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1 Conservative and Irrotational Vector Fields

Definition 1 Given two intervals I, J C R, and two functions ¢ : I — RY and
P :J —= RN of class C*, k € Ny, we say that they are equivalent if there exists
a bijective function h: I — J with h and h=" of class C* such that

e ()= (h(t))

forallt € I. We write ¢ ~ 1 and we call ¢ and 1 parametric representations
of class C*¥ and the function h a parameter change of class C*. A curve v of
class C* is an equivalence class of parametric representations of class C*, that
is, [p] :=={: Y~ f}. The set ¥ = @ (I) is called the range of the curve.

Definition 2 A curve v of class C* is closed if it has a parametric represen-
tation ¢ : [a,b] — RN with ¢(a) = @(b).

Similarly we can define C'*° curves, Lipschitz curves, analytic curves, and so
on.

Remark 3 Note that given a curve ~y of class C* with parametric representation
@ : I — RY, the function @ : I — RY is not in general a local chart for a one-
dimensional manifold, since we are not assuming that @ is injective or that
@' (t) # 0 for every t € I. In particular, a curve could self intersects but a
one-dimensional manifold cannot.

Next we introduce the notion of an oriented curve.

Definition 4 Given a curve v in RN of class C*, k € Ny, with parametric
representations @ : I — RY and v : J — RN, we say that ¢ and 1 have the
same orientation if the parameter change h : I — J is increasing and opposite
orientation if the parameter change h : I — J is decreasing. If ¢ and v have
the same orientation, we write @ ~ p.

. * . . .
Exercise 5 Prove that ~ is an equivalence relation.

Definition 6 An oriented curve v in RY of class C*, k € Ny, is an equivalence
class of parametric representations with the same orientation.

Note that any curve v in RV gives rise to two oriented curves. Indeed, it
is enough to fix a parametric representation ¢ : I — R and considering the
equivalence class vT of parametric representations with the same orientation of
@ and the equivalence class v~ of parametric representations with the opposite
orientation of ¢.



Definition 7 Given a Lipschitz continuous oriented curve v in RN and a func-
tion g : E — RN, where E contains the range of v, we define the curve (or
line) integral of g along the curve ~ as the number

/79 = /19 (p(t) - @' (t) dt.

provided the function t € I — g(p(t)) - ¢'(t) is Lebesgue integrable for every
parametric representation @ : I — RN of v and the value of the integral does
not change with the representation.

Exercise 8 Let v be an oriented Lipschitz continuous curve in RN with para-
metric representations ¢ : [a,b] — RY and 1 : [¢,d] — RY. Given a continuous
function g : E — RN, where E contains the range of =, prove that

b d
/ g (1)) - /(1) dt = / g(p () - (7) dr.

Proposition 9 Let v be an oriented Lipschitz continuous curve and f, g : E —
RY, where E contains the range of v. Then

(1) if f,yf and f,y g are well defined, then for all a,b € R,

/7<af+bg)—a/7f+b/79,

(ii) If f_yf is well defined and ¢ : I — RY is a parametric representation of

/f

(iii) If f,yf is well defined, @ : I — RY is a parametric representation of v, c €
I1°, and v, and 74 are the oriented curves of parametric representations
w1 IN(—o00,c] = RY and ¢, : I N[c,00) — RY, then

1=l

Definition 10 Let U C RY be an open set and let g : U — RY. We say that
g is conservative vector field if there exists a differentiable function f:U — R
such that

v, then < Var; psups. ||f ||, where X is the range of v,

Vi(z)=g(=z)
for all x € U. The function f is called a scalar potential for g.
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Theorem 11 (Fundamental Theorem of Calculus for Curves) Let U C
RY be an open set, let f € C1(U), let x, y € U and let v a Lipschitz oriented
curve with parametric representation @ : [a,b] — RY such that ¢ (b) = =,
p(a) =1y, and ¢ ([a,b]) CU. Then

/Vf:fu:)—f(y).
A

Proof. Define p(t) := f (¢(t)) and observe that p is Lipschitz with

PO =Y 5 )6l

=1

for £ a.e. t € [a,b]. Hence,

a

b N af b
Vf= L(t)dt = ') dt =p((b)—p(a) = f(z)— ,
[vi=[ o wwewa= [ vow=ro)-p@=1@-1w)

where we have used the fundamental theorem of calculus for Lebesgue integral.
]

The previous theorem shows that if a conservative vector field is continuous,
then its integral along a curve joining two points depends only on the value at
the two points and not on the particular curve. If U is pathwise connected, then
this condition turns out to be equivalent to the vector field being conservative.

Definition 12 A set E C RY is pathwise connected if for every «,y € E there
exists a continuous curve with range in E joining  with y, that is, v = [¢],
and @ : [a,b] — RY is such that ¢ (b) =z, ¢ (a) = y.

Exercise 13 Prove that if U C RY is open and pathwise connected, then for
every x,y € E there exists a polygonal path with range in U joining x with y.

Theorem 14 Let U C RY be an open pathwise connected set and let g : U —
RY be a continuous function. Then the following conditions are equivalent.

(i) g is a conservative vector field,

(ii) for every x, y € U and for every two Lipschitz oriented curves vy, and =y,
with parametric representations ¢, : [a,b] — RY and ¢y : [c,d] — RY,
respectively, such that @, (b) = ¢, (d) = x, ¢ (a) = py(c) = y, and

1 (a,b]) s (fes ) C U,
I

(iii) for every Lipschitz closed oriented curve ~ with range contained in U,

/gzO.
~



Proof. We prove that (i) implies (ii). Assume that g is a conservative vector
field with scalar potential f : U — R, let =, y € U and let ¢, : [a,b] — R™ and
®s : [c,d] — RY be as in (ii). Then by the previous theorem

ng: [(vr-re v/ =

Y2 ’72

Conversely assume that (ii) holds. We need to find a scalar potential for g. Fix
a point &y € U and for every € U define

f () :—Lg,

where v a Lipschitz continuous oriented curve with parametric representation
@ : [a,b] — RY such that ¢ (b) = =, ¢ (a) = xo, and ¢ ([a,b]) C U. We claim
that there exist

of

o (@) = i (@).
Since U is open and € U, there exists B (z,r) C U. Fix |h| < r, then the

segment joining the point « + he; with x is contained in B (x,r). Define the
curve v : [a,b+ 1] — RY as follows

B (t) if t € [a,b],
P(t) -—{ :+(t—b)hei ift € [b,b+1].

Using (ii), we have that

b+1 N
f(x+he) = / / Zgj x+ (t —b)he;) ho;; dt

b+1
=f(fc)+/b gi (x + (t —b) he;) hdt =

h
= f(x) —|—/ gi (x + se;) ds,
0
where in the last equality we have used the change of variable s = (t — b) h. It
follows by the mean value theorem that

f(xzthe)—f(z) 1

h
Y :E/o gi (x + se;) ds = g; (& + spe;),

where s, is between 0 and h. As h — 0, we have that s, — 0 and so ¢+ s,e; —
x. Using the continuity of g;, we have that there exists

i 4 (@ +he) = f (@)

h—0 h

= ]-lbli%g7 (:13 + Shei) = 9i (m) )

which proves the claim.
The equivalence between (ii) and (iii) is left as an exercise. m



Remark 15 The previous theorem is used to prove that a vector field is not
conservative. Indeed, if U C RN is an open pathwise connected set and g : U —
RN s a continuous function, if you can construct a Lipschitz closed oriented
curve v with range contained in U such that

Lg#m

Given a curve v in RY of class C*, k € Ny, with parametric representation
¢ : I — RN, where I C R is a proper interval, the multiplicity of a point
x € RY is the (possibly infinite) number of points ¢ € I such that ¢ (t) = .
Since every parameter change h : I — J is bijective, the multiplicity of a point
does not depend on the particular parametric representation. The range of ~
is the set of points of RY with positive multiplicity, that is, ¢ (I). If one of the
endpoints of I belongs to I, its image through ¢ is called an endpoint of the
curve.

A point in the range of v with multiplicity one is called a simple point. If
every point of the range is simple, then ~ is called a simple arc. A closed curve
is called simple if every point of the range of -+ is simple, with the exception of
@ (a), which has multiplicity two.

then g cannot be conservative.

Remark 16 Note that in view of Ezercise 13, we can replace item (iii) with
the weaker requirement that
fo=0
~

for every simple closed polygonal path ~ with range contained in U, where ¢ :
[a,b] — R with ¢(a) = ¢(b)

Friday, December 9, 2022
Next we give a simple necessary condition for a field g to be conservative.

Definition 17 Let U C RY be an open set and let g : U — RN be differentiable.
We say that g is an irrotational vector field or a curl-free vector field if

0gi ~ 0gj

foralli,j=1,...,N and all x € U.

Theorem 18 Let U C RY be an open set and let g : U — RY be a conservative
vector field of class C'. Then g is irrotational.

Proof. Since g is a conservative vector field, there exists a a scalar potential
f:U — R with Vf = g in U. But since g is of class C', we have that f is of



class C?. Hence, we are in a position to apply the Schwartz theorem to conclude
that
9gi ( 82f 82f 8gj ( )
)= T) = ) =" (x
81‘j ijf):rz 89518% 81172

foralli,j=1,....,Nandallz € U. =
The next example shows that there exist irrotational vector fields that are
not conservative.

Example 19 Let U :=R?\ {(0,0)} and consider the function

—(__Y i
9(00) = (- s )

Then g is irrotational but not conservative. Indeed,

] Yy B 332_:1/2
ay <_m2+y2> T @2+ )
0 T 2 —y?
o () =y

but, taking the oriented curve v parametrized by ¢(t) = (cost,sint), t € [0, 27],
we get

2m
/ g= / g (cost,sint) - (—sint,cost) dt
2% 0
2

sin ¢ 5 ¢
= / ( S €03 ) - (—sint, cost) dt = 2 #£ 0.
0

cos?t+sin?t’ cos2t 4 sin’t

Hence, by Theorem 14(iii), g cannot be conservative.
The problem here is the fact that the domain has a hole.

Definition 20 A set E C RY is starshaped with respect to a point g € RN if
for every x € E, the segment joining © and xg is contained in E.

Theorem 21 (Poincaré’s Lemma) Let U C RY be an open set starshaped
with respect to a point xg and let g: U — RN be an irrotational vector field of
class C'. Then g is a conservative vector field.

f (@) :=Ag,

where v is the curve given by the parametric representation ¢ : [0,1] — RY is
defined by

Proof. For every x € U define

p(t) :=xp +t(x—x).



Note that

/Zgj (@0 + (2 — @) (2 — 20y) dt.

Since g is of class C!' we can differentiate under the integral sign to get

1
= [ o Zg (0 + (@ — @0) (z; —a0y) | dt

1
:/ Z@x xo+t(x—x0))t(z; —z0j) +gi (®o+t(x—20))1 | di
0 — i

Nt (xj — o) + gi (X0 +t (T —x0)) 1 | dt,

I
s~
\Mz |

where we have used the fact that g is an irrotational vector field. Define
h(t) == tgi (zo +t(z — 20)) .

By the chain rule,

N

Z

N t(x; —x05) + gi (o + L (2 — o)) .

Hence, by the fundamental theorem of calculus,

(@) - / B (t)dt = h (1) — h(0) = 1g; () — O,

which completes the proof. m

Definition 22 Given a set E C RY, x, y € E, and two continuous oriented
curves vy, and 4 with range in E and parametric representations ¢, : [a,b] —
RY and @, : [a,b] — RY, respectively, such that ¢,(a) = @y(a) = = and
p1(b) = po(b) = y, we say that v, and v, are path homotopic in E if there
exists a continuous function h : [0,1] X [a,b] — RY such that h ([0,1] x [a,b]) C
E’

h(0,t) = @,(t) for allt € [a,b], h(1,t) = @y(t) for allt € [a,b],
h(s,a) =z, h(s,b) =y for all s € [0,1].

The function h is called a path-homotopy in E or fixed endpoint homotopy
between the two curves.

Roughly speaking, two curves are path homotopic in E if it is possible to

deform the first continuously until it becomes the second without leaving the set
E.



Definition 23 Given a set E C RY and ¢ € E, a continuous oriented closed
curve v, with range in E and parametric representation ¢y : [a,b] — RY such
that @, (a) = @, (b) = x, we say that vy, is null homotopic in E if it is path ho-
motopic in E to the continuous oriented curves vy, parametrized by the constant
function py(t) := x.

Definition 24 A set E C RY is simply connected if it is pathwise connected
and if every continuous closed curve with range in E is null homotopic in E.

Example 25 A star-shaped set is simply connected. Indeed, let E C RN be
star-shaped with respect to some point xg € E and consider a continuous closed
curve v with parametric representation ¢ : [a,b] — RN such that ¢ ([a,b]) C E.
Then the function

h(s,t) == sp(t) + (1 — s) xg

s an homotopy between ~ and the point xg.

Theorem 26 Let U C RY be an open set, let v, and v, be two oriented closed
Lipschitz continuous curves which are path homotopic in U and let g : U — RN
be of class C' and irrotational. Then

fo=1e
Y1 Y2

In particular, if U is simply connected, then

fo=
A

for every Lipschitz continuous closed oriented curve vy with range in U.
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In what follows, given the unit square @ = [0,1] x [0, 1], we consider the

oriented closed simple curve obtained by moving along 9@ counterclockwise

starting from (0,0). Denote by ¢, : [0,4] — 0Q the parametric representation
obtained by using arclength.

Theorem 27 Let U C RY be an open set, let h : Q — U be Lipschitz con-
tinuous, let v be the Lipschitz continuous oriented closed curve parametrized by
howy:[0,4 — U , and let g : U — RY be of class C* and irrotational. Then

/g:O.
v

Proof. Assume by contradiction that

/Yg:c;éO.



By replacing g with g/c, without loss of generality, we may assume that ¢ = 1.
Divide @ into four squares Q1,1, Q1,2, @1,3, Q1,4 of side-length % and para-
metrize their boundaries as we did for Q. Let ¢y 1, ¢12, P13, ¥1.4 be the
corresponding parametric representations and let vq 1, Y12, Y1,3, Y1,4 be the
oriented closed curve parametrized by h o ¢, : 0,4/2'] = U, k = 1,...,4,
respectively. Since integrals over opposite curves cancel out, we have that

1:/ g+/ g+/ g+/ g
Y11 Y1,2 V1,3 Y1,4

and thus there exists k1 € {1,...,4} such that

[ 9
Y1,k

Let Q1 = Q1k, and vy := vy ,- We now divide @1 into four squares )21,
Q2,2, Q2.3, Q2.4 of side-length 1—16. Proceeding as before we find ks € {1,...,4}

such that
[ a=x
gl > —.
Y2,kq 16

1
> —.
— 4

Inductively we obtain a decreasing sequence of closed squares @,, of side-length

2% such that
I

n

1
2 o (1)

where 7, is the oriented closed curve parametrized by ho ¢, : [0, 2%] — U and
¢, [0, 5] — 0Q,. By Cantor’s theorem there exists (ro,to) € @, for all n.
Let g = h((ro,t0)). Since g is differentiable, we can write

g(x) = g(xo) + Jg(xo)(z — x0) + R(z),

where R
i _B®)
z—wo [|T — To|

0. (2)

Since g is irrotational, the Jacobian matrix Jg(xo) is symmetric. Hence, the
affine function g(z¢) + Jg(o)(x — o) is conservative, since a scalar potential
is given by

F(@) = g(0) @ + 5 (Jy(@o)(@ —z0))" - (@~ 20).

It follows by the fundamental theorem of calculus,

[yng:[MVf—F[ynR:O-i-[y R.

n



Let I',, be the range of v,,. If & € T, = h(p,,([0, 5&])), we can find (r,t) € 0Q,
such that @ = h(r,t). Hence, if L > 0 is the Lipschitz constant of h, we have
that

: V2
lz—oll = [lh(r,t)~h(ro,to)ll < L\/(r —r0)? + (t —t0)? < LdiamQ,, = Lo

In turn, by (2),
IR(@)] = o (| — o) = 0 <1> 7

where &,, — 07. Hence,

I

n
4

< /Qn IR((h o, ) ()R ow,) (s)]ds

0

4
1 Pl
<o) [T Imeg ol
0
1 £ 1 Ea 1\ 4L
<ol — L/ el (s)|lds =0 — L/ lds=o(=— | —.
27L 0 27L 0 27’L 271

Using (2) we get
g ol
Yn 4

as n — 00, which is a contradiction. m
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Next we consider the case in which h is only continuous.

/oﬁ R((how,)(s)) (how,) (s)ds

1
— <
4qn =

Theorem 28 Let U C RY be an open set, let h : Q — U be continuous, let
~ be the oriented closed curve parametrized by h o ¢y : [0,4] — U, and let
g: U — RY be of class C* and irrotational. If ho @, : [0,4] — U is Lipschitz

continuous, then
/ g=_0.
~

Proof. Subdivide @ into small subsquares of side-length %, define h,, = h at
the vertex of each subsquare and interpolate linearly in each subsquare. The
corresponding function h, will be Lipschitz continuous. Homework. m

Corollary 29 Let U C RY be an open set, let h : Q — U be continuous and
such that h(s,0) = h(s,1) for all s € [0,1], let v be the oriented closed curve
parametrized by h o @, : [0,4] — U, and let g : U — RY be of class C* and
irrotational. Assume that the curves v, and v, parametrized by hog, : [1,2] —
U and ho g :[3,4] — U are Lipschitz continuous, then

/ g+/ g=0.
Y1 Y

2

10



Proof. Since h(s,0) = h(s,1) for all s € [0,1], by your homework we will have
h,(s,0) = h,(s,1) for all s € [0,1]. Hence, the Lipschitz curves parametrized
by how,:[0,1] = U and ho g, : [2,3] — U are one the opposite of the other
and so their corresponding integrals will cancel each other. In turn,

/ g—l—/ g=0.
Y 2,1

Letting n — oo will give the desired result. m
We turn to the proof of Theorem 26

Proof of Theorem 26. Let ¢, : [0,1] — U and ¢, : [0,1] — U be para-
metric representations of ~; and =,, respectively, and let h : [0,1] x [0,1]
be a corresponding homotopy. Then h o ¢, is composed of four curves: first
s € [0,1] — h(s,0) followed by -;, then the opposite of s € [0,1] — h(s,1) and
finally the opposite of «4. Since the first and the third of these four curves are
the opposite to each other, the corresponding integrals will cancel out. Hence,

in view of Corollary 29,
/ g+ / g=0.
Y1 —Y2

1,n

Part 1
Fixed Point Theorems and
Applications

2 Brouwer’s Fixed Point Theorem

Theorem 30 (Brouwer’s fixed point theorem) Let K C RY be a non-
empty compact convex set and let g : K — K be a continuous function. Then
there exists * € K such that g () = x.

We begin with a preliminary lemma.

Lemma 31 There is no function f : B(0,1) — 0B(0,1) such that f (x) = x for
all z € 9B(0, 1) and which is continuous together with all its partial derivatives.

Proof. Assume by contradiction that f exists and for ¢ € [0, 1] define

fi(@) = tf () + (1 - t)a.

Then for every € B(0, 1),

1F (@) < tlf ()] + (1 =)= <1,

11



thus f, : B(0,1) — B(0,1). Moreover, f,(z) = x for every x € 0B(0,1). m

Monday, January 23, 2023
Proof. Define h(x) := f(x)— . Since the derivatives of h are bounded, by the
mean value theorem applied to each component, we obtain that h is Lipschitz
continuous with Lipschitz constant L > 1. We claim that f, is injective for every
0 <t < 1/L. Indeed, assume by contradiction that there exist &1, 2 € B(0,1)
such that f,(z1) = f,(22) and &1 # ®2. Since f,(x) = x + th(x) it follows
that

2 — 21| = [[t(h(22) = h(z1))|| < tL]zs — 21| <[22 — 21,

which is a contradiction. Hence, the claim holds.

Since Df, = Ix +tDh and Dh is bounded in B(0, 1), by taking t; smaller,
if necessary, we can assume that det Df,(x) > 0 for all x € B(0,1). To see
this, note that the function

£ e RN s det €

is continuous and so, taking e = % > 0 we can find 0 < § < 1 such that
1
|det & — det In| < 3

for all ¢ € RN with [|€ — Iy||nxy < 0. Then ||Df,(z) — Ix|nxy =
[t Dh(x)||nxn < |t|L < 0, for [t] < §/L.

Since det Df ,(x) > 0 for all * € B(0,1) and all 0 < ¢ < §/L =: to. It
follows by the inverse function theorem that the set Uy := f,(B(0,1)) is open
for all 0 < t < tg.

We claim that Uy = B(0, 1) for every 0 < ¢t < tg. Indeed, assume that this is
not the case. Since U; C B(0,1) by what we proved above, then 0U; C B(0, 1),
and so if Uy # B(0,1), then there must exist y, € U, such that y, € B(0,1).
Let y,, € U, be such that y,, — y, and find x,, € B(0,1) such that y,, = f,(x,).
By compactness, up to a subsequence, we may assume that z, — xg € B(0,1)
with f,(z9) = y,, by the continuity of f,. Note that xy cannot belong to B(0, 1)
as otherwise y, = f,(zg) would belong to f,(B(0,1)) = Ui, so, necessarily
xo € 0B(0,1). But then f,(xzg) = o and so g = y,, which is again a
contradiction since y, € B(0,1). This proves that U; = B(0,1) for every
0<t<tp.

For ¢ € [0,1] define the function

o(t) = /B(O ) detht(m)da::/ det(Iy + tDh(z)) da.

B(0,1)

Since for every 0 < ¢t < to the function f, : B(0,1) — B(0,1) is a bijection
and det Jg, > 0, it follows by the theorem on change of variables that g(t) =
meas(B(0,1)) for all 0 < t < ty. Since g is a polynomial of degree N, we have
that g(¢) = meas(B(0,1)) for all 0 <t < 1. In particular,

0 < meas(B(0,1)) =g(1) = /B(O Y det Df (x) de. (3)

12



On the other hand, since by hypothesis || f (z)||? = f(z) - f(z) = 1 for every
x € B(0,1), if z € B(0,1) and v € RY, then by replacing = with = + sv
differentiating with respect to s we get

(Df (z)v) - f (@) = 0,

which shows that the range of Df (x) is orthogonal to the vector f(x). In turn,
Df (z) has rank less than or equal to N — 1 and so det Df (z) = 0, which
contradicts (3). This concludes the proof. m

Wednesday, January 25, 2023

Remark 32 The previous lemma continues to hold for any ball. There is no
function f : B(0,r) — 0B(0,r) such that f(x) = x for all x € OB(0,r) and
which is continuous together with all its partial derivatives. Just consider the
function f,(z) == f(rz), € B(0,1).

Lemma 33 There is no continuous function f : B(0,1) — 0B(0,1) such that
f(x) == for all x € 9B(0,1).

Proof. Assume that f exists. Extend f to be the identity outside B (0,1).
Then f is continuous. Define g(z) := f(x) — « and consider the mollification
g. of g. Since g(z) = 0 for all x outside B (0, 1), we have that g.(z) = 0 for
all & outside B (0,1 +¢). Moreover, g. — ¢ uniformly on compact sets. Take
e = 1 and define f,,(z) := gi/n(z) + . Then f, is in C (RY;RYN), f, is

the identity outside B (0, 1+ %) and f, — f uniformly in RY. Hence, for all
n large,

sup |If u(@) — £ ()] < =

ZERN 2
Since ||f (z)|| > 1 for all € B (0,1 + ), it follows that

1

I (@)l 2 If @) = [Ifn(z) = f (@) 21 = 5.

Define

ho(z) == (1+ %)M.

Then hy, is C*, |hy(z)|| =1+ 1 forall x € B(0,1+ 1), and if ||| =1+ %

n’
then
1.z

)m:

This is a contradiction in view of the previous lemma. m

We now turn to the proof of Brouwer’s fixed point theorem.
Proof of Theorem ??. Step 1: Assume first that K = B(0,1) and that
f : B(0,1) — B(0,1) is continuous. We claim that f has a fixed point. Indeed,
if not then f(z) # « for all © € B(0,1). For each z € B(0,1) let g(z) be the

hn($) = (1 + €T.

n

13



point where the ray from f(x) to  meets 0B(0,1). To be precise, we consider
the ray

f(z)+s(z—f(x)), s=0,
through f () in the direction & — f(x) # 0 and then find s > 0 such that

L= |f (z) + s(z — f ()|
= °|lw — f (2)|* + 25f () - (z — f (=) + | f (2)]*.

Note if we let s € R then the previous equation must have two distinct roots
since the line intersects the boundary of the ball in two distinct points. Hence,
the discriminant of the quadratic equation must be strictly positive. Solving for
s we find

oo T (@ F (@)

|z —f ()|
V(@) (z—f (@) + [z — f@)[PA - [f (=)
| — £ (2)]?

Since the discriminant is strictly positive the function s is continuous and s(x) =
11if ||z|| = 1. Hence, the function g : B(0,1) — 0B(0, 1), defined by

9(z) := f(z) + s(z)(z — f (),

is continuous and is the identity on the unit sphere since s(z) = 1 if ||z| = 1.
This contradicts the previous lemma.

Step 2: Let K = B(0, R) for some R > 0 and let f : B(0,R) — B(0,R) be
a continuous transformation. To obtain a fixed point, it suffices to apply the
previous step to the rescaled function f p(z) := R™!f(Rz), z € B(0,1).

Step 3: Let K C RY be a nonempty compact convex set and let f : K — K
be a continuous transformation. Find R > 0 such that K C B(0, R) and for
each & € B(0, R) consider the continuous transformation h(z) := f(II(x)),
x € B(0,R), where IT : RY — K is the projection onto the convex set K.
Note that h(K) C K C B(0, R), and so by the continuity of II we have that
h : B(0,R) — B(0,R) is continuous. By the previous step there exists €
B(0, R) such that & = h(x) = f(II(x)). On the other hand, since h(K) C K,
we have that z € K, and so II(z) = . Thus, the previous identity reduces to
x = f(x) and the proof is completed. m

+

Remark 34 If a set K C RY is homeomorphic to a closed ball, then a contin-
wous function f : K — K has a fized point. To see this, let g : K — B(0,1)
be a homeomorphism. Then the function go f o g~ : B(0,1) — B(0,1) has a
fized point x € B(0,1), so that,

9(f (g7 (z)) = =

By applying g—* to both sides we get that y := g~ '(x) € K is a fived point for
I
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We present some examples that show the importance of the hypotheses in
the Brouwer fixed point theorem.

Example 35 In R? consider the annulus
K:={zcR?: ¢ <|z| <1}.

This set is compact, path-connected, but not convex. Consider the function given
in polar coordinates by

f(r,0)=00+mn), relgl], 6¢c]0,2x].
It is continuous, maps K into itself but has no fixed point.

Example 36 If E =[0,1) then f(x) = (x+1)/2 has no fixed point. The set E
18 bounded, convex, but not closed.

Example 37 If E = R then f(x) = x + 1 has no fixed points. The set E is
closed, convex, but not bounded.

In the proof of the Brouwer fixed point theorem we used the following result.

Theorem 38 Let C C RY be a nonempty closed convex set. Then for every
z € RYN there exists a unique point Il (z) € C such that

|z —Tl(2)| <z -yl foralyeC. (4)

Moreover, the mapping I1 : RN — C is Lipschitz continuous with Lipschitz
constant less than or equal one, that is

[T (1) — I (z2) || < |21 — 22
for all ¢1, o € RY.

Proof. Fix ¢y € RY. For r > 0 sufficiently large, the set B (zg,7) N C is
compact and nonempty. Hence the continuous function

z € RY — ||zg — ||
attains a minimum on this set, say at y, € B (zo,r) N C. Hence
lzo — yoll < ||lwo — =|| for all x € B (zo,7)NC.

If ¢ € C\ B(x,r), then ||zo — x| > r > ||zo — y,l|, and so we have shown (4).
The remaining of the proof will be in your homework. m
Friday, January 27, 2023
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3 Application I of BrFTT: Invariance of Domain

Theorem 39 Let U C RYN be open and let f : U — RN be continuous and
injective. Then f(U) is open.

Lemma 40 Let f : B(xg,r) — RY be continuous and injective. Then f(xo)
belongs to the interior of f (B(xo,r)).

Proof. By replacing f with f,(x) := f (rz + x¢), without loss of generality we
may assume that &g =0 and r = 1.

Since f is continuous and B(0, 1) is compact, f ' : f(B(0,7)) — B(0,1) is
continuous. By your homework, there exists a continuous function g : RN — RN
which extends f ~'. Note that g(f(0)) = 0. We begin by showing a stability
result.

Step 1: Let h: f(B(0,1)) — RY be a continuous function such that

lg(y) —h(y)l| <1

for all y € f£(B(0,1)). We claim that there exists y € f(B(0,1)) such that
h(y) = 0. To see this, we apply Brouwer’s fixed point theorem to the function

F(z):=xz —h(f(z)) = g(f (z)) — h(f(x)), z<B(0,1).
Note that F maps B(0,1) into B(0,1) since

IF(@)] = llg(f (z)) — h(f (®))| <1 for all z € B(0,1).

It follows that there is &1 € B(0, 1) such that 1 = F(z1) = &1 — h(f (z1)) and

so h(f(z1)) =0.

Step 2: Assume by contradiction that f(0) does not belong to the interior
of f(B(0,1)). We are going to construct a perturbation h of g which has no
zeros, thus contradicting Step 1. Since g(f (0)) = 0, by continuity we can find

6 > 0 such that )

lg(y) — Ol = llg(y) — 9(F (O)I < 35

for all y € RY with ||y — £(0)|| < 25. Since £(0) is not an interior point of
f(B(0,1)), there exists ¢ € RV with || (0) — ¢|| < J such that ¢ does not belong
to f(B(0,1)). Note that

1

10
for all y € RY with [ly— ]l <6 (since |y— £ (0)]| < |y— el +]1 (0) — ]| < 26).
Consider the set K := Ky U K5, where

lg(y)ll < -5 ()

Ki={yecfBOD): ly—c| >0}, Keo:={yecR": |y—c| =3}

Then K is compact and f(0) ¢ K since |f(0) — ¢|| < §. Since g = f!
on f(B(0,1)), we have that g # 0 in K;. Since K; is compact there exists
0<2n< 1—10 such that

lg(m)|| > 2n for all y € K.
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By mollification we can find € > 0 so small that
l9(y) — g-(y)ll <n forally € K.

In particular, g, does not vanish on K, since

lg-(wl > gl = lg(y) — g-(y)| > 2n —n.

However, g, could vanish on Ks. To fix this, observe that Ky has Lebesgue
measure zero. Since g, is smooth, it follows that LY (g.(K3)) < CLY (K3) =0
(exercise) and thus there exists d € B(0,7) \ g.(K2). Consider the function
p:=g. — d. Then p does not vanish on Ky by construction and

lg(y) —p(WI < llg(y) —g. (W +dl| <n+n forallyeK, (6)

so [[p(y)ll = lg(y)ll — l9(y) — p(y)|| > 21 — 2. Thus p does not vanish on K.
]

Monday, January 30, 2023
Proof. Consider the function

q: f(B(0,1)) > RY

given by

1fw-o. )

Note that if y € f(B(0,1)) and ||y — ¢|| > ¢, then ﬁ <1, s0 q(y) =
ct+ty—c=yEe€ Kl, while if y € f(B(0,1)) and ||y — ¢|| <, then ﬁ > 1,
so q(y) = e+ 65

aly) = ”max{ To—dl’

To—ey» 20d

la(y) — el =9,
so q(y) € Ky. Thus, q: f(B(0,1)) — K. Moroever, the function g is continu-
ous, since ¢ ¢ f(B(0, )) Define h : f(B(0,1)) — RN as follows

h(y) :=p(q(y)), v e f(B(O,1)).

By construction h does not vanish since p does not vanish on K and gq :
#(B(0,1)) — K.

It remains to show that is close to g. If y € f(B(0,1)) is such that ||y —c|| >
d, then ¢(y) = y € K; (see (7)) and so by (6),

o) — Bl = lg() - p(w)] < 20 < 1,

while if y € f(B(0,1)) is such that ||y — ¢|| < 6, then ||q(y) — ¢|| = 6 (see (7))
and so by (5) we have that

lowl < 55 llstatw)] < 55
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In turn, by (6),

lg(y) = h(w)ll < llg(w)ll + llg(a(w)ll + l9(a(y)) — h(y)ll

= llg(W)ll + la(a())ll + llg(a(y)) — p(a(y))]

< 1 + 1 +2 < i

— 10 10 10
Thus we have contradicted Step 1. =

We now turn to the proof of Theorem 39.
Proof. Let y, € f(U). Then there is y € U such that f(xzg) = y,. Since
U is open, we can find a ball B(zo,8) C U. In turn, f : B(zo,0) — RV is
continuous and injective. Thus by the previous lemma f(z¢) = y, belongs to
the interior of f(B(x,)), that is, there is B(yq,r) C f(B(x0,0)) Cf(U). =
Wednesday, February 1, 2023

Remark 41 The previous theorem fails if the dimensions of the space and
codomain are different. For example the function f : (0,1) — R2%, given by
f () = (t,0), is continuous and injective but the image is not open in R?. It
also fails for infinitely dimensional spaces. Indeed if we consider the space £°°
of all bounded sequences, endowed with the sup norm, then the shift function
[0 =L given by f((z1,Zn,...)) = (0,21, 22,...) is continuous and injec-
tive but the image is not open.

An important consequence of the previous theorem is the invariance of the
domain.

Theorem 42 (Dimension Invariance Theorem) If N > M and U C RY
is an open set, then there is no continuous injective function g : U — RM. In
particular, RM and RN are not homeomorphic.

Proof. Assume that such function exists. Define IT : RM — RY ag

H(y):(ylv"'7yMaO7~'~70)

and f : U — RN as f :=IIog. Then f is continuous and injective. However,
F(U) =1II(g(U)) C II(RM) and II(RM) has empty interior. This contradicts
the previous theorem. m

Another important application of Brouwer fixed point theorem is Jordan’s
curve theorem. Before we discuss it, we need to introduce connected sets.

4 Connectedness and Pathwise Connectedness

Definition 43 Let (X, 7) be a topological space.

(i) A set E C X is disconnected if it can be written as union of two disjoint
nonempty relatively open sets, that is, if there exist two open sets Uy, Us C
X such that ENUy # 0, ENUy # 0,

E=(EnNU)UENT), ENU NU; =0.
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(ii) A set E C X is connected if it is not disconnected.
Next we show that continuous functions preserve connectedness.

Proposition 44 Consider two topological spaces (X, 7x) and (Y, 7y) and a con-
tinuous function f: E —Y, where E is connected. Then f (E) is connected.

Proof. Assume by contradiction that f (FE) is disconnected. Then there exist
two open sets Vi, Vo C Y such that f(E)NVy #0, f(E)NVy #£0,

FE) = (f(EYNWV)U(f(E)NV2), (f(E)NnVi)N(f(E)NVz)=0.

Since f is continuous, f~1(V1) and f~1(V3) are relatively open in E, that is,
there exist open sets U; and Uy C X such that f~1(Vy) = ENUy, f~1(Vz) =
ENU,. Since f (EYNVy £ 0, f(E)NV, £ 0, it follows that ENU; and ENUs
are nonempty. If z € E, then f(x) € f(E) and so either f(z) € f(E)NV; or
f (E)NVa, and so either z € f~1(V4) = ENU; or z € f~1(V2) = ENUs,. Hence,

E=(EnU;)U(EnNUs,).

Finally, if there existed x € ENUy NUy, then f(z) € f (E)NViNV, = 0, which
is a contradiction. This shows that E' is disconnected, which is a contradiction
and completes the proof. m

We recall that I C R is an interval if for every z,y € I with z <y, we have
that [z,y] C I.

Theorem 45 A set E C R is connected if and only if it is an interval.

Proof. Recitation. m
We now introduce another notion of connectedness, which is simpler to verify.

Definition 46 Given a topological space (X, ), a set E C X is called pathwise
connected if for all x,y € E there exists a continuous function f : [0,1] - E
such that f(0) =z and f(1) =y.

Proposition 47 Let (X, 7) be a topological space and let E C X be pathwise
connected. Then E is connected.

Proof. We claim that F is connected. If not, then there exist two open sets
U1,U2 QX such that EQU1 #@, EQUQ #@,

E=(ENnU,)U(ENUy), ENU NU;=0.
Let x € ENU; and y € ENUs. By hypothesis we can find a continuous
function f : [0,1] — E such that f(0) = z and f (1) = y. By Proposition 44
and Theorem 45, we have that f ([0, 1]) is connected. On the other hand,
F(0,1) S ECUUUz, ze f(0,1)NT1, ye f([0,1])NTx,

which is a contradiction. m
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Proposition 48 Let (X, ) be a topological space and let E C X be a connected
set. Then E is connected.

Proof. Recitation m
The next example shows that in RY a connected set may fail to be pathwise
connected, unless the set is open.

Example 49 Let E C R? be the set given by
Elz{(x,y)€R2: x =0, —1§y§1},
1 1
Ey, = {(w,y)€R2: 0<z< ,y:sim}7
T T
E=F;UEs.
The set E is connected but not pathwise connected.

Definition 50 Given a normed space (X, ||-||), a polygonal path is a continuous
curve represented by a continuous function f : [a,b] — X for which there exists
a partition a =ty < t1 < --- < t, = b with the property that f : [t;—1,t;] — X
18 affine for all i =1,...,n, that is,

f (t) =c; +td; forte [xi,l,xi] R
for some ¢;,d; € X.

Theorem 51 Given a normed space (X, ||-]|), let O C X be open and connected.
Then O 1is pathwise connected.

Proof. Recitation. m
Exercise 52 Prove that the set R? \ Q? is connected.

Next we show that if a set is not connected, we can decompose it uniquely
into a disjoint union of maximal connected subsets.

Proposition 53 Let (X, 7) be a topological space and let E C X. Assume that

E= ] Ea,

a€A

where each E,, is a connected set. If () ,cp Eo is nonempty, then E is connected.

Proof. We claim that E is connected. If not, then there exist two open sets
Up,Us C X such that ENU, # 0, ENUs # 0,

E=(ENU)U(ENU), ENU NU;=10.

Since each F, is connected, we must have that either £, C Uy or E, C Us. On
the other hand, if & # S, then E,NEj is nonempty, while ENU;NU; = (). Thus,
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all E, either belong to Uy or to Us. This contradicts the fact that £ N Uy # ()
and that ENU; #0. m
Let (X,7) be a topological space and let £ C X. For every x € FE, let
FE, be the union of all the connected subsets of E that contain x. Note that
E, is nonempty, since {z} is a connected subset of E. In view of the previous
proposition, the set F, is connected. Moreover, if z,y € E and = # y, then
either £, N E, = () or E, = E,. Indeed, if not, then again by the previous
proposition the set E, U E, would be connected, contained in F, and would
contain x and y, which would contradict the definition of £, and of E,. Thus,
we can partition E into a disjoint union of maximal connected subsets, called
the connected components of E.
Friday, February 3, 2023

Proposition 54 Let (X,7) be a topological space and let C C X be a closed
set. Then the connected components of C' are closed.

Proof. Let C, be a connected component of C. Then C, C C, C 67: C. By
Proposition 48, C, is connected, and so by the maximality of Cy, C, = C,,
i.e., Cy is closed. m

Proposition 55 Let (X, ||-||) be a normed space and let U C X be an open set.
Then the connected components of U are open.

Proof. Let U, be a connected component of U. If U, is not open, then
there exists x € U, N OU,. Since U is open, we can find B(z,r) C U. But
then U, U B(z,r) is still connected by Proposition 53, which contradicts the
maximality of U,. =

Example 56 Consider the metric space X = Q with the metric induced by
the one on the real line. Then Q is open (since it is the entire space) but the
connected components of Q are singletons (why?) which are not open.

Proposition 57 Let (X,d) be a metric space and let Ey, By C X be two con-
nected sets. If B4 N Eo is nonempty, then E1 U Ey is connected.

Proof. Let E := E; U Es. If F is disconnected, then there exist two nonempty
open sets Uy, Us C X such that

ECU1Ul,, ENU1NU=0, ENUL#0, ENUs#0.

Since F; is connected, we must have that either £y C U; or E; C U,, say,
E; C U;. But then, F5 NUs # ), and since Fy is connected, it follows that
E, C U,. But since there exists © € E; N Ey and E; C Ui, we have that
x € Uy N Ey, which implies that there exists y € E, such that y € Uy, this
contradicts the fact that ENU; NU; is empty. W

Exercise 58 Let (&') be a topological space and let E1, E5 C X be two con-
nected sets. If E1 N Es is nonempty, then 1 U Ey is connected.
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5 Application II of BrFTT: Jordan’s Curve The-
orem

Another important application of Brouwer fixed point theorem is Jordan’s curve
theorem.

Theorem 59 (Jordan’s curve theorem) Given a continuous closed simple
curve v in R? with range T, the set R?2\T' consists of two connected components.

Lemma 60 Leta <b,c<dandletf :[-1,1] — [a,b] x[¢c,d] and g : [-1,1] —
[a,b] X [¢,d] be two continuous functions such that fi(—1) = a, fi1(1) = b, and
92(—1) = ¢, g2(1) = d. Then there exists to, so € [0, 1] such that f (so) = g(to).

Proof. Assume by contradiction that f(s) # g(¢) for all s,t € [—1,1]. Let
Q = [-1,1] x [-1,1] and consider the continuous function h : @) — @ defined

by
hist) e (9@ = fils) ~ fo(s) = ga(t) )
6:0= (=l e =l
where |||, = max{|z|,|y|}. Note that h(s,t) € 0Q. By the Brouwer fixed

point theorem there exists (so,%9) € @ such that h(sg,to) = (so,%0). But since
h(Q) C 0Q), necessarily, (so,t9) € 0Q. Hence, so = +1 or to = £1. If 59 = 1,

then
Calt) - A1) it b
IR g0l T TF - el S

while if sg = —1, then

g1(to) — f1(=1) gi(to) —a

—1l = = > 07
1F (=1 =gl IF(=1) = g(to)ll
which give a contradiction.
On the other hand, if ¢ty = 1, then
1= fal(s0) =g2(1) folso) —d <0
£ (s0) =gl If(s0) —g(Mllc ~
while if t5 = —1, then
R AT o o VY A T

T Gso)— 9Dl 1f (o) — g =

which give again a contradiction. This completes the proof. m

Remark 61 Since I is bounded, the set R?\ T' has only one unbounded com-
ponent. Indeed, let T C B(0,7). The set R*\ B(0,r) is open and pathwise
connected and so it is connected. Moreover, R2\ B(0,7) C R2\T, and so there
is a connected component that contains R? \ B(0,r).

Monday, February 6, 2023
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Lemma 62 Given a continuous closed simple curve v in R? with range T, if
R2\T is not connected and U is a bounded connected component of R2\T', then
oUu =T.

Taking for granted Lemma 62, let’s prove Jordan’s curve theorem.

Proof. Since I' is compact, there exist a, b € T" such that||a — b|| = diamT'. By
changing coordinates, without loss of generality we may assume that a = (1,0)
and b = (—1,0). Then the rectangle R = [—1,1] x [—2,2] contains I" and has
only @ and b on its boundary. Let n = (0,2) and s = (0,—2). By Lemma
60 the segment ns intersects I'. Let I be the point in T' N #é with maximal
y-component.

The points a and b divide I' in two arcs, let I';, be the one containing
and let T'y be the other one. Let m be the point in I';, N n$ with minimal
y-component.

Then the segment m$ intersects I',, since otherwise, denoting by Im the
subarc contained in I',, with endpoints ! and m, the curve given by Ei+ Im+ms
would not intersect the curve I'y, contradicting Lemma 60. Let p and q be
the points in T'; N m3 be the points with maximal and minimal y-component,
respectively. Finally let zo be the middle point of the segment mp. Note that
m # p since < is simple. Hence, zy does not belong to I'. Let U be the
connected component of R?\ I" which contains zg. We claim that U is bounded.

Assume by contradiction that U is unbounded. Since U is open and con-
nected, it is path-connected and so we can find a polygonal path in U joining
zo to a point outside R. Let w be the point at which this polygonal path
first intersects R and denote with ~; the portion of this polygonal arc join-
ing zg and w. If w is on the lower half of R, let ws the subarc contained in
OR with endpoints w and s and not intersecting a, b. Then the curve given
by ;l +Im + mz, + 71 + ws would not intersect the curve Ty, contradicting
Lemma 60. On the other hand, if w is on the upper half of R, let wn the sub-
arc contained in OR with endpoints w and n and not intersecting a, b. Then
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the curve sz4 + v1 + wn would not intersect the curve I',,, contradicting again
Lemma 60.

This shows that U is bounded. It remains to show that U is the only bounded
connected component of R? \ I'. Assume by contradiction that there is another
one, say, V. Then V C R, since R?\ R is pathwise connected and thus contained

in the unbounded connected component of R? \ T'. Since the segments 773\ {1}
and g3\ {q} are contained in the unbounded connected component of R? \ T,
it does not intersect V. Similarly, since zq € U, the segment mp \ {m,p}
is contained in U, and thus it does not intersect V. It follows that the curve
o given by nl + Im + mp + pq + qs, where pq the subarc contained in T,
with endpoints p and g, does not intersect V. Since a and b are not in 7o,
there are balls B(a,r) and B(b,r) which do not intersect 7. By Lemma 62,
0V =T and so a and b belong to OV. Hence, there exist a; € V N B(a,r) and
by € VN B(b,r). Let a1 by be a polygonal path in V joining a; and b;. Then
the curve aa; + a/131 + ﬁ) does not intersect 79, contradicting again Lemma
60. This concludes the proof. =
Wednesday, February 8, 2023
‘We prove Lemma 62.
Proof of Lemma 62. Step 1: We claim that U C I'. Indeed, if not then
there would exist £p € OU N (R? \ T). Since U is open, ¢, does not belong to
U, so there is another connected component V of R?\ " with @y € V. But then
UNV # @ and so by Proposition 57, U UV is connected, which contradicts the
maximality of U. Thus oU C T
Step 2: Assume by contradiction that U C T'. Let xy € T'\ 9U. Since
R2\ U is open, there exists B(zg,d) C R?\ U. Consider a simple arc whose
range C' C I' is closed and contains U but does not intersect B(zg, ). Let V
be the unbounded connected component of R\ I'. Take p € U. Let r > 0 be
so large that B(p,r) D I'. Then 0B(p,r) is contained in V. Define f(z) := =
for all € C. Since C is homeomorphic to [0, 1], by Tietze’s extension theorem
we can extend f to a continuous function f : R? — C. Define

[ f(z) ifzel,
g(w)'_{m if £ € R2\ U,

Then g : B(p,r) — B(p,r)\ {p}. Indeed, p belongs to U and g is mapped into
C CT. Moreover, since U C C and g(x) = x for all x € C, we have that g is
continuous. Note that g(z) = x for all x € 9B(p,r). It follows that the map

h(z) glz)—p

= —17 —|— p
lg(z) — pll

maps B(p,r) into dB(p,r) and is the identity on OB(p,r). However, this con-
tradicts Lemma 33. =
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6 Banach Fixed Point Theorem

Definition 63 Given a metric space (X,d) and a sequence {z,}, in X, we say
that {z,}, is a Cauchy sequence if for every e > 0 there exists N. € N such
that

d(zp,zm) <€

for alln,m > N,

Proposition 64 Given a metric space (X,d) and a sequence {z,}, in X, if
{zn}, converges to some x € X, then {z,}, is a Cauchy sequence.

Proof. Since {z,} converges to x € X, given € > 0, consider § in the definition
of convergence. Then there exists N, € N such that

d(zp,z) <

DN ™

for all n > N.. Hence, by the triangle inequality and symmetry of d, if n,m >
Ne,

d(zn, Tm) < d(zp,x) +d(z,20) =d(T,, ) + d (T, 7) < % + g

The opposite is not true, that is, there are Cauchy sequences that do not
have a limit.

Example 65 Consider X = (0,1) with the metric d (z,y) = |z — y| and con-
sider the sequence x, = % Then x,, — 0 which does not belong to X = (0, 1),
but {x,},, is a Cauchy (just applied the previous proposition in the metric space

R).
Exercise 66 Let {x,}, be a sequence in a metric space (X,d).

(i) Prove that if {x,}, is a Cauchy sequence and if a subsequence {xy, }, of
{z}, converges to some x € X, then {z,}, converges to x.

(i1) Prove that if there exists x € X such that for every subsequence {Zn, }k
of {xn}n there exists a further subsequence {xnkj }; that converges to z,

then {x,}, converges to x.

Definition 67 A metric space (X,d) is said to be complete if every Cauchy
sequence has a limit in X.

Example 68 Let X = (0,1) with the metric d(x,y) = |x — y|. The sequence
{%}nEN converges to 0 in R, and so it is a Cauchy sequence in R. In particular,

it is a Cauchy sequence in X. However, it does not converge to an element of
X, since 0 ¢ X.

Theorem 69 RY is a complete metric space.
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Proof. Step 1: Let {z,}, be a Cauchy sequence. We claim that {z,}, in R
is bounded. Fix ¢ = 1. By the definition of Cauchy sequence, there is exists
N7 € N such that

|n — €l < 1

for all n,m > Nj. In particular, taking m = N, we have that
lzn — 2N, || <1,
for all n > N;. Taking
R:=max{l,|xz1 —zn ]|+ 1,...,|&en,—1 — &N, || + 1},

we have that x,, € B (zy,, R) for all n € N.

Step 2: We claim that {z,}, in RY admits a convergent subsequence.
Consider the set F := {x,, : n € N}.
Case 1: There exists £ € RY such that z, = £ for infinitely many n. In this
case we can find a subsequence {,, } such that =,, = £ for all k¥ € N and so
Ty, =€—Lask—o00. W

Friday, February 10, 2023

Proof. Case 2: Since no element of F is repeated infinitely many times, the set
FE has infinitely many distinct elements. Since E is bounded and has infinitely
many distinct elements, the set F has an accumulation point £ € R,

Take €1 = 1. Since £ is an accumulation point of E there exists z,, €
B(£,21) with @, # £. Let

1
€9 1= min{Q,min{wn —|: n=1,...,n1, @, ;EE}} > 0.

Since £ is an accumulation point of E there exists x,,, € B(€,e2) with x,,, # £.
It follows from the definition of £ that necessarily no > ny.

Inductively, assume that n; < ns < --- < ngx_1 have been chosen so that
0< ||@n, —£|| < A7 foralli=1,...,k—1. Let

1
e 1= min{k,min{Hmn —l|:n=1,...,n5_1, Ty #K}} > 0.

Since £ is an accumulation point of E there exists x,, € B({,¢) with @, # £.
It follows from the definition of € that necessarily ng > ng_1.
Thus, by induction we have constructed a subsequence {z,, }, such that

1
0<||zn, — €] < Z for all k € N.

By the squeeze theorem z,, — £ as k — oo.
Step 3: We claim that lim x, = £. Let ¢ > 0. Since {z,}, is a Cauchy

n—oo

sequence, there exists n. € N such that

||:Bn - mm” S £
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for all n,m > n.. On the other hand, since z,, — ¢ as k — oo, there exists
ke € N such that
[z, — €] <e

for all k > k.. Let k. > k. be so large that ni, > n.. Then for all n > ny,, we
have
|zn — £l < llzn — o, || + (|20, — Ll <e+e.

This implies that {z,},, converges to £. m

Definition 70 A normed space (X, ||-||) is a Banach space if it is a complete
metric space.

Theorem 71 Given a nonempty set X, consider the space
(X)) :={f: X - R: f is bounded}

with the norm

[flloo = sup [f ()]
reX
Then ¢>°(X) is a Banach space.

Proof. Let {f,}, in £>°(X) be a Cauchy sequence. Let € > 0 and find n. € N
so large that

sup | fn () = fm (2)] = doo (fn, fm) <€

zeX
for all n,m > n.. This implies that for every fixed z € FE, the sequence of real
numbers {f, (z)} is a Cauchy sequence in R and so there exists

lim f, (z)=f(z) eR.

n—oo

n

Since
[fo (@) = fm (@) < €
for all n,m > n., letting n — oo gives (why?)

[f(2) = fm (2)] < e

for all m > n.. This holds for every x € X. Hence, taking the supremum over
all z € £°°(X) gives

sup |f (z) — fin (%) = doo (f, fn) <€

reX

for all m > ng; that is de (f, frn) — 0 as m — oo. Moreover, for every z € X,
|f (@) < [f (@) + fu. (@) = fu. (@)] < sup |f (2) — fo. (@)|+sup | fo, ()] < etsup [fo. (z)],
reX z€X zeX

which implies that f € £>°(X). =
The next theorem shows that uniform convergence preserves continuity.
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Corollary 72 Let (X,d) be a metric space and let
Cp(X):={f: X —>R: [ is continuous and bounded}

with then norm

[fllo == sup [f ()]
zeX
Then Cy (X) is a Banach space.

Proof. Let {f,}, be a Cauchy sequence in Cy (X). By the previous theorem
there exists a bounded function f € £*°(X) such that f, — f in £°(X). Let’s
prove that f is continuous. Let o € X and let € > 0. Since f,, — f in £*°(X),
there exists n. € N so large that

sup | fn (z) = f(z)| < e

zeX

for all n > n.. Since the function f,_ is continuous at z, there exists 6 > 0
such that

| fr. (2) = fo. (o) < €
for all x € X with d(x,x0) < 6. In turn,
[f (@) = f (@o)| < [f (2) = fo. (@)[+[fn. () = fuo (o) [+ fn. (x0) = f(20)] < 3¢
for all x € X with d(x,x0) < ¢. This completes the proof. m

Theorem 73 (Banach’s contraction principle) Let (X,d) be a nonempty
complete metric space and let f : X — X be a contraction, that is f is Lipschitz
with Lipschitz constant less than one. Then f has a unique fized point; that is,
there is a unique © € X such that f (x) = x.

Proof. Step 1: Let’s first prove uniqueness. Assume that x; and x5 are fixed
points of f. Then

d(z1,22) = d(f (z1), f (22)) < Ld (21, 72),

which implies that
(1 — L) d(l‘l,l‘g) S 0.

Since L < 1, we have that d (z1,22) =0, and so z1 = z».
Step 2: To prove existence, fix g € X and define inductively

Ty = f (xO)a Tpyl = f (xn) .

We claim that {z,}, is a Cauchy sequence. Indeed, note that

d(z1,22) = d(f (w0), f (1)) < Ld(z0,71)

and by induction

d(Tn, Tny1) = d(f (Tn-1), f (zn)) < L"d (z0,21) .
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Hence, for every m,n € N, by the triangle inequality

n+m—1 n+m—1
d(Tp, Tpym) < Z d(zi, xip1) < d(xo,21) Z L

n

1-L

< d(zo,z1) ZLi = d (zo, 1)

i=n

Letting n — oo, we have that {z,}, is a Cauchy sequence. Since the space
is complete, there exists x € X such that {z,} converges to x. But by the
continuity of f,

T Tp41 = f(l'n) - f(SL')7

which shows that f (z) =x. m

Example 74 The function f(x) = x + 1, x € R, has Lipschitz constant 1 but
no fived points.

Monday, February 13, 2023

7 Application I of BaFTT: The Inverse Function
Theorem

Theorem 75 (Inverse Function) Let U C R be open, let f : U — RN, and

let g € U. Assume that there exists B (xg,r0) C U such that f is continuous

in B (xg,r0) and that for all x € B (xo,ro) there exist %, i,7=1,...,N, and

that they are continuous at xg. If '
det Jg (xo) # 0,
then there exists 0 < r1 < ro such that the function
f :B(zo,m1) — f (B (xo,71))

is invertible, f (B (xo,71)) is open, and £~ : f (B (xo,m1)) — B(xo,r1) is
Lipschitz continuous in f (B (xg,71)) and differentiable at f (x), with

Jp1 (f (z0)) = (Jy (20) -

Proof. Step 1: Assume that x,=0, that f(0) =0, and that Jy (0) = Iy, the
identity matrix. Write

f(z) =z+h(z).
Then h(0) =0 and Jp, (0) = On. Since g’;ﬂl are continuous at 0, there exists
r > 0 such that B (0,7) C U and

1 -
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By the mean value theorem for all 1,2, € B(0,r) and j =1,..., N,
1

|y (®1) = hy (22)] < [[Vh;(2i5)| [|[21 — 22| < Wi |z1 — @2,
where 2z; ; =0, ;&1 + (1 — 6, j)x2, and so
ol 1
2
B (1) = b (2)]| = | D Ry (1) = Dy (@) < 3 llzr = 22|
j=1

This shows that h : B (0,r) — R is a contraction. Moreover, since h (0) = 0,

|k (2)|| < 1 ||lz|| for all z € B(0,r).
Fixye B (0, %r) and consider the function

hy(x)=y—h(x).

Then h, is a contraction, and for all z € B (0,r),

1 11
lhy ()] < A (@)l + Iyl < 5 ll=ll + Iyl < 57+ 57

Thus, we can apply the Banach fixed point theorem to h, : B(0,r) — B (0,r)
to conclude that hy has a unique fixed point € B (0,r), that is,

y—h(z)=hy(z) ==

In turn,

f (2) = a+h(2) = v.

Hence, we proved that for every y € B (0, %7") there exists a unique € B (0, )

such that f () = y. This means that we can define f * : B (O, %7’) — B(0,r).
1

To prove that f ' is continuous, let y,,y, € B (0,3r) and define z; :=

f ' (yy) and 2o := f ' (y;). Then

z1+h (1) =y,
To+h (z2) = Yo,

and since ||k (z1) — h (z2)|| < 3 [|z1 — 22|, we have

1
lzr = 2ll < Ny = 2l + [k (z1) = B (z2)] < lly1 = g2l + 5 |21 — 22|,

and so
1
Sl = 2all < 1y, — wall,

which shows that

||f71 (y1) _f71 ('!/2)” <2|ly; — yoll -
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Thus, f ~! is Lipschitz continuous in B (0 L

, 51“) with Lipschitz constant at most 2.
In particular, since f~1(0) =0, we have that f ! maps the open ball B (O, %T‘)
into a subset of B(0,r). To prove that f ' is differentiable at 0, let y €

B (0, %r) and define  := f ! (y). Then

z+h(z) =y,
and so
Fl ) =y-h(F (). (8)
Since h is differentiable at 0, h(0) =0 and J, (0) = Oy, we have that
o (@) B0~ (0)(@-0) . h(z)
2—0 | — 0] 2=0 |z

Thus given € > 0 there exists § > 0 such that

| (2)]

|

<e

for all & with 0 < ||z|| < &. But since f " is Lipschitz continuous, it follows
that 0 < [[f ' (y)|| < 2|ly| < d for all 0 < [|y|| < /2. Hence,

[LCZE €77 (G €)M | < €1
1yl lFt @l e~

for all 0 < ||y|| < 4/2. In turn, by (8),

£~ (y) =571 (0) = In(y — 0)

ly — o]
w0yl y-r( () -yl
ly — 0] ly — 0]
_ R ool .

1yl

which implies that f ' is differentiable at 0 with Jp-1 (0) = Iy. m
Wednesday, February 15, 2023

Proof. Next we claim that f (B(0,7/3)) is open. Take y, € f (B(0,r/3)).

Then there is &1 € B(0,r/3) such that y; = f(x1). Since f is Lipschitz

continuous with Lipschitz constant 3 and f (0) = 0 we have that [|y,| =

If (@)l = [If (z1) = F(O)] < 32|l < 37 and s0 y; € B(0,7/2) and £~ is
defined at y,. Since f ~1 is Lipschitz continuous with Lipschitz constant 2, we
have that

17 @) = ol <20y —will < 5 = £ @l
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provided ||y — 3, || < min {% — Hf71 (y1)|| - 47} =: 6. In particular,

1 @l < 57 ) =17 o+ 1 ol < 5

forall y € B(y;, ). This implies B(y,,d) C f (B (0,7/3)), and so f (B (0,7/3))
is open. Hence we take 1 := £.

Step 2: In the general case, since det Jg (zg) # 0, we have that the ma-
trix Jg (0) is invertible. Hence, we can apply Step 1 to the function g(z) =
(J5 (o))" (f (x+20)—f (20)). We obtain that g :g~* (B (0, r)) — B (0, 1r)
is a homeomorphism. Consider the invertible linear mapping T : RY — RY
given by T'(y) = (Jf (x0)) (y + f(x0)). Since T is invertible, it follows that
Tog:g ! (B (O7 %r)) — T(B (O7 %r)) is a homeomorphism, but

(Tog)(z) = f(x+ o),
so f is locally invertible. m

Corollary 76 Let U C RYN be open, let f : U — RY, and let ©y € U. Assume
that f € C™ (U) for some m € N and that

det J¢ (xo) # 0.
Then there exists B (zo,r) C U such that f (B (zo,r)) is open, the function
f B (xo,r) = f (B (xo,7))
is invertible and f ~* € C™ (f (B (zo,7))).
Proof. By the previous theorem there exists 0 < r; < rg such that the function

f: B(zo,m1) — f (B (z0,71))

is invertible, f (B (zo,71)) is open, and £~ ' : f (B (xo,71)) — B (o, 1) is
Lipschitz continuous in f (B (xg,r1)) and differentiable at f (z¢), with

Tp1 (f (z0)) = (Jy (20) -

Assume that det Jg (o) > 0. Since Jy is continuous at xy there exists ro > 0
such that det Jg (z) > 0 for all € € B(xg,7r2). Take r := min{ry,r2} and
consider £ : f (B (zo,7)) — B (zo,7). Since det Jg (x) > 0, for every = €
B (xz,r) we can apply the inverse function theorem at the point x to that the
function

f:B(z,rs) = f (B(z,72))

is invertible and the inverse is differentiable at y = f (). Taking 0 < rp, <71 —
llz — x|, we have that the two inverse functions coincide (this is an important
point, this theorem only provides a local inverse function so the inverse functions
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could be different) and so we have shown that f ' : f (B (z,7)) — B (z0,7)
is differentiable. To prove that f ' is of class C™, we use the fact that

-1

Je-1 () = (Js (F7' ()

for every y € f (B (zo,7)). If m > 2, then since f ' and J¢ are differentiable,
it follows that Jg-1 is differentiable and we can apply the chain rule to compute
the second order order derivatives of f ~*. Note that on the right-hand side they
will appear second order derivatives of f computed at f ' (y) and ONLY first
order derivatives of f ~'. Hence, if m > 3 we can apply the chain rule one more
time to obtain that the second order derivatives of f ' are differentiable. We
will continue in this way. m
Given a function f of two variables (z,y) € R?, consider the equation

f(z,y)=0.

We want to solve for y, that is, we are interested in finding a function y = g ()
such that
f(z,9(x)) =0.

We will see under which conditions we can do this. The result is going to be
local.
In what follows given £ € RY and y € R™ and f (z, y), we write

o) Af1
8f Tﬁ(wvy) ang (wvy)
and
Uiay) G ()
oy B Y oyar B Y
af . .
% (z,y) = : :
o 9
Lo ay) Y ()

Theorem 77 (Implicit Function) Let U C RY x RM be open, let f : U —
RM, and let (a,b) € U. Assume that f € C™ (U) for some m € N, that

f(a,b)=0 and detg—{/ (a, b) # 0.

Then there exist By (a,r9) C RN and By (b,71) € RM, with By (a,r9) x
By (b,r1) CU, and a unique function

g: By (a,r9) — B (b,r1)

of class C™ such that f (z,g(x)) =0 for all x € By (a,r9) and g(a) = b.
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Friday, February 17, 2023
In 21-269 we have seen how the implicit function theorem follows from the
inverse function theorem. Now we give a second proof of the implicit function
theorem which does not use the inverse function theorem.
Proof. We present a proof in the case M = 1.
Step 1: Existence of g. Since % (a, b) # 0, without loss of generality, we

can assume that f » (a,b) > 0 (the case 5 (a b) < 0 is similar). Using the fact
that —5 is contlnuous at (a,b), we can ﬁnd r > 0 such that

R:=Qn(a,7)x[b—rb+7] CU,

where Qn(a,r) = (a1 —r,a1 +7) X -+ X (ay —r,an +7),

g—‘; (z,y) >0 forall (z,y) € R.

Consider the function h (y) := f (a,y), y € [b — 7, b+ r]. Since

h' (y) = aTJ;(a y) >0 forallye[b—rb+1],

we have that h is strictly increasing. Using the fact that b (b) = f (a,b) = 0, it
follows that

0>h(b—r)=f(a,b—71), O<h(b+7)=f(ab+r).

Consider the function ky (z) := f(z,b—1r), ¢ € Qn(a,r). Since k1 (a) < 0 and
k1 is continuous at a, there exists 0 < §; < r such that

0>k (x)=f(x,b—r) forall z e Qn(a,or).

Similarly, consider the function ko () := f(z,b+7r), € € Qn(a,r). Since
k2 (a) > 0 and ko is continuous at a, there exists 0 < dy < r such that

0<ky(z)=f(x,b+r) foral zecQn(a,ds).
Let ¢ := min {1, d2}. Then for all z € Qn(a,?d),
f(z,b—7r)<0, f(x,b+7r)>0.

Fix € Qn(a,d) and consider the function k (y) := f(z,y), y € [b—r,b+r].
Since
of

k'(y)zafy(m,y) >0 forallye[b—rb+r],

we have that k is strictly increasing. Using the fact that k (b —r) = f (z,b—1r) <
0 and k(b+7) = f(z,b+7r) > 0, it follows that there exists a unique y €
(b—r,b+r) (depending on ) such that 0 =k (y) = f (z,y).

Thus, we have shown that for every € Qn(a,d) there exists a unique
y € (b—r,b+r) depending on x such that f (z,y) =0. We define g (z) := y.
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Step 2: Continuity of g. Fix g € Qn(a,d). Note that b—r < g () < b+7.
Let € > 0 be so small that

b—r <g(xy) —e<g(z) <g(xg)+e<b+r.

Consider the function j (y) := f (xo,v), y € [b — 7, b+ r]. Since
y of
i'(y) = a—y(wo,y) >0 forallye[b—rb+r],

we have that j is strictly increasing. Using the fact that j (g (zo)) = f (%0, 9 (x0)) =
0, it follows that

f(xo,g(xog) —€) <0, f(mo,g9(xo)+¢)>0.

Consider the function j; () := f (x, g (zo) —¢€), z € Qn(a, ). Since j1 () <
0 and j; is continuous at xq, there exists 0 < 77 < § such that

0>j1(x)=f(x,g9(xg)—¢) forall ze Qn(xg,n).
Similarly, consider the function js () := f (x,g (o) +¢), € Qn(a,d). Since
J2 (o) > 0 and jo is continuous at xg, there exists 0 < 72 < ¢ such that

0< j2 (m) = f (w,g(wo) +5) for all = € QN(mOan2)'

Let 7 := min {n1,n2}. Then for all z € Qn(zo,n),

f(:E’g(mo)*S) <07 f($ag(m0)+5) > 0.
But f(z,g(x)) =0andy € b—r,b+7r] — f(x,y) is strictly increasing. Tt
follows that

g(®o) —e<g(x) <g(xo) +¢

and so g is continuous at xg.
Step 3: Differentiability of ¢g. Fix xp € Qn(a,d) andi=1,..., N. Consider
the open segment S joining (xo + te;, g (xo +te;)) and (zo,g(xg)). By the
mean value theorem there exists (Z,y) € S such that

0= f(xzo+tei,g(xo+te)) — f(xzo,g9(x0)) = o7 (Z,9) (x — z0)

ox;
+ 9 (@.9) (9 00+ te) — g (a0).
Hence,
g(zo+te) —g(mo) 88;2 (Z,9)
t I CY)

letting  — ¢ and using the continuity of g and of % and of %, we get that
(Z,9) — (20,9 (x0)) as t — 0T and so

i 9@t te) —g(@o) _ 5 (%0, (0))

o :
=0 t % (%0, 9 (o))
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This shows that

0 ) B ten)
O % (20, 9 (m0))

Since the right-hand side is continuous, it follows that (%ﬁ’i is continuous. Thus
g is of class C*.
Step 4: The case M > 2 is done using induction on M. =

Assuming the implicit function theorem, we can give an alternative proof of
the inverse fuction theorem.

Corollary 78 Let U C RYN be open, let f : U — RY, and let ©y € U. Assume
that f € C™ (U) for some m € N and that

det Jg (xo) # 0.
Then there exists B (zo,r) C U such that f (B (xo,r)) is open, the function
f:B(zo,7) — f (B (o,7))
is invertible and £ ~* € C™ (f (B (zo,7))).

Second proof. Step 1: We apply the implicit function theorem to the function
h:U xRN — RN defined by

h(z,y):=f(z) -y

Let yy = f (z0). Then h (zg,y,) = 0 and

det g—z (20, yo) = det J¢ (zo) # 0.

Hence, by the implicit function theorem there exists B (zg,79) C RY and
B (yy,m1) C RY such that B (zg,70) X B (yy,m1) € U x RY and a function
g : B(yy,m1) — B(xo,r0) of class C™ such that h(g(y),y) = 0 for all
y € B(yy,71), that is,

flgy) =y

for all y € B (yy,r1). This implies that g = 1. Moreover,

8.9 B oh -1 oh
= (W) @,

that is,
of !
Oy

W)= (s (" () en

|
Monday, February 18, 2023
Proof. Assume that det J¢ () > 0. Since J¢ is continuous at o there exists
ro > 0 such that det Jg (&) > 0 for all © € B (xo,r2). Take r := min{ry,rs}
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and consider f ' : f (B (zo,7)) — B (zo,7). Since det Jg (z) > 0, for every
x € B (g, r) we can apply the inverse function theorem at the point x to that
the function

f:B(x,rg) — f (B(z,72))

is invertible and the inverse is differentiable at y = f (). Taking 0 < rp, <71 —
||z — xo||, we have that the two inverse functions coincide (this is an important
point, this theorem only provides a local inverse function so the inverse functions
could be different) and so we have shown that f ' : f (B (x,7)) — B (z0,7)
is differentiable. To prove that f ' is of class C™, we use the fact that

T (y) = (T (F ()

for every y € f (B (zo,7)). If m > 2, then since f ' and J; are differentiable,
it follows that J-1 is differentiable and we can apply the chain rule to compute
the second order order derivatives of f ~*. Note that on the right-hand side they
will appear second order derivatives of f computed at f ! (y) and ONLY first
order derivatives of f ~*. Hence, if m > 3 we can apply the chain rule one more
time to obtain that the second order derivatives of f 1 are differentiable. We
will continue in this way. m

Exercise 79 Under the hypotheses of Corollary 78, prove that if 0 < r < ¢ is

sufficiently small, then
f: B(zg,7) — RY

is injective and f (B (xo,T)) is open.

Theorem 80 (Lagrange Multipliers) Let U C RY be an open set, let f :
U — R be a function of class C* and let g : U — RM be a class of function C*,
where M < N, and let

F:={xecU: g(x)=0}.

Let ¢y € F and assume that f attains a constrained local minimum (or maxi-
mum) at xo. If Jg (xo) has mazimum rank M, then there exist A1, ..., Ay € R
such that

Vf(xo) = Va1 (zo) + -+ AV (xo) -

Monday, February 20, 2023
Proof. Assume that f attains a constrained local minimum at zq (the case of
a local maximum is similar). Then there exists r > 0 such that f () > f (xo)
for all z € UN B (xp,r) such that g (z) = 0. By taking r > 0 smaller, and since
U is open, we can assume that B (zg,7) C U so that

f(x) > f(xo) for all x € B(zo,r) with g(z)=0. 9)

Since Jg (€0) has maximum rank M and g is of class C', without loss of gener-
ality, we can assume that Jg has maximum rank M in B (@, r), which implies
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that M N B (xg,r) is an (N — M)th dimensional manifold of class C'. Let
@ : Bn_ar(20,70) — RY be a local chart, with ¢(z¢) = xo. Then by (9),

p(2) = f(p(2) =2 [ (®0) = f (¢ (20)) = p(20)

for all z € By_(20,70). Hence, the function p attains a local minimum at
zo. It follows that
0 = Jp (20) = Vf (@0) Jp (20) -

Considering the transpose of this expression, we get
(Jo (20))" (Vf (0))" =0,

which implies that the vector Vf (xg), ¢ = 1,..., M belong to the kernel of
kernel of the linear transformation T': RY — RM defined by

T(z) = (Jo(z0)) @, xecRY.
On the other hand, since
g(p(2))=0 forall z€ By_p(a,ro).

by the chain rule,
0 = Jg (z0) Jy (20),

Considering the transpose of this expression, we get
T T
0= (Jy (20)) (Jg (o))" ,

which implies that the vectors Vg; (zg), i = 1,..., M, belong to the kernel of
T. Hence,
V :=span{Vg (zg),...,Vgm (zo)} C ker T.

But dim V = rank J, (zo) = M = N — rank (Ji (a))” = dimker T. Hence,
V =kerT.

Since Vf (o) € V, it follows from the definition of V' that there exist Aq, ...,
Au € R such that

Vf(xo) = Vg (zo)+ -+ A Vg (o) -

8 Application II of BaFPT: Differential Equa-
tions

An important application of Banach’s contraction principle is the existence and
uniqueness of solutions of ODE.
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Definition 81 Given a set E C R x R?, and interval I C R, and a function
f : E — R?, we say that a differentiable function w : I — R? is a solution of
the differential equation

u' (t) =f (t,u(t)) (10)
inIif (t,u(t)) € E and (10) holds for allt € I.

Definition 82 Given a set E C R x R%, an interval I C R, a function f :
E — R4, and (ty, uo) € E we say that a differentiable function u : I — R? is a
solution of the initial value problem or (Cauchy problem)

u'(t)=Ff(tu(t),
{ u (to) = uo D)
in I if u is a solution of (10) in I, to € I and u (to) = uo.
We say that the Cauchy problem (11) admits a local solution if there exists
an interval I containing to and a solution u : I — R< of (11) in I.
We say that the Cauchy problem (11) admits a global solution if for every

interval I containing ty and with the property that for every ¢ € I there exists
z € R? with (t, z) € E, there exists a solution u : I — R% of (11) in I.

Example 83 Consider the Cauchy problem

Since f(s) = s? is continuous, any solution of the Cauchy problem in some
interval I will be of class C*(I). Hence, near t = 0 we have that u(t) > 0 and
so as long as this happens

Integrating both sides we get

/Ots;((?) ds:/otlds:t—().

Using the change of variable y = u(s) gives

u(t) 1
uw(0) Y

Hence,
1 u(t) u(t) 1
EAR A
Yl uw(0) Y
that is, ult) + 1 =t. Thus, we have shown that as long at u(t) stays positive

it is given by

1
which exists in the interval (—oo,1). Thus, u is a local solution but not a global
solution.
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Theorem 84 Let I = [tg,ty + Ty], where to € R and Ty > 0, let ug € R? and
let f : I x By(ug,7) — R? be a continuous function such that

1F (8, 21) = (8, 2z2)|| < L|lz1 — 22

for all t € I, z1,29 € By(ug,r), and for some L,r > 0. Then there exists
0 < T < Ty such that the initial value problem

u' t)=f(tu(),
u (to) = Up
admits a unique solution in some interval [to,to + T.

Proof. Consider the space X = {g : [to,to + T] — R? continuous such that
lg — uoll < 7}, where 0 < T' < Ty will be chosen later and consider the

operator
F:X—-X

given by
¢
F(g)(t)=uo+ | f(s,9(s)) ds
to
for g € X and ¢ € [to,to +T]. By the Weierstrass theorem there exists M :=
max{||f (¢,2)||: (¢t,2) € I x Bg(ug,r)} € [0,00). If g € X, then

nmm@—ww\

t F(s,9(s)) ds

t
< [ 1f (s, 9(s))l ds < M(t—to) < MT <1,
to

provided T < r /M. Thus, F' is well-defined. Let’s prove that F' is a contraction.
Take g,, g, € X. Then

[V@ﬂﬂw—f@%@m%

< A (5,91 () = F (5,92 (5))] ds

to

|wmnm—F@no:‘

t

<L llgi(s)—g2(s)l ds < L(t—to) max gy (y) =g W)IT
to yE[to,to+T]

< LT g; - gall o s

and so taking the maximum over all ¢ € [to,to + T, we get

1£(g1) = F(g2)lloe < LT [lg1 — 92l -

If we take T so small that LT < 1 and tg &7 € I, then F is a contraction. m

Wednesday, February 22, 2023
Proof. By Banach’s contraction principle there exists a unique fixed point
u € X, that is,

U@:FWHﬂzw+lf@w@D$
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for all t € [tg,to + T)]. Since u is continuous, the right-hand side is of class C?,
and so u is actually of class C'. By differentiating both sides, we get that w is
a solution of the ODE. Moreover, u (tp) = up. Since any other solution of the
initial value problem is a fixed point of F', we have uniqueness. m

Remark 85 If u(to+7T) € By(ug,r), then we can prove that the solution
exists for some time after to + T. Indeed, set uy := u(to +T) and consider

t

Fi(g)(t) = w1 + Tf(svg(s)) ds, te€to+T,to+T1],
to+

where T1 < Ty and F is defined on the set
Xi={g:[to+T,to +T1] — R* continuous and such that ||g — w1l <71},
where r1 =1 — |[ug — wol| > 0.

Definition 86 Given a set E C RxR?, a function f : E — R?, and a solution
u : I — R? of the differential equation (10), we say that u is a maximal
solution of (10) if there does not exists an interval J D I (in the strict sense)
and a solution v : J — R of (10) which coincides with w in I. A similar
definition can be given for the Cauchy problem (11).

To prove the existence of maximal solutions we will need to use Zorn’s lemma.

Given two nonempty sets X,Y, a (binary) relation is a subset R C X x Y.
Usually, we associate a symbol to it, say *, so that x * y means that (z,y) € R.

A partial ordering on a nonempty set X is a relation R C X x X, denoted
<, such that

(i) x < z for every x € X; that is (z,z) € R (reflexivity).

(ii) For all z,y € X, if z <y and y < z, then x = y; that is, if (z,y) € R and
(y,x) € R, then x = y (antisymmetry).

(iii) For all z,y,z € X, if x <y and y < z, then < z; that is, if (z,y) € R
and (y,z) € R, then (z,z) € R (transitivity).

The word “partial” means that given x,y € X, in general we cannot always
say that x <y or y < x.

Example 87 Let X = P (R) = {all subsets of R}. Given E,F € X, we say
that E < F if E C F. Then < is a partial ordering, but given the sets {1,2,3}
and {2,3,4}, one is not contained into the other.

Given a partially ordered set (X, <), a totally ordered set, or chain, E C X
is a set with the property that for all z,y € X, either z < y or y < x (or both).

In the previous example F = {{1,2,3},{1,2},{2}} is a chain.

Given a partially ordered set (X, <), and a set E C X, an upper bound of
FE is an element € X such that y < z for all y € E. A set E may not have
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any upper bounds. A mazimal element of F is an element € F such that if
x <y for some y € E, then x = y. A set £ may not have maximal elements or
it may have maximal elements that are not upper bounds (it can happen that
a maximal element cannot be compared with all the elements of E).

Proposition 88 (Zorn’s lemma) Given a partially ordered set (X, <), if every
totally ordered subset of X has an upper bound, then X has a mazximal element.

Theorem 89 (Maximal Solutions) Let E C R x R? and let f : E — R?
be a function. Assume that there exists a solution function w : I — R? of the
differential equation (10). Then w can be extended to a mazimal solution of

(10).

Proof. Consider the set X of all functions v : J — R? such that J is an
interval, I C J and v is a solution of (10) which coincides with w in I. The set
X is nonempty since u belongs to X. We define a partial order in X. Given
two functions v; : J; — R? and v; : J; — R% in X, we say thatr v; < v, if
J1 € Jy and v coincides with vy in Jj.

Given a chain Y C X, write Y = {v, : Jo — R},cp, for some set F.

Define
Jmax = U Ja
aEF

We claim that Jyax is an interval. Indeed, if s,t € Jyax, with s < ¢, let J, and
Jg be such that s € J, and ¢t € Jg. Since Y is a chain, J, C Jg or Jg C J,. In
both cases s and t belong to the larger interval and so does the segment [s, ¢].
In turn, [s,t] C Jmax-

For every t € Jax let a € F be such that t € J, and define vyax(t) := v4().
Note that the function v,y is well-defined, since if 5 € F is such that ¢t € Jg,
then vg and v, coincide in J, N Jz. Let’s prove that v,y is a solution of (10)
in Jpax. Let ¢ € (Jmax)®- Then there exists (t — &,t + €) C Jmax- Reasoning as
before (when we proved that Ji,.x is an interval), we can find o € F such that
(t—e,t+¢) C J,. In turn, since vpmax = V4 in (t —e,t+¢€), it follows that viyax
is differentiable in (¢t —¢,t + ¢) and is a solution of (10) in (¢t —,¢+¢). On the
other hand, if Ji,.x contains one or both of its endpoints, let ¢ € Jmax \ (Jmax)®,
then there exists a € F such that t € J, and t is an endpoint of J,. But then
the function v,ax coincides with v, in J,. In particular, it is differentiable at
t with v] . (t) = v, (t) = f (t,va (t)) = f (£, Umax (t)). This shows that vmax
is a solution of (10) in Jyax. By construction vyax € X and vpax > v, for all
a €Y. Thus, Y has an upper bound.

It now follows from Zorn’s lemma that X admits a maximal element. m

Theorem 90 (Gronwall’s Inequality) Let I C R be an interval, let tg € I,
letw:I — R andf: 1 — [0,00) be continuous functions and let a : I — R
locally integrable. Assume that

u(t) < a(t) +/t B(s)u(s) ds
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for allt € I witht >ty. Then

u) <o)+ [ :a(T)ﬂ(T)eXp (0 as)

for allt € I with t > tg. Moreover, if a is increasing,
t

u(t) < aft) exp/ B(s) ds
to

Proof. Consider the function

L sen(- [ 100)
/ﬂ ds_oz)JreXp(/ﬂ ds)v()

On the other hand,

o= s s ) (- 500

< a(H)B(t) exp (— 05 ).

for allt € I with t > tg.

Then

Since v(tp) = 0 integrating the previous inequality gives

o(t) < /t:aw(r)exp (- 565 is) dr

and so

ity <at)+eso ([ 569 a5) [ atrstnrenn (= [ 56) as) ar
—a(t) + /tt o(r)B(r) exp (/rtﬁ(s) ds) dr.

If «v is increasing then we can bound the right-hand side with

ot) + a(t) /t t B(r) exp < / "B(s) ds) dr.
([0

~ att)e t:ms) is).

This concludes the proof. m
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Remark 91 To understand Gronwall’s inequality, assume that equality holds,
that is, that

u(t) = at) + t B(s)u(s) ds

for allt € I witht > tg. If « is differentiable, then by differentiating both sides
we get a linear differential equation

u'(t) = ' (t) + B(t)u(t).

To solve it, multiply both sides by exp (— ftto B(s) ds). Then

oo (- [ :5<s> ds ) o (0)-B0)utt) e [:ﬂ<s> is) = 'ty /t:ms) is)

which we can write as

% <u(t) exp < /tt B(s) ds>> = o (t) exp ( /t :,3(3) ds) .

Integrating we get

u(t) exp (- /t:ﬂ(s) ds) — ulto) +/tt o (r) exp (— /t:ﬂ(s) ds) dr

= uito) + [ o)) e (- t:ms) is) dr -+ ato)exp - t:ms) is) - alt)

to

_ / " a(r)B(r) exp (— t:g(s) ds) dr + a(t) exp (— t:g(s) ds)

to

where we integrated by parts and used the fact that u(to) = a(ty). In turn,

u(t) = exp ( / :ms) ds) / or)B(r) exp (— / 8(5) ds> dr + (!

=a(t) + /t a(r)B(r) exp </:B(s) ds> dr.

to

Theorem 92 (Global Existence) Let I C R be an interval,let to € I, ug €
R?, and let f : I x R — R? be a C' function such that

1F (£, 2)|| < a(t) + B(t) [ 2]]
forallt € I, z € R, and where a : I — [0,00) is locally integrable integrable

and B : I — [0,00) is continuous. Then the Cauchy problem (11) admits a
global solution u : I — R?,
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Exercise 93 Consider the Cauchy problem

{ v =ulu—1)(u—2)
u(0) = ug,

where ug € R. Study local existence, uniqueness, global existence, and the as-
ymptotic behavior of solutions.

Friday, February 24, 2023
Proof. By Theorem 84 the Cauchy problem (11) admits a solution u : Iy — R
in some interval Iy C I. By Theorem 89 the function u can be extended to a
maximal solution u : J — R, where .J is an interval contained in I. We claim
that J = I. Assume by contradiction that J # I. Then there exists Ty € I\ J.
Assume T; > to (the case T} < tg is similar). For every t € J with t > ¢, we
have

u(t) = up + t f(s,u(s)) ds

and so
||u(t)||§||u0||+/t IF (¢ u(s)] d8§||uo|\+/t a(s)ds+/t B(s) llu (s)])) ds.

Thus we can apply Gronwall’s inequality with a(t) = [Juo| + ftto a(s)ds to
conclude that

e (0) < (lol] + /<> e t:ms)ds)

< <|u0|| +/t 1 a(s) ds) exp ( t 1 B(s) ds) =:R.

M = max{||f (t,2)]: (t,2) € [to,T1] x Ba(to, R)}.

Let

Then

< / F (b (s)] ds < M(ts — 1)

to

12f (t,u(s)) ds

o (t2) — ()] =] t

for all t1,t2 € J N [tg,T1] with ¢; < to. Let b := supJ. Since u is Lipschitz
continuous, there exists

h%l u(t)=2£cRe
t—b—

If b < T; consider the Cauchy problem

{ v () =Ff(tv (D),
v (b) = L.
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By Theorem 84 there exists a solution v : [b,b+T] — R? for some T > 0.
Consider the function

_Ju@®) ift<b,
w(t)'_{ v(t) fb<t<b+T,

By L’Hopital’s rule’
.ou(t)—¢ _ , .
Jim === = lim ' (t) = lim f (¢ u () =5 (4,9,

by the continuity of f, which shows that w’_(b) = f (b,£). Similarly, w’_ (b) =
f (b,£), and so w is a solution of the Cauchy problem (11) in J U [b,b+ T1,
which contradicts the fact that w is a maximal solution.

On the other hand if b =T} ¢ J, then the function

Ju@) ift<y,
“’(t)"{z if ¢ = b,

satisfies w’_ (b) = f (b, £) (again by y L’Hopital’s rule’) and so is a solution of
the Cauchy problem in J U {b}, which contradicts the fact that w is a maximal
solution. m

Remark 94 In view of Theorem 120 below, this corollary continues to hold if
we assume that f is continuous instead of C'.

9 Schauder Fixed Point Theorem
Definition 95 Let (X,d) be a metric space. A set K C X

(i) is sequentially compact if for every sequence {x,} C K, there exist a
subsequence {xy, } of {zn} and x € K such that x,, — = as k — oo,

(ii) is totally bounded if for every € > 0 there exist x1,...,x, € K such that

The following theorem is one of the main results of this subsection.

Theorem 96 Let (X,d) be a metric space. A set K C X is sequentially com-
pact if and only if K is compact.

Proof. Step 1: Assume that K is sequentially compact. We claim that K is
totally bounded. Assume by contradiction that K is not totally bounded. Then
there exists €9 > 0 such that K cannot be covered by a finite number of balls
of radius €. Fix 21 € K. Then there exists 23 € K such that d(z1,22) > &g
(otherwise B (x1,&9) would cover K). Similarly, we can find z3 € K such that
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d(x1,x3) > €9 and d(zo,23) > € (otherwise B (x1,g9) and B (x2,g9) would
cover K). Inductively, construct a sequence {z,,} C K such that d(z,,x,) > o
for all n,m € N with n # m. The sequence {z,} cannot have a convergent
subsequence, which contradicts the fact that K is sequentially compact.

Next we prove that K is compact. Let {U,}, be an open cover of K. Since
K is totally bounded, for every n € N let B,, be a finite cover of K with balls
of radius % and centers in K. We want to prove that there exists m € N such
that every ball in By is contained in some U,. Note that this would conclude
the proof. Indeed, for every B € By fix one U, containing B. Since By is a
finite family and covers K, the subcover of {U,} just constructed has the same
properties.

To find 7, assume by contradiction that for every n € N there exists a ball
B (xn, %) € B,, that is not contained in any U,. By sequential compactness,
there exist a subsequence {z,,} of {z,} and z € K such that z,, — = as
k — oo. Since x € K, there exists 3 such that x € Ug. But Ug is open, and
so there exists r > 0 such that B (z,r) C Ug. Since, x,, — x, we have that
|2n, — || < § for all k sufficiently large. In turn, if rle < &, by the triangle

inequality, B (m”k, i) C B(z,r) C Ug, which contradicts the fact that ball

B (xnk, ﬁ) is not contained in any U,. This shows that K is compact. m

Monday, February 27, 2023
Proof. Step 2: Assume that K is compact. By a theorem proved last semester,
K is closed, and so sequentially closed by Proposition ?7?7. We claim that K is
sequentially compact. To see this, assume by contradiction that there exists a
sequence {z,} C K that has no subsequence converging in K. Then for every
m € N the number of n € N such that x,, = x,, is finite (otherwise, if z, =
X, for infinitely many n € N, then this would be a convergent subsequence).
Moreover, the set C' := {x, : n € N} has no accumulation points. Indeed, if
C had an accumulation point, then since K is sequentially closed, there would
a subsequence of {x,} converging to K. Since C has no accumulation point,
it follows, in particular, that C is closed. Similarly, for every m € N the sets
Cp i=A{zy : n € N, n > m} are closed. Moreover, C,,11 C C,, and by what we
said before,

ﬁ Crn = 0. (12)

For every m € N the set U, := X \ Cy, is open, U,,11 2 U, and by (12) and
De Morgan’s laws

Uum=U (X\Cm)X\(ﬂ cm> = X.

In particular, {Un},,
there m € N such that

is an open cover of K. By compactness, it follows that
m
K C | Un=Un=X\Cm,
m=1
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which implies that K N Cy = (). This is a contradiction, since Cy; is nonempty
and contained in K. m

Remark 97 Neither direction holds for topological spaces.

Definition 98 Given a topological space X, A set E C X is relatively compact
(or precompact) if its closure E is compact.

Example 99 A finite set K C RY is compact, sequentially compact, and totally
bounded.

Exercise 100 Let (X,d) be a metric space. Prove that a set K C X is compact
if and only if K is complete and totally bounded.

Definition 101 Given a vector space X and a set E C X, the convex hull of
E is the intersection of all convex sets that contain E. It is denoted co E

Remark 102 The convex hull is the smallest convexr set that contains E. It
consists of all convex combinations of elements of E, that is

coEz{zn:QlylQZZO,iGZzl,yZEE,neN}

i=1 i=1
The proof is left as an exercise.

Theorem 103 (Schauder Fixed Point Theorem) Let X be a Banach space,
let K C X be a compact, convex set and let g : K — K be a continuous function.
Then g has a fixed point.

Proof. Fix n € N then by compactness we may find x4, ..., z¢, € K such that
the balls B; := B(x;, %), i=1,..., £, cover K. Let K,, C K be the convex
hull of {x1,...,ze, } and consider the function f, : K — K, given by

e dist(a, K\ By)
fu(z) = ; Soim dist (@, K\ By

Note that if x € K, then & € B; for some ¢ and so dist(z, K \ B;) > 0 since
K \ B, is closed. The function f,, is continuous since the distance function is
Lipschitz continuous. Moreover, if z € K, then

o dist(x, K\ B;) 1
an(x) - xH < ; Zfll dist(z, K \ Bj) l|lz: — xH < n (13)
Define ,
(frnog)(z) = Z dist(g(z), K\ Bi) z;,, v€K,.

S dist(g(x), K\ B;)
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Since (fn o g)(x) is a convex combination of x1, ..., xy,, it belongs to K.
Hence, f, og : K,, — K, is a continuous function. But K, is homeomorphic
to a compact convex set of a finite dimensional vector space. Hence, we are in
a position to apply the Brouwer xed point theorem to find y,, € K, such that
fn(9(yn)) = yn. Since K is compact, there exist a subsequence of {y,},, not
relabeled, and y € K such that y,, — y. By applying (13) to g(y,) we get

I~ 9wl = 1F(90)) — 9(5)] <

Letting n — oo and using the fact that g is continuous gives y = g(y). =
Wednesday, March 1, 2023
Given two normed spaces X and Y and a set £ C X and a function f : £ —
Y, we say that f is compact if for every bounded sequence {z,}, there exist a
subsequence {x,, }r and y € Y such that g(x,,) — y as k — oo.

Corollary 104 Let X be a Banach space, let K C X be a bounded, closed,
convez set and let g : K — K be a continuous and compact function. Then g
has a fized point.

Proof. The set g(K) is relatively compact, that is, its closure is compact. Let
C be the closure of the convex hull g(K), that is,

C = co(g(K).

Note that g(K) C K, and K is closed, so g(K) C K. Since K is convex,
co(9(K)) C K, and since K is closed, C C K. Also, g(C) C g(K) C C, so
g:C—C.

Assuming that C' is compact (homework), by the previous theorem, g has a
fixed point, so there is z € C C K such that g(z) = 2. m

Carathéodory’s theorem improves Remark 102 in that it limits the number
of terms in the convex combination to at most N + 1.

Theorem 105 (Carathéodory) Let E C RY. Then

N+1 N+1
coE:{Ztiwi: Y ti=1,1 >0, wieE,izl,...,N—&—l}.
i=1 i=1

Proof. Fix & € coll and let
S:={¢ e N: xis a convex combination of ¢ vectors of E}.

Note that by Remark 102, S is nonempty. Let k& := minS. We claim that
k < N + 1. Assume by contradiction that kK > N + 1 and let

k
T = E tixi,
i=1
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where Eleti =1t € (0,1), z, € E,i=1,...,k. Since Kk —1 > N, the

k — 1 vectors &3 — 1, ..., T, — x1 are linearly dependent, and so we may find
S2,...,8k € R not all zero such that
k
ZS,’ (113Z — 5151) =0
i=2
Let s1 := — ZLQ 8;. Then Zle s;x; =0 and Zle s; = 0. Since not all the s;

are zero, there must be positive ones. Define

t; .
c::min{: $; >0, 1= 1,...,k}
and let m be such that ¢ = z— Then ¢; —cs; > 0 for all 4 = 1,...,k (if
s; > 0, then this follows from the definition of ¢, while if s; < 0, then —cs; > 0),
tm — ¢Sy, = 0, and

k k k
(ti —csi) = Zti —CZSi =1-0.
i=1 i=1 i=1
Since
k k k
r = Ztiwi = Ztia:i —0= Z (tl‘ — CSZ') T;,
i=1 i=1 i=1

we have written & as a convex combination of less than k elements (t,, — ¢s,, =
0), which contradicts the definition of k. =

Exercise 106 Let K C RN be compact. Prove that co K is compact.

Exercise 107 Let (X,| - ||) be a normed space and let K C X be compact.
Prove that co K is pre-compact.

10 Application of SFPT: ODE

An important application of Schauder’s fixed point theorem is local existence
of solutions to the Cauchy problem in the case that f is only continuous. To
prove it, we need first to understand compactness in the space of continuous
functions.

Definition 108 A metric space (X,d) is separable if there exists a sequence
{zn},, in X that is dense in X.

Example 109 We discuss separability of some of the examples introduced be-
fore.

(i) RN is separable, since QN is dense in RY.
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(ii) Given a nonempty set X with discrete metric
_J 1 fxFy,
X is separable if and only if X is countable. Why?

(iii) Using uniform continuity, one can show that piecewise affine functions are
dense in C ([a,b]). By approzimating a piecewise affine function with one
with rational slopes and endpoints, it follow that C ([a,b]) is separable.

(iv) €° = (> (N) is not separable (exercise).

(v) The space Cy (R) of continuous bounded functions f: R — R is not sepa-
rable (exercise).

Exercise 110 Let (X, d) be a compact metric space. Prove that X is separable
and complete.

Exercise 111 Let (X,d) be a separable metric space and let E C X. Prove
that (E,d) is separable.

The previous exercise fails for topological spaces.
Example 112 Let X := C ([0,1]). The sequence of functions
fn(z)=2", x€]0,1]

is bounded in C ([0,1]), but no subsequence converges uniformly to a continu-
ous function. This shows that Bx (0,1) is closed and bounded but not com-
pact. Hence, Bolzano—Weierstrass theorem fails for infinite dimensional metric

spaces.

Definition 113 Let (X,dx) and (Y,dy) be metric spaces and let E C X. A
family F of functions f : E — Y is said to be equicontinuous at a point zg € E
if for every € > 0 there exists § = 0 (xo,€) > 0 such that

dy (f (z), f (x0)) < ¢

for all f € F and for all x € E with d(x,x0) < §. The family F of functions
f:E =Y is said to be uniformly equicontinuous if for every € > 0 there exists
0 > 0 such that

dy (f (), f(y) <e
for all f € F and for all z,y € E with d(z,y) <.

Remark 114 To negate equicontinuity at one point xy it is enough to show
that there exist a sequence {xnp}, in E and a sequence {f,}n in F such that

Tp — X0 bUt dY(fn(xn)vfn(x())) - 0
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Example 115 The sequence of functions
fo(x)=2", x€][0,1],

18 not equicontinuous at x = 1. To see this, take x, =1 — % — 1. Then

fn(l)_fn(xn)zl—(l—i)nﬁl_i#07

and so by the previous remark, {fn}n s not equicontinuous at x = 1.

Example 116 Consider two metric spaces (X,dx) and (Y,dy) and a family F
of functions from X into Y. If there exist o € (0,1] if there exists L > 0 such
that

dy (f (1’1) ’f (xQ)) <L (dX (xl’xQ))a
for all z1,29 € X and for all f € F, then the family F is uniformly equicontin-
uwous. The sequence of functions

xn

I (z) = ot x €10,1],
s pointwise bounded and equicontinuous at x = 1. Indeed,

fr(@) =2t welo1],
so that max,¢o 1) |x"’1| = 1, which shows that the sequence {f,} is equi-
Lipschitz (take L = 1). Hence, it is (uniformly) equicontinuous.

Friday, March 3, 2023

Theorem 117 (Ascoli—Arzeld) Let (X,d) be a separable metric space and let
F C Cy (X) be a family of functions. Assume that F is bounded and equicontin-
uous at every point x € X. Then every sequence {fn}n in F has a subsequence
{fn;}j that converges pointwise to a function g € Cy(X) and uniformly on every
compact subset of X.

Proof. Without loss of generality, we may assume that F has infinite many
elements, otherwise there is nothing to prove. Since X is separable, there exists
a countable set £ C X such that X = E. Since F is bounded, there exists
M > 0 such that

[fllse = sup |f(z)| < M (14)
reX

for all f € F.
Step 1: Let {f,}» be a sequence in F. We claim that there exists a subsequence
{fn, }j such that the limit lim; .. f,, (z) exists in R for all z € E. The proof

makes use of the Cantor diagonal argument. Write E = {z}: k € G C N}.
Since the set

{fn(z1): neN}
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is bounded in R by (14), by the Bolzano—Weierstrass theorem we can find a
sequence { fn 1}, of {fn}n for which there exists the limit

lim fn,l (331) =/, € R.

Since the set

{fn1(z2): n €N}
is bounded in R by (14), again by the Bolzano-Weierstrass theorem we can find
a subsequence sequence { fy 2}, of {fyn 1}, for which there exists the limit

lim fn,2 (.1‘2) =/{ly € R.

By induction for every £ € G, k > 1, we can find a subsequence {f,}, of
{fnk—1}, for which there exists the limit

lim fn,k (xk) =/l e R

We now consider the diagonal elements of the infinite matrix, that is, the se-
quence { f, »}, . Forevery fixed 2, € E we have that the sequence { f,, », (1)}~

n=k
is a subsequence of {f,x (zx)},, and thus it converges to £y as n — oo. This

completes the proof of the claim. Set g,, := f,  and define g : £ — R by

g(x):= lim g, (z) eR, z€E. (15)

n—oo

Step 2: Fix ¢ > 0 and z € X. By equicontinuity, there exists ;. > 0
(depending on x and €) such that

[fn (@) = fo (W) <e (16)

for all n € N and for all y € X with d(z,y) < 0z.. Since E is dense in X
there exists y € E with d (z,y) < 05 .. Using (15), we have that there exists an
integer n. , € N (depending on ¢ and y) such that

9 () =9 (y)l <& (17)
for all n € N with n > n. . Using (16) and (17), we have that
197 (%) = gm (2)] < gn () = gn (W) + 90 (y) — 9 (¥)]
+1gm (¥) — 9 W)+ |gm (¥) — gm (2)] < 4e

for all n,m € N with n,m > n.,, which shows that the sequence {g,, (z)} is a
Cauchy sequence in R. Hence, there exists

g (z) := lim g, (z) €R. (18)

n—oo

Moreover, since
lgn () — gn (y)| <€
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for all y € X with d (z,y) < d;. and for all n € N, letting n — oo, we conclude
that

lg(z) —g(y)<e
for all y € X with d(z,y) < 65, which shows that g is continuous at x (with
the same 0, ¢)
Since this is true for every x € X, we have proved that {g,} converges
pointwise to a continuous function g. By (14), we have that |g,(z)| < M for all
x € X. Letting n — oo, we conclude that

g ()] <M

for all z € X. This proves that g belongs to the space Cj(X).

Step 3: It remains to show that {g,} converges to g uniformly on compact
sets. Let K C X be compact. Fix ¢ > 0 and let §; . > 0 be the number given
in (16). Since

K g U B(:I;761:,€))
reK

by compactness there exist z1, ..., xps € K such that

M
K C | JB(@i,0z,.c).
i=1

Using (18), for all ¢ = 1,..., M we have that there exists an integer n. 5, € N
such that

lgn (i) —g ()| < € (19)

and for all n € N with n > n. ,,. Let n. = max{n. 4,,...,Ne 4, }. Let n > n,
and « € K. Then z belongs to B(x;,d,, ) for some i. Using (16) and (19), we
have that

|9n (2) = 9 (@) < [gn (%) = gn (@i)| + |gn (2i) — g (@i)| + |g (2:) — g (2)] < 3¢

for all n € N with n > n.. Thusm, for all z € K and all n € N with n > n., we
have

sup |gn () — g (z)] < 3¢,
zeK
which shows that {g,} converges to ¢ uniformly on K. m

Remark 118 If we assume the stronger hypothesis that F is uniformly equi-
continuous, then the function g turns out to be uniformly continuous.

Monday, March 13, 2023

Corollary 119 Let (X,d) be a compact metric space. Then F C C(X) is
compact if and only if is closed, bounded, and uniformly equicontinuous.
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Proof. If F is closed, bounded, and uniformly equicontinuous, then by the
previous theorem it follows that F is sequentially compact, and so by Theorem
96, F is compact.

Conversely, assume that F C C (X) is compact. Then by a theorem proved
last semester, F is bounded. It remains to show that F is uniformly equicon-
tinuous. Assume, by contradiction, that this is not the case. Then there exist
e>0, {fn}, in F, and {z,},{y,} in X such that

|fn (xn) - fn (yn)| >
1

and d (2n,yn) < 5. Since X is compact (and so sequentially compact), there
exist a subsequence {z,,}, of {z,}, and zo € X such that d(z,,,z¢) — 0
as k — oco. In turn, since {f,, }, is in F, again by Theorem 96, there exist a

subsequence {fnk} of {fn,}, and fo € C(X) such that do(x)(fn, , fo) — 0
J ] J

as j — oo. In particular, for all j sufficiently large, say, j > jo,

5
ma |, ()~ fo ()| < <. (20)
Using the continuity of fy at xg, we may find § = ¢ (zp,£) > 0 such that
5
|fo (z) — fo (zo0)| < 1 (21)

for all x € X with d(x,z) < . Since d(x,bkj,aso) — 0 and d(a:nkj,ynkj) — 0,
by taking jo larger, if necessary, we may assume that d(xnkj,xo) < ¢ and
d(Yny,»x0) < 0 for all j > jo. Hence, by (20) and (21), for all j > jo,

e<

Ty @) = s W) < [, @) = Jol, )| + [ fo(@ns,) = fo(wo)

e g e g
+ ‘fO(-rO) - fO(ynkJ)‘ + ‘fO(ynkJ> - f’ﬂkj (y’ﬂkj)‘ < 1 + Z + Z + Z =&,

which is a contradiction. m

As an application of the previous theorem and of Schauder’s fixed point
theorem, we can prove local existence of the Cauchy problem only assuming f
continuous.

Theorem 120 (Local Existence) Let I = [to,to + Tp], where to € R and
To >0, let ug € R, let r > 0, and let f : I x By(ug,r) — R? be a continuous
function. Then there exists 0 < T < Ty such that the Cauchy problem

{ u'(t) = f (tu(t),

u (to) = Up
admits a solution in some interval [ty,to + T
Proof. By the Weierstrass theorem there exists

M :=max{||f (t,z)]|: (¢, 2z) € I x Bg(uo,r)}.
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Consider 0 < T < min{Tp,7/M} and let X = C([to,to + T];R?), with the
supremum norm ||| . Let K = {g € C([to,to + T];R?) : ||g — uo| < 7}
Note that K is closed and convex but not compact. Consider the the function

F:K—X

given by .
F(g)(t) = uo + t f(s,9(s)) ds

for g € X and ¢ € [to, to + T]. We claim that F(K) C K. If g € K, then

1 (9) (t) - woll = ]

t'f (3,9(s)) ds

t
< | |If (s,9(s))|| ds < M(t—tg) < MT <,
to

provided T' < r/M.
Let’s prove that F' is a sequentially continuous. Let g,, € K be such that
g,, — g uniformly in [a,b]. Then

| (g, (6) = £ (5.9 (5)] ds

to

IF (g,) () — F(g) ()] = \

to+T
< / IF (590 (5)) — F (5,9.(s))]] ds

to

and so taking the maximum over all ¢ € [t, to + T, we get

to+T
1) = F@l < [ 1 (590 () = F (0 (s))] ds.
0

Since Hf (Sagn (S)) 7f (Sa g(S))H g 2M and f (S,gn (5)) - f (57 g(S)) - 07 it
follows by the Lebesgue dominated convergence theorem the righ-hand side goes
to zero. This shows that F' is sequentially continuous.

Next we shows that F' is compact. Let g, € K. We claim that the set
{F(g,,) : n € N} is bounded and uniformly equicontinuous in X. We have

/ F (5.0 () — F (5.9, (3))] ds

t1

IF (g,) (t2) — F (g,) ()] = ‘

< / UF (5, 90 ()] ds < M(ts — 1),

ty

which proves that {F(g,,) : n € N} uniformly equicontinuous in X. We have
already seen that F'(K) C K. Hence, we can apply the Ascoli-Arzeld’s theorem
to show that {F(g,,)}» admits a convergence subsequence. This proves that F'
is compact.

By Schauder’s theorem there exists a fixed point u € X, that is,

U(t):F(u)(t):U0+/t £ (s, u(s) ds
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for all t € [tg,to + T)]. Since u is continuous, the right-hand side is of class C?,
and so u is actually of class C'. By differentiating both sides, we get that w is
a solution of the ODE. Moreover, u (tp) = up. Since any other solution of the
initial value problem is a fixed point of F', we have uniqueness. m

In general the solution will not be unique.

Example 121 Consider the Cauchy problem

{ u'(t) = ]u(®)],
u(0) = 0.

One solution is uy(t) = 0. To find a second assume that u(t) = 0 for allt € [0, a)
and that u(t) # 0 for t > a. Then, since v’ > 0, it follows that u is strictly
increasing after a. In particular, fort > a,

/ajre ULEZ) ds = /G:El ds=1t—(a+e).

Using the change of variable y = u(s) gives

/u(t) 1
— dy=t—a—e.
u(a+te) \/g

Hence,

[2\/;5]ZEZ)+E) =t—a—c¢,

that is, 2y/u(t) —2y/u(a +¢) =t —a—e. Since u is continuous, letting e — 0
gives 2y/u(t) — 0=t —a. Since u > 0 for t > a, we have that

u(t) = i(t —a)?

Thus for every a > 0, the function

_J 0O fort<a,
u(t)—{ i(t—a)? fort>a,

18 a solution.

Wednesday, March 15, 2023
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Part II
Functions Spaces

11 Continuous Functions

We have already studied completeness and compactness in the space of contin-
uous functions. It remains to study density and separability.

Theorem 122 (Stone) Let (X,d) be a compact metric space and let F C
C (X) be a family of functions such that

(i) F separates points; that is, if x,y € X with x # y, then there exists f € F
such that f(x) # f (y),

(i) F contains the constant functions,

(iii) F is an algebra; that is, if f,g € F and t € R, then f + g, fg, and tf
belong to F.

Then F is dense in C (X).
We begin with some preliminary results.

Lemma 123 (Dini) Let (X,d) be a metric space, let K C X be a compact set
and let f, : K — R be continuous functions such that fn11(x) < fn(z) for all
x € K and alln € N. If{f,} converges pointwise in K to a continuous function
f: K — R, then {fn} converges uniformly in K to f.

Proof. Define g, := f, — f. Then g, is continuous, 0 < g,,11(z) < gn(z) for
all z € K and all n € N and {g,} converges pointwise to zero in K. We need
to prove that {g,} converges uniformly to zero in K. Let ¢ > 0 and consider
g 1 ((—00,¢€)). Since g, is continuous, there exists an open set U,, such that

Un NE = g, ((—00,¢)).

Moreover, since g, 1 < gn, if gn(7) < €, then g, 1(7) < €, and so g;,; 1 ((—o0,¢)) C
gpi1((—00,¢€)). Thus, we can assume that U, C U, for every n. We claim that
the family of open sets U,, covers K. Indeed, given € K, since lim,, oo gn(x) =
0, there exists n. , € N such that 0 < g,,(z) < ¢ for all n > ng ;. Thus, z € U,
for all n > n. ,. This proves the claim.

Since K C |J,, Uy, by compactness, there exists N such that K C ngl Uy,.
But since U,, C U, 41, if follows that K C Uy C U, for all n > N, that is

0<gn(z)<e
for all x € K and all n > N. This implies that

sup [gn| < e
K

for all n > N, which is what we wanted to prove. m
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Example 124 If the hypothesis that K is compact is dropped, then the lemma
fails. Take K = [0,1) and fn,(xz) = z™. Then f, converges pointwise to 0,
fn = fnt1, but we do not have uniform convergence, since supp ;) |fn—0] =
SUpPgepo,1y & = L.

Example 125 If the hypothesis that f is continuous is dropped, then the the-

orem fails. Take K = [0,1] and f,(x) = a™. Then f, converges pointwise
to
1 ifr=1,
f(a:)—{ 0 ifz<1,

fo > fat1, but we do not have uniform convergence, since supyg q) |fn — f| =
SUpPge,y " = 1.

Lemma 126 Forn € N and x € [0, 1] define recursively

po() =0, pul®) == puoa(x) + & [~ 124 (@)].

Then {pn}n is a sequence of polynomials converging uniformly to f(z) := \/z,
x €1]0,1].

Proof. That each p, is a polynomial follows by induction. We claim that

0 <pn(z) <V
for all € [0, 1] and all n. Indeed, assume this is true for n — 1, then

1

pn(x) = pn—l(z) + B [I fpi_l(lE)] < \/E

if and only if

1
(Ve = pp-1(2)) |1 = 5 (Pn-r(2) + V)| 20,
which holds since \/z — p,—1(z) > 0 and 3(p,—1(z) + v/z) < \/z < 1. Thus the
claim holds.
Since z —p2_; (z) > 0, it follows that p,(x) > p,_1(x), and thus there exists

0< lim pn(z) =g(z) < Va.

n—oo

Letting n — oo in p,(x) = pp_1(x) + % [z fp%_l(x)] gives g(z) = g(z) +
% [x — g2(x)}, which shows that g(z) = \/z. Since g is continuous, by Dini’s
theorem (your homework) applied to { f —py, }, we conclude that {p,, },, converges

uniformly to f. =

Exercise 127 Let (X,d) be a metric space and let E C X. Then x¢ € E if and
only if there exists a sequence {xy}, in E such that z, — xg
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We now turn to the proof of Theorem 122.

Proof of Theorem 122. Step 1: We claim that F satisfies properties (i)-
(iii). We only need to prove property (iii). Given f,g € F and t € R, by the
previous exercise there exist {f,}, ,{gn}, in F such that d (fn,f) — 0 and
deo (gn, f) — 0. By property (iii), fn + gn, fngn, and tf, belong to F. Since
doo (fn+ gn, f+9) — 0, doo (frngn, fg) — 0, and do (tf, tf) — 0 (exercise), it
follows again by the previous exercise, that f + ¢, fg, and tf belong to F. It
remains to show that F. = C (X).

Step 2: We prove that if f belongs to F, then so does |f|. Since X is compact,
by the Weierstrass theorem f is bounded by some constant M > 0. Define

g(x) = |f](\;)|, x e X.

Then g(z) € [0,1]. In view of (iii), it suffices to show that g belongs to F. By
the previous exercise there exists a sequence of polynomials p,, that converges
uniformly in [0, 1] to the function h (¢) := /¢, t € [0, 1]. Define

gn(T) = pn ((Jt;(\?f) , zeX.

2 _
Then g,, converges uniformly in X to the function (%) = g. Since F is an

algebra, we have that g, € F. Hence, using the fact that F is closed, it follows
that ¢ belongs to F.

Step 3: We prove that if f, g belong to F, then so do max { f, g} and min { f, g}.
It is enough to observe that

max{f,g}zé[f+g+|f—gu,
win{f,0) =3 [f +9-17 ~ 9l

Step 4: We prove that if z,y € X with x # y and «, 8 € R, then there exists
g € F such that g(z) = a and ¢ (y) = 5. To see this, use property (i) to find
f € F such that f(z) # f (y) and define

Friday, March 17, 2023
Proof. Step 5: We are now ready to prove that F = C (X). Let f € C(X)
and € > 0. By the previous step, for every z,y € X there exists a function
Gy € F such that g, ,(z) = f(z) and g, (y) = f (y). Define

Usy :={2 € X : gay(2) < f(2) +¢},
Vg i ={2€X: guylz) > f(z) —c}.
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By the continuity of g.. , and f we have that U, , and V; , are open sets contain-

ing « and y. Since {U, 4 }2cx is an open cover of X, it follows by compactness
(v) (v)

that there exist x;"’,..., zm, € X such that
My
U ij.?’)‘,y =X. (22)
i=1
Define
Gy = min{gxgy)y, e 7993&#;,3;}'

Then g, belongs to F by Step 3 and by (22) and the definition of U,, , and
V:Ei,y7

gy(2) < f(z) +eforall z € X, (23)

gy(z) > f(z) —eforall ze€ V, = ﬂ Ve y- (24)
i=1

Since V, is open and contains y, the family {V,} .y is an open cover of X.
Again by compactness, there exist y1,...,y, € X such that

V, = X.
1

n
1=

Define
g :=max{gy,, -9y, }-
Then g belongs to F by Step 3 and by (23) and (24),

f(z) —e<g(z) < f(z) +eforall z € X.

Hence max.cx |f(2) — g(2)| < . Since g € F, we may find h € F such that
max,cx |h(z) — g(2)| < €, and thus, by the triangle inequality, max,cx | f(z) — h(2)| <
2e. This concludes the proof. m

Exercise 128 (Weierstrass) Let K C RY be a compact set. Prove that every
continuous function f : K — R is the uniform limit in K of a sequence of
polynomials.

Corollary 129 Let (X, d) be a compact metric space. Then C (X) is separable.

Proof. Since X is separable by Exercise 110, there exists a sequence {z,}, in
X such that {z,, : n € N} = X. For every n define

f’n(x) = d(x, -Tn) , x e X.

Then f, is continuous. We claim that {f,}, separates points. Indeed, assume
the contrary. Then there exist x,y € X such that f,(x) = f, (y) for every
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n € N. By density we may find a subsequence {z,,}, X of {z,}, such that
ZTn, — «. Hence,

d<ya$nk) = frx (y) = fnk(x) = d(xvmﬂk> —0

as k — oo. Thus, z,, — y. By the uniqueness of limits, it follows that x = y.
This proves the claim.
Define fp :=1 and for every k € N and ny,...,n, € Ny define

fnl,...,nk(fr) = fnl(x)fnk(x)ﬂ reX.

Consider the family F given by all finite linear combinations of functions of the
form f,, .. n.. Then F satisfies the hypotheses of Stone’s theorem, and so F is
dense in C'(X). On the other hand, the family F’ given by all finite rational
linear combinations of functions of the form f,, ., is countable. For every
feC(X) and € > 0 we may find g € F such that

doo(f,9) <e.

Since g is a finite linear combinations of functions of the form f,, . n,, using
the density of the rationals in the real, we may find A € F such that

deo (h,g) < e.
This shows that F” is dense in C' (X) and, in turn, that C' (X) is separable. m

Exercise 130 Prove that Cy (R) is not separable.

12 LP Spaces

Let (X, 91, 1) be a measure space. For 1 < p < 0o, we define the space

MP(X):= {f : X — R measurable and |||y (x) < oo} ,

1/p
i = ([ 17 aw)

M>(X):={f: X — R measurable and bounded},

where
For p = oo, we define

where
1f [ azee (x) = sup | f (2)].
rxeX

Note that property (ii) of the previous definition is satisfied. Indeed, for 1 <
p < oo and for t € R,

1/p 1/p 1/p
||thp(X>=(/X Itflpdu) =(|t|p /. |f|pdu> 1 (/X Ifl”du) .
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Next we study the triangle inequality.
Let ¢ be the Hélder conjugate exponent of p, i.e.,

Lo if 1 <p< oo,

p—1
g:=<{ oo ifp=1,
1 if p= 0.

Note that, with an abuse of notation, we have

S =1
P q

In the sequel, the Holder conjugate exponent of p will often be denoted by p’.

Theorem 131 (Hélder’s inequality) Let (X, 9, u) be a measure space, let
1 < p < oo, and let q be its Hélder conjugate exponent. If f, g : X — R are
Lebesgue measurable functions, then

Joisatan< ([ v du)l/p G du)l/q (25)

/ Fol du < sup |g ()] / £ du (26)
X reX X

if 1 <p < oo,

ifp=1, and
/ Fol du < sup |f ()] / gl ds (27)
X xeX X

if p=oo. In particular, if f € MP (X) and g € MP (X) then fg € M* (X).

Monday, March 20, 2023

Proof. If || f|| 3o (x) = 0 or [|gllpse(x) = 0, then f (2) g (z) =0 for pae. z € X

and so there is nothing to prove. Thus assume that || f||y/x), 19/larax) > 0

IE | fllpfo(xy) = 00 oF [|gllaza(x) = oo then the right-hand side is co and so the

inequality (25) holds. Hence in what follows we consider the case ||f|l;(x)
191l a10(x) € (0,00).

Assume that 1 < p < co. Since the function ¢ € [0, 00) + Int is concave and

%—f—%:l, for any a, b > 0, we have
1 1 1 1
In (ap + bq> > —Ina? + —Inb? = Inab,
p q p q
that is

1 1
—aP + =b? > ab,
p q

which is known as Young’s inequality.
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If we take a = |f (x)| and b = |g

—~

x)|, we get

(@) g ()] < \f<w>|”+§|g<x>\q.

D=

Upon integration, we obtain

1 1
/UMWSf/MW@+*/WVM
X P Jx qJx

1 1
*7fpp +7gqq .
p” HM (X) q” ||M (X)

To obtain the desired result, it suffices to replace f with ¢f, where ¢ > 0, to
obtain

tp—1 1
du < — || fII% — |lg||4 =:h(t).
[ \tsl < T 1y + 5 oy = 0
By minimizing the function h, we find that for
/
_ ”9”?\/1{;()()

the inequality (25) holds.
If p=1 and ¢ = oo, then

/ ol du < / |l sup |g ()] du
X X rzeX
— sup |g ()| / 1f1 du.
zeX X
The case p = oo is similar. m

Exercise 132 Prove that if f # 0 and the right-hand side of (25) is finite, then
the equality in (25) holds if and only if there exists ¢ > 0 such that

Lolgl=clff"""if 1 <p < oo
2. 9| < c and |g (x)| = ¢ whenever f (z) #0 if p=1;
3. |f] < c and |f (z)| = ¢ whenever g (x) #0 if p = co.

Theorem 133 (Minkowski’s inequality) Let (X,90, 1) be a measure space,
let1<p<oo,let X €M andlet f, g: X — R be measurable functions. Then,

1f + 9llaexy < I Flare ey 1191 x) (28)

whenever ||f + gl yn(x) is well-defined. In particular, if f,g € M?(X), then
f+ge€ MP(X) and (28) holds.
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Proof. If ||f||pmx) = 00 or ||gllamm(x) = oo then the right-hand side of
Minkowski’s inequality is oo, and so there is nothing to prove. Thus assume
that Hf||MTJ(X)7 ||g||]\4P(X) < 00.

We consider first the case 1 < p < oo. By the convexity of the function
t € [0,00) — tP, for any a, b > 0, we have

a—l—b)p 2p

op
5 <SP+ =2P71 (a? 4+ bP),

(a+b)”:2p< 5

and so

p p —1 P P
[Qf+m muQLuﬂ+mndusw ([;ﬂcw+[Qm w),

which shows that f+ g € M? (X). To prove Minkowski’s inequality, we observe
that

nf+mmp:/Wf+gWdu=/Nf+m~u+gW*du
X X
S/Wﬂ-u+gW”du+/Wm~v+gW&du
X X

By applying Holder’s inequality, we get

17+ oy < ([ 17 an) " ([ 1007 )
X X
+ </ lg|” du> (/ If +g|®PP dﬂ)
X X

< (I 1asm gy + I9lagn ) ) 15 + 913

where we have used the fact that (p—1)p’ = p. If Hf—|—g||M,,(X) = 0, then
there is nothing to prove, thus assume that ||f -+ g||Mp(X) € (0,00). Hence, we

D
may divide both sides of the previous inequality by | f + g||%,, (x) to obtain

I+ gllae < W F e + 1lgllaze

where we have used the fact that p — £ = 1.
The cases p = 1 and p = oo are straightforwad. m
We recall that

Definition 134 Given a vector space X, a norm is a function ||-|| : X — [0, 00)
such that

(i) l|z|]| =0 if and only if x = 0;
(i) |[tz]| = |t|||lz]| for allt € R and x € X;
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(i) Nz +yll < ll=ll + llyll for all z,y € X.

In view of the previous theorem we now have that for 1 < p < oo, properties
(ii) and (iii) of Definition 134 are satisfied. The problem is property (i). Indeed,

if
1/p
1 llage = (/X fl”du> o,

then by there exists a set Ey € 9 with pu (Ep) = 0 such that f(x) = 0 for all
x € X \ Ey. This does not imply that the function f is zero. For example, the

Dirichlet function
1 ifzeQ,

0 otherwise,

re)={

has exactly this property.
To circumvent this proplem, given two measurable functions f, g : X — R,
we say that f is equivalent to g, and we write

f~gif f(x) =g(z) for pae z € X. (29)

Note that ~ is an equivalence relation in the class of measurable functions.
Moreover, if f(z) =0 for p a.e. € X, then f ~ 0, or, equivalently, f belongs
to equivalence class [0].

Definition 135 Let (X, 9, 1) be a measure space, let X € M, and let 1 < p <
0o. We define

L?(X):=MP(X)/ ~= {[f] : [+ X — R measurable and | f|| 0 x) < oo}.
In the space L? (X) we define the norm

H[f]”LP(X) = Hf“MP(X) .

Note that ||[f]||,, does not depend on the choice of the representative. We now
have that (L? (X), ||-|| ») is a normed space, since properties (i)-(ii) of Definition
134 are satisfied.

Indeed, if f € LP ([0,1]) (with the Lebsgue measure), then after the identi-
fication f is actually an equivalence class. Hence, for example, talking about
the value f (1) or f (%) make no sense. Indeed, given any number y € R, in
the equivalence class [f] there is always a function g such that g (1) = y. Just
define

]y ife=1,
9(@):= { f(z) otherwise.
Then f and ¢ differ only at the point 1, and so f ~ g.
Let’s now consider the case p = oo. Unlike the case 1 < p < oo, the

supremum of a function changes if we change the function even at one point.
Thus, we cannot take as a norm [|[f][|p«x) = sup,ex [f (z)|. What we need
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is a notion of supremum that does not change if we modify a function on a set
of measure zero.

Let (X, 91, 1) be a measure space. Given a measurable function f: X — R
we define the essential supremum esssup f of the function f as

esssup f:=inf{t e R: f(x) <t for pae xz€ X}.

Note that if M := esssup f < oo, then by taking ¢, := M + % we can find
E, € M with p(E,) = 0 such that

1
f(x)SM—i-EforallmeX\En.

Take

(@

E = E,.

n=1

Then p1(Ex) <300  p(E,) =0, and if 2 € X \ E, then
1
fx) <M+ — foralln e N.
n

Letting n — oo, we get that f () < M for all z € X \ E. Conversely, if there
are t € R and Fy € M with p (Ep) = 0 such that f(z) <t for all z € X \ Ey,
then by definition of esssup f, we have that esssup f <t < oo. This shows that
esssup f < oo if and only if the function f is bounded from above except on a
set of measure zero.

Moreover, if f ~ g then esssup f = esssupg. This leads us to the following
definition.

Definition 136 Let (X, 9, 1) be a measure space and let E € M. We define
L (X):={[f] : f: X — R measurable and esssup |f| < oo} .
In the space L (X) we define the norm

I poe += esssup |£]-

Indeed, properties (i) and (ii) are satisfied. To prove property (iii), note that if
[f] and [g] belong to L (X), then there exist Ey, F' € M with p (Ey) = u (F) =
0 such that |f (z)| < esssup |f]| for all x € X \ Ey and |g (x)| < esssup |g| for all
x € X \ F. Hence,

[f (@) + g (@) < |f (2)] +|g (2)] < esssup [ f| + esssup |g]

for all z € X \ (EpUF), which implies that esssup|f + g| < esssup|f| +
esssup |g|. Thus, the triangle inequality holds.
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Remark 137 Note that in Hélder’s inequality one can replace (26) and (27)
with

/ gl diu < esssup|g] / £ dy
X X

and

/ |fg] du < esssuplfl/ lgl dp,
X X

respectively. Indeed, in the first case, since |g (x)| < esssup |g| for allx € X\ Ey,
where Ey € MM with i (Ey) = 0, we have that

/X | fal du

/ £l 9| dp S/ | flesssup [g| dp

X\Eo X\Eo

= esssup |g|/ |f| dp < esssup |g\/ |f| du.
X\Eo X

With an abuse of notation, from now on we identify a measurable function
f: X — R with its equivalence class [f]. Note that this is very dangerous.
Wednesday, March 22, 2023
We now turn to the relation between different LP spaces.

Theorem 138 Let (X, M, u) be a measure space and let X € M. Suppose that
1<p<qg<oo. Then

(i) LP (X) is not contained in L9 (X) if and only if X contains measurable
sets of arbitrarily small positive measure;

(i) L9 (X) is not contained in LP (X) if and only if X contains measurable
sets of arbitrarily large finite measure.

Proof. (i) Assume that L? (X) is not contained in L7 (X). Then there exists
[f] € L? (X) such that

1817 = (30)
X

For each n € N let
E,={zeX:|f(x)]>n}.

Then .
p
p(En) < — /X |fI" dp— 0

as n — oo. Thus, it suffices to show that p (E,) > 0 for all n sufficiently large.
If to the contrary, u (E,) = 0 for infinitely many n, we have that

/ 17 du = / 17 du < n/ 1P du < oo,
X {|f|<n} {IfI<n}

which is a contradiction with (30). Hence, X contains measurable sets of arbi-
trarily small positive measure.

68



Conversely, assume that X contains measurable sets of arbitrarily small
positive measure. Then it is possible to construct a sequence of pairwise disjoint
sets {E,}, in M such that p (E,) > 0 for all n € N and

e (En) \ 0.

Let
oo
f=>caxe,,
n=1

where ¢, /' oo are chosen such that
> lu(B,) =00, Y. chu(E,) < oo (31)
n=1 n=1

Then [f] € LP (X) \ L7 (X).
(ii) Assume that L7 (X) is not contained in L? (X). Then there exists [f] €
L7 (X) such that

11 = (32)
be
For each n € N let

1 1

and let >
Foo:={zeX: 0<|f ()| <1} =] Fu
n=1

If p(Fo) < 00, then

/vww=/ uww+/ PP du
X {IfIL1} {IfI>1}

SME&+/ 1% du < oo,
{IfI>1}

which contradicts (32). Hence, u (Foo) = 00. On the other hand, since for every
n €N,

q q 1
w>AU|w>A$qKHuw>m+wmam

it follows that X contains measurable sets of arbitrarily large finite measure.
Indeed, setting

Gn = U Fk,
k=1
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we have that u (G,,) < oo, while by Proposition ?7(i),
1 (Gn) = p(Foo) = 0.

Conversely, assume that X contains measurable sets of arbitrarily large finite
measure. Then it is possible to construct a sequence of pairwise disjoint sets
{E,},, in 9 of finite measure such that

Let
LS
f = Z CnXEn>
n=1

where ¢, \, 0 are chosen such that
> lu(B,) <o, Y chu(E,) = oc. (33)
n=1 n=1

Then [f] € L7 (X)\ L? (X). m

Remark 139 Note that the previous proof works also for p, ¢ > 0. What about
qg=00?

Exercise 140 (i) Let X = [0,1] and let u be the Lebesgue measure. Show
that for every 1 < p < oo the function

1

f(x) = Tl/p 1ng/p (%)
is in LP ([0,1]) but not in L7 ([0,1]) for all ¢ > p.

(ii) Construct sequences ¢, / oo and ¢, \, 0 for which conditions (31) and
(33) hold, respectively.

Corollary 141 Let (X, 9, 1) be a measure space and let X € M. Suppose that
1<p<qg<oo. If u(X) < o0, then

L9(X) C LP (X).

Proof. When 1 < g < o0, this follows from the previous theorem. There’s also

a direct proof. By Holder’s inequality (with z% in place of p and |f|” and 1 in

place of f and g)

o du < 0P, 10, gy = ([ 117 a) gy

= ([ an) " e
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L]

By identifying functions with their equivalence classes [f], it follows from
Minkowski’s inequality that ||-||,, is a norm on L (X). Next we prove that
L? (X) is a complete metric space, that is, that every Cauchy sequence has a
limit in L? (X).

Theorem 142 Let (X, 0, ) be a measure space and let X € M. Then LP (X)
18 a Banach space for 1 < p < co.

Proof. Assume that 1 < p < oo, and let {[f,]},, be a Cauchy sequence in
L? (X). Then for every k € N we can find nj, € N such that

Ifn] = Lfelll Lo <

for all n,£ > ng. Without loss of generality, we can assume that ngy; > ny for
every k. For j € N consider the function

J

91(2) =3 [ fapir (@) = fu ()],

k=1

g(l‘) = Z ‘fnk+1(x) - fnk (.’L‘)|

k=1

By Minkowki’s inequality,

J 0o
1
llgillze <Y oM s] = [adlle <D o5
k=1 k=1

Letting j — oo, it follows from Fatou’s lemma that

— 1
gl < hmmf” gilllr < 27

k=1

Since
/ l9/Pdp < o0,
X

there exists a set F' C X with u(F) = 0, such that g(z) e R for all x € X \ F.
[

Friday, March 24, 2023
Proof. It follows that the partial sum

fn1 +ank+1 fﬂk( )

converges absolutely for every x € X \ F to a function f. Define f(x) := 0 for
z € F. We claim that [f,,] — [f] in LP(X).
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To see this, fix € > 0 and let n. be such that
Ifn] = [felllr <e

for all n,¢ > n.. In particular, if ny > n,,

[fr = Frrllpe <&

Letting & — oo, it follows from Fatou’s lemma that

ILfa] = [fllpe < Hminf [[[f] = [fuu]llo <
[
Exercise 143 Prove the case p = oc.

Remark 144 The proof of the previous theorem implies that if {[fn]}n con-
verges to [f] in LP(X), then there exist a subsequence {fn, }r that converges
pointwise to f a.e. and

| frn (@) < g(x)  for a.e. x € X and for oll k,
where [g] € LP(X).
Next we study some density results for LP (X) spaces.

Theorem 145 Let (X, 9, 1) be a measure space. Then the family of all simple
functions in LP (X)) is dense in LP (X)) for 1 < p < cc.

Proof. Assume first that 1 < p < oo. Let [f] € LP(X). Since f*, f~ are
masurable, there exist increasing sequences {s, }, and {t,}, of simple functions
such that {s, (z)}, converges monotonically to f* (z) for p a.e. = € X and
{tn (x)},, converges monotonically to f~ (z) for p a.e. © € X. Then for each
n € N the function S,, := s, — ¢, is still simple, belongs to L? (X), and

|f (2) = Su (@) = |+ (@) = su (&) = (f (2) = tn (2))]"
S 2p—1 (f+ (.’L‘) — Sn (x))p + 2;0—1 (f_ (:C) - tn (m))P
<27 (fF (@) + 207 (7 (2)"
for p a.e. x € X. Since f () — S, () — 0 as n — oo for p a.e. © € X, we may
apply the Lebesgue dominated convergence theorem to conclude that [S,] — [f]
in L? (X).
The case p = oo is left as an exercise. m

The next result gives conditions on X and p that ensure the density of
continuous functions in L (X).

Theorem 146 Let (X,9M, u) be a measure space, with X a metric space and p
a Borel measure such that

w(E) =sup{u(C): C closed, C CE} =inf{u(A): A open, AD E}

for every set E € 9 with finite measure. Then LP (X) N Cy (X) is dense in
LP (X) for 1 <p < 0.
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Proof. Since by Theorem 145 simple functions in L? (X) are dense in L? (X),
it suffices to approximate in L? (X) functions xg, with E € 9 and u (F) < oo,
by functions in LP (X)NCy (X). Thus, fix E € M with p (E) < oo, and for any
€ >0 find an open set A DO F and a closed set C' C E such that

w(A\C) < el

Find (exercise) a continuous function f : X — [0,1] such that f = 1 in C
and f =0in X \ A. Since supp f C A and u(A) < oo, it follows that [f] €
L? (X) N Cy (X). Moreover,

/|><E—f|pdu=/ e — fIP diu < u(A\C) < e,
X A\C

and the result follows. m

Definition 147 A measurable space (X, M) is called separable if there exists a
sequence {E,}, in M such that the smallest o-algebra that contains all the sets
E, is M. In this case M is said to be generated by the sequence {E,},, .

Example 148 The o-algebra of all Lebesgue measurable sets in RN is generated
by the countable family of cubes with centers in QN and rational side length.

Exercise 149 Prove that if X is a separable metric space and I is the Borel
o-algebra, then X is a separable measurable space.

Theorem 150 Let (X, M) be a separable measurable space with MM generated by
a sequence {E,}, . and assume that p is o-finite. Let N be the smallest algebra
containing {E,}. Then simple functions of the form

n
E CiXF;»
i=1

wheren € N, ¢; € Q, and F; e M, u(F;) < o0, i =1,...,n, form a countable
dense subset of LP (X) for 1 < p < oo. In particular, LP (X) is separable for
1<p<oo.

The proof will be likely an exercise in a future homework.
To study compactness in L? spaces, we take X = R™ with the Lebesgue
measure.

Theorem 151 Let 1 < p < co. A set F C LP(RYN) is totally bounded if and
only if

(i) F is bounded;

(i) for every e > 0 there exists R > 0 such that

/ |f(z)|Pdx < P
RN\ B(0,R)

forall [fle F
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(i) for every e > 0 there exists 6 > 0 such that
[ @b f@)rdz < o
RN

for all h € RN with ||| < & and for all [f] € F.

Monday, March 27, 2023
We will use the following lemma.

Lemma 152 Let (X, dx) be a metric space. Assume that for every e > 0 there
exist 6 > 0, a metric space (Y,dy), and a function g : X — Y such that g(X)
is totally bounded and whenever z,z € X are such that dy (g(x), g(z)) < 0, then
dx(z,z) <e. Then X is totally bounded.

Proof. Since g(X) is totally bounded, there exist y1,...,y, such that

n

g(X) < U By (v, %)-

i=1
Let U; = g~ Y(By (y:, 5)). If z,z € U, then dy (9(x), g(2)) < 4, and so dx (=, z) <
e. Hence, if we fix x; € U;, we have that U; C Bx(z;,¢). Since

=1

and so

=

X = UUlg BX(J,‘Z‘,E).
i=1 1

(2

[

We turn to the proof of the theorem.
Proof. Step 1: Assume that F satisfies items (i)—(iii). Let @ be an open cube
centered at the origin and of side-length r = ﬁ. If z € Q, then [|z|| < 3. Let

Q1,-..,Q, be disjoint open cubes obtained by translating @ such that

n

i=1
Let

Y = Span{XQl yee 7XQ7L}
and let IT: LP(RY) — Y be given by

L dy if ni=1,...,
H([f])(z) ::{6 fQ fw)dy O‘d:ferewcigse.Z 1 '
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From (ii), we have

[ @ -n@raes [ ) - ode+ Y [ (5@ 1) @)

RN\B(0,R)

N
<o+ 3 [ 15 -

By Holder’s inequality

y)|dy

| 1@ = swiay) < 5 [ 1t

P N/P 1/p
< (Qvlf(w)—f(y)pdy) ,

and so

where we used the change of variables y = x + h and used the fact that if
z,y € Q;, h € 2Q. In turn, since the cubes @Q; are disjoint, by item (iii),

Z/ |f(z) = II([f]) (= Ipdw<—/ Z/ |f(z) — f(z + h)[Pdzdh
1

<= [f(z) = f(z + h)[Pdzdh
T 2Q JRN

Sspi/ dh < 2NeP,
N
2Q

Hence,
ox |f (&) = TI([f]) () [Pdz < eP(1 4 2V).

It follows that
I = T(D o @y < e(1+2Y)HP (34)

and by Minkwoski’s inequality,

I e vy < LT = TH(AD e @y + ITECSD N o vy
< e(1+ 2P I[N o vy -
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Since II is linear, if [f], [g] € F are such that [|[II([f]) — II([g])||Lr @~y < €, then

1) = 9l ) < (14297 4+ T — (9Dl on) < (1 +2Y)Y7 +1).

This proves that II satisfies the e-¢ condition in the previous lemma.
Since F is bounded, there exists M > 0 such that [|[f]|[z»@~) < M for all
[f] € F. It follows from (34) and Minkowski’s inequality that

I DN ey < T =D e ey + 1Ll e @y
<e(1+2M)YP 4 M.

(Actually we can show that [[TI([f])[|zr®~y) < [[[f]llLr@yy < M but we don’t
need that here).

Consider the noremd space (Y,|| - ||ze). Since Y is finite-dimensional, we
have that all norms are equivalent. Since Y is finite-dimensional and II(F) is
bounded, II(F) is totally bounded. It follows by the previous lemma that F is
totally bounded. m

Wednesday, March 29, 2023
Proof. Step 2: Assume that F is totally bounded. Given € > 0, we can find
fis--s fn € LP(RY) such that

F | Bre(firo).
=1

Since, by the Lebesgue dominated convergence theorem,

lim | fi(®)[Pdz = 0,
R—oco JrRN\B(0,R)

we can find R > 0 such that

[ ln@pd<e
RN\B(0,R)

for all i = 1,...,n. Hence, if f € F we can find 7 such that f € Br»(fi,e). By
Minkowski’s inequality

1/p 1/p
( / If(w)l”dm> < ( / fi(m)lpd:v> 1 = filloe < 2e.
RN\B(0,R) RN\ B(0,R)

This proves condition (ii). To prove (iii), we use the density of C.(RY) in
LP(RM) to find g; € C.(RY) such that ||[g;] — [fi]llz» < €. Let R; > 0 be such
that g; = 0 outside B(0, R;). By the Lebesgue dominated convergence theorem

lim lgi(z + h) — gi(z)|Pde = lim lgi(z + h) — gi(z)|Pdz = 0.
h—0 JpN h—0 B(0,2R;)
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Hence, we can find § > 0 such that
[ loite+ ) - gi@)pde < e
RN

for all h € RN with ||h|| < 6 and all i = 1,...,n. In turn, by Minkowski’s
inequality and the change of variables  + h = y,

(/]RN |f(z+h) — f(@Pd:z;)Up < (/RN lgi(z + h) — gi($)|pdm>l/p
+ ([, otz - e nre) N

+ ( / o) - f(w)pdw)l/p <etde.
| ]

Theorem 153 (Fréchet—Kolmogorov-Riesz) Let 1 < p < co. A set F C
LP(RYN) is compact if and only if

(i) F is closed, bounded;
(ii) for every e > 0 there exists R > 0 such that

/ f(x)Pde < <
RN\B(0,R)

forall [fle F
(iii) for every e > 0 there exists 6 > 0 such that

[ Vet h) = apde <o

for all h € RN with ||h|| < & and for all [f] € F.

Next we study mollifiers and LP functions. Consider the function

1 .
ooy = { e (=) i Nl <1, (35)
0 if |z > 1,
where the constant ¢ > 0 is chosen so that
/ p(z) de=1. (36)
RN

We leave as an exercise to prove that ¢ € C°(RY). For every ¢ > 0 we define

e () :z%gp(%% z e RV,

The functions ¢, are called standard mollifiers.
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Remark 154 Fiz x € RY. Using the change of variables z = =¥ we have
that

1 T—Yy
pe(x—y)dy = — w( )dy
/B(m,s) : ) eV JB(a.e) €

N
= p(z)dz=1.
eN /3(0,1)

Given a Lebesgue measurable set £ C R¥ and a Lebesgue integrable function
f+E— R, we define

f- (z) = /E% (z—9) f(y) dy

for £ € RY. Since . is bounded and continuous, and f is Lebesgue integrable,
f-(z) is well-defined. The function f. : RN — R is called a mollification of f.

Theorem 155 Let Q C RY be an open set, let ¢ be a standard mollifier, let
1 <p< oo, and let [f] € LP(Q).

(i) f- is well-defined;

(ii) For every Lebesque point ¢ € Q of f (and so for LN a.e. x €N), fo(z) —
f(x) as e — 0F. Moreover, f.(x) — 0 for every x € RN \ Q;

(iii) For every € > 0, [[[£:] 1oy < Il pogey

(iv) H[fa]HLp(RN) - Hf”LP(Q) ase — 0F;

lim </ |f5fpdm>p —0.
e—0t Q

Proof. (i) Since [p.(x — )] € L (RYN), the fact that f. is well defined follows
from Holder’s inequality.
(ii) Let « € Q be a Lebesgue point of f, that is,

(v) If 1 < p < oo, then

i v [ Uy - f @) dy=o
B(z,e)
Since (Q is open, B (z,e) C Q for € small enough. Using Remark 154,

fe(w)—f(w)=/ oo (2~ 9)[f (v) - f ()] dy

B(z,e)
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and so

N

()] < T -y (e
e (@) ()] < - B(wso( )f<y> f (@)] dy

3 9

Jille . .
< [ W@y o

ase — 0T,
(iii) If 1 < p < oo, by Holder’s inequality and (36) for all £ € RY,

1
7

- ()] = \/Q (02 (2 — 1) (pe (2 —v)} [ () dy‘

< </Qsoa(w—y) dy);</ﬂwa(fe—y)|f(y)lp dy); (37)
<([ee-wiwr dy)’l’

and so by Fubini’s theorem and (36) once more

/l:w|fe(m)|pd:I:S/RN/Qgpg(m_y)‘f(y”pdydm

= [1rr ([, e-ta-vac)a

- / f (@) dy.
Q

On the other hand, if p = oo, then for every = € RY,
f@I< [ oel@=v)lf W] dy

<M / oo (@~ 9) dy < /1l e

again by (36), and so item (iii) holds for all 1 < p < cc.
(iv) By item (iii),
lim Sl+1p ”[fE]HLP(]RN) < ”[f]HLp(Q) :

E—

To prove the opposite inequality, assume first that 1 < p < co. By part (ii),
f-(z) = f(z) ase — 0T for LV a.e. = € 2, and so by Fatou’s lemma

/ |f (z)|” de = / lim |f: (z)] de < liminf/ |fe ()] de.
Q qe—0t e—0t JpN
If p = oo, then again by part (i) f. (z) — f(z) as ¢ — 0" for LV a.e. € Q.

Hence
|f (@) = lim |f; ()] < liminf [[fe]ll o o)
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for £N a.e. = € Q. It follows that
U1y < i NS e ey -

Hence, item (iv) holds also in this case.
(v) Fix p > 0 and find a function g € C, () such that

11— (91l oy < -

Since K := suppg is compact, it follows that for every 0 < n < dist (K, 99Q),
the mollification g. of g converges to g uniformly in the compact set

K, = {zeR": dist(z,K) < n}.
Since g. = ¢ =01in Q\ K,, for 0 < ¢ < n, we have that
P P P
/ngs —g|" d :/ lge — g|" dm < (Ilgs fgllc(m) Kyl < p,
K

n

provided e > 0 is sufficiently small. By Minkowski’s inequality

el = Ul ooy < NIFe) = [9elll Loy + N[9e] = (9l oy + 1119) = LAl ()
< 201 = [ollloq) + lllge] = (91l o) < 30

where we have used item (iii) for the function f —g. =

Remark 156 Part (iv) does not hold for p = 0o, since uniform convergence of
continuous functions would imply that f is continuous.

Friday, March 31, 2023

In what follows given [f] € LP(Q), we will write simply f € LP(2) and so, we

will identify a function with an equivalence class of functions. Please be careful
about this, because it can cause all kind of mistakes.

13 Sobolev Spaces

Consider the differential equation

f”(m) = g(.’E), rel

where [ is an open interval and g : I — R is a continuous function. For this
ode to make sense, we need the solution f to be at least of class C?. Consider a
function ¢ € C2° (I) and multiply the equation by ¢. If we integrate by parts,
we get

- / (@) (@) do = / o) (x) de. (33)
I

I

This integral makes sense for functions f that are less regular than C?. For
example C! is enough.
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If we integrate by parts once more, we get

/ f(2)¢" () di = / o(2)(x) de. (39)
I I

This integral makes sense provided f : I — R is locally integrable. The integrals
(38) and (39) can be considered weak formulations of the differential equation
f"=g.

Motivated by this discussion, we define the weak derivative of a function.
But first, let’s recall integration by parts in several dimensions.

If @ ¢ RY is an open bounded set whose boundary is of class C' and
f,¢ € CH(R), then as a corollary of the divergence theorem, we have that for
every i =1,..., N,

¢ of aN—-1
| r@ 5@ e~ [ L@ow)ias [ fonan,
where v(x) = (11(x),...,vn(x)) is the outward unit normal to 02 at =. Now,

if we assume that ¢ € C’%(Q), then ¢ = 0 on 99, and so

[ it 122 (@) do = ;’j (2)6() da.

In this case, we don’t need to assume that 2 is bounded or that 92 is of class
C'. To be precise, let 2 C RY be an open set, let f € C1(2) (note that f may
not be integrable) and let ¢ € C1(Q). Then there exists a compact set K C Q
such that ¢ = 0 in Q \ K. Construct an open bounded set V' with boundary
of class C! such that K ¢ V C V C €. Since f € C*(V), we can apply the
divergence theorem in V' to obtain

| t@gt@ie =~ [ Zr@ow e

On the other hand, since ¢ = 0 and % are zero in Q \ V, we can write

_ (o
| 1@ @de == [ @) da. (40)

Thus, we have shown that given an open set 2 C RY and a function f € C*(Q),
the integration by parts formula (40) holds for all ¢ € C}(£2). We now extend
the previous formula to functions f not in C*(€).

Remark 157 (Important) From now on, instead of writing [f] € LP(Q), I
will write f € LP(Q).

Definition 158 Let Q C RY be an open set, 1 < p < oo, and f € LV ().
Giveni=1,...,N, we say that f admits a weak or distributional derivative in
LP(Q) if there exists a function gi € LP(2) such that

| 1@ 5% @ do =~ [ (@)oo do
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for every ¢ € C(Q2). The function g; is called the weak, or distributional,
partial derivative of f with respect to x; and is denoted %

Remark 159 Observe that if f € C1(S2), then by the divergence theorem we
can always integrate by parts to conclude that

0
/ () o () d = [ oL (@)0(a) do

for all g € C (). Hence, if 5 8f € L? (Q), then the classical partial derivative
% is the weak derivative of f. We will use this fact without further notice.

Exercise 160 Let Q C RY be an open set, 1 < p < oo, and L, (Q). Prove

loc
that if f admits a weak derivative g in LP(QY), then the weak derivative ngi

unique.

8

We can now define the Sobolev space W1P(€).

Definition 161 Let Q C RY be an open set and 1 < p < The Sobolev

space W1P (Q) is the space of all functions f € Lp( ) th admzt all weak

derivatives % in LP(Q), endowed with the norm

TillLri)

When p = 2 we write H(Q) = W1’2(Q). In this case, we have an inner
product, given by

af o
(f7 )Hl (©2) _(‘f’ 92 Q)+Z(ai ai)p(m~

For f € WP () we set

0x1 "0z N

Vi (af 3f)

Remark 162 In W1P (Q) we can consider the equivalent norms

1
L Q))

Hf”Wm‘IJ(Q) = ||f||Lp(Q) + HVf”LP(Q;RN) ;
for 1 <p < oo, and

6’f

’L

1f lwre ) = (

or

9f
8331 oo

L‘”(Q)}

H@a:N

||f||W1,oo(Q) = maX{”f||L°°(Q) )
for p=oo.
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We define
VVlOC ={feLl (Q): feW"(U) for all open sets U € Q}.
Monday, April 3, 2023
We now show that WP (Q) is a Banach space.

Theorem 163 Let Q C RY be an open set and 1 < p < oo. Then the space
WP (Q) is a Banach space.

Proof. Let {f,}, be a Cauchy sequence in W? (), that is,

LT’(Q)> .

Then {f,}, and {%}M i=1,...,N, are Cauchy sequences in L (). Since
L? (Q) is a Banach space, there exist f,g; € LP (Q),i=1,..., N, such that

O _ .
8:1%‘ g’L

0= ; }Ziinoo | frn — leWI,p(Q)

afn _ 8fl

N
= lim <||fn — fillpo ) +
n—00

i=1

=0 (41)
Lr(9)

i (fu = Fllppey =0, lim H

forall:=1,...,N. Fix:=1,..., N. We claim that 6f“ = g;. To see this let
¢ € C° (92) and note that

[t [ 2 00 )

/¢2Z :/Qgé(gj:—gi) dw+/ﬂ¢gidw:: I,+11,

by Holder’s inequality we have

Writing

[In] < (9]l 2o ()

8f7l i
ox; — 9

Lr(Q)

as n — 0o, which shows that

/nggii da:—>/ﬂ¢)gl-d$.

_/szf"gjz /faxz

Similarly,
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Hence, letting n — oo in (42) yields

/Q¢gid:v=—/9fgidw

for all ¢ € C (), which proves the claim. Thus f € W1P (Q). It follows by
(41) that f,, — f in WP(Q). Hence, WP(Q) is a Banach space. m
More generally, we can define higher order Sobolev spaces.

Definition 164 Let Q C RY be an open set, let m € N, and let 1 < p < oo.
The Sobolev space WP () is the space of all functions f € LP () such that
for every multi-index o with 1 < |a| < m there exists a function go € LP ()

such that ey
——dz = (-1 ‘0“/ o®dx
Qfama - Qg

forall ¢ € C° (). The function g is called the weak or distributional partial
derivative of f with respect to x* and is denoted gw—i.

Exercise 165 Let Q C RN be an open set, let m € N, and let 1 < p < oo.
Given f € W™P (Q), prove that the weak derivative of f with respect to €* is
unique.

We define
WP () == {f € L. (Q) : f€W™P(U) for all open sets U € Q} .

Exercise 166 Let Q C RY be an open set and let 1 < p < oo.

(i) Prove that a subset of a separable metric space is separable.
(ii) Prove that WP (Q) is separable. Hint: Consider the mapping
WP (Q) — LP (Q) x LP (4 RY)
f= (V).

Exercise 167 Let Q C RY be an open set. Prove that W1 (Q) is not separa-
ble.

Next we prove that smooth functions are dense in WP (Q)

Theorem 168 (Meyers—Serrin) Let Q2 C RN be an open set and 1 < p < 0o.
Then the space C™ (Q) N WLP (Q) is dense in WHP ().

Lemma 169 Let Q C RY be an open set, 1 < p < oo, and f € WLP (Q). For
every € > 0 define f. := p. * f in RN, where . is a standard mollifier. Then

Jim £z = flwn,) =0
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where the open set . is given by

Q. :={x € Q: dist (z,00) > ¢c}.
In particular, if U C Q, with dist (U,0Q) > 0, then

Ife = fllwrr@y = 0 ase— 0.

Proof. By differentiating under the integral sign we have that f. € C*° (]RN)
and for ¢ € Q). and for every i =1,..., N,

Ofe Ope Ope
@)= [ ety =~ [ e ) dy

- [ee-v it dy=<gp€*g£)(w)’

where we have used the definition of weak derivative and the fact that for each
x € Q. the function ¢, (xz — ) € C (), since supp . (£ — ) C B(xz,e) C Q.
The result now follows from Theorem 155 applied to the functions f and %,
i=1,...,N. m '

Remark 170 Note that if Q@ = RN, then Q. = RY. Hence, f. — f in
Wi (RN).

Exercise 171 Let © C RN be an open set and 1 < p < oco. Prove that if
feWLP(Q) and ¢ € C (Q), then pf € WHP (Q).

We now turn to the proof of the Meyers—Serrin theorem.
Proof of Theorem 168. Let ; € Q;11 be such that

(o)
Q=Ju
=1

and consider a smooth partition of unity F subordinated to the open cover
{Qi+1 \Qi,l}, where Q_; = Qg := (0. For each i € N let 7; be the sum of
all the finitely many v» € F such that suppt C ;41 \ ©;_1 and that have not
already been selected at previous steps j < 4. Then ¢; € C° (Qi+1 \m) and

D i =1inQ. (43)
i=1
Fix n > 0. For each i € N we have that
supp (¥ f) C Qg1 \ Qi1 (44)
and so, by the previous lemma, we may find &; > 0 so small that
supp (i f)e, C Qig1 \ Qi1 (45)
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and

U
@i, =it o) < 500

where we have used the previous exercise. m
Proof. Note that in view of (45), for every U &€ Q2 only finitely many ;11 \Q;_1
cover U, and so the function

=3 (Wif)

i=1

belongs to C*° (Q). In particular, g € W[ (Q).
For = € Qy by (43), (44), and (45),

£ 4
=2 W) (@), g(@) =3 Wif)., (). (46)
Hence
L L
1f = glwron < D N@F), = ¥ifllyn < 221 (47)
i=1 i=1

Letting £ — oo it follows from the Lebesgue dominated convergence theorem
that ||f — g||W1,,,(Q) < 7. This also implies that f — ¢ (and, in turn, g) belongs
to the space WP (). m

Remark 172 Note that we can adapt the proof of the Meyers-Serrin theorem
to show that if f € Wlif( ) with Vf € LP (Q;RY) then for every e > 0 there
exists a function g € C (Q) N WP (Q) such that

loc
Ilf— QHWl,p(Q) <e
despite the fact that neither f nor g need belong to WP (€2).
Wednesday, April 5, 2023

Exercise 173 Let Q@ C RN be an open set and let f : & — R be a locally
Lipschitz continuous function (that is, f is Lipschitz continuous in each compact
set K C Q). Prove that f € Wli)Cp(Q) and that the classical derivatives of f are
the weak derivatives.

Exercise 174 Prove that the function f (x) := |z| belongs to W (—=1,1) but
not to the closure of C*° (—1,1) N WhHe° (—1,1).

The previous exercise shows that the Meyers—Serrin theorem is false for

p = oco. This is intuitively clear, since if @ C R is an open set and {f,} C
C (Q)NW'> (Q) is such that || f, — fllyy1.0c () — 0, then f € C* (Q) (why?).
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Exercise 175 Let O = B(0,1) \ {x € RN : xy = 0}. Show that the function
f:Q =R, defined by
1 g > 0,
f(a:):f(xl,...,xN)::{ iy N

0 ifxny <O,

belongs to WLP (Q) for all 1 < p < oo, but cannot be approximated by functions

i C'° (Q)

Definition 176 Given an open set Q C RN, we denote by C*(2) the space of
all functions f € C°°(S2) that can be extended to a function in C>°(RY).

The previous exercise shows that in the Meyers—Serrin theorem for general
open sets {2 we may not replace C* (Q2) with C'* (Q)

Theorem 177 Let () QJRN be an open set with boundary of class C° and let
1 <p<oo. Then C*™ (Q) NWHP(Q) is dense in WP (Q).

Exercise 178 Let Q,U C RY be open sets, let ¥ : U — Q be invertible, with
U and U1 Lipschitz functions of class C*, and let f € WP (Q), 1 < p < 0.
Then foW¥ € WY (U) and for alli=1,...,N and for LN -a.e. y € U,

W) 5 W),

14 Absolute Continuity on Lines

The next theorem relates weak partial derivatives with the (classical) partial
derivatives. Given & = (x1,...,7x) € RN and i € {1,..., N} we denote by z/
the vector of RN ~! obtained from z by removing the i-th component z;. With
a slight abuse of notation we write

x = (z),z;) cRV"I xR, (48)
Given a set E C RY and x; € RN~1, we denote by Ey; the section
Ew; = {.131' eR: (115;,$l) S E}

To state the following theorem, we will work with equivalences classes of
functions, and so we will use [f] € LP(Q)

Theorem 179 (Absolute Continuity on Lines) Let @ C RY be an open
set and let 1 < p < co. Then [f] € LP () belongs to the space WP (Q) if and
only if f ~ g, where g : Q@ — R has the property that for everyi =1,..., N,
there exists a Lebesque measurable set M; C RN =1 with LN=1(M;) = 0 such that
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for every ! € RN=1\ M; for which the section Qg is nonempty, the function

g(x}, ) is absolutely continuous on each mazimal interval I C Qg and

/Q
dg

Moreover, {BT} is the weak ith derivative of [f].

dg

Bz, dx < oo.

(z)

Proof. Step 1: Assume that [f] € WP (Q). Consider a sequence of stan-
dard mollifiers {¢.}.., and for every ¢ > 0 define f. := f x ¢. in Q. =
{x € Q: dist (z,00) > ¢}. By Lemma 169,

lim | VS (2) =V (&) [Pdz = 0.

e—0*t

It follows by Fubini’s theorem that for alli=1,..., N,

e—0*t

Jim (/ IV - (25, 2:) — V F (2, 2:) |”da:i> dz; = 0,
RN-1\J(Q.),

where (Q¢),, = {z; € R: (@i, 7;) € Qc}, and so, by Remark 144, we may find a
subsequence {e,, }, such that for all i = 1,..., N and for LN ! a.e. z; € RN 71,

lim ||Vf5n (.’L'i, 331') — Vf (iIIi, l‘L) ||pd33Z =0. (49)

n—oo e, )m .

Set fn := f., and

E = {m €Q: lim f, () exists in R} .

n—o0

Since E contains every Lebesgue points of f, we have that £V (Q\ E) = 0.
Define

lim f,(x) ifzekFE,
g(x):=4§ n=e .
0 otherwise.
The function g is a representative of [f], since by Theorem 155, {f,}, converges
pointwise at every Lebesgue point of f. It remains to prove that g has the desired

properties.
By Fubini’s theorem for every i =1,..., N we have that

/ (/ |Vf(:ci,xi)||pd:ci> dz; < 00
RN-1 Qu,

/}RN?1 L ({z; € Q, : (x4,75) ¢ E}) dx; =0,

and
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where Q, = {z; € R: (z;,2;) € Q}, and so we may find aset N; C RV =1 with
LN=1(N;) = 0, such that for all z; € RN~1\ N; for which g, is nonempty we
have that

| 195 @i o < . (50)
(49) holds for all i = 1,..., N and (z;,x;) € E for L' a.e. z; € Qp,. Fix any
such x; and let I C 2, be a maximal interval. Fix tg € I such that (z;,¢) € E
and let ¢t € I. For all n large, the interval of endpoints ¢ and ¢y is contained in
(Qe,, )z, and so, since f, € C*(Q, ), by the fundamental theorem of calculus,

" Ofn

to (9.%'z

fo (@i, t) = fo (i, to) + (@i, 5) ds.

Since (z;,t0) € E. Then f, (i, t0) — g (xi,t0) € R. On the other hand, by
(49)

"19fn
81‘2‘

Hencewe have that there exists the limit

0
(%ci

lim
n—oo

(3.’2,',8)

ds = 0. (51)

to

lim f, (z;,t) = lim (fn ($i,t0)+/t$(mi,5) d8>

t
of
= iat 73 d .
g (xi,t0) +/t0 oz, (x;,5) ds
Note that by the definition of F and g, this implies, in particular, that
(IIIi, t) ek (52)
and that
t af
g(@it) =g (zi,to) + [ - (@i, s) ds (53)
tO 83:1

for all t € I. Since g (z;, ) satisfies the fundamental theorem of calculus, it is
locally absolutely continuous in I and £—gN (z;,t) = 8%; (z;,t) for L1 ae. t € 1.
We can now apply exercise 180 to conclude that g (z;, ) is absolutely continuous
in/l. m

Friday, April 7, 2023
Proof. Step 2: Assume that [f] admits a representative g that is absolutely
continuous on £V~1 a.e. line segments of ) that are parallel to the coordinate
axes, and whose first order (classical) partial derivatives belong to LP (§2). Fix
i=1,...,N and let ¢; € RV~! be such that f (z;,-) is absolutely continuous
on the open set €,. Then for every function ¢ € C2°(Q), by the integration
by parts formula for absolutely continuous functions, we have

dg

dp B
|, 9w e @una= [ G @0 i
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Since this holds for LN~ a.e. x; € RV, integrating over RV~! and using
Fubini’s theorem yields

[a@ 52 @ da=— [ @) da.

which implies that {8871} € LP () is the weak partial derivative of [f] with

respect to x; . This shows that [f] € WP (Q). =

Exercise 180 Let I C R and let f : I — R be locally absolutely continuous
with f' € LP(I), 1 < p < oo. Prove that f is absolutely continuous.

Corollary 181 Let I C R be an open interval, let 1 < p < oo, and let [f] €

LP(I). Then [f] € WYP(I) if and only if there exists g : I — R with g ~ f such
that g is absolutely continuous and

/|g’(x)|pda: < 0.
I

Remark 182 In view of the previous corollary, for N = 1, we could have
defined WP(I) as the set of all absolutely continuous functions g : I — R such
that

Jla@pds+ [ 1g@pis < .
I I
Using the previous corollary, we can prove the following embedding theorems.

Corollary 183 Let I C R be an open interval, let 1 < p < oo, and let [f] €
Whe(I).

(i) If 1 < p < oo, then the absolutely continuous representative g of [f] is
Hélder continuous with exponent ;.

(ii) If p=1 and I is unbounded then ||[f]| o) < IILf']llze (1)
Proof. (i) Assume 1 < p < co and let g be the absolutely continuous represen-

tative g of [f]. By the fundamental theorem of calculus, for z,y € I with z < y,
we have

Using Holder’s inequality, we get

v y NP s oy 1/p
o)~ ol < [ 1|g'<t>|dts( / v’dt) ( / |g’<t>|pdt)
<y — 2 | oo

which proves that g is Holder continuous.
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(ii) Assume that sup I = co and let g be the absolutely continuous represen-

tative g of [f]. Since [, |g(x)|dx < oo, necessarily

liminf [g(x)| =0,

Tr—00
since otherwise, we would be able to find C' > 0 such that |g(z)| > C for all
x large, which would contradict the fact that g is integrable. Hence, we can
find z,, € I, z, — oo such that g(z,) — oco. By the fundamental theorem of
calculus, for x € I, we have

g(z) = g(zn) + /x g'(t)dt.

Tn

Let n be so large that x,, > x. Then

o) < lgtea)l + [ I 0 < gt + 17z,

Letting n — oo, we get
lg(@)| < I Mz
forallzel. =

As a consequence of Theorem 179 and of the properties of absolutely con-
tinuous functions we have the following results.

Exercise 184 Let Q C RN be an open set and let 1 < p < co. Using Theorem
179 prove the following results.

(i) (Chain rule) Let h: R — R be Lipschitz and let f € WP (Q). Assume
that h (0) = 0 if Q has infinite measure. Then ho f € WYP (Q) and for
alli=1,...,N and for LY a.e. z €,

O(hof) /g of
Txi(m)—h (f(:r:)) oz, (z),

where W (f (z)) ﬁ (x) is interpreted to be zero whenever

ox

What can you say about the case p=o00?

oz, (z) = 0.

(ii) (Product rule) Let f,g € WYP (Q) N L>® (Q). Then fg € WHP (Q) N
L>®(Q) foralli=1,...,N and for LY a.e. © € Q,

D () = g (@) 5L (@) + 1 (2) 32 (3.

What can you say about the case p = co?

(iii) (Reflection) Let Q = RY := {(2/,2n) e RV "' xR : ay > 0} and let
fewWr? (RY). Then the function

) if ey >0,
’

_{ f(=
g(z):= { f(x',—zy) ifazy <0
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belongs to WP (RN) and for alli=1, ..., N and for LV a.e. £ € RN

0
dg % (z) if tny >0,
z) = i
9z; (—1)5”’ of (2',—zy) ifzn <O.

ax,-

(iv) Let E C R be such that L' (E) = 0, let f € W,2! (), and let [ be its

loc
precise representative given in Theorem 179. Prove that Vf (x) = 0 for

LN ae x€ (?)71 (B).

15 Embeddings: 1 <p< N

Consider a function f € Li (]R{N ) such that its weak gradient V f belongs to

loc
Lp (RN ‘RN ) for some 1 < p < co. We are interested in finding an exponent ¢

such that f € L9 (RN ) , and so we are after an inequality of the type

”fHLq(]RN) < CvaHLP(]RN;]RN) ) (54)

which should hold for all such f.
Assume for simplicity that f € C! (RN ) and for r > 0 define the rescaled

function
fr(®):=f(rz), xRV

Applying the previous inequality to f, we get

([reoras) = ([ inre i)’
<o( [ @) (o [ 19 0a P

or, equivalently, after the change of variables y := ra,

(& [ ) <e(2 [ 1vrwira),

(/]RN If (yl* dy>i <o EE (/RN IV £ (y) ||pdy> !

IflfﬂJr%>O,letrﬂOJr toconcludethatfEO,WhileiflfﬂJr%<O,
let 7 — oo to conclude again that f = 0. Hence, the only possible case is when

that is,

N N
=
q p
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So in order for g to be positive, we need p < N in which case

«  Np
= N —p

q=7p
The number p* is called Sobolev critical exponent.

Theorem 185 (Sobolev—Gagliardo—Nirenberg Embedding) Let1 <p <
N. Then for every f € WP (RN),

([, 1@ dw)pl* <o [ wi@pis)"

where C = C (N, p) > 0. In particular, WP (RN) is continuously embedded in
LP" (RN).

The proof makes use of the following result, which follows from Holder’s
inequality.

=1 and f; €

Exercise 186 Let 1 < py,...,pp,p < 00, with p% IS L

LPi (IRN), i=1,...,n. Prove that

n n
115 <TI0l -
i=1 i=1

Exercise 187 Prove that if g : R — R is measurable with [, |g (t)[" dt < oo for
some p > 0, then

1
Pn

Lpr

liminf |g ()] =0, liminf|g(z)] =0

T——00
and that in general one cannot replace the limit inferiors with actual limits.
In what follows, we use the notation (48).

Lemma 188 Let N > 2 and let fi € LN (RN=1), i =1,...,N. Then the
function

f(@):=fi(@) f2 (%) - fv (), xRV,
belongs to L' (RN) and

N
£ ey < Tl Lr -2 vy -
=1

Monday, April 10, 2023
Proof. The proof is by induction on N. If N = 2, then

f(@) = fi(z2) fa (1), o= (x1,22) €R®
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Integrating both sides with respect to & and using Fubini’s theorem, we get

/Rz |f ()] d =/R\f1 (22)] dmg/R|f2 (z1)] da:.

Assume next that the result is true for NV and let’s prove it for N + 1. Let

f@) = fi(®) fa(ah)- - fvyr (By), zeRVHL

where f; € LV (RY), i =1,...,N + 1. Fix x4 € R. Integrating both sides
with respect to z1,...,zy and using Holder’s inequality we get

/ If ()] dzy -+ - dzn
RN

N
NG =
< vl ( [ 15 ) dz1~~-dxw>
=1

For every i = 1,..., N we denote by ! the N — 1 dimensional vector obtained
by removing the last component from «; and with an abuse of notation we
write i = (!, zy11) € RV~! x R. Since xyy; is fixed, by the induction

N

N
hypothesis applied to the functions g; (/) := |f; (2!, 2n11)| ¥, ! € RV~
1=1,..., N, we obtain that

N

N N
/ H i (@)~ dwy - -doy < H g3l =1 mr-1) 5
R

N
i=1 i=1

and so

/ f (@)] da - -~ dey
RN

y 4
N
< il T ([, 1 @laninl aof)
i=1

Integrating both sides with respect to z 1 and using Fubini’s theorem and the
extended Holder’s inequality (see the previous exercise), with

we get
N+1
[ @lde < T 1L
i=1

which concludes the proof. m
We now turn to the proof of the Sobolev—Gagliardo—Nirenberg embedding
theorem.
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Proof. Step 1: Assume first that p = 1. By mollification we can assume that
feCt(RY)NWHY(RYN). Fixi=1,...,N. By Fubini’s theorem for £N~!
a.e. . € RY~! we have that the function g (¢) := f(z/,t), t € R, belongs to
LP (R) N C* (R) with ¢’ € L' (R). By the previous exercise

liminf|g (1)| = 0,

and so we may find a sequence ¢,, — —oo such that g (¢,,) — 0. Hence, for every
t € R we have that

g(t) = g(tn) + / g () ds.

Letting n — oo and using the fact that ¢’ € L' (R), by Lebesgue dominated

convergence theorem we conclude that for each i = 1,...,N and = € RV we
have

6 ’L7 yl dy’L?
and so

of

dy;

If(w)\g/R

for all € RY. Multiplying these N inequalities and raising to power ﬁ, we

get
N N f N T
5 <TI( [ |5 @) du) sz

for all z € RY. We now apply the previous lemma to the function

N
x) :sz(:c;), xz e RY,

(m/uy’t)

to obtain that

N
N
[ @I des [ e de < Tl

(L1 el

1

N

dm) <([Ivr@iaa)”

where we have used Fubini’s theorem. This gives the desired inequality for
p=1.

Note that Step 1 continues to hold if we assume that f € LI(RY) for some
g>1land Vf e LY(RY;RY). m

0x; (z)

Wednesday, April 12, 2023
Proof. Step 2: Assume next that 1 < p < N and that f € L (RN) N
WLP(RN). Again by mollification we can assume that f € C* (RN). Define

p(N-1)

g=1fI", q=
|1 N
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Note that since ¢ > 1, we have that g € C* (RN). Moreover, Vg € LP (RN; RN)
(see below), while g € L (RY). Applying Step 1 to the function g we get

oN o o=
()™ = (4 )
RN RN

< / Vgl dz < q / 717 |V )| dae
RN RN

<o [ an)” ([ 1wspa)

where in the last inequality we have used Holder’s inequality. Since

(¢—1)p =p",
if f # 0 we obtain

(/ |f|wdw) =(/ e dw) §q</ IIVfllpdw> ,
RN RN RN

which proves the result. Note that here it was important to know that f €
1
LP" (RN), since we divided by (fRN \f|(q71)p dm) -
Step 3: Assume that f € WP (RN). For n € N and € RY define
If (@) -5 if 5 <[f(2)] <n,

gn(x):=¢ 0 if |f(x)] < %,
n—% if \f(a:)\>%

By the chain rule (see Exercise 184 (i) and (vi)) for LY a.e. z € RY

_ [ Vi@ i <If(=)] <n,
IVgn () || = { 0 otherwise,

and so Vg, € LP (RN; RN), while for every s > 1,

R N
< <n— i)scN ({w ERY: |f (z)| > i}) < o0,

since f € LP (R). Hence, g, € LP" (RY) n WP (RY) and so by the previous
step

N—p
Np

</{%f|fsﬂ} (1r@1- 1) d”’) < ([ tour d)
- </RN ||Vgn||1’dw>; - </{;<f|<n} |prdw>; <q </RN ||Vf|1’da:> ;

Letting first n — oo and using Fatou’s lemma we obtain the desired result. m
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Exercise 189 Let k € N and 1 < p < oo be such that k > 2 and kp < N.
Prove that

(i) WHHip (RN) is continuously embedded in W31 (RN) for all j € N and for

N

(ii) Wk» (RN) is continuously embedded in L4 (RN) forallp<gq< NNfip

Remark 190 Note that in the last step of the proof of the previous theorem
we only used the fact that f vanishes at infinity and its distributional gradient
VfelLr (RN;RN). In particular, it holds if we assume that f € LY(RY) for
some 1 < q < oo and the distributional gradiend V f € LP (RN;]RN).

Remark 191 [In view of Theorem 177 in Step 1 and 2 we could have assumed
that f € CL(RN) and so avoid Step 3. However, see the previous remark.

Next we discuss the validity of the Sobolev—Gagliardo—Nirenberg embedding
theorem for arbitrary domains.

Exercise 192 (Room and Passages) Let {h,} and {d2,} be two sequences
of positive numbers such that

h71,+1
hy,

o0
Z h,=£¢<o00, 0< const. < <1, 0<d2, < hopti,
n=1

and for n € N let
Cp = Z h;.
i=1
Define Q2 C R? to be the union of all sets of the form
1 1
Rj = (¢j — hy, ¢j) ¥ (—2% th) :
1 1
Pjy1 = [ej,¢5 + hjp] X (—25j+17 25j+1> ;

forj=1,3,5,...,

(i) Prove that O is a rectifiable curve but 2 is not of class C.
(ii) Let

and for j =1,3,5,...,
J .
)= 1082
Kj+ (Kj2 — Kj)

Kj mn Rj,

T —

] m Pj+1.
j+1

Prove that f € W12(Q) but f ¢ L1 (Q) for any q > 2.
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(iii) Letp>1,q> % (2p—1),

1 1
hon—1 = hap == ﬁ’ dop 1= Wa
and for n € N,
1 .
f(z,y) = 5 1 Ran-1,
and .
1)2 _ pa
Vf(z,y):= <(”+ 3 n ,0) in Py,.

Prove that V f € L* ((;R?*2) but f ¢ L*(Q).

16 Embeddings: p=N

The argument at the beginning of the previous section shows that when p > N
we cannot expect an inequality of the form

||fHLq(RN) < CvaHLP(RN;RN) :
However, we could still have embeddings of the type
whe (RV) — L9 (RY)
f=1f
that is, inequalities of the type
Hf”Lq(]RN) < C||fHW1,p(RN) :

We now show that this is the case when p = N. We begin by observing that
when p " N, then p* / oo, and so one would be tempted to say that if f €
WEN(RY), then f € L (RY). For N = 1 this is true since if f € W (R),
then a representative f is absolutely continuous in R so that

f(m)f(0)+/0wf'(8) s

and since 7/ = f' € L' (R), we have that f is bounded and continuous. For
N > 1 this is not the case, as the next exercise shows.

Exercise 193 Let Q = B(0,1) C RN, N > 1, and show that the function

() == log (log <1+i|>) z € B(0,1)\ {0},

belongs to WHN (B (0,1)) but not to L= (B (0,1)).

However, we have the following result.
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Theorem 194 The space WHY (RN) 18 continuously embedded in the space
L4 (RN) for all N < g < 0.

Proof. Let f ¢ WhV (RN). Define g := |f|t, where ¢ > 1 will be determined so
that g € L (RN) and Vg € L'(RY;RY). By the Sobolev-Gagliardo-Nirenberg
embedding theorem with p = 1 and Remark 190,

N—-1 N—-1
+ N N
( [ da:) _ ( [ 1o dm)
RN RN

<[ IValde <t [ 151795l do
RN RN

RN RN

where in the last inequality we have used Hoélder’s inequality. Hence,

1

(/ s dm) §C</ D dw) (/ IIVfIINdm)
RN RN RN

N—-1_1

(t_l)%d N -1 Nd >1§7
(/. o) ([ 19 e ]

(55)

<C

where we have used Young’s inequality ab < a® + b for a,b>0. Takingt = N

yields
O S RS
([ 5 ae) ™ <c|([ 15 an) "+ ([ 19017 o) ]

2
so that f € LV (RN) with continuous embedding. In turn by Theorem 77,
we conclude that

1l ey < ClFlwrn @)
forallNSqSNN—jl.
Taking t =N +1< NN—jl in (55) and using what we just proved gives

N(N+1) N-1
</ |f‘ N—-1 dw> N(N+1)
]RN
([, ae) ™ ([ 1vs1a) ]
RN RN

< Clfllwrn @y
and so the embedding

<C

W (RY) - L (")
fe=r
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is continuous for all N < ¢ <
t=N+2,N+3,etc. ®

%. We proceed in this fashion taking

Exercise 195 Let k € N and 1 < p < oo be such that k > 2 and kp = N.
Prove that

(i) Wktir (RN) is continuously embedded in W31 (RN) for all j € N and for
allp < g < o0,

(ii) WhP (RN) is continuously embedded in LY (RYN) for all p < q < oo.
Exercise 196 Prove that for every function f € W1 (RN),

aNf
N < ||=—
Hf”LOO(R ) = Haxlax]v

LN (RN) .

Monday, April 17, 2023

17 Embeddings: p > N

We recall that, given an open set Q C RY, a function f : @ — R is Holder
continuous with exponent a > 0 if there exists a constant C' > 0 such that

[f (@) = f(y)| < Cllz —yl|*

for all ,y € Q. We define the space C*® (ﬁ) as the space of all bounded
functions that are Holder continuous with exponent a.

Exercise 197 Let Q CRY be an open set and let o > 0.

(i) Prove that if « > 1 and Q is connected, then any function that is Hélder
continuous with exponent o is constant.

(ii) Prove that the space C%® (ﬁ), 0 < a <1, is a Banach space with the
norm

- If () - £ (3)
Wleon@ =gl @+ o o=yl

Note that if 2 is bounded, then every function f :  — R that is Holder con-
tinuous with exponent a > 0 is uniformly continuous and thus it can be uniquely
extended to a bounded continuous function on RY. Thus, in the definition of
C% (Q) one can drop the requirement that the functions are bounded.

The next theorem shows that if p > N a function f € WP (RN ) has a

representative in the space col-y (RN).
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Theorem 198 (Morrey) Let N < p < oo. Then the space WP (RYN) is
continuously embedded in C’O 1= (RN) Moreover, if f € WP (RN) and f is

its representative in C*'~ (RN) then

fl@)=o.

||| —o0

Proof. Let f € Whp (]RN) nCce (RN) and let @), be any cube with sides of
length r parallel to the axes. Fix x,y € @, and let

gt)=fltz+(1-t)y), 0<t<1

By the fundamental theorem of calculus

f(m)—f(y)=g(1)—g(0)=/ g () di

= [ Vrte -0y @y

Averaging in the & variable over @, yields

fo. ~ f(y) = TN/Q/W (to+ (1~ 0)y) - (z — y) deds,

where fg, is the integral average of f over @), that is,

fo. = o [ @) ds

EINN -
L
A

where we have used the fact that |z; —y;| < r in @,, Tonelli’s theorem, and
the change of variables z = tz + (1 —t) y (so that dz = tNdz). By Holder’s
inequality and the fact that (1 —t) y + Q-+ C @, we now have

Hence,

(tx+ (1 —t)y)||z: — y,| dtde

\fq, — f(y)] <

1 —
6:51 (tx+ (1 —1) y)‘ dx dt

i Mz i Mz W'Mz

dz dt,

8%( z)

N 1 N »
1 (rt)?’ of
fo— W) <> —— / dz | dt
fo. — f ()] gN Sl U A axzu
PN=% LN-%
NI S,y oy [ (56)

Np 1—-N
=N "IV lgumy)-
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Since this is true for all y € @, if ¢,y € Q,., then

If (@) = f (W)l <|f (2) = fo.l +1f (y) - fo,l

< 72Np 7‘1_%
- N

||Vf||LP(QT;RN) :

Now if &,y € RN, consider a cube @, containing = and y and of side length
r:= 2|z — y||. Then the previous inequality yields

If (@)= F (@l < Clz =yl 7 [V fllog,mn) (57)
<Cllz—y|'" > IVl Loy mavy -

Hence, f is Holder continuous of exponent 17%. To prove that f € co =% (RN),

it remains to show that f is bounded. Let & € R and consider a cube Q; con-
taining @ and of side length one. By (56) we get

[f (@) <[fQ.[+[f (2) — fa.| < ‘/Q f(®) dz| + CIV Il ey (58)

< llzr@uy + CIVlLo@ymyy < C Il gy

where we have used Holder’s inequality.

Next we remove the extra hypothesis that f € C* (RN ) Given any f €
whtp (RN)7 let f be a representative of f and let =,y € RY be two Lebesgue
points of f and let f. := f * ¢, where @, is a standard mollifier. By (57) we
have that

|fe () = fo (y)| < Cllz — y”l_? ”vfeHLp(]RN;]RN) .

Since {f:} converge at every Lebesgue point by Theorem 155 and Vf. =
(Vf).— Vfin L? (RN;RN) by Theorems 155, letting e — 07, we get

. . _N
[F(z) = ()] <Clle =yl % IVFll oy mv) (59)
for all Lebesgue points ¢,y € RN of f. This implies that
f : {Lebesgue points of f} — R

can be uniquely extended to RV as a Holder continuous function f of exponent
1—- % in such a way that (59) holds for all z,y € RY.
With a similar argument from (58) we conclude that

F@)] < C I lyrman, (60)
for all z € RY. Hence,
. B . f(z) = [ (y)
HfHCO.,l—%(RN) - wsélRpN ‘f (IB)‘ + . yCBN , aty ||‘13 . yHl—%

< C 1S oy -
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Finally, we prove that f(z) — 0 as ||| — oco. Let {f,} C C° (R") be any
sequence that converges to f in WhP (RN ) The inequality (60) implies, in
particular, that f € L™ (RN), with

£l Lo @y < C I Fllwrw @)y -
Replacing f with f — f,, gives

Hf_fn”LOC(]RN) S C”f_anWl,p(]RN),

and so ||f—anL°c(]RN) — 0 asn — oo. Fix ¢ > 0 and find 7 € N such that
||f_fn||L°°(RN) <e¢

for all n > n. Since fr € C (RN), there exists Ry > 0 such that f; () =0
for all ||z|| > Ry. Hence, for £LV-a.e. z € RY with ||z|| > Ry we get

F (@) =7 @)~ fa (@] < I ~ full jmr) <.

and, since f is continuous, we get that the previous inequality actually holds
for all z € RY with ||z| > R;. =
Wednesday, April 19, 2023

18 Extension Domains

You have seen in recitations that there are open sets © C RY and functions
f e WhP(Q), 1 < p < N, such that f ¢ L4(Q) for all ¢ > p. This means
that the Sobolev—Gagliardo—Nirenberg theorem fails in "bad" open sets. In this
section, we are going to prove that if 92 is sufficiently regular, then we can
extend a function f € WP(Q) to a function g € WHP(RV).

We begin with the case in which (2 is the half space Rf.

Theorem 199 Let 1 < p < oo and let f € Wl’p(Rf). Then there exists
g € WHP(RYN) such that g(z) = f(z) for LN -a.e. z € RY and

of
(r“)xi

99
o) < 2oy || o2

)

2

Lp(RN) Lr(RY)

foralli=1, ..., N.

Proof. We only do the case p < co. Given [f] € W'P(RY), by Theorem 179,
there exists a representative f such that f(z},-) is absolutely continuous in R
for LN"lae ) € Rfd when ¢ = 1,...,N — 1, and f(a',-) is absolutely
continuous in R for LV 1-ae. &' € RN~ Define

[ f&@, —xy) ifay <0,
9(z) '_{f(:c) o ifigzo,
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The g € C(RY) and absolutely continuous on £V ~! every line parallel to the

axes with
dg () = %(w’,—x]v) if zy <0,
ox; gf (z) ifxy >0,

ifi=1,..., N—1, while

o () if x> 0.

- BzN
a(EN GRS

dg ):{ Of (/' —xn) ifazn <0,

It follows by Theorem 179 that g € W1P(RY). By a change of variables we
have that
99

al‘i

of
al’i

19l @yy = 20 f 1l Lo @),

Lr(RN) a ‘ LP(Rf).

[
Note that % is discontinuous at  y = 0 and so we cannot use this extension

for function f € W™P(RY) for m > 2.

Exercise 200 Givenm € N, and 1 < p < o0, let f € Wmvp(]R{f). Prove that

there exist c1, ..., cm41 € R such that the function
m+1 r . 0
g(il?) = anl Cnf(ma TLZL’N) Zf:CN < )
f(z) if ey >0,

is well-defined and belongs to W™P(RN). Prove also that for every 0 < k < m,
||vkg||Lp(]RN) < c||ka||Lp(R$) for some constant ¢ = ¢(m, N,p) > 0.

Next we consider the important special case in which 2 lies above the graph
of a Lipschitz continuous function.

Theorem 201 Let h : RN~! — R be a Lipschitz continuous function of class
C! and let
Q:={(z',2n) eRN I xR : a2y > h(z)}. (61)

Let 1 <p < oo and let f € WHP(Q). Then there exists g € WHP(RN) such that
g(z) = f(x) for LN -a.e. z € Q and

Jg
lollrr) < 2o o], <20 lin (02
LP(R
‘ 09 §2‘ of +Liph 9f (63)
8xi LP(RN) ({91'2 Lr(Q) 8mN Lr(Q)
foralli=1,..., N.
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Proof. The idea of the proof is to first flatten the boundary to reduce to the
case in which Q = Rf and then use the previous theorem. We only prove the
case 1 < p < oo and leave the easier case p = oo as an exercise. Consider
the transformation ¥ : RV — RN given by ¥(y) := (v',yn + h(y')). Note
that W is invertible, of class C!, with inverse of class C! given by ¥~!(z) =
(z',zn — h(z')). Moreover, for all y, z € RV,

1W(y) — ()| = (¥ — 2", h(y") — h(2") +yn — 2n)]
<Vly = 2|2+ Liph[ly — 2/ + lyx — 2n])?

which shows that ¥ (and similarly 1) is Lipschitz continuous. Since h is of

class C', we have
_ In_1 0
J\I’(y) = < Vy/h(y’) 1 ) )

which implies that det Jy(y) = 1. Note that U(RY) = Q.
Given a function f € WP(€), 1 < p < oo, define the function

w(y) == f(¥(y) = f(¥,yn + h(y"), yeRY.

By Exercise 178 the function w belongs to W!?(RY) and the usual chain rule
formula for the partial derivatives holds. By the previous theorem the function
W : RV — R, defined by

R L w(y) if YN > O,
y) = { wly',—yx) ifyn <0,

belongs to W1?(RY) and the usual chain rule formula for the partial derivatives
holds.
Define the function v : RV — R by

o | f(z) if zn > h(x'),
g(@) = (0o W) (@) = { f(@,2h(z") —zn) ifzy < h(z). (64)
Again by Exercise 178, we have that g € W'?(R") and the usual chain rule
formula for the partial derivatives holds.

By a change variables and the fact that det V¥ = det VU~ = 1, we have
that

/RN\Q lg(x)Pdx = /RN\Q |f(z', 2h(x") — xn)Pdx = /Q |f(y)|Pdy.

Since for all i =1,..., N — 1 and for £LN-a.e. z € RV \ Q,

_of
n axi

af oh
/ no_ / no_
(@ 2h(a) = an) + (2!, 2h(a!) — o) L

dg
Gxi

('),  (65)

(2)
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again by a change variables we have that

dg p )1/p (/ of( ) P )1/p
T)| dx < ', 2h(x') —x dx
(/RN\Q axz( ) - RN\Q ox; ( ) N)
P 1/p
+Liph</ ﬁ(:lc’,2h(:1n')—acj\f) d:c>
RN\Q al‘N

of
8.’1%

P 1/p P 1/p

g(/ dy> +Liph</ 9f dy> .

Q aldzn

Similarly, Bsing the fact that 8?& () = fai];(m’,Qh(m’) —zy) for LN-ae.
x € RV \ Q, we obtain

(y) (y)

dg b o of ’ / b
of P
= — dy.
/Q ooy V)| W

]
Friday, April 21, 2023
Next we study the case of open bounded sets with regular boundary.

Definition 202 Given an open set Q C RN we say that its boundary OS2 is of
class C™, m € N if for every xy € 0Q there exist i € {1,...,N}, r > 0, and
a function h : RN=1 — R of class C™ such that, writing * = (x;,x;), we have
either

QN B(xg,r) :={x € B(xo,r): h(x;) <z}

or

QN B(zg,r) :={x € B(xg,7): h(xz;) > zi}.

Theorem 203 Let Q C RY be an open bounded open set with 0 of class C*.
Let 1 <p < oo and let f € WYP(Q). Then there exists g € WHP(RN) such that
g(z) = f(x) for LN -a.e. z €Q and

lollrem) < Cllf v
IVllr vy < Cllfllwrro)
for some constant C = C(N,p,2) > 0.
We begin with two auxiliary lemmas.

Lemma 204 Let Q C RY be an open set, let 1 < p < oo, and let f € WIP(Q).
Given xy € Q let v > 0 be such that B(zg,2r) C Q. Given ¢ € C(RN) with
supp ) C B(zg,7), the function g : RN — R, defined by

_ [ (o)) ifze,
g(w)'_{o ’ ifieRN\ﬁ,
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belongs to WP (RN), with weak derivatives

09 () — W) ifzecq,
O0z; 0 if £ € RV \ Q

fori=1,...,N.

Proof. Construct a function ¢ € C°(R”Y) such that ¢ = 1 in B(z,r) and
¢ = 0 outside B(zo,2r). Let ¢ € C°(RY) and i = 1,...,N. Since ¢ = 1 in
B(xg,r), we have that Bani = %;f) in B(xo,r). Using the fact that suppy C

B(zg,r) C Q, we can write

/ gaw dm:/ m&p dw:/ fwa(qbw)dm
RN 81’1 B(zo,r) 8xz B(zo,r) 8xz

:/fwa(@p) .
Q Ox;

The function ¢ has support contained in B(zg, 2r) C Q. Hence, ¢pp € C* ()
and so we can integrate by parts to obtain that the right-hand side equals to

gy o) o(f1)
/Q 01, opdr = /B(mo’r) 0, ppdx = /B(mo’r) oz,

This shows that the weak ¢th derivative of g is
dg { W) (z) ifxeQ,

ox;
oz, (z)

0 if z € RV \ Q.

]
Lemma 205 Let Q,U C RN be open sets, with
U={(z',zn) eRVI xR : zx > h(z)},

1<pda::—/
Q

()
&vi

where h : RVN=1 — R is Lipschitz continuous and of class C'. Assume that there

exist xg € O and r > 0 such that
QN B(xy,2r) =U N B(xg, 2r).

Let 1 <p < oo and f € WHP(Q). Given ¢ € C(RYN) with suppv) C B(zo,r),

the function g : RN — R, defined by
g(:z:) — { (fY)(x) if x € UNB(xo,7),

0 if x € U\ B(zg, 1),
belongs to WP (U), with weak derivatives

dg B

Bmi

0 if £ € U\ B(zo,7)

{ M(m) ’Lfm c UﬁB(l:(),r)7

fori=1,...,N.
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Proof. Construct a function ¢ € C°(R”Y) such that ¢ = 1 in B(z,r) and
¢ = 0 outside B(zg,2r). Let ¢ € C*(U) and i = 1,...,N. Since ¢ = 1
in B(xg,r), we have that gg‘i = éz,) in B(xzo,r) NU. Using the fact that
supp ¥ C B(xg,r), we can write

dp dp )
dz —/ dz / dx
/ 8 B(wo,r)ﬁU fw amL B(xo,r)NQ fw ami

/ fu? axl

The function ¢p has support contained in B(xq, 2r)NU = B(x, 2r)NS2. Hence,
pp € C(U) and so we can integrate by parts to obtain that the right-hand
side equals to

N Ly A i~ - | O | 1o,
Q ( B(xo,r)

axi B il:o,’l’)ﬁQ 8{1}1 ,7)NU amz

This shows that the weak ¢th derivative of g in U is

%9 () :{ UV (g) if & € U N B, ),

ox;
ox; 0 it e U\ B(zg,r).

[

We turn to the proof of Theorem 203.
Proof of Theorem 203. Let f € WLP(Q). for every oy € 9 there exist
i € {l,...,N}, » >0, and a function h : R¥~! — R of class C™ such that,
writing & = (x;,z;), we have either

QN B(xo,2r) :={z € B(x0,2r) : h(z;) <z}

or
QN B(xg,2r) :={x € B(xo,2r) : h(z;) > z;}.

If the set Q\ Uycpo B(®,72) is nonempty, for every xo € Q\ Uycpo B(®,72)

let B(zo,7a,) € Q. The family {B(x,7¢)},cq is an open cover of . Since Q is

compact, there is a finite number of balls By, ..., By, where B,, := B(xy,7s,),

that covers 0. Let {1, }/,_; be a smooth partition of unity subordinated to By,

, By, with supp¢,, C B,,. Then an:l ¥, =11n Q.

Fix n € {1,...,£}. by Exercise 184, the function fi, belongs to W1P(Q).
There are two cases. If suppv,, C B, C €, then if we extend f,, by zero outside
€, the resulting function, denoted by g,,, belongs to W1?(RY) by Lemma 204,
with

lgnllwre@yy = [[fnllwrr@) < Cullfllwrr@)- (66)
If supp ¢y, is not contained in 2, let x,, € 9 be such B, = B(x,,r,). Then
writing & = (x;,x;), we have either

QN B(xy,,2r,) :={x € B(xy,,2r,) : hy () < z;} (67)
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or
QN B (xn,2r,) :={x € B(xy,2r,) : hy(2;) > 2},

where h,, : RV~1 — R is Lipschitz continuous and of class C'. Assume that
(67) holds. Let
Q, = {:1: eRN : h, (x;) < ch}

Let f,, be the function obtained by extending fi,, to be zero in Q, \ (2N
B (xp,7y)). By Lemma 205, we have that f, € W*P(Q,), with

I fullwir@,) = 1f¥nllwie@) < Cull fllwre@)-
By the previous theorem, we can extend f,, to a function g, € WHP(RY) with
lgnllwsr@yy < Cullfallwrr,) < Cullfllwir@)- (68)
Define g := > "', gn. If z € Q, then
9(@) =Y gn(@) =) fu(®) = f(2) ) _tu(®) = f().
n=1 n=1 n=1

Moreover, since the mapping f, — ¢, given by Theorem 201 is linear, so is the
mapping f +— g. Finally, by (66) and (68),

n

gllwrr@yy < Z gnllwre@yy < Cll fllwrr)-

n=1

Monday, April 24, 2023

Corollary 206 Let Q@ C RY, N > 2, be an open bounded set with 0 of class
C! boundary, let 1 < p < oo, and let f € WHP(Q).

(i) If 1 <p < N, then f € LY(Q) for all 1 < q < p*, with
[ fllze) < Cllfllwir ),
where C = C(N,p,q,Q) > 0;
(ii) If p= N, then f € L1(Q) for all 1 < g < 0o, with
1 fllze) < Cllfllwira),
where C = C(N, p,q,Q) > 0;

(iii) If p > N, then f has a representative g wich is bounded and Holder con-
tinuous with exponent 1 — N/p, with

9l < Clifllwrr@, 19l 00-nm < Clflwrr),
where C = C(N,p,Q) > 0.
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Proof. Since () satisfies the hypotheses of Theorem 203, there exists a function
h € WLP(RN) such that h = f in  and

1Allwre@yy < Clifllwr)-

If p < N, we can apply the Sobolev—-Gagliardo-Nirenberg embedding theorem
to h to get
[Pl Los @y < ClIVA|| Lo @y

Since f = h in €2, we obtain
£l e+ ) = Il Lo () < [1Plle @y < Cllbllwrr@yy < Cllfllwrre@)-

In turn, if 1 < ¢ < p*, we can apply Holder inequality with exponent 2 " to get

/v oy
/Ifl"dass (/ f|P*dm>” (LN (@)
Q Q

Similarly, if p = IV, we can apply Theorem ?7? to obtain that for every N < g <
OO’

17l La@yy < Cllallwre@y).
Since f = h in €2, we obtain
[fllza@) = 1RllLao) < [[hllLa@yy < Cllhllwro@yy < Cllfllwre@)-

If 1 < g < p, we can apply Holder inequality with exponent p/q. We omit the
details.

Finally, if p > N, we can apply Morrey’s embedding theorem to find a
representative g such that

lgllcon) < Clbllwrnesy. 1910 v, < CIVRlLogan).
Then g restricted to € is a representative of f, and

l9llco) < llgllcomny < Cllhllwrr@yy < Cllfllwrr ),
|g|c0,171\7/p(§) < |g|CO,17N/p(]RN) < OHV}L”LP(]RN) < CHf”WlP(Q)

19 Compactness

Given a normed space (X, || -||), the dual of X, is the space X’ of all continuous
linear functions L : X — R. It is a normed space, endowed with the norm

IIL||x := sup{|L”$|:|)| tTE X\{O}}
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The dual of (X', | - ||x/) is called the bidual of X and is denoted X”. It can be
shown that the linear function

(XD = (X )

defined by
J(x)(L):=L(z), LeX

has the property that
I (z)||x» = |lz]| for all z € X. (69)

Thus, we can identify X with J(X). We say that a space X is reflexive if
J(X)=X.

We say that a sequence {z,, }, in X converges weakly to x € X, and we write
xn, — xif L(xz,) — L(z) for every L € X’. One of the most important theorems
in functional analysis is the following.

Theorem 207 A Banach space (X,||||) is reflexive if and only if for every
bounded sequence {xy}, there exist a subsequence {xn, }r and x € X such that

Tpy, — T

Given a Lebesgue measurable set E C RN and 1 < p < oo, let [g] € L¥' (E),

where 1% + % =1, so that p' := p’%l € (1,00), and consider the linear function

Lig : LP (E) — R defined by

) =/Ef<m>g<m> de, [f]€ L7 (E).

Note that by Holder’s inequality,

/f ) dz

Hence, if [f] # [0], we can divide by [|[f]l| .z, to get

2oy = sup { |||[ [?H(L[f DL (g1 e 17 ) {[0]}} < lgll o)

|L[g ‘_

< WAooy Mgl 2o ) -

One can actually prove that there is equality, that is,

1L ll 2oy = Mgl Lo (z) -

Theorem 208 (Riesz representation theorem) Given a Lebesgue measur-
able set E C RN and 1 < p < oo, for every L € (LP(E))’ there exists a unique
function [g] € LP (E) such that

B /Ef<w>g<m> de, |f] € L7 (E)

and
Ll (e =)y = N9l Lo (=
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It follows that the function

T:L"(E) — (L"(E))
l9] = Lig)

is one-to-one, onto, and preserves the norm. We say that 7' is an isomorphism
between Banach spaces. Thus, one can identify the dual of L? (E) with L*' (E).

It follows that a sequence {[fn]}n in LP(E) converges weakly to [f] if for
every [g] € L¥ (B),

Jm [ fu@o) da= [ fia
Observe that )
(L* (B))" = (L¥ (B)) = LP (E),

so the bidual of L? (E) can be identified with L? (F) itself. Hence, L? (E) is
reflexive.

It follows from Theorem 207 that if {[f,,]} is bounded in LP(F), 1 < p < oo,
then there exist a subsequence {[fn,]|}r and [f] € LP(E) such that [f,,] — [f]
as k — oo.

For p = 1, fix [g] € L™ (E), and consider the linear function L, : L' (E) — R
defined by

Ly (f / f v, [fle L} (E).

Note that by Holder’s inequality,

|Zig ([FD)] < /E £ @)lg (@) dz < |11l 1) esssup lg]

Hence, if [f] # [0], we can divide by |[|[f]|| 1 ) to get

|Lig) (IFD]

T ey [fleL (E)\{[O}}} < Mgl poe () -

I L1g1ll (22 (my) = sup {
One can actually prove that there is equality, that is,

ILig)llzr )y = gl oo () -

Conversely, given L : L' (E) — R linear and continuous, the Riesz representation
theorem (which we will not prove) gives a unique function [g] € L*°(E) such
that

- /Ef (2)g () dv, [f] € L' (E)

and
I L1z zyy = glllLoe (&)
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Thus, the function
T:L™(E) — (LY(E))
[9] = Lig)

is one-to-one, onto and preserves the norm. Thus one can identify the dual of

L' (F) may be identified with L> (E).
It turns out that the dual of L°°(FE) is not L'(E), so L*(E) is not reflexive.
Wednesday, April 26, 2023

Theorem 209 (Rellich-Kondrachov) Let 1 < p < oo and let {f,}, be a
bounded sequence in WP (RYN). Then there exist a subsequence { fu, };, of {fn},,
and a function f € LP (RN) such that f,, — f in LV (RN). Moreover, f €
WLP(RN) if p > 1.

Proof. Step 1: We claim that for all f € W7 (RY) and for all h € RV \ {0},
[ f@en - f@pde< |l [ |9f @) dz.
RN RN

Assume that f € W? (RN)nC> (RY). For z € RY and h € RV \ {0} by the
fundamental theorem of calculus we have that

Feam-r@l=|[ uerm)a

1
< |In / IV] (2 + th)] dt.

Raising to power p and integrating over RV, by Holder’s inequality we get

[weem—s@p s [ ([19s@ema)

1
<ol [ ([ 197 @ mpa) do
1
— p p
=iy [ ([ 195 @l da) at

= IRl [ 1VF )P .

where we have used Fubini’s Theorem and the cange of variables y = x + th.
To remove the additional hypothesis that f € C*° (RN ), it suffices to apply
the previous inequality to f. := ¢, * f, where ¢, is a standard mollifier and let
¢ — 0T (see Theorem 155 and Lemma 169).
Step 2: Let {f,}, be a bounded sequence in W!? (RN). In view of Step
1, for all n and h € RV \ {0},

/ o (@ + 1) — fo (@) de < [[B]]? / IV ()P dze < M ||RP .
RN RN
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In view of the Kolmogorov—Riesz—Fréchet compactness theorem for every Lebesgue
measurable set £ C RY of finite measure, the sequence {f,}, restricted to F
is relatively compact in LP(E). We now use a diagonal argument. Take E =
B(0,1). Since {fn}n restricted to B(0,1) is relatively compact in LP(B(0,1)),
we can find a subsequence {f, 1}, of {fn}» and a function ¢; € L?(B(0,1))
such that f,, 1 — g1 in LP(B(0,1)) and pointwise £V-a.e. in B(0,1) as n — oo.
Next, take E = B(0,2). Since {fy,1}, restricted to B(0,2) is relatively com-
pact in LP(B(0, 2)), we can find a subsequence { f, 2}» of {fn1}» and a function
g2 € LP(B(0,2)) such that f,2 — g2 in LP(B(0,2)) and pointwise LV-a.e. in
B(0,2) as n — co. By the uniqueness of limits, we have that go = g1 in B(0, 1).
Inductively, assume we have found a subsequence {f, i}n of {fnr—1}n and a
function gy € LP(B(0,k)) such that f,r — g in LP(B(0,k)) and pointwise
LN-a.e. in B(0,k) as n — oo. Consider E = B(0,k + 1). Since {fnx}n Te-
stricted to B(0,k + 1) is relatively compact in LP(B(0,k + 1)), we can find a
subsequence {fy k+1}n Of {fnx}n and a function gy € LP(B(0,k + 1)) such
that f, k41 — grs1 in LP(B(0,k + 1)) and pointwise £LV-a.e. in B(0,k + 1) as
n — oo. By the uniqueness of limits, we have that gy+1 = gx in B(0,k). Let
frn, = frx and define the function f : RN — R as follows. Given € RY
find k so large that # € B(0,k) and set f(z) := gi(z). Then f € LI (RN).
Moreover, for every j € N, we have that {f,, }x>; is a subsequence of {f, ;}n,
and so, fn, — g; = f in LP(B(0,j)). By the arbitrariness of j, this shows that
fo, — fin L (RY) and pointwise £V -a.e. in RY as k — oo.

loc

Since {f,, }» is bounded in LP(R™), there exists C' > 0 such that

| frill ey < C

for every k. Using Fatou’s lemma, it follows that for every j,
1l ze ey < Hminf [ fo, || Ls @y < C.

Step 3: Assume now that p > 1. We claim that f € W1P(RY). Since {f,, }x
is bounded in LP(RY), which is reflexive, by Theorem 207, there exist a subse-
quence {fnkj }; and g € LP(RY) such that fo, = g in LP(RY). By selecting

N further subsequences (not relabelled) and using the fact that ince {aaf%}k

is bounded in LP?(R™), we can assume that % — g; in LP(RY). Let’s prove
that g € WLP(RYN). For all p € C(RY), we have

8(,0 - 8f’ﬂk]
- fnk]- 87[1;'7( dr = —/R dex.

NSO 6$i

Since ¢ has compact support, we have that ¢, % € LP(RYN), and so we can let
7 — oo and use wek convergence to get

/ ggwl de = 7/ pg; dx,
RN xX; RN

which shows that g; is the ih weak derivative if g. Thus, g € W1P(RY).
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To see that f = g, let ¢ € L? (RV) be such that ¢ = 0 outside B(0, R).
Then by weak convergence

[ twpda= [ gupde [ gudz= [ guds
B(0,R) RN RN B(0,R)

On the other hand, since fn, — fin L?(B(0, R)), we have that

[ e foda.
B(O,R) B(0,R)

Indeed, by Holder’s inequality

[ = D
B(0,R)

< e, = Flle o r) 1Yl L ((0,7)) = 0-

Hence,

/ g0 do = / fode
B(0,R) B(0,R)

Y e LV (R™) be such that ¢» = 0 outside B(0, R). This implies that f = g
LN-ae. in B(0, R). Letting R — oo, we obtain that f = g LV-a.e. in RY. m

Corollary 210 Let Q € RY be an open bounded set with OQ of class C*, let
1 <p<oo, and let {f,}, be a bounded sequence in WP (Q). Then there exist
a subsequence {fn, }, of {fu}, and a function f € LP () such that f,, — f in
LP (Q). Moreover, f € WHP(Q) if p> 1.

Friday, April 28, 2023

20 Poincaré Inequalities

Let © C RY be an open set and let 1 < p < co. Poincaré’s inequality is the
following

[ 1@ = fer as<c [ |vea
where E C () is a measurable set of finite positive measure and
1
o= /E f () da. (70)
Theorem 211 (Poincaré Inequality) Let 1 < p < oo, let @ C RN be an
open bounded connected set with boundary of class Ct, and let E C ) be

a measurable set with positive measure. Then there exists a constant C =
C (p,Q, E) > 0 such that for all f € WP (),

/|f($)—fE|pdiB§C/ IVf(z)|Pd.
Q Q
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Proof. Assume by contradiction that the result is false. Then we may find a
sequence {f,}, in WP (Q) such that

L 1ts@ = (18 dz =0 [ 194, @) |7ds.

Define
fn - (fn)E

n 1= .
1fn = () el o)
Then g, € WP (Q) with

1
lnll oy =1, (gn) =0, / |VgnllPde < ~.
Q n

Extend g, to a function G,, € W'P(RY) with

1Grllwir@yy < Cllgnllwrra)-

Then {G,}, is bounded in WP(RY). By the Rellich-Kondrachov theorem
there exist a subsequence {G,,, } and a function G € LP(R") such that G,,, —
G in LY (RY). Let g be the restriction of G to Q. Since €2 is bounded, we have

loc

that g,, — g in LP (). It follows that

9oy =1, g8 =0.

= lim

k—oo

Moreover, for every ¢ € C} () and i = 1,..., N, by Holder’s inequality
O9ns o0 '

81/) = hm ‘/ g"’“@ dx G

81‘1 Q
< tim ( / ||Vgnk||f’dw)” ( [ dw)p 0
k—>OO Q Q

and so g € WP (Q) with Vg = 0. Since ) is connected, this implies that g is
constant (exercise), but since gg = 0, then, necessarily, g = 0. This contradicts
the fact that [|g|[;, ) =1 and completes the proof. m

The space W, *(2) is defined as the closure of CS°(Q) with respect to the
norm in WHP(Q).

Theorem 212 (Poincaré inequality in Wol’p) Let Q ¢ RN be an open set
with finite width, that is, Q lies between two parallel hyperplanes, and let 1 < p <
00. Then there exists a constant ¢ = ¢(N,p) > 0 such that for all f € Wol’p(Q),

/Q|f($)|pd$SC%/QHVf(m)dem.
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Proof. Without loss of generality, up to a rotation and translation, we may
assume that €2 lies between the two parallel hyperplanes xy = O0and zxy = d > 0.
For f € C°(Q), by the fundamental theorem of calculus and Holder’s inequality,
we have

)l =15 an) - 1@ 0 = | [ @
0 TN
d po\ P
1/p 8f /

Extend f to be zero outside RY \ Q. Raising to the power p and integrating
over RV=1 x [0, d], by Tonelli’s theorem we get

[i@pas= [ (i pis
Q RN -1x1[0,d]

/ / P/’ / (z',1) dtdsza:’
RN-1 al‘N
dp of
= d ) = = dy.
L] o [t =5 [ |2
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