).
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It follows that the function

T : Lp
′
(E)→ (Lp(E))′

[g] 7→ L[g]

is one-to-one, onto, and preserves the norm. We say that T is an isomorphism
between Banach spaces. Thus, one can identify the dual of Lp (E) with Lp

′
(E).

It follows that a sequence {[fn]}n in Lp(E) converges weakly to [f ] if for
every [g] ∈ Lp′(E),

lim
n→∞

∫
E

fn (x) g (x) dx =

∫
E

f (x) g (x) dx.

Observe that
(Lp (E))′′ ∼= (Lp

′
(E))′ ∼= Lp (E) ,

so the bidual of Lp (E) can be identified with Lp (E) itself. Hence, Lp (E) is
reflexive.
It follows from Theorem 207 that if {[fn]}n is bounded in Lp(E), 1 < p <∞,

then there exist a subsequence {[fnk ]}k and [f ] ∈ Lp(E) such that [fnk ] ⇀ [f ]
as k →∞.

For p = 1, fix [g] ∈ L∞ (E), and consider the linear function Lg : L1 (E)→ R
defined by

L[g] ([f ]) :=

∫
E

f (x) g (x) dx, [f ] ∈ L1 (E) .

Note that by Hölder’s inequality,∣∣L[g] ([f ])
∣∣ ≤ ∫

E

|f (x)| |g (x)| dx ≤ ‖[f ]‖L1(E) esssup
E
|g| .

Hence, if [f ] 6= [0], we can divide by ‖[f ]‖L1(E) to get

‖L[g]‖(L1(E))′ = sup

{∣∣L[g] ([f ])
∣∣

‖[f ]‖L1(E)

: [f ] ∈ L1(E) \ {[0]}
}
≤ ‖[g]‖L∞(E) .

One can actually prove that there is equality, that is,

‖L[g]‖(L1(E))′ = ‖[g]‖L∞(E) .

Conversely, given L : L1(E)→ R linear and continuous, the Riesz representation
theorem (which we will not prove) gives a unique function [g] ∈ L∞(E) such
that

L([f ]) =

∫
E

f (x) g (x) dx, [f ] ∈ L1 (E)

and
‖L‖(L1(E))′ = ‖[g]‖L∞(E).
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Thus, the function

T : L∞(E)→ (L1(E))′

[g] 7→ L[g]

is one-to-one, onto and preserves the norm. Thus one can identify the dual of
L1 (E) may be identified with L∞ (E).
It turns out that the dual of L∞(E) is not L1(E), so L1(E) is not reflexive.

Wednesday, April 26, 2023

Theorem 209 (Rellich-Kondrachov) Let 1 ≤ p < ∞ and let {fn}n be a
bounded sequence inW 1,p

(
RN
)
. Then there exist a subsequence {fnk}k of {fn}n

and a function f ∈ Lp
(
RN
)
such that fnk → f in Lploc

(
RN
)
. Moreover, f ∈

W 1,p(RN ) if p > 1.

Proof. Step 1: We claim that for all f ∈W 1,p
(
RN
)
and for all h ∈ RN \ {0},∫

RN
|f (x+ h)− f (x)|p dx ≤ ‖h‖p

∫
RN
‖∇f (x)‖p dx.

Assume that f ∈W 1,p
(
RN
)
∩C∞

(
RN
)
. For x ∈ RN and h ∈ RN \ {0} by the

fundamental theorem of calculus we have that

|f (x+ h)− f (x)| =
∣∣∣∣∫ 1

0

d

dt
(f (x+ th)) dt

∣∣∣∣
≤ ‖h‖

∫ 1

0

‖∇f (x+ th)‖ dt.

Raising to power p and integrating over RN , by Hölder’s inequality we get∫
RN
|f (x+ h)− f (x)|p dx ≤ ‖h‖p

∫
RN

(∫ 1

0

‖∇f (x+ th)‖ dt
)p

dx

≤ ‖h‖p
∫
RN

(∫ 1

0

‖∇f (x+ th)‖p dt
)
dx

= ‖h‖p
∫ 1

0

(∫
RN
‖∇f (x+ th)‖p dx

)
dt

= ‖h‖p
∫
RN
‖∇f (y)‖p dy,

where we have used Fubini’s Theorem and the cange of variables y = x+ th.
To remove the additional hypothesis that f ∈ C∞

(
RN
)
, it suffi ces to apply

the previous inequality to fε := ϕε ∗ f , where ϕε is a standard mollifier and let
ε→ 0+ (see Theorem 155 and Lemma 169).
Step 2: Let {fn}n be a bounded sequence in W 1,p

(
RN
)
. In view of Step

1, for all n and h ∈ RN \ {0},∫
RN
|fn (x+ h)− fn (x)|p dx ≤ ‖h‖p

∫
RN
‖∇fn (x)‖p dx ≤M ‖h‖p .
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In view of the Kolmogorov—Riesz—Fréchet compactness theorem for every Lebesgue
measurable set E ⊂ RN of finite measure, the sequence {fn}n restricted to E
is relatively compact in Lp(E). We now use a diagonal argument. Take E =
B(0, 1). Since {fn}n restricted to B(0, 1) is relatively compact in Lp(B(0, 1)),
we can find a subsequence {fn,1}n of {fn}n and a function g1 ∈ Lp(B(0, 1))
such that fn,1 → g1 in Lp(B(0, 1)) and pointwise LN -a.e. in B(0, 1) as n→∞.
Next, take E = B(0, 2). Since {fn,1}n restricted to B(0, 2) is relatively com-
pact in Lp(B(0, 2)), we can find a subsequence {fn,2}n of {fn,1}n and a function
g2 ∈ Lp(B(0, 2)) such that fn,2 → g2 in Lp(B(0, 2)) and pointwise LN -a.e. in
B(0, 2) as n→∞. By the uniqueness of limits, we have that g2 = g1 in B(0, 1).
Inductively, assume we have found a subsequence {fn,k}n of {fn,k−1}n and a
function gk ∈ Lp(B(0, k)) such that fn,k → gk in Lp(B(0, k)) and pointwise
LN -a.e. in B(0, k) as n → ∞. Consider E = B(0, k + 1). Since {fn,k}n re-
stricted to B(0, k + 1) is relatively compact in Lp(B(0, k + 1)), we can find a
subsequence {fn,k+1}n of {fn,k}n and a function gk+1 ∈ Lp(B(0, k + 1)) such
that fn,k+1 → gk+1 in Lp(B(0, k + 1)) and pointwise LN -a.e. in B(0, k + 1) as
n → ∞. By the uniqueness of limits, we have that gk+1 = gk in B(0, k). Let
fnk := fk,k and define the function f : RN → R as follows. Given x ∈ RN
find k so large that x ∈ B(0, k) and set f(x) := gk(x). Then f ∈ Lploc(RN ).
Moreover, for every j ∈ N, we have that {fnk}k≥j is a subsequence of {fn,j}n,
and so, fnk → gj = f in Lp(B(0, j)). By the arbitrariness of j, this shows that
fnk → f in Lploc(RN ) and pointwise LN -a.e. in RN as k →∞.

Since {fnk}k is bounded in Lp(RN ), there exists C > 0 such that

‖fnk‖Lp(RN ) ≤ C

for every k. Using Fatou’s lemma, it follows that for every j,

‖f‖Lp(RN ) ≤ lim inf
k→∞

‖fnk‖Lp(RN ) ≤ C.

Step 3: Assume now that p > 1. We claim that f ∈ W 1,p(RN ). Since {fnk}k
is bounded in Lp(RN ), which is reflexive, by Theorem 207, there exist a subse-
quence {fnkj }j and g ∈ L

p(RN ) such that fnkj ⇀ g in Lp(RN ). By selecting

N further subsequences (not relabelled) and using the fact that ince {∂fnk∂xi
}k

is bounded in Lp(RN ), we can assume that
∂fnk
∂xi

⇀ gi in Lp(RN ). Let’s prove
that g ∈W 1,p(RN ). For all ϕ ∈ C∞c (RN ), we have∫

RN
fnkj

∂ϕ

∂xi
dx = −

∫
RN

ϕ
∂fnkj
∂xi

dx.

Since ϕ has compact support, we have that ϕ, ∂ϕ∂xi ∈ L
p(RN ), and so we can let

j →∞ and use wek convergence to get∫
RN

g
∂ϕ

∂xi
dx = −

∫
RN

ϕgi dx,

which shows that gi is the ih weak derivative if g. Thus, g ∈W 1,p(RN ).
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To see that f = g, let ψ ∈ Lp
′
(RN ) be such that ψ = 0 outside B(0, R).

Then by weak convergence∫
B(0,R)

fnkjψ dx =

∫
RN

fnkjψ dx→
∫
RN

gψ dx =

∫
B(0,R)

gψ dx.

On the other hand, since fnkj → f in Lp(B(0, R)), we have that∫
B(0,R)

fnkjψ dx→
∫
B(0,R)

fψ dx.

Indeed, by Hölder’s inequality∣∣∣∣∣
∫
B(0,R)

(fnkj − f)ψ dx

∣∣∣∣∣ ≤ ‖fnkj − f‖Lp(B(0,R))‖ψ‖Lp′ (B(0,R)) → 0.

Hence, ∫
B(0,R)

gψ dx =

∫
B(0,R)

fψ dx

ψ ∈ Lp
′
(RN ) be such that ψ = 0 outside B(0, R). This implies that f = g

LN -a.e. in B(0, R). Letting R→∞, we obtain that f = g LN -a.e. in RN .

Corollary 210 Let Ω ⊂ RN be an open bounded set with ∂Ω of class C1, let
1 ≤ p <∞, and let {fn}n be a bounded sequence in W 1,p (Ω). Then there exist
a subsequence {fnk}k of {fn}n and a function f ∈ Lp (Ω) such that fnk → f in
Lp (Ω). Moreover, f ∈W 1,p(Ω) if p > 1.
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20 Poincaré Inequalities

Let Ω ⊆ RN be an open set and let 1 ≤ p ≤ ∞. Poincaré’s inequality is the
following ∫

Ω

|f (x)− fE |p dx ≤ C
∫

Ω

‖∇f‖pdx,

where E ⊆ Ω is a measurable set of finite positive measure and

fE :=
1

|E|

∫
E

f (x) dx. (70)

Theorem 211 (Poincaré Inequality) Let 1 ≤ p < ∞, let Ω ⊂ RN be an
open bounded connected set with boundary of class C1, and let E ⊆ Ω be
a measurable set with positive measure. Then there exists a constant C =
C (p,Ω, E) > 0 such that for all f ∈W 1,p (Ω),∫

Ω

|f (x)− fE |p dx ≤ C
∫

Ω

‖∇f(x)‖pdx.
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Proof. Assume by contradiction that the result is false. Then we may find a
sequence {fn}n in W 1,p (Ω) such that∫

Ω

|fn (x)− (fn)E |
p
dx ≥ n

∫
Ω

‖∇fn (x) ‖pdx.

Define

gn :=
fn − (fn)E

‖fn − (fn)E‖Lp(Ω)

.

Then gn ∈W 1,p (Ω) with

‖gn‖Lp(Ω) = 1, (gn)E = 0,

∫
Ω

‖∇gn‖pdx ≤
1

n
.

Extend gn to a function Gn ∈W 1,p(RN ) with

‖Gn‖W 1,p(RN ) ≤ C‖gn‖W 1,p(Ω).

Then {Gn}n is bounded in W 1,p(RN ). By the Rellich-Kondrachov theorem
there exist a subsequence {Gnk}k and a function G ∈ Lp(RN ) such that Gnk →
G in Lploc(RN ). Let g be the restriction of G to Ω. Since Ω is bounded, we have
that gnk → g in Lp (Ω). It follows that

‖g‖Lp(Ω) = 1, gE = 0.

Moreover, for every ψ ∈ C1
c (Ω) and i = 1, . . . , N , by Hölder’s inequality∣∣∣∣∫

Ω

g
∂ψ

∂xi
dx

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
Ω

gnk
∂ψ

∂xi
dx

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
Ω

ψ
∂gnk
∂xi

dx

∣∣∣∣
≤ lim
k→∞

(∫
Ω

‖∇gnk‖pdx
) 1
p
(∫

Ω

|ψ|p
′
dx

) 1
p′

= 0

and so g ∈ W 1,p (Ω) with ∇g = 0. Since Ω is connected, this implies that g is
constant (exercise), but since gE = 0, then, necessarily, g = 0. This contradicts
the fact that ‖g‖Lp(Ω) = 1 and completes the proof.

The space W 1,p
0 (Ω) is defined as the closure of C∞c (Ω) with respect to the

norm in W 1,p(Ω).

Theorem 212 (Poincaré inequality in W 1,p
0 ) Let Ω ⊂ RN be an open set

with finite width, that is, Ω lies between two parallel hyperplanes, and let 1 ≤ p <
∞. Then there exists a constant c = c(N, p) > 0 such that for all f ∈W 1,p

0 (Ω),∫
Ω

|f(x)|pdx ≤ cd
p

p

∫
Ω

‖∇f(x)‖pdx.
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Proof. Without loss of generality, up to a rotation and translation, we may
assume that Ω lies between the two parallel hyperplanes xN = 0 and xN = d > 0.
For f ∈ C∞c (Ω), by the fundamental theorem of calculus and Hölder’s inequality,
we have

|f(x′, xN )| = |f(x′, xN )− f (x′, 0) | =
∣∣∣∣∫ xN

0

∂f

∂xN
(x′, t) dt

∣∣∣∣
≤ x1/p′

N

(∫ d

0

∣∣∣∣ ∂f∂xN (x′, t)

∣∣∣∣p dt
)1/p

.

Extend f to be zero outside RN \ Ω. Raising to the power p and integrating
over RN−1 × [0, d], by Tonelli’s theorem we get∫

Ω

|f(x)|pdx =

∫
RN−1×[0,d]

|f(x′, xN )|pdx

≤
∫
RN−1

∫ d

0

x
p/p′

N

∫ d

0

∣∣∣∣ ∂f∂xN (x′, t)

∣∣∣∣p dtdxNdx′
=

∫
Ω

∣∣∣∣ ∂f∂xN (y)

∣∣∣∣p dy ∫ d

0

xp−1
N dxN =

dp

p

∫
Ω

∣∣∣∣ ∂f∂xN (y)

∣∣∣∣p dy.
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