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Wednesday, January 19, 2022

1 Real Numbers

There are two ways to introduce the real numbers. The first is to construct the
natural numbers using sets. For example, we could define 0 to be the empty set ∅,
then 1 to be the set {∅}, 2 to be {∅, {∅}}, and 3 to be {∅, {∅}, {∅, {∅}}}. Then we
construct the integer numbers Z, the rational numbers Q, and, finally, the real
numbers R are constructed as "limits of rational numbers". This construction
is lengthy, so we will not pursue it.
The second way to introduce the real numbers is to give them in an axiomatic

way. We will use this method. The real numbers are a set R with two binary
operations, addition and multiplication

+ : R× R→ R
(x, y) 7→ x+ y

· : R× R→ R
(x, y) 7→ x · y

and a relation≤ such that (R,+, .,≤) is an ordered field satisfying the supremum
property. To be precise,

(A) (R,+) is an commutative group, that is,

(A1) (commutativity) for every a, b ∈ R, a+ b = b+ a,

(A2) (distributivity) for every a, b, c ∈ R, (a+ b) + c = a+ (b+ c),

(A3) there exists a unique element in R, called zero and denoted 0, such
that 0 + a = a+ 0 = a for every a ∈ R,

(A4) for every a ∈ R there exists a unique element in R, called the opposite
of a and denoted −a, such that (−a) + a = a+ (−a) = 0,

(M)

(M1) (commutativity) for every a, b ∈ R, a · b = b · a,
(M2) (distributivity) for every a, b, c ∈ R, (a · b) · c = a · (b · c),
(M3) there exists a unique element in R, called one and denoted 1, such

that 1 6= 0 and 1 · a = a · 1 = a for every a ∈ R with a 6= 0,

(M4) for every a ∈ R with a 6= 0 there exists a unique element in R, called
the inverse of a and denoted a−1, such that a−1 · a = a · a−1 = 1,

(O) ≤ is a total order relation, that is,

(O1) for every a, b ∈ R either a ≤ b or b ≤ a,
(O2) for every a, b, c ∈ R if a ≤ b and b ≤ c, then a ≤ c,
(O3) for every a, b ∈ R if a ≤ b and b ≤ a, then a = b,

(O4) for every a ∈ R we have a ≤ a,
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(AM) for every a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c),

(AO) for every a, b, c ∈ R if a ≤ b, a+ c ≤ b+ c,

(MO) for every a, b ∈ R if 0 ≤ a and 0 ≤ b, then 0 ≤ a · b,

(S) (supremum property)

If a ≤ b and a 6= b, we write a < b.

Exercise 1 Using only the axioms (A), (M), (O), (AO), (AM) and (MO) of
R, prove the following properties of R:

(i) if a · b = 0 then either a = 0 or b = 0,

(ii) if a ≥ 0 then −a ≤ 0,

(iii) if a ≤ b and c < 0 then ac ≥ bc,

(iv) for every a ∈ R we have a2 ≥ 0,

(v) 1 > 0.

Definition 2 Let E ⊆ R be a nonempty set.

(i) An element L ∈ R is called an upper bound of E if x ≤ L for all x ∈ E;

(ii) E is said to be bounded from above if it has at least an upper bound;

(iii) if E is bounded from above, the least of all its upper bounds, if it exists, is
called the supremum of E and is denoted supE.

(iv) E has a maximum if there exists L ∈ E such that x ≤ L for all x ∈ E.
We write L = maxE.

We are now ready to state the supremum property.

(S) (supremum property) every nonempty set E ⊆ R bounded from above
has a supremum in R.

The supremum property says that in R the supremum of a nonempty set
bounded from above always exists in R. We will see that this is not the case for
the rationals numbers.

Remark 3 (i) Note that if a set has a maximum L, then L is also the supre-
mum of the set.

(ii) If E ⊆ R is a set bounded from above, to prove that a number L ∈ R is
the supremum of E, we need to show that L is an upper bound of E, that
is, that x ≤ L for every x ∈ E, and that any number s < L cannot be an
upper bound of E, that is, that there exists x ∈ E such that s < x.
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Example 4 Let E := {x ∈ R : x < 1}. Then 1 is an upper bound of the set
E and so E is bounded from above. We claim that 1 is the supremum of the set
E. To see this, let y ∈ R with y < 1. We need to prove that y is not an upper
bound of the set E, that is, we need to show that there are elements in the set E
that are larger than y. Take x := 1+y

2 . Since y < 1, we have that 1 + y < 1 + 1,
and so 1+y

2 < 1. Thus x belongs to E. On the other hand, x = 1+y
2 > y, and

so y is not an upper bound of E. This shows that 1 = supE. Note that 1 does
not belong to the set E and so the set E has no maximum.

Definition 5 Let E ⊆ R be a nonempty set.

(i) An element ` ∈ R is called a lower bound of E if ` ≤ x for all x ∈ E;

(ii) E is said to be bounded from below if it has at least a lower bound;

(iii) if E is bounded from below, the greatest of all its lower bounds, if it exists,
is called the infimum of E and is denoted inf E;

(iv) E has a minimum if there exists ` ∈ E such that ` ≤ x for all x ∈ E. We
write ` = minE.

Remark 6 (i) Note that if a set has a minimum `, then ` is also the infimum
of the set.

(ii) If E ⊆ R is a set bounded from below, to prove that a number ` ∈ R is
the infimum of E, we need to show that ` is a lower bound of E, that is,
that ` ≤ x for every x ∈ E, and that any number ` < s cannot be a lower
bound of E, that is, that there exists x ∈ E such that x < s.

Thursday, January 20, 2022

2 Natural Numbers

Definition 7 A set E ⊆ R is called an inductive set if it has the following
properties

(i) the number 1 belongs to E,

(ii) if a number x belongs to E, then x+ 1 also belongs to E.

Example 8 The sets [0,∞) = {x ∈ R : 0 ≤ x}, [1,∞) = {x ∈ R : 1 ≤ x}, and
R are all inductive sets.

Definition 9 The set of the natural numbers N is defined as the intersection
of all inductive sets of R.

Note that N is nonempty, since 1 belongs to every inductive set, and so also
to N. We also define

N0 = N ∪ {0} .
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Example 10 The number 1
2 is not a natural number. Indeed, [1,∞) is an

inductive set and 1
2 does not belong to E, so

1
2 cannot belong to N. Also

3
2 is not

a natural number. Indeed, the set E = {1} ∪ {n ∈ N : n ≥ 2} is an inductive
set that does not contain 3

2 . Hence,
3
2 cannot be a natural number.

Proposition 11 The set N is an inductive set.

Proof. We already know that 1 belongs to N. If x belongs to N, then it
belongs to every inductive set E but then, since E is an inductive set, it follows
that x + 1 belongs E. Hence, x + 1 belongs to every inductive set, and so by
definition of N, we have that x+ 1 also belongs to N.
The next result is very important.

Theorem 12 (Principle of mathematical induction) Let {pn}, n ∈ N, be
a family of propositions such that

(i) p1 is true,

(ii) if pn is true for some n ∈ N, then pn+1 is also true.

Then pn is true for every n ∈ N.

Proof. Let E := {n ∈ N such that pn is true}. Note that E ⊆ N. It follows
by (i) and (ii) that E is an inductive set, and so E contains N (since N is the
intersection of all inductive sets). Hence, E = N.
If x ∈ R and n ∈ N, we define

xn := x · · · · · x
n times

.

If x 6= 0, we define x0 := 1. We do not define 00.
The following will be used later on.

Exercise 13 Let x ≥ −1. Prove that

(1 + x)
n ≥ 1 + nx (1)

for every n ∈ N.

Exercise 14 Prove that

1 + · · ·+ n =
n (n+ 1)

2
(2)

for every n ∈ N

Exercise 15 Let x 6= 1. Prove that

1 + x · · ·+ xn =
xn+1 − 1

x− 1

for all n ∈ N.
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In what follows 0! := 1, 1! := 1 and n! := 1 · 2 · · · · · n for all n ∈ N. The
number n! is called the factorial of n. For n ∈ N and k ∈ N0, we define(

n

k

)
:=

n!

k! (n− k)!
.

Exercise 16 Let j, k ∈ N and a ∈ R. Given the function f (x) = (x+ a)
j,

prove that

dkf

dxk
(x) =


0 if k > j,

j (j − 1) · · · (j − k + 1) (x+ a)
j−k if k < j,

k! if k = j.

Exercise 17 Let x, y ∈ R \ {0} and let n ∈ N.

(i) Prove that for every 1 ≤ k ≤ n,(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

(ii) Prove that

(x+ y)
n

=

n∑
k=0

(
n

k

)
xkyn−k.

Remark 18 If in Theorem 12 we replace property (i) with

(i)′ if pn0 is true for some n0 ∈ N,

then we can conclude that pn is true for all n ∈ N with n ≥ n0. To see this,
it is enough to define

E := {n ∈ N such that pn+n0−1 is true} ,

which is still an inductive set.

Exercise 19 Prove that
nn > 2nn!

for all n > 6. Hint: Use the binomial theorem.

Friday, January 21, 2022

Proposition 20 (Archimedean Property) If a, b ∈ R with a > 0, then there
exists n ∈ N such that na > b.

Proof. If b ≤ 0, then n = 1 will do. Thus, assume that b > 0. Assume by
contradiction that na ≤ b for all n ∈ N and define the set

E = {na : n ∈ N} .
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Then the set E is nonempty and has an upper bound, b. By the supremum
property, there exists L = supE. Hence, for every m ∈ N, we have that
(m+ 1) a ≤ L, or, equivalently, ma ≤ L− a for all m ∈ N. But this shows that
L − a is an upper bound of E, which contradicts the fact that L is the least
upper bound.
In the previous section we have defined the natural numbers. Note that

(N,+, ·,≤) does not satisfy properties (A3), (A4), and (M4). In particular, we
cannot subtract two numbers a, b ∈ N unless, a ≥ b + 1. For this reason, we
define the set of integers Z as follows

Z := {±n : n ∈ N} ∪ {0} .

Theorem 21 (The integer part) Given a real number x ∈ R, there exists an
integer k ∈ Z such that k ≤ x < k + 1.

Proof. Step 1: Let E = {k ∈ Z : k ≤ x}. If x ≥ 0, then 0 ∈ E. If x < 0,
let’s use the Archimedean property to find n > −x. Then −n < x, and so,
−n ∈ E.
Step 2: Since E is nonempty and bounded from below by x, by the supre-

mum property, there exists L = supE. Then L − 1 is not an upper bound of
E and so there exists j ∈ E such that L − 1 < j ≤ L. By adding one to both
sides, we get that L < j + 1. Since L is the supremum of E, we have that j + 1
is not in E, that is, x < j + 1. Thus, j ≤ x < x+ 1.

Definition 22 Given a real number x ∈ R, the integer k given by the previous
corollary is called the integer part of x and is denoted bxc. The number x−bxc
is called the fractional part of x and is denoted fracx (or {x}). Note that
0 ≤ fracx < 1.

Exercise 23 Prove that every nonempty subset of the natural numbers has a
minimum.

3 The Rationals Numbers and the Supremum
Property

Now (Z,+, ·,≤) satisfies properties (A3), (A4), but not (M4). To resolve this
issue, we introduce the set of rational numbers Q defined by

Q :=

{
p

q
: p, q ∈ Z, q 6= 0

}
,

where p
q := p · q−1. Then (Q,+, ·,≤) satisfies properties (A), (M), (O), (AM),

(AO), (MO). So, what’s wrong? We will see that the rational numbers do not
satisfy the supremum property.

Theorem 24 (Density of the rationals) If a, b ∈ R with a < b, then there
exists r ∈ Q such that a < r < b.
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Proof. We start by choosing the denominator. We want to find q ∈ N such
that 1

q < b − a. To do this, we use the Archimedean property (applied with 1

and 1
b−a in place of a and b) to find q ∈ N such that 0 < 1

b−a < q. So, we have
1
q < b− a, or, a < a+ 1

q < b. Multiply by q to find

qa < qa+ 1 < qb. (3)

By the theorem on the integer part, there exists an integer p ∈ Z such that

p ≤ qa < p+ 1. (4)

Since p ≤ qa, we have p+ 1 ≤ qa+ 1 < qb. Thus,

qa < p+ 1 < qb.

Multiplying by 1
q > 0 gives

a <
p+ 1

q
< b.

It suffi ces to define r := p+1
q .

Remark 25 It follows from the previous theorem that for every x ∈ R, if we
consider the set

E := {r ∈ Q : r < x},
then

supE = x.

Indeed, since x is an upper bound of E, E is bounded from above, and so there
exists supE = L. Moreover, L ≤ x, since L is the least upper bound of E. We
claim that L = x. To see this, note that if L < x, then by the previous theorem
we can find r ∈ Q such that L < r < x. But then r ∈ E, and L cannot be an
upper bound of E, which is a contradiction. Thus L = x. This property will be
very useful. It says that using rational numbers we can get as close as we want
to every real number.

The set R \Q is called the set of irrational numbers.

Exercise 26 Prove that there does not exist a rational number r such that
r2 = 2

Theorem 27 The set of irrational numbers is nonempty.

Monday, January 24, 2022
Proof. Take

E :=
{
x ∈ R : 0 < x and x2 < 2

}
.

Then E is nonempty, since 1 ∈ E. Moreover, E is bounded from below, since 2
is an upper bound. Hence, by the supremum property, there exists L ∈ R such
that L = supE.
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We claim that L2 = 2. It cannot be L ≤ 0, since 1 ∈ E and 1 > 0. Hence,
L > 0. Let’s prove that it cannot be L2 < 2. By the Archimedean property we
can choose n ∈ N so large that n > 2L+1

2−L2 . Then(
L+

1

n

)2

= L2 +
1

n2
+

2L

n
< L2 +

1

n
+

2L

n
= L2 +

2L+ 1

n
< 2,

by the choice of n. Hence, L+ 1
n belongs to E, which contradicts the fact that

L is an upper bound of E.
Let’s prove that if y ∈ R \ E and y > 0, then y is an upper bound of E.

Indeed, let x ∈ E. If x > 0, then x2 < 2 < y2, which, since y > 0, implies that
x < y (why?).

Let’s prove that it cannot be L2 > 2. By the archimedean property we can

choose n ∈ N so large that n > max
{

2L
L2−2 ,

1
L

}
. Then L− 1

n > 0 and

(
L− 1

n

)2

= L2 +
1

n2
− 2L

n
> L2 − 2L

n
> 2.

We claim that L − 1
n is an upper bound of E. To see this, let x ∈ E. Since

x > 0, L − 1
n > 0, and x2 < 2 <

(
L− 1

n

)2
, we must have x < L − 1

n (why?).
This shows that L− 1

n is an upper bound of E. This contradicts the fact that
L is the least upper bound of E. Hence, it cannot be L2 > 2, Thus, L2 = 2.
The number L is denoted

√
2 and called square root of 2.

Exercise 28 Prove that the rational numbers do not satisfy the supremum prop-
erty, that is, it is not true that all sets E ⊆ Q which are nonempty and bounded
from above admit a supremum in Q.

Corollary 29 (Density of the irrationals) If a, b ∈ R with a < b, then there
exists x ∈ R \Q such that a < x < b.

Proof. Since a < b, we have that
√

2a <
√

2b. By the density of the
rationals, there exists r ∈ Q such that

√
2a < r <

√
2b. Without loss of

generality, we may assume that r 6= 0 (why?). Hence, a < r√
2
< b. Since r√

2
is

irrational (why?), the result is proved.

Exercise 30 Let (R′,⊕,�,4) be another ordered field satisfying the supremum
property. Prove that there exists a bijection T : R → R′ such that T is an
isomorphism between the two fields, that is,

T (a+ b) = T (a)⊕ T (b) , T (a · b) = T (a)� T (b)

for all a, b ∈ R, and a ≤ b if and only if T (a) 4 T (b).

Remark 31 The previous exercise proves uniqueness of the real numbers. In-
deed every theorem we prove for R would hold for R′ because of the properties
of T . Hence, for all practical purposes, we cannot distinguish R from R′.
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Similarly, for every n ∈ N with n even and every x ∈ R with x ≥ 0, we can
show that there exists a unique y ∈ R with y ≥ 0 such that xn = y. On the
other hand, for every n ∈ N with n odd and every x ∈ R, we can show that
there exists a unique y ∈ R such that xn = y.
The number y is denoted n

√
x and called n-th root of x.

Exercise 32 (The n-th root of a) Given x > 0 and n ∈ N, with n ≥ 2, we
want to define the n-th root of x.

(i) Prove that if r, s ∈ Q with r < s, then rn < sn.

(ii) Prove that the set
E := {rn : r ∈ Q, r > 1}

does not have a minimum and that inf E = 1.

(iii) Given x > 0 consider the set

F := {y ∈ R : y > 0, yn ≤ x} .

Prove that F is bounded from above and nonempty. Let ` := supF . Prove
that `n = x.

4 Powers with Real Exponents

If x ∈ R and n ∈ N, then we define xn inductively by

x1 := x, xn+1 := xn · x.

But what does it mean x
√

2? Or more generally, xa if a ∈ R? To define this, we
will assume that x > 0 (this is needed to preserve the properties of powers). If
a is positive and rational, say a = n

m , where m,n ∈ N, then we define

x
n
m :=

(
m
√
x
)n
.

Remark 33 Note that x
n
m = m

√
xn. Indeed, let y = m

√
x. Then

(yn)
m

= (ym)
n

= xn,

and so yn = m
√
xn, that is, ( m

√
x)
n

= m
√
xn.

If a is rational and negative, say a = − n
m , where m,n ∈ N, then we define

x−
n
m :=

(
x−1

) n
m .

Exercise 34 Prove that if x > 0 and r, q ∈ Q, then

xr · xs = xr+s,

(xr)
s

= (xs)
r

= xrs.
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Exercise 35 Let x > 1 and r, q ∈ Q.

(i) Prove that if r > 0, then xr > 1.

(ii) Prove that if r < s, then xr < xs.

Define
Q+ := {r ∈ Q : r > 0}.

We are now ready to define xa for a real. Assume that x > 1 and a > 0.
Consider the set

Ea := {xr : r ∈ Q+, r < a}.

The set Ea is bounded from above and nonempty. We define xa := supEa.
Wednesday, January 26, 2022

Theorem 36 Let a, b ∈ R with a > 0 and b > 0 and let x ∈ R with x > 1.
Then

xa · xb = xa+b

Proof. Consider the three sets

Ea := {xr : r ∈ Q+, r < a},
Eb := {xs : s ∈ Q+, s < b},

Ea+b := {xt : t ∈ Q+, t < a+ b},

and let `a = supEa, `b = supEb, and `a+b = supEa+b. Let’s prove that

`a`b ≤ `a+b.

If r ∈ Q+ is such that r < a and s ∈ Q+ is such that s < b, then r + s ∈ Q+

and r + s < a+ b. Hence,

xrxs = xr+s ≤ `a+b.

Fix s ∈ Q+ with s < b and divide by xs. Then

xr ≤ `a+b

xs

for all r ∈ Q+ with r < a. This shows that the number `a+bxs is an upper bound
for the set Ea. Hence,

`a ≤
`a+b

xs
.

Now rewrite this inequality as

xs ≤ `a+b

`a
.
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Recall that s ∈ Q+ with s < b. Since the previous inequality is true for all such
s, it shows that the number `a+b`a

is an upper bound for the set Ea. Hence,

`b ≤
`a+b

`a
.

Thus, we have proved that
`a`b ≤ `a+b.

Next let’s prove that
`a+b ≤ `a`b.

Consider t ∈ Q+ with t < a + b. We want to find p, q ∈ Q+ with t < p + q,
p < a and q < b. Since t − a < b, by the density of the rationals there exists
q ∈ Q such that t − a < q < b. Since b > 0 we can assume that q > 0 (if not
apply the density of the rationals once more). Since t − a < q we have that
t − q < a and so again by the density of the rationals there exists p ∈ Q such
that t− q < p < a. Again, since a > 0 we can assume that p > 0 (if not apply
the density of the rationals once more). Thus, t < p+ q and so by Exercises 34
and 35,

xt < xp+q = xp · xq ≤ `a`b.
Since this is true for all t ∈ Q+ with t < a + b we have that `a`b is an upper
bound of the set Ea+b and so `a+b ≤ `a`b.
If 0 < x < 1, we set

xa :=
(
x−1

)−a
.

Exercise 37 Let x > 0 and a, b ∈ R. Prove that

(xa)
b

=
(
xb
)a

= xab.

Hint: It is enough to show (xa)
b

= xab. Consider first the case in which a is
real and b is rational.

Given a number x ∈ R, the absolute value of x is the number

|x| :=
{

+x if x ≥ 0,
−x if x < 0.

The absolute value satisfies the following properties, which are left as as exercise.

Theorem 38 Let x, y, z ∈ R. Then the following properties hold.

(i) |x| ≥ 0 for all x ∈ R, with |x| = 0 if and only if x = 0,

(ii) |−x| = |x| for all x ∈ R,

(iii) if y ≥ 0 and x ∈ R, then |x| ≤ y if and only if −y ≤ x ≤ y,

(iv) − |x| ≤ x ≤ |x| for all x ∈ R,

(iii) |xy| = |x| |y| for all x, y ∈ R,

(iv) |x+ y| ≤ |x|+ |y| for all x, y ∈ R.

12



5 Inner Products, Norms, Distances

Definition 39 A vector space, or linear space, over R is a nonempty set X,
whose elements are called vectors, together with two operations, addition and
multiplication by scalars,

X ×X → X
(x, y) 7→ x+ y

and
R×X → X
(t, x) 7→ tx

with the properties that

(i) (X,+) is a commutative group, that is,

(a) x+ y = y + x for all x, y ∈ X (commutative property),

(b) x+ (y + z) = (x+ y) + z for all x, y, z ∈ X (associative property),

(c) there is a vector 0 ∈ X, called zero, such that x+ 0 = 0 + x = x for
all x ∈ X,

(d) for every x ∈ X there exists a vector in X, called the opposite of x
and denoted −x, such that x+ (−x) = 0,

(ii) for all x, y ∈ X and s, t ∈ R,

(a) s (tx) = (st)x,

(b) 1x = x,

(c) s (x+ y) = (sx) + (sy),

(d) (s+ t)x = (sx) + (tx).

Remark 40 Instead of using real numbers, one can use a field F . For most
or our purposes the real numbers will suffi ce. From now on, whenever we don’t
specify, it is understood that a vector space is over R.

Example 41 Some important examples of vector spaces over R are the follow-
ing.

(i) The Euclidean space RN is the space of all N -tuples x = (x1, . . . , xN )
of real numbers. The elements of RN are called vectors or points. The
Euclidean space is a vector space with the following operations

x+ y := (x1 + y1, . . . , xN + yN ) , tx := (tx1, . . . , txN )

for every t ∈ R and x = (x1, . . . , xN ) and y = (y1, . . . , yN ) in RN .

(ii) The collection of all polynomials p : R→ R.

(iii) The space of continuous functions f : [a, b]→ R, where a < b and [a, b] :=
{x ∈ R : a ≤ x ≤ b}.
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Definition 42 Given a set E and a function f : E → R, we say that f is
bounded from above if the set

f (E) := {y ∈ R : y = f (x) , x ∈ E}

is bounded from above. We say that f is bounded from below if the set f (E)
is bounded from below. Finally, we say that f is bounded if the set f (E) is
bounded. We write

sup
E
f := sup f (E) , inf

E
f := inf f (E) .

Exercise 43 Given a set E, consider the vector space X := {f : E → R bounded}.
Prove that X is a vector space.

Friday, January 28, 2022

Example 44 Consider the space X = {f : [a, b] → R : f is increasing in
[a, b]}. This is not a vector space since the difference of increasing functions
is not increasing. The smallest (in the sense of inclusion) vector space that
contains all increasing functions is the space of functions of pointwise bounded
variation.

Given a < b, consider the interval [a, b]. A partition of [a, b] is a finite set
P := {x0, . . . , xn} ⊂ [a, b], where

a = x0 < x1 < · · · < xn = b.

Given a function f : [a, b]→ R, the pointwise variation of f on the interval [a, b]
is

Var f := sup

{
n∑
i=1

|f (xi)− f (xi−1)|
}
,

where the supremum is taken over all partitions P := {x0, . . . , xn} of [a, b], and
all n ∈ N. A function f : [a, b] → R has finite or bounded pointwise variation
if Var f < ∞. The space of all functions f : [a, b] → R of bounded pointwise
variation is denoted by BPV ([a, b]).

Exercise 45 Prove that BPV ([a, b]) is a vector space.

Definition 46 An inner product, or scalar product, on a vector space X is a
function

(·, ·) : X ×X → R

such that

(i) (x, x) ≥ 0 for every x ∈ X, (x, x) = 0 if and only if x = 0 (positivity);

14



(ii) (x, y) = (y, x) for all x, y ∈ X (symmetry);

(iii) (sx+ ty, z) = s (x, z)+t (y, z) for all x, y, z ∈ X and s, t ∈ R (bilinearity).

An inner product space (X, (·, ·)) is a vector space X endowed with an inner
product (·, ·).

Example 47 Some important examples of inner products are the following.

(i) Consider the Euclidean space RN , then

x · y := x1y1 + · · ·+ xNyN ,

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ), is an inner product.

(ii) Consider the space of X of all integrable functions f : [a, b]→ R. Then

(f, g) :=

∫ b

a

f (x) g (x) dx

is not an inner product. Indeed, if f(x) = 0 for all x ∈ [a, b], x 6= a+b
2 and

f
(
a+b

2

)
= 1, then

∫ b
a
f2 (x) dx = 0 but f is not 0.

To fix this problem one can take X to be the space of all continuous func-
tions f : [a, b]→ R. Then

(f, g) :=

∫ b

a

f (x) g (x) dx

is an inner product.

Definition 48 A norm on a vector space X is a map

‖·‖ : X → [0,∞)

such that

(i) ‖x‖ = 0 implies x = 0;

(ii) ‖tx‖ = |t| ‖x‖ for all x ∈ X and t ∈ R;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A normed space (X, ‖·‖) is a vector space X endowed with a norm ‖·‖. For
simplicity, we often say that X is a normed space.

Example 49 Some important examples of norms are the following.

(i) Consider the space R. By Theorem 38, the absolute value is a norm.
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(ii) Consider the Euclidean space RN , then

‖x‖ :=
√
x · x =

√
(x1)2 + · · ·+ (xN )2,

where x = (x1, . . . , xN ), is a norm. We will prove this below.

Exercise 50 Given a set E, consider the vector space X := {f : E → R bounded}.
For f ∈ X, define

‖f‖ := sup
E
|f | .

Prove that ‖·‖ is a norm.

Given an inner product (·, ·) : X ×X → R on a vector space X, it turns out
that the function

‖x‖ :=
√

(x, x), x ∈ X, (5)

is a norm. This follows from the following result.

Proposition 51 (Cauchy—Schwarz’s inequality) Given an inner product (·, ·) :
X ×X → R on a vector space X,

|(x, y)| ≤ ‖x‖ ‖y‖

for all x, y ∈ X.

Proof. If y = 0, then both sides of the previous inequality are zeros, and so
there is nothing to prove. Thus, assume that y 6= 0 and let t ∈ R. By properties
(i)-(iii),

0 ≤ (x+ ty, x+ ty) = ‖x‖2 + t2 ‖y‖2 + 2t (x, y) . (6)

Taking

t := − (x, y)

‖y‖2

in the previous inequality gives

0 ≤ ‖x‖2 +
(x, y)

2

‖y‖4
‖y‖2 − 2

(x, y)
2

‖y‖2
,

or, equivalently,
(x, y)

2 ≤ ‖x‖2 ‖y‖2 .

It now suffi ces to take the square root on both sides.
Monday, January 31, 2022

Remark 52 It follows from the proof that equality holds in the Cauchy—Schwarz
inequality if and only you have equality in (6), that is, if x + ty = 0 for some
t ∈ R or y = 0.
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Corollary 53 Given a scalar product (·, ·) : X ×X → R on a vector space X,
the function

‖x‖ :=
√

(x, x), x ∈ X,

is a norm.

Proof. By property (i), ‖·‖ is well-defined and ‖x‖ = 0 if and only if x = 0.
Taking t = 1 in (6) and using the Cauchy—Schwarz inequality gives

0 ≤ ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 (x, y)

≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖ = (‖x‖+ ‖y‖)2
,

which is the triangle inequality for the norm. Moreover, by properties (ii) and
(iii) for every t ∈ R,

‖tx‖ =
√

(tx, tx) =
√
t (x, tx) =

√
t (tx, x) =

√
t2 (x, x) = |t| ‖x‖ .

Thus ‖·‖ is a norm.

Proposition 54 (Parallelogram law) Given an inner product (·, ·) : X ×
X → R on a vector space X,

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2

for all x, y ∈ X.

Proof. Taking t = ±1 in (6), we get

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 (x, y) ,

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 (x, y) .

By adding these identities, we obtain the desired result.

Remark 55 If instead of add, we subtract these two identities we get

‖x+ y‖2 − ‖x− y‖2 = 4 (x, y) ,

and so
(x, y) =

1

4

[
‖x+ y‖2 − ‖x− y‖2

]
.

Exercise 56 Prove that the following are norms in RN :

‖x‖∞ := max {|x1| , . . . , |xN |} ,
‖x‖1 := |x1|+ · · ·+ |xN | ,

‖x‖p := (|x1|p + · · ·+ |xN |p)
1/p

,

for x = (x1, . . . , xN ) ∈ RN and where 1 ≤ p <∞.
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Example 57 In RN the norm ‖·‖∞ does not satisfy the parallelogram law. Take
x = (1, 1, 0, . . .), y = (1,−1, 0, . . .). Then x+y = (2, 0, . . .), x−y = (0, 2, 0, . . .).
Hence,

‖x+ y‖2∞ + ‖x− y‖2∞ = 4 + 4 = 8

6= 2 ‖x‖2∞ + 2 ‖y‖2∞
= 2 + 2.

Example 58 In RN the norm ‖·‖p for p 6= 2 does not satisfy the parallelogram
law. Take x = (1, 1, 0, . . .), y = (1,−1, 0, . . .). Then x+y = (2, 0, . . .), x−y =
(0, 2, 0, . . .). Hence,

‖x+ y‖2p + ‖x− y‖2p = (2p)
2
p + (2p)

2
p = 8

6= 2 ‖x‖2p + 2 ‖y‖2p
= 2 (1p + 1p)

2
p + 2 (1p + 1p)

2
p = 22+ 2

p .

Exercise 59 Consider the vector space X := {f : [0, 1]→ R bounded} with

‖f‖ := sup
[0,1]

|f | .

Let’s prove that ‖·‖ does not satisfy the parallelogram law. Take f(x) = −x2

and g(x) = x. Then

sup
[0,1]

|f + g| = sup
[0,1]

| − x2 + x| = max
[0,1]

(x− x2) =
1

4
,

sup
[0,1]

|f − g| = sup
[0,1]

| − x2 − x| = max
[0,1]

(x2 + x) = 2,

sup
[0,1]

|f | = sup
[0,1]

| − x2| = max
[0,1]

x2 = 1,

sup
[0,1]

|g| = sup
[0,1]

|g| = max
[0,1]

x = 1,

and so (
sup
[0,1]

|f + g|
)2

+

(
sup
[0,1]

|f − g|
)2

=
1

16
+ 4 =

6= 2

(
sup
[0,1]

|f |
)2

+ 2

(
sup
[0,1]

|g|
)2

= 2 + 2.

Exercise 60 Let (X, ‖·‖) be a normed space. Prove that there exists an inner
product (·, ·) : X ×X → R such that ‖x‖ =

√
(x, x) for all x ∈ X if and only if

‖·‖ satisfies the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2

for all x, y ∈ X.
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Definition 61 A metric on a set X is a map d : X ×X → [0,∞) such that

(i) d (x, y) = 0 if and only if x = y,

(ii) d (x, y) = d (y, x) for all x, y ∈ X (symmetry),

(iii) d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ X (triangle inequality).

A metric space (X, d) is a set X endowed with a metric d. When there is
no possibility of confusion, we abbreviate by saying that X is a metric space.

Proposition 62 Let (X, ‖·‖) be a normed space. Then

d (x, y) := ‖x− y‖

is a metric.

Proof. By property (i) in Definition 48, we have that 0 = d (x, y) = ‖x− y‖
if and only if x− y = 0, that is, x = y.
By property (ii) in Definition 48, we obtain that

d (y, x) = ‖y − x‖ = ‖−1 (x− y)‖ = |−1| · ‖x− y‖ = ‖x− y‖ = d (x, y) .

Finally, by property (ii) in Definition 48,

d (x, y) = ‖x− y‖ = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖ = d (x, z) + d (z, y) .

Exercise 63 Prove that in R the function

d1 (x, y) :=

∣∣∣∣ x

1 + |x| −
y

1 + |y|

∣∣∣∣ (7)

is a metric.

Wednesday, February 2, 2022

Definition 64 Given a metric space (X, d), a point x0 ∈ X, and r > 0, the
ball centered at x0 and of radius r is the set

B (x0, r) := {x ∈ X : d (x, x0) < r} .

Definition 65 Given a metric space (X, d), and a nonempty set E ⊆ X, a
point x ∈ E is called an interior point of E if there exists r > 0 such that
B (x, r) ⊆ E. The interior E◦ of a set E ⊆ RN is the union of all its interior
points. A subset U ⊆ X is open if every x ∈ U is an interior point of U .
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Example 66 Given a metric space (X, d), the ball B (x0, r) is open. To see this,
let x ∈ B (x0, r). Then B (x, r − d(x, x0)) is contained in B (x0, r). Indeed, if
y ∈ B (x0, r − d(x, x0)), then

d(y, x0) ≤ d(y, x) + d(x, x0) < r − d(x, x0) + +d(x, x0) = r,

and so y ∈ B (x0, r).

Example 67 Some simple examples of sets that are open and of some that are
not.

(i) The set (a,∞) = {x ∈ R : x > a} is open. Indeed, if x > a, take r :=
x− a > 0. Then B (x, r) ⊂ (a,∞). Similarly, the set (−∞, a) is open.

(ii) The set (a, b) = {x ∈ R : a < x < b} is open. Indeed, given a < x < b,
take r := min {b− x, x− a} > 0. Then B (x, r) ⊆ (a, b).

(iii) The set (a, b] = {x ∈ R : a < x ≤ b} is not open, since b belongs to the set
but there is no ball B (b, r) contained in (a, b].

Example 68 Consider the set E = (0, 1)∩Q. The interior of this set is empty.
Indeed, if x ∈ E and r > 0, by the density of the irrationals, we can find
y ∈ R \ Q such that min{x − r, 0} < y < max{x + r, 1}. Hence, the ball
B(x, r) = (x− r, x+ r) contains y, which is not a point of E.

Example 69 Consider the set

U = R \
(
{0} ∪

{
1

n
: n ∈ N

})
.

Let’s prove that U is open. If x < 0, take r = −x > 0, then B (x, r) = (−2x, 0) ⊆
U . If x > 1, take r = x − 1, then B (x, r) = (1, 2x− 1) ⊆ U . If 1

n+1 < x < 1
n ,

take r = min
{

1
n − x, x−

1
n+1

}
= 1

n+1 , then B (x, r) ⊆ U . Hence, U is open.

Example 70 Consider the set

E = R \
({

1

n
: n ∈ N

})
.

Let’s prove that E is not open. The point x = 0 belongs to E, but for every
r > 0, by the Archimedean principle we can find n ∈ N such that n > 1

r , and
so 0 < 1

n < r, which shows that 1
n ∈ (−r, r). Since 1

n does not belong to E, the
ball (−r, r) is not contained in E for any r > 0. Hence, E is not open.

The main properties of open sets are given in the next proposition.
In what follows by an arbitrary family of sets of X we mean that there exists

a set I and a function

f : I → P (X)

α ∈ I 7→ f (α) = Uα

We write {Uα} or {Uα}I or {Uα}α∈I to denote the set {f (α) : α ∈ I}.

20



Proposition 71 Given a metric space (X, d), the following properties hold:

(i) ∅ and X are open.

(ii) If Ui ⊆ X, i = 1, . . . , n, is a finite family of open sets of X, then U1 ∩
· · · ∩ Un is open.

(iii) If {Uα}α is an arbitrary collection of open sets of X, then
⋃
α Uα is open.

Proof. To prove (ii), let x ∈ U1 ∩ · · · ∩ UM . Then x ∈ Ui for every
i = 1, . . . , n, and since Ui is open, there exists ri > 0 such that B (x, ri) ⊆ Ui.
Take r := min {r1, . . . , rn} > 0. Then

B (x, r) ⊆ U1 ∩ · · · ∩ Un,

which shows that U1 ∩ · · · ∩ Un is open.
To prove (iii), let x ∈ U :=

⋃
α Uα. Then there is α such that x ∈ Uα and

since Uα is open, there exists r > 0 such that B (x, r) ⊆ Uα ⊆ U . This shows
that U is open.

Friday, February 4, 2022
Properties (i)—(iii) are used to define topological spaces.

Definition 72 Let X be a nonempty set and let τ be a family of sets of X. The
pair (X, τ) is called a topological space if the following hold.

(i) ∅, X ∈ τ .

(ii) If Ui ∈ τ for i = 1, . . . ,M , then U1 ∩ . . . ∩ UM ∈ τ .

(iii) If {Uα}α is an arbitrary collection of elements of τ , then
⋃
α Uα ∈ τ .

The elements of the family τ are called open sets.

Remark 73 The intersection of infinitely many open sets is not open in gen-
eral. Take Un :=

(
− 1
n ,

1
n

)
for n ∈ N. Then

∞⋂
n=1

(
− 1

n
,

1

n

)
= {0} ,

but {0} is not open. Indeed, for every r > 0, the ball (−r, r) is not contained in
{0}.

Remark 74 Proposition 71 shows that the family of open sets in RN defined
in Definition 65 is a a topology, called the Euclidean topology. Unless specified,
in RN we will always consider the Euclidean topology.
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Example 75 Given a nonempty set X, there are always at least two topologies
on X, namely,

τ1 = {∅, X}

(so according to τ1, the only open sets are the empty set and X) and

τ2 = {all subsets of X}

(so according to τ2 every set E ⊆ X is open).

Exercise 76 Let 1 ≤ p <∞. Prove that in RN the norms

‖x‖∞ := max {|x1| , . . . , |xN |} ,
‖x‖ :=

√
x · x,

‖x‖p := (|x1|p + · · ·+ |xN |p)
1/p

,

generate the same topology.

The proof of following proposition is left as an exercise.

Proposition 77 Given a metric space (X, d). Then

(i) E◦ is an open subset of E,

(ii) E◦ is given by the union of all open subsets contained in E; that is, E◦ is
the largest (in the sense of union) open set contained in E,

(iii) E is open if and only if E = E◦,

(iv) (E◦)
◦

= E◦.

Example 78 Consider the set E = [0, 1). Then 0 is not an in interior point
of E, so E◦ ⊆ (0, 1). On the other hand, since (0, 1) is open and contained
in E, by part (ii) of the previous proposition, E◦ ⊇ (0, 1), which shows that
E◦ = (0, 1).

Exercise 79 Some properties of the interior.

(i) Prove that if E,F are subsets of RN , then

E◦ ∩ F ◦ = (E ∩ F )
◦
,

E◦ ∪ F ◦ ⊆ (E ∪ F )
◦
.

(ii) Show that in general E◦ ∪ F ◦ 6= (E ∪ F )
◦.

(iii) Let {Eα}α be an arbitrary collection of sets of RN . What is the rela-
tion, if any, between

⋂
α (Uα)

◦ and (
⋂
α Uα)

◦? And between
⋃
α (Uα)

◦ and
(
⋃
α Uα)

◦?

22



Definition 80 Given a metric space (X, d), A subset C ⊆ X is closed if its
complement X \ C.

The main properties of closed sets are given in the next proposition.

Proposition 81 Given a metric space (X, d), the following properties hold:

(i) ∅ and X are closed.

(ii) If Ci ⊆ X, i = 1, . . . , n, is a finite family of closed sets of X, then C1 ∪
· · · ∪ Cn is closed.

(iii) If {Cα}α is an arbitrary collection of closed sets of X, then
⋂
α Cα is

closed.

The proof follows from Proposition 71 and De Morgan’s laws. If {Eα}α is
an arbitrary collection of subsets of a set RN , then De Morgan’s laws are

X \
(⋃

α

Eα

)
=
⋂
α

(X \ Eα) ,

X \
(⋂

α

Eα

)
=
⋃
α

(X \ Eα) .

Remark 82 Note that the majority of sets are neither open nor closed. The
set E = (0, 1] is neither open nor closed.

Definition 83 Given a metric space (X, d) and a set E ⊆ X, the closure of E,
denoted E, is the intersection of all closed sets that contain E

In other words, the closure of E is the smallest (with respect to inclusion)
closed set that contains E. It follows by Proposition 81 that E is closed.
The proof of following proposition is left as an exercise.

Proposition 84 Given a metric space (X, d), let C ⊆ X. Then C is closed if
and only if C = C.

The previous proposition leads us to the definition of accumulation points.

Definition 85 Given a metric space (X, d) and a set E ⊆ X, a point x ∈ X
is a boundary point of E if for every r > 0 the ball B (x, r) contains at least
one point of E and one point of X \ E. The set of all boundary points of E is
denoted ∂E.

Proposition 86 Given a metric space (X, d), let E ⊆ X. Then

E = E ∪ ∂E,
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Proof. Let x ∈ E and assume by contradiction that x /∈ E ∪ ∂E. Since
x /∈ ∂E, there exists a ball B(x, r) that either does not intersect E or does not
intersect the complement of E. But since x /∈ E, only the first possibility can
occur. Hence, there exists r > 0 such that B (x, r) ∩ E = ∅. Since B (x, r) is
open and B (x, r)∩E = ∅, it follows that X \B (x, r) is closed and contains E.
By the definition of E, we have that E ⊆ X \ B (x, r), which contradicts the
fact that x ∈ E.
Conversely, let x ∈ E ∪∂E and assume that x /∈ E. Since E is closed, X \E

is open. Using the fact that x ∈ X \ E, we can find B (x, r) ⊆ X \ E, which
contradicts the fact that B (x, r) ∩ E 6= ∅.

Monday, February 7, 2022

Definition 87 Given a metric space (X, d) and a set E ⊆ X, a point x ∈ X is
an accumulation point, or cluster point of E if for every r > 0 the ball B (x, r)
contains at least one point of E different from x. The set of all accumulation
points of E is denoted accE.

Note that x does not necessarily belong to the set E.

Remark 88 Note take if x ∈ RN is an accumulation point of E, then by taking
r = 1

n , n ∈ N, there exists a sequence {xn} ⊆ E with xn 6= x for all n ∈ N such
that ‖xn − x‖ < 1

n → 0. Thus {xn} converges to x. Conversely, if there exists
{xn} ⊆ E with xn 6= x for all n ∈ N such that ‖xn − x‖ → 0, then x is an
accumulation point of E.

It turns out that the closure of a set is given by the set and all its accumu-
lations points.

Proposition 89 Given a metric space (X, d) and a set E ⊆ X, then

E = E ∪ accE.

In particular, a set C ⊆ X is closed if and only if C contains all its accumulation
points.

Proof. Exercise.

Exercise 90 (i) Prove that if E1, . . . , En are subsets of RN , then

E1 ∩ · · · ∩ En ⊇ E1 ∩ · · · ∩ En,
E1 ∪ · · · ∪ En = E1 ∪ · · · ∪ En.

(ii) Show that in general E1 ∩ · · · ∩ En 6= E1 ∩ · · · ∩ En.

(iii) Let {Eα}α be an arbitrary collection of sets of RN . What is the relation,
if any, between between

⋂
αEα and

⋂
αEα? And between

⋃
αEα and⋃

αEα?
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Definition 91 Given a metric space (X, d), a set E ⊆ X is bounded if it is
contained in a ball.

Theorem 92 (Bolzano—Weierstrass) Every bounded set E ⊆ RN with infi-
nitely many elements has at least one accumulation point.

The proof relies on a few preliminary results, which are of interest in them-
selves.

Lemma 93 Let {[an, bn]}n be a sequence of closed bounded intervals such that
[an, bn] ⊇ [an+1, bn+1] for all n ∈ N. Then the intersection

∞⋂
n=1

[an, bn]

is nonempty.

Proof. Since

· · · ⊆ [an+1, bn+1] ⊆ [an, bn] ⊆ · · · ⊆ [a1, b1] ,

we have that

a1 ≤ · · · ≤ an ≤ an+1 ≤ · · · , (8)

b1 ≥ · · · ≥ bn ≥ bn+1 ≥ · · · . (9)

Let
A := {a1, . . . , an, . . .} .

By (8) and (9), for n ∈ N,
an ≤ bn ≤ b1.

Hence, A is bounded from above, and so by the supremum property, there exists
x := supA ∈ R and

an ≤ x

for all n ∈ N. We claim that x ≤ bn for all n ∈ N. If not, then there exists
m ∈ N such that bm < x. Since x is the least upper bound of A, there exists
n ∈ N such that bm < an ≤ x. Find k ≥ m,n. Then by (8) and (9),

bm < an ≤ ak ≤ bk ≤ bm,

which is a contradiction. This proves the claim. Hence, x ∈ [an, bn] for all
n ∈ N, and so x ∈

⋂∞
n=1 [an, bn].

Given N bounded intervals I1, . . . , IN ⊂ R, a rectangle in RN is a set of the
form

R := I1 × · · · × IN .

If all the intervals have the same length, we call R a cube.
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Lemma 94 Let {Rn}n be a sequence of closed bounded rectangles in RN such
that Rn ⊇ Rn+1 for all n ∈ N. Then the intersection

∞⋂
n=1

Rn

is nonempty.

Proof. Each rectangle Rn has the form

Rn = [an,1, bn,1]× · · · × [an,N , bn,N ] .

Since Rn ⊇ Rn+1 for all n ∈ N, for every fixed k = 1, . . . , N , we have that
[an,k, bn;k] ⊇ [an+1,k, bn+1,k] for all n ∈ N, and so by the previous lemma there
exists xk ∈

⋂∞
n=1 [an,k, bn;k]. Define x = (x1, . . . , xN ). Then x = (x1, . . . , xN ) ∈

[an,1, bn,1]× · · · × [an,N , bn,N ] = Rn for every n ∈ N, and so x ∈
⋂∞
n=1Rn.

Wednesday, February 9, 2022
We are now ready to prove the Bolzano—Weierstrass theorem.
Proof of the Bolzano—Weierstrass theorem. Since E is bounded, it is

contained in ball, and in turn a ball is contained in a cube Q1 of side-length
`. Divide Q1 into 2N two closed cubes of side-length `

2 . Since E has infinitely
many elements, at least one of these 2N closed cubes contains infinitely many
elements of E. Let’s call this closed interval Q2. Then Q2 ⊂ Q1, and Q2

contains infinitely many elements of E.
Divide Q2 into into 2N two closed cubes of side-length `

22 . Since E has in-
finitely many elements, at least one of these 2N closed cubes contains infinitely
many elements of E. Let’s call this closed interval Q3. By induction, we con-
struct a sequence of closed cubes Qn, n ∈ N, with Qn ⊇ Qn+1, such that the
side-length of Qn is `

2n−1 and Qn contains infinitely many elements of E. By the
previous lemma, there exists x ∈

⋂∞
n=1Qn. We claim that x is an accumulation

point of E.
Fix r > 0 and consider the ball B (x, r). We claim that for n suffi ciently

large, Qn ⊂ B (x, r). To see this, let y ∈ Qn. Then

‖y − x‖ =

√
(y1 − x1)

2
+ · · ·+ (y1 − x1)

2
<

√
N

(
`

2n−1

)2

=
2`

2n

√
N

By the Archimedean property, there exists n ∈ N such that

2`
√
N

r
< 1 + n ≤ 2n,

and so r > 2`
2n

√
N , which proves the claim. Since Qn contains infinitely many

elements of E, the same holds for B (x, r) and so x is an accumulation point of
E.

Definition 95 Given a metric space (X, d) and a set E ⊆ X, a point x ∈ is
a boundary point of E if for every r > 0 the ball B (x, r) contains at least one
point of E and one point of X \E. The set of boundary points of E is denoted
∂E.
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The following theorem is left as an exercise.

Theorem 96 Let E ⊆ RN . Then

(i) E = E ∪ ∂E,

(ii) E is closed if and only if it contains all its boundary points,

(iii) ∂E = ∂
(
RN \ E

)
,

(iv) ∂E = (RN \ E) ∩ E.

6 Compactness

Exercise 97 Let K ⊆ RN be closed and bounded. Prove that if E ⊆ K has
infinitely many elements, then E has an accumulation point that belongs to K.

Exercise 98 Let Kn ⊂ RN be nonempty, bounded, and closed. Assume that
Kn ⊇ Kn+1 for all n ∈ N. Prove that

⋂∞
n=1Kn is nonempty.

Definition 99 Given a metric space (X, d), a set K ⊆ X is compact if for
every open cover of K, i.e., for every collection {Uα}α of open sets such that⋃
α Uα ⊇ K, there exists a finite subcover (i.e., a finite subcollection of {Uα}α

whose union still contains K).

Example 100 The set (0, 1] is not compact, since taking Un :=
(

1
n , 2
)
, a finite

number of Un does not cover (0, 1].

Here the problem is that 0 does not belong to E. But what if E is closed?

Example 101 The set [0,∞) is not compact, since taking Un := (−1, n), a
finite number of Un does not cover [0,∞).

Here E is closed but the problem is that E is not bounded.

Theorem 102 Given a metric space (X, d), a compact set K ⊆ X is closed
and bounded.

Proof. To prove thatK is closed, we show thatX\K is open. Fix x ∈ X\K.
For every y ∈ K consider the balls B (y, ry) and B (x, ry), where r := d(x,y)

4 .
These two balls do not intersect each other (why?). Then {B (y, ry)}y∈K is an
open cover of K, and so there exist y1, . . . , ym ∈ K such that

K ⊆
m⋃
i=1

B (yi, ryi) .

Let r := min{ry1 , . . . , rym} > 0. Then x ∈ B(x, r) and the ball B(x, r) does not
intersect B (yi, ryi) for any i = 1, . . . ,m. Hence, B (x, r) is contained in X \K.
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This shows that every point x of X \ K is an interior point, and so X \ K is
open.
To prove that K is bounded, consider a point x0 ∈ X and B (x0, n). The

family of balls {B (x0, n)}n∈N covers the entire space X and in particular K.
By compactness K is contained in a finite number of balls. Since the balls are
one contained into the other, we have that K is contained in the ball of largest
radius. Hence, K is bounded.

Remark 103 For a topological space (X, τ) we can still prove that a compact
set K ⊆ X is closed, provided the topological space X is a Hausdorff space, that
is, for every x and y ∈ X, with x 6= y, there exist disjoint neighborhoods of x
and y.
A very simple example of a space that is not Hausdorff can be obtained by

considering a nonempty set X and taking as topology τ := {∅, X}. If X has at
least two elements, then any singleton {x} is compact but not closed.
There is a way to define a notion of boundedness for special topological

spaces, called topological vector spaces.

Friday, February 11, 2022

Theorem 104 A closed and bounded set K ⊂ RN is compact.

Proof. Let {Uα}α be a family of open sets such that
⋃
α Uα ⊇ K and

assume by contradiction that no finite subcover covers K. Since K is bounded,
it is contained in ball, and in turn a ball is contained in a cube Q1 of side-length
`. Divide Q1 into 2N two closed cubes of side-length `

2 . If K ∩Q
′ is contained

in a finite subcover for every such subcube, then K would be contained in a
finite subcover. Hence, there exists at least one subcube Q1 such that K ∩Q1 is
not contained in a finite subcover of {Uα}α. Note that this imply, in particular,
that K ∩Q1 has infinitely many distinct elements.
By induction, we construct a sequence of closed cubes Qn, n ∈ N, with

Qn ⊇ Qn+1, such that the side-length of Qn is `
2n−1 and K∩Qn is not contained

in a finite subcover of {Uα}α. Again, this implies that K ∩ Qn has infinitely
many distinct elements. As in the proof of the Bolzano—Weierstrass theorem,
there exists x ∈

⋂∞
n=1Qn and x is an accumulation point of K. Since K is

closed, K contains all its accumulation points (exercise). Hence, x ∈ K. Since
{Uα}α coversK, there exists β such that x ∈ Uβ . On the other hand, Uβ is open,
and so, there is a ball B (x, r) contained in Uβ . As in the proof of the Bolzano—
Weierstrass theorem, we have that for n suffi ciently large, Qn ⊆ B (x, r) ⊆ Uβ ,
which contradicts the fact that K ∩Qn is not contained in a finite subcover of
{Uα}α.

Remark 105 The previous theorem fails for infinite dimensional normed spaces,
and so, in general, for infinite dimensional metric spaces.
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7 Functions

Given two sets X and Y consider a function f : E → Y , where E ⊆ X. The
set E is called the domain of f . When X = RM , if E is not specified, then E
should be taken to be the largest set of x for which f (x) makes sense. This
means that:
If there are even roots, their arguments should be nonnegative. If there are

logarithms, their arguments should be strictly positive. Denominators should
be different from zero. If a function is raised to an irrational number, then the
function should be nonnegative.
Given a set F ⊆ E, the set f (F ) = {y ∈ Y : y = f(x) for some x ∈ F} is

called the image of F through f .
Given a set G ⊆ R, the set f−1 (G) = {x ∈ E : f(x) ∈ G} is called the

inverse image or preimage of F through f . It has NOTHING to do with the
inverse function. It is just one of those unfortunate cases in which we use the
same symbol for two different objects.
The graph of a function is the set of X × Y defined by

gr f = {(x, f(x)) : x ∈ E} .

A function f is said to be

• one-to-one or injective if f (x) 6= f (z) for all x, z ∈ E with x 6= z.

• onto or surjective if f (E) = F ,

• bijective or invertible if it is one-to-one and onto. The function f−1 : F →
E, which assigns to each y ∈ F = f (E) the unique x ∈ E such that
f(x) = y, is called the inverse function of f .

8 Limits of Functions

Definition 106 If (X, dX) and (Y, dY ) are two metric spaces, E ⊆ X, x0 ∈ X
is an accumulation point of E and f : E → Y , we say that ` ∈ Y is the
limit of f (x) as x approaches x0 if for every ε > 0 there exists a real number
δ = δ (ε, x0) > 0 with the property that

dY (f (x) , `) < ε

for all x ∈ E with 0 < dX (x, x0) < δ. We write

lim
x→x0

f (x) = ` or f (x)→ ` as x→ x0.

Remark 107 Note that even when x ∈ E, we cannot take x = x0 since in the
definition we require 0 < dX (x, x0).
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Remark 108 Let E ⊆ RN , let x0 ∈ RN be an accumulation point of E, and
let f : E → RN . We say that a number ` ∈ RM is the limit of f (x) as x
approaches x0 if for every ε > 0 there exists a real number δ = δ (ε,x0) > 0
with the property that

‖f (x)− `‖ < ε

for all x ∈ E with 0 < ‖x− x0‖ < δ. We write

lim
x→x0

f (x) = ` or f (x)→ ` as x→ x0.

Remark 109 If (X, τX) and (Y, τY ) are two topological spaces, E ⊆ X, x0 ∈ X
is an accumulation point of E and f : E → Y , we say that ` ∈ Y is the limit
of f (x) as x approaches x0 if for every neighborhood V of ` there exists a
neighborhood U of x0 with the property that

f (x) ∈ V

for all x ∈ E with x ∈ U \ {x0}. We write

lim
x→x0

f (x) = `.

Note that unless the space Y is Hausdorff, the limit may not be unique.

Theorem 110 Let (X, dX) and (Y, dY ) be two metric spaces, let E ⊆ X, let
x0 ∈ X be an accumulation point of E and f : E → Y . If the limit

lim
x→x0

f (x)

exists, it is unique.

Proof. Assume by contradiction that there exist

lim
x→x0

f (x) = ` and lim
x→x0

f (x) = L

with ` 6= L. Then dY (`, L) > 0. Fix 0 < ε = 1
2dY (`, L). Since limx→x0 f (x) = `,

there exists δ1 > 0 with the property that

dY (f (x) , `) < ε

for all x ∈ E with 0 < dX (x, x0) < δ1, while, since limx→x0 f (x) = L, there
exists δ2 > 0 with the property that

dY (f (x) , L) < ε

for all x ∈ E with 0 < dX (x, x0) < δ2.
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Take δ = min {δ1, δ2} > 0 and take x ∈ E with 0 < dX (x, x0) < δ. Note that
such x exists because x0 is an accumulation point of E. Then by the properties
of the distance,

dY (`, L) ≤ dY (f (x) , `) + dY (f (x) , L)

< ε+ ε = dY (`, L),

which implies that dY (`, L) < dY (`, L). This contradiction proves the theorem.

Remark 111 For topological spaces in general the limit is not unique. Given
(X, τX) and (Y, τY ) are two topological spaces, E ⊆ X, x0 ∈ X is an accumu-
lation point of E and f : E → Y , it can be shown that the limit is unique if the
space Y is Hausdorff. A topological space Y is a Hausdorff space, if for every
x and y ∈ Y , with x 6= y, there exist disjoint neighborhoods of x and y.

Monday, February 14, 2022

Definition 112 If (X, dX) and (Y, dY ) are two metric spaces, E ⊆ X, and
f : E → Y , given a subset F ⊆ E we denote by f |F the restriction of the
function f to the set F , that is, the function f : F → Y .

Remark 113 Let (X, dX) and (Y, dY ) be two metric spaces, let E ⊆ X, let
x0 ∈ X be an accumulation point of E and f : E → Y . Assume that there exists

lim
x→x0

f (x) = `.

Then for every ε > 0 there exists a real number δ = δ (ε, x0) > 0 with the
property that

dY (f (x) , `) < ε (10)

for all x ∈ E with 0 < dX (x, x0) < δ. if F ⊆ E is a subset such that x0 is an
accumulation point of F , then by restricting (10) we have that

dY (f (x) , `) < ε

for all x ∈ F with 0 < dX (x, x0) < δ. Hence, there exists

lim
x→x0

f |F (x) = `.

It follows that if we can find two sets F ⊆ E and G ⊆ E such that x0 ∈ accF
and x0 ∈ accG

lim
x→x0

f |F (x) = `1 6= `2 = lim
x→x0

f |G (x) ,

then by the uniqueness of the limit (which we will prove later), it follows that
the limit over E cannot exist.
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Example 114 Let’s study the limit

lim
(x,y)→(0,0)

xy

x2 + y2
,

where m ∈ N. In this case f (x, y) = xy
x2+y2 and the domain is E = R2 \{(0, 0)}.

Note that (0, 0) is an accumulation point of E.
Taking F = {(x, x) : x ∈ R \ {0}}, we have that (0, 0) is an accumulation

point of F . For (x, x) ∈ F we have

f (x, x) =
x2

x2 + x2
=

1

2
→ 1

2

as x → 0, while taking G = {(x, 0) : x ∈ R \ {0}}, we have that (0, 0) is an
accumulation point of G. For (x, 0) ∈ F we have

f (x, 0) =
0

x2 + 0
= 0→ 0,

and so the limit does not exist.

Remark 115 Note that the degree of the numerator is 2 and the degree of the
numerator is 2, so that in this particular example the limit does not exist if the
degree of the numerator is the same as the degree of the numerator.

Example 116 Let’s study the limit

lim
(x,y)→(0,0)

x2y

x2 + y2
.

In this case f (x, y) = x2y
x2+y2 and the domain is R

2 \ {(0, 0)}. To try to guess
what the limit should be, let’s consider the restriction x = 0. For y 6= 0, we have

f(0, y) =
0y

0 + y2
=

0

y2
= 0→ 0

as y → 0. This says that if the limit exists, then it must be zero. To prove that
the limit exist, we use the fact that x2 ≤ x2 +y2 and that |y| =

√
y2 ≤

√
x2 + y2

to estimate∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣ =
x2 |y|
x2 + y2

≤ (x2 + y2)
√
x2 + y2

x2 + y2
=
√
x2 + y2 < ε

for all (x, y) ∈ R2 \ {(0, 0)} with 0 <
√
x2 + y2 < δ, provided we take δ = ε.

Remark 117 Note that the degree of the numerator is 3 and the degree of the
numerator is 2, so that in this particular example the limit exists if the degree
of the numerator is strictly bigger that the degree of the numerator.
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Example 118 Let’s study the limit

lim
(x,y)→(0,0)

x100y

x− y .

In this case f (x, y) = x100y
x−y and the domain is R2 \ {(x, x) : x ∈ R}. Taking

y = 0, we have that

f (x, 0) =
0

x− 0
= 0→ 0.

Let us take y = x+ xa, where a > 1 has to be chosen. Then

f (x, x+ xa) =
x100 (x+ xa)

x− (x+ xa)
=
x101 + x100+a

−xa .

Take a = 101. Then

f
(
x, x+ x101

)
= −x

101 + x201

x101
= −

x101
(
1 + x100

)
x101

= −1 + x100

1
9 0.

Hence the limit does not exist.

Remark 119 Note that the degree of the numerator is 101 and the degree of
the numerator is 2, but in this case the limit never exists no matter how high
is the degree of the numerator. The problem is that the domain is R2 minus a
curve passing through the origin.

Exercise 120 Study the limit

lim
(x,y)→(0,0)

x4y

y − sinx
.

Hint: Try y = xm + sinx, where m has to be chosen.

We list some important limits.

lim
x→0

sinx

x
= 1, lim

x→0

1− cosx

x2
=

1

2
, lim

x→0

log (1 + x)

x
= 1,

lim
x→0

(1 + x)
a − 1

x
= a for a ∈ R, lim

x→0

ex − 1

x
= 1.

Example 121 Let’s study the limit

lim
(x,y)→(0,0)

sin(xmy)

x2 + y2
,

where m ∈ N. In this case f (x, y) = sin(xmy)
x2+y2 and the domain is R2 \ {(0, 0)}.

We want to use the limit

lim
t→0

sin t

t
= 1.
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Consider f(x, 0) = 0
x2+0 = 0 → 0 as x → 0 and f(0, y) = 0

0+y2 = 0 → 0 as
y → 0. If xy 6= 0, then we can divide by xmy to see that

sin(xmy)

x2 + y2
=

sin(xmy)

xmy

xmy

x2 + y2
.

Then

lim
(x,y)→(0,0)

sin(xmy)

xmy
= 1

and so (using the theorem on product of limits which we will prove later) it
remains to study

lim
(x,y)→(0,0)

xmy

x2 + y2
.

If m = 1 we have seen in the previous example that the limit does not exist.
For m ≥ 2, we have that the limit is 0. Indeed, using the facts that |x| =√

x2 ≤
√
x2 + y2 and |y| =

√
y2 ≤

√
x2 + y2 we have∣∣∣∣ xmy

x2 + y2
− 0

∣∣∣∣ =
|x|m |y|
x2 + y2

≤
(
x2 + y2

)m/2 (
x2 + y2

)1/2
x2 + y2

=
(
x2 + y2

)(m−1)/2 → 0

as (x, y)→ (0, 0).

Remark 122 Note that the degree of the numerator is m+ 1 and the degree of
the denominator is 2, so that in this particular example the limit exists if the
degree of the numerator is higher than the degree of the denominator, that is, if
m+ 1 > 2.

Wednesday, February 16, 2022
The next example shows that checking the limit on every line passing through

x0 is not enough to guarantee the existence of the limit.

Example 123 Let

f (x, y) :=

{
1 if y = x2, x 6= 0,
0 otherwise.

Given the line y = mx, the line intersects the parabola y = x2 only in 0 and in
at most one point. Hence, if x is very small,

f (x,mx) = 0→ 0

as x→ 0. However, since f
(
x, x2

)
= 1→ 1 as x→ 0, the limit does not exists.

Exercise 124 Study the limit

lim
(x,y)→(0,0)

x2y

x4 + y2
.
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Exercise 125 (Important) Let (X, dX) and (Y, dY ) be two metric spaces, let
E ⊆ X, let x0 ∈ X be an accumulation point of E and let f : E → Y . Assume
that there exists ` ∈ Y and a function g : [0,∞)→ (0,∞) with

lim
s→0+

g(s) = 0,

such that for every ε > 0 there exists a real number δ = δ (ε, x0) > 0 with the
property that

dY (f (x) , `) < g(ε)

for all x ∈ E with 0 < dX (x, x0) < δ. Prove that there exists

lim
x→x0

f(x) = `.

Remark 126 (Important) The previous exercise says that we do not have to
be very precise when applying the definition of limit, in the sense that, if we can
prove that for every ε > 0 there exists a real number δ = δ (ε, x0) > 0 with the
property that

dY (f (x) , `) < 4ε1/2

for all x ∈ E with 0 < dX (x, x0) < δ or

dY (f (x) , `) < 4ε3 + 16ε

for all x ∈ E with 0 < dX (x, x0) < δ or anything like that, then we know that
we can conclude that there exists

lim
x→x0

f(x) = `.

This is very useful when proving theorems about limits.

Example 127 Let’s compute the limit

lim
(x,y)→(x0,y0)

x

y
,

where x0 ∈ R and y0 ∈ R, y0 6= 0. The limit is x0
y0
. To prove it, let’s write∣∣∣∣xy − x0

y0

∣∣∣∣ =

∣∣∣∣xy0 − yx0

yy0

∣∣∣∣ =

∣∣∣∣xy0 − x0y0 + x0y0 − yx0

yy0

∣∣∣∣
=

∣∣∣∣ (x− x0)y0 + x0(y0 − y)

yy0

∣∣∣∣
≤ |x− x0||y0|+ |x0||y0 − y|

|y||y0|

≤ |x− x0|
|y| +

|x0||y0 − y|
|y||y0|

.
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The problem is when y gets too closed to zero. The idea is that since y is close
to y0 and y0 6= 0, we can make sure that y stays away from zero. Assume that
|y − y0| < 1

2 |y0|. Then

|y| ≥ |y0| − |y − y0| ≥ |y0| −
1

2
|y0| =

|y0|
2

and so,
1

|y| ≤
2

|y0|
.

Therefore, given ε > 0 for
√

(x− x0)2 + (y − y0)2 < δ we have∣∣∣∣xy − x0

y0

∣∣∣∣ ≤ |x− x0|
|y| +

|x0||y0 − y|
|y||y0|

≤ 2

|y0|
|x− x0|+

2|x0|
y2

0

|y0 − y|

≤ 2

|y0|
ε+

2|x0|
y2

0

ε

provided we take δ = min{ε, 1
2 |y0|}.

Exercise 128 Prove that the limit

lim
(x,y)→(x0,y0)

x+ y = x0 + y0,

where x0 ∈ R and y0 ∈ R.

Example 129 Prove that the limit

lim
(x,y)→(x0,y0)

xy = x0y0,

where x0 ∈ R and y0 ∈ R.

Friday, February 18, 2022

Theorem 130 Let (X, dX), (Y, dY ), (Z, dZ) be three metric spaces, let E ⊆ X,
let x0 ∈ E be an accumulation point of E, and let F ⊆ Y . Given two functions
f : E → F and g : F → Z assume that there exist

lim
x→x0

f (x) = ` ∈ Y,

that ` is an accumulation point of F and that there exists

lim
y→`

g (y) = L ∈ Z.

Suppose also that either f (x) 6= ` for all x ∈ E \ {x0}, or that ` ∈ F and
L = g(`). Then there exists lim

x→x0
g (f (x)) = L.
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Proof. For every ε > 0 there exists η = η (ε, `) > 0 such that

dZ(g(y), L) < ε (11)

for all y ∈ F with 0 < dY (y, `) < η.
Since limx→x0 f (x) = `, there exists δ = δ(x0, η) > 0 such that

dY (f(x), `) < η

for all x ∈ E with 0 < dX(x, x0) < δ.
Case 1: Assume that f (x) 6= ` for all x ∈ E \{x0}. Then for all x ∈ E with

0 < dX(x, x0) < δ, we have that dY (f(x), `) < η, and so we can take y = f(x)
in (11) to get that

dZ(g(f(x)), L) < ε,

which implies that there exists lim
x→x0

g (f (x)) = L.

Case 2: Assume that ` ∈ F and L = g(`). For every ε > 0 there exists
η = η (ε, `) > 0 such that

dZ(g(y), g(`)) < ε

for all y ∈ F with 0 < dY (y, `) < η. Note that, if we take y = `, we have that

dZ(g(`), g(`)) = 0 < ε.

Thus,
dZ(g(y), g(`)) < ε (12)

for all y ∈ F with dY (y, `) < η (so we can take y = `). Then for all x ∈ E with
0 < dX(x, x0) < δ, we have that dY (f(x), `) < η, and so we can take y = f(x)
in (12) to get that

dZ(g(f(x)), L) < ε,

which implies that there exists lim
x→x0

g (f (x)) = L.

Example 131 Let’s prove that the previous theorem fails without the hypotheses
that either f (x) 6= ` for all x ∈ E near x0. Consider the function

g (y) :=

{
1 if y 6= 0,
2 if y = 0.

Then there exists
lim
y→0

g (y) = 1.

So L = 1. Consider the function f (x) := 0 for all x ∈ R. Then for every
x0 ∈ R, we have that

lim
x→x0

f (x) = 0.

So ` = 0. However, g (f (x)) = g (0) = 2 for all x ∈ R. Hence,

lim
x→x0

g (f (x)) = lim
x→x0

2 = 2 6= 1,

which shows that the conclusion of the theorem is violated..
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Theorem 132 Let (X, d) be a metric space, let E ⊆ X, let x0 ∈ X be an
accumulation point of E. Given two functions f, g : E → R, assume that there
exist

lim
x→x0

f (x) = `1 ∈ R, ∈ lim
x→x0

g (x) = `2R.

Then

(i) there exists lim
x→x0

(f + g) (x) = `1 + `2,

(ii) there exists lim
x→x0

(f · g) (x) = `1 · `2,

(iii) if `2 6= 0, then g(x) 6= 0 for all x close to x0 and there exists lim
x→x0

f(x)

g(x)
=

`1
`2
.

Proof. One can use Theorem 130 to prove Theorem 132. Indeed, f + g is
the composition of the function h1 : R× R→ R given by

h1(s, t) := s+ t

with the function P : E → R2 given by P (x) = (f (x) , f (x)), while f · g is the
composition of the function h2 : R× R→ R given by

h2(s, t) := s · t

with the function P , while
f(x)

g(x)
is the composition of the function h3 : R×R→

R given by
h3(s, t) :=

s

t

with the function P . By Exercises 128 and 129 and Example 127, the functions
h1, h2, and h3 are continuous.

In item (iii), to prove that if `2 6= 0, then g(x) 6= 0 for all x close to x0, take
ε = |`2|

2 > 0. Since limx→x0 g (x) = `2, we can find ε > 0 such that

|g(x)− `2| <
|`2|
2

for all x ∈ E with 0 < d(x, x0) < δ. Hence,

|g(x)| = |`2 + g(x)− `2| ≥ |`2| − |g(x)− `2| ≥ |`2| −
|`2|
2

=
|`2|
2

> 0

for all x ∈ E with 0 < d(x, x0) < δ, which implies that g(x) 6= 0 for all x close
to x0.

Remark 133 The previous theorem continues to hold if `1, `2 ∈ [−∞,∞], pro-
vided we avoid the cases ∞−∞, 0∞, 0

0 ,
∞
∞ .
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Monday, February 21, 2022

Theorem 134 (Squeeze Theorem) Let (X, d) be a metric space, let E ⊆ X,
let x0 ∈ X be an accumulation point of E. Given three functions f, g, h : E → R,
assume that there exist

lim
x→x0

f (x) = lim
x→x0

g (x) = `.

and that f (x) ≤ h (x) ≤ g (x) for every x ∈ E. Then there exists lim
x→x0

h (x) = `.

Proof. Given ε > 0 there exist δ1 > 0 such that

|f (x)− `| ≤ ε

for all x ∈ E with 0 < dX (x, x0) < δ1 and δ2 > 0 such that

|g (x)− `| ≤ ε

for all x ∈ E with 0 < dX (x, x0) < δ2. Then for all x ∈ E with 0 < dX (x, x0) <
δ = min {δ1, δ2}, we have that

`− ε ≤ f (x) ≤ h (x) ≤ g (x) ≤ `+ ε.

Hence,
|h (x)− `| ≤ ε

for all x ∈ E with 0 < dX (x, x0) < δ, which shows that lim
x→x0

h (x) = `.

Example 135 The previous theorem can be used for example to show that for
a > 0

lim
x→0
|x|a sin

1

x
= 0.

Indeed,

0 ≤
∣∣∣∣|x|a sin

1

x

∣∣∣∣ = |x|a
∣∣∣∣sin 1

x

∣∣∣∣ ≤ |x|a
and since |x|a → 0 as x → 0 we can apply the squeeze theorem. We could also
used the following Exercise.

Exercise 136 Let (X, d) be a metric space, let E ⊆ X, let x0 ∈ X be an
accumulation point of E. Given two functions f, g : E → R, assume that there
exists

lim
x→x0

f (x) = 0,

and that g is bounded, that is, |g (x) | ≤ L for all x ∈ E and for some L > 0.
Prove that there exists lim

x→x0
(fg) (x) = 0.

39



9 Limits of Monotone Functions

Let E ⊆ R and let f : E → R. Then f is said to be

• increasing if f (x) ≤ f (y) for all x, y ∈ E with x < y,

• strictly increasing if f (x) < f (y) for all x, y ∈ E with x < y,

• decreasing if f (x) ≥ f (y) for all x, y ∈ E with x < y,

• strictly decreasing if f (x) > f (y) for all x, y ∈ E with x < y,

• monotone if one of the four property above holds.

Given E ⊆ R and f : E → R , if x0 ∈ R is an accumulation point of
E ∩ (−∞, x0), we define the left limit of f as x approaches x0 as

lim
x→x−0

f(x) := lim
x→x0

f |E∩(−∞,x0) (x) ,

provided the limit limx→x0 f |E∩(−∞,x0) (x) exists. Similarly, if x0 ∈ R is an
accumulation point of E∩(x0,∞), we define the right limit of f as x approaches
x0 as

lim
x→x+0

f(x) := lim
x→x0

f |E∩(x0,∞) (x) ,

provided the limit limx→x0 f |E∩(x0,∞) (x) exists.
In what follows if a nonempty set F ⊆ R is not bounded from above, we set

supF :=∞. Similarly, if a nonempty set F ⊆ R is not bounded from below, we
set inf F := −∞.

Theorem 137 Let E ⊆ R and let f : E → R be a monotone function. If
x0 ∈ R is an accumulation point of E ∩ (−∞, x0), then there exists

lim
x→x−0

f(x) =

{
supE∩(−∞,x0) f if f is increasing,
infE∩(−∞,x0) f if f is decreasing,

while if x0 ∈ R is an accumulation point of E ∩ (x0,∞) then there exists

lim
x→x+0

f(x) =

{
supE∩(x0,∞) f if f is decreasing,
infE∩(x0,∞) f if f is increasing.

Proof. Assume that x0 ∈ R is an accumulation point of E ∩ (−∞, x0) and
that f is increasing (the other cases are similar). There are two cases.
Case 1: The function f is bounded from above in E ∩ (−∞, x0). Hence,

there exists
sup

E∩(−∞,x0)

f = ` ∈ R.

We need to prove that there exists

lim
x→x−0

f(x) = `. (13)
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Let ε > 0. Since ` is the supremum of f(E ∩ (−∞, x0)), we have that f(x) ≤ `
for all x ∈ E with x < x0. On the other hand, since ` − ε is not an upper
bound for the set f(E ∩ (−∞, x0)) there exists x1 ∈ E ∩ (−∞, x0) such that
`− ε < f(x1). But since f is increasing, for all x ∈ E with x1 < x < x0 we have
that `− ε < f(x1) ≤ f(x). Thus,

`− ε < f(x) ≤ ` < `+ ε

for all x ∈ E ∩ (−∞, x0) with x1 < x < x0. Take δ := x0 − x1 > 0. Then
|f(x)− `| < ε for all x ∈ E ∩ (−∞, x0) with 0 < |x− x0| < δ. This proves (13).

Case 2: The function f is not bounded from above in E ∩ (−∞, x0). We
need to prove that there exists

lim
x→x−0

f(x) =∞. (14)

Let M > 0. Since the set f(E ∩ (−∞, x0)) is not bounded from above there
exists x1 ∈ E ∩ (−∞, x0) such that f(x1) > M . But since f is increasing, for
all x ∈ E with x1 < x < x0 we have that M < f(x1) ≤ f(x). Thus,

M < f(x)

for all x ∈ E ∩ (−∞, x0) with x1 < x < x0. Take δ := x0 − x1 > 0. Then
f(x) > M for all x ∈ E ∩ (−∞, x0) with 0 < |x− x0| < δ. This proves (14).

Remark 138 A similar result holds if E ⊆ R and if f : E → R, where we
recall that R = [−∞,∞] is the extended real line.

Definition 139 A set E ⊆ RN is countable if there exists a one-to-one func-
tion f : E → N.

Remark 140 It can be shown that Q is countable and that if En ⊆ R, n ∈ N,
is countable, then

E =

∞⋃
n=1

En

is countable. Using Cantor’s diagonal argument one can show that R and the
irrationals are NOT countable.

Definition 141 A set I ⊆ R is an interval if for every x, y ∈ I, with x < y,
we have that the interval [x, y] is contained in I.

Definition 142 Given a set X and a function f : X → [0,∞] the infinite sum∑
x∈X

f (x)

is defined as ∑
x∈X

f (x) := sup

{∑
x∈Y

f (x) : Y ⊂ X, Y finite

}
.
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Proposition 143 Given a set X and a function f : X → [0,∞], if∑
x∈X

f (x) <∞,

then the set {x ∈ X : f (x) > 0} is countable. Moreover, f does not take the
value ∞.

Proof. Define
M :=

∑
x∈X

f (x) <∞.

For k ∈ N set Xk :=
{
x ∈ X : f (x) > 1

k

}
and let Y be a finite subset of Xk.

Then
1

k
number of elements of Y ≤

∑
x∈Y

f (x) ≤M,

which shows that Y cannot have more than bkMc elements, where b·c is the
integer part. In turn, Xk has a finite number of elements, and so

{x ∈ X : f (x) > 0} =

∞⋃
k=1

Xk

is countable.

Exercise 144 Given a nonempty set X and two functions f, g : X → [0,∞].

(i) Prove that ∑
x∈X

(f (x) + g (x)) ≤
∑
x∈X

f (x) +
∑
x∈X

g (x) .

(ii) If f ≤ g, then ∑
x∈X

f (x) ≤
∑
x∈X

g (x) .

Wednesday, February 23, 2022

Theorem 145 Let I ⊆ R be an interval and let f : I → R be a monotone
function. Then there exists

lim
y→x

f(y) = f(x)

for all x ∈ I except at most for countably many.

Proof. Step 1: Assume that I = [a, b] and, without loss of generality, that
f is increasing. For every x ∈ (a, b) there exist

lim
y→x+

f (y) =: f+ (x) , lim
y→x−

f (y) =: f− (x) .
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Let S (x) := f+ (x)− f− (x) ≥ 0 be the jump of f at x. Then

lim
y→x

f(y) = f(x)

if and only if S (x) = 0. Let J ⊆ [a, b] be any finite subset, and write

J = {x1, . . . , xk} , where x1 < · · · < xk.

Since f is increasing, we have that

f (a) ≤ f− (x1) ≤ f+ (x1) ≤ f− (x2) ≤ f+ (x2)

≤ · · · ≤ f− (xk) ≤ f+ (xk) ≤ f (b) ,

and so, ∑
x∈J

S (x) =
k∑
i=1

(f+ (xi)− f− (xi)) ≤ f (b)− f (a) ,

which implies that ∑
x∈(a,b)

S (x) ≤ f (b)− f (a) .

By the previous proposition, it follows that the set of discontinuity points of f
is at most countable.
Step 2: If I is an arbitrary interval, construct an increasing sequence of intervals
[an, bn] such that

an ↘ inf I, bn ↗ sup I.

Since the union of countable sets is countable and on each interval [an, bn] the
set of discontinuity points of f is at most countable, by the previous step it
follows that the set of discontinuity points of f in I is at most countable.

Conversely, given a countable set E = {rn : n ∈ N}, we can construct an
increasing function f : R→ R such that

lim
y→x

f(y) = f(x)

for all x ∈ R \ E and f jumps at every point of E. Consider

fn(x) =

{
1

2n if x ≥ rn,
0 if x < rn.

Then the function f : R→ R, defined by

f(x) :=

∞∑
n=1

fn(x), x ∈ R,

is increasing and has the desired properties. We will see this later.

Exercise 146 Let E ⊆ R be not bounded from above and let f : E → R be an
increasing function. Prove that there exists

lim
x→∞

f(x) = sup
x∈E

f(x).
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10 Series

Definition 147 Given a normed space X and a sequence {xn}n of vectors in
X, we call the n-th partial sum the vector

sn = x1 + · · ·+ xn.

The sequence {sn}n of partial sums is called infinite series or series and is
denoted

∞∑
n=1

xn.

If there exists limn→∞ sn = S ∈ X, we say that the series
∑∞
n=1 xn is conver-

gent. The number S is called sum of the series. while if the limn→∞ sn does
not exist, we say that the series

∑∞
n=1 xn oscillates.

If X = R and limn→∞ sn = ∞ or limn→∞ sn = −∞, we say that series∑∞
n=1 xn is divergent.

Friday, February 25, 2022
First interim exam.

Monday, March 01, 2022
Solutions, first interim exam.

Wednesday, March 03, 2022

Remark 148 There is nothing special about 1, we will also consider series of
the type

∑∞
n=0 xn or

∑∞
n=n0

xn, where n0 ∈ N. The only change is that in the
partial sums, one should consider sn = x0 + · · ·+ xn and sn = xn0 + · · ·+ xn,
respectively.

Theorem 149 Given a normed space X and a sequence {xn}n of vectors in
X, if the series

∑∞
n=1 xn converges, then there exists

lim
n→∞

xn = 0.

Proof. Since the series
∑∞
n=1 xn converges, there exists limn→∞ sn = S ∈

X. Hence,
an = sn+1 − sn → S − S = 0

as n→∞. Note that here it is important that S ∈ X.

Corollary 150 Given a series
∑∞
n=1 xn, if either the limit limn→∞ xn does

not exist or it exists but is different from zero, then the series
∑∞
n=1 xn cannot

converge.

Example 151 (Geometric series) The series

∞∑
n=0

xn,

44



where x ∈ R, is called a geometric series with ratio x. Since

lim
n→∞

xn = 0 if and only if − 1 < x < 1,

by the previous theorem for |x| ≥ 1, the series cannot converge. It remains to
study what happens when −1 < x < 1. By Exercise 15,

sn = 1 + x · · ·+ xn =
1− xn+1

1− x ,

and so

lim
n→∞

sn = lim
n→∞

1− xn+1

1− x =
1

1− x.

Thus for −1 < x < 1, the series converges and its sum is 1
1−x .

10.1 Series of Nonnegative Terms

A series
∑∞
n=1 xn is called a series of nonnegative terms if xn ≥ 0 for all n ∈ N.

These series have the important property that they cannot oscillate.

Theorem 152 Given a series
∑∞
n=1 xn with xn ≥ 0 for all n ∈ N, then the

series either converges or it diverges to ∞.

Proof. For all n ∈ N, we have that sn+1 = sn+an ≥ sn, and so the sequence
{sn} is increasing. Thus, by Exercise 146, there exists limn→∞ sn = S ∈ [0,∞].
Hence, the series either converges or it diverges to ∞.

Remark 153 The same proof continues to work if we only assume that there
exists n0 ∈ N such that xn ≥ 0 for all n ≥ n0. In this case, we have that
sn+1 ≥ sn for all n ≥ n0, which still implies that the limit limn→∞ sn exists,
although this time it can also be negative.

Next we study some texts for convergence of series of nonnegative terms.

Theorem 154 (Comparison Test) Given two series
∑∞
n=1 xn and

∑∞
n=1 yn

with xn ≥ 0 and yn ≥ 0 for all n ∈ N. Assume that there exists N ∈ N such
that

xn ≤ yn
for all n ≥ N .

(i) If the series
∑∞
n=1 yn converges, then so does the series

∑∞
n=1 xn.

(ii) If the series
∑∞
n=1 xn diverges to ∞, then so does the series

∑∞
n=1 yn.
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Proof. (i) Let tn = y1 + · · ·+ yn. By hypothesis, there exists limn→∞ tn =
T ∈ R. It follows that {tn} is bounded by T . Hence, 0 ≤ tn ≤ T for all n ∈ N.
For n ≥ N , we have that

sn = x1 + · · ·+ xN−1 + xN + · · ·+ yn ≤ (x1 + · · ·+ xN−1) + yN + · · ·+ yn

≤ (x1 + · · ·+ xN−1) + y1 + · · ·+ yn = (x1 + · · ·+ xN−1) + tn

≤ (x1 + · · ·+ xN−1) + T.

Thus, the sequence {sn} is bounded. Since it is increasing, it follows that it
converges.
(ii) By hypothesis, there exists limn→∞ sn = ∞. As before, for n ≥ N , we

have that
sn ≤ (x1 + · · ·+ xN−1) + tn.

Letting n→∞, we conclude that limn→∞ tn =∞.

Example 155 Consider the series

∞∑
n=1

(
1 + cosn

3

)n
.

Note that 1 + cosn ≥ 0. Moreover,

0 ≤
(

1 + cosn

3

)n
≤
(

2

3

)n
.

Hence, by the comparison test, the series
∑∞
n=1

(
1+cosn

3

)n
converges.

Given a real number t ∈ R, the positive part of t is defined as t+ :=
max{t, 0}, while the negrative part of t is t− := max{−t, 0}. Observe that

t = t+ − t−, |t| = t+ + t−.

Corollary 156 Let {xn}n be a sequence of vectors in RN such that
∑∞
n=1 ‖xn‖

converges. Then
∑∞
n=1 xn converges.

Proof. Step 1. Assume first that N = 1. Then 0 ≤ (xn)+ ≤ |xn| and
0 ≤ (xn)− ≤ |xn|. Since

∑∞
n=1 |xn| converges, by the comparison principle, so

do
∑∞
n=1(xn)− and

∑∞
n=1(xn)+. In turn, by the theorem on the sum of limits,

there exist

lim
n→∞

(x1 + · · ·+xn) = lim
n→∞

((x1)+ + · · ·+ (xn)+)− lim
n→∞

(((x1)−+ · · ·+ ((xn)−),

which implies that the series
∑∞
n=1 xn converges.

Step 2. If N ≥ 2, write xn = (x
(1)
n , . . . , x

(N)
n ). Then for each i = 1, . . . , N ,

|x(i)
n | ≤

√
(x

(1)
n )2 + · · ·+ (x

(N)
n )2 = ‖xn‖. Hence, by the previous step, the

series
∑∞
n=1 x

(i)
n converges for every i = 1, . . . , N . In turn,

∑∞
n=1 xn converges.
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Remark 157 You will see in other courses, that if X is a complete normed
space, then the previous corollary continues to hold.

Remark 158 In step 2 of the previous proof, we used the fact that if f : E →
RM , where E ⊆ X and x0 ∈ X is an accumulation point of E, then there exists

lim
x→x0

f(x) = `

if and only for each i = 1, . . . ,M , there exists limx→x0 fi(x) = `i, where f =
(f1, . . . , fM ). We leave this fact as an exercise.

Monday, March 14, 2022

Theorem 159 (Root Test) Given a series
∑∞
n=1 xn with xn ≥ 0 for all n ∈

N, if
lim sup
n→∞

n
√
xn < 1,

then the series converges. If

lim sup
n→∞

n
√
xn > 1,

then the series diverges to ∞.

Proof. Let ` = lim supn→∞ n
√
xn. Assume first that ` < 1 and fix ε > 0 so

small that `+ ε < 1. By an exercise in your homework, there exists N ∈ N such
that

n
√
xn ≤ `+ ε

for all n ≥ N , and so
xn ≤ (`+ ε)

n

for all n ≥ N . Since ` + ε < 1, the geometric series
∑
n=1 (`+ ε)

n converges.
Hence, so does

∑∞
n=1 xn by the comparison test.

On the other hand, if ` > 1, fix ε > 0 so small that `− ε > 1. Again by your
homework,

n
√
xn ≥ `− ε

for infinitely many n, and so

xn ≥ (`− ε)n

for infinitely many n. Thus,

lim sup
n→∞

xn ≥ lim sup
n→∞

(`− ε)n =∞,

since ` − ε > 1. It follows by Theorem 149, that the series
∑∞
n=1 xn cannot

converge. In turn, by Theorem 152,
∑∞
n=1 xn diverges to ∞.
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Remark 160 If lim supn→∞ n
√
xn = 1, then the test is inconclusive and one

should try a different test. We will see that the series
∑∞
n=1

1
n diverges, while

the series
∑∞
n=1

1
n2 . However, in both cases, lim supn→∞ n

√
xn = 1. Indeed,

n

√
1

n
=

(
1

n

) 1
n

= elog( 1
n )

1
n

= e
1
n log( 1

n ) = e
− logn

n → e0 = 1,

n

√
1

n2
=

(
1

n2

) 1
n

=

(
1

n

) 2
n

= elog( 1
n )

2
n

= e
2
n log( 1

n ) = e
−2 logn

n → e0 = 1.

Example 161 Consider the series of functions

∞∑
n=1

enx

n
.

Note that e
nx

n ≥ 0. Then

lim
n→∞

enx

n
=

{
∞ if x > 0,
0 if x ≤ 0.

Thus, by Theorems 149 and 152 the series diverges to ∞ for x > 0. It remains
to study what happens for x ≤ 0. We have that

n

√
enx

n
= ex

(
1

n

) 1
n

= exe
1
n log( 1

n ) = exe
− logn

n → exe0 < 1

for x < 0. Thus, for x < 0, the series converges by the root test, while for x = 0
we have

∑∞
n=1

1
n , which diverges, as you will see later.

To study the uniform convergence of the series, consider ε > 0 and a set E =
(−∞,−ε]. Since d

dx ( e
nx

n ) = enx > 0, the function fn(x) = enx

n is increasing.
Therefore,

sup
(−∞,ε]

fn(x) = fn(−ε) =
e−nε

n
.

Hence,
∞∑
n=1

sup
(−∞,ε]

fn(x) =

∞∑
n=1

e−nε

n
.

We have already seen that
∑∞
n=1

e−nε

n converges. Thus,
∑∞
n=1 sup(−∞,ε] fn(x)

converges, so by your homework,
∑∞
n=1

enx

n converges uniformly in (−∞,−ε].
It remains to show that if E ⊆ (−∞, 0) is such that supE = 0, then the series
does not converge uniformly in E. I will skip this because is very similar to your
homework.

Theorem 162 (Ratio Test) Given a series
∑∞
n=1 xn with xn > 0 for all n ∈

N, if
lim sup
n→∞

xn+1

xn
< 1,
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then the series converges. If

lim inf
n→∞

xn+1

xn
> 1,

then the series diverges to ∞.

Proof. If lim supn→∞
xn+1
xn

< 1, then by your homework, lim supn→∞ n
√
xn <

1, and so by the root test, the series converges. On the other hand, if ` =
lim infn→∞

xn+1
xn

> 1, fix ε > 0 so small that ` − ε > 1. By an exercise in your
homework, there exists N ∈ N such that

xn+1

xn
≥ `− ε

for all n ≥ N , and so xn+1 ≥ (`− ε)xn ≥ xn for all n ≥ N , which implies
the sequence {xn}n is increasing for n ≥ N . Hence, there exists limn→∞ xn =
supn≥N xn > 0. It follows by Theorem 149, that the series

∑∞
n=1 xn cannot

converge. In turn, by Theorem 152,
∑∞
n=1 xn diverges to ∞.

Remark 163 It follows from the second part of the proof, that if there exists
N ∈ N such that xn+1xn

≥ 1 for all n ≥ N , then the series
∑∞
n=1 xn diverges to

∞.

Remark 164 In view of your homework, the ratio test is worse than the root
test.

Example 165 Consider the series

∞∑
n=1

n!xn

nn
,

where x > 0. Note that n!xn

nn . By Stirling’s formula

lim
n→∞

n!xn

nn
= lim
n→∞

nne−n
√

2nπxn

nn
= lim
n→∞

(x
e

)n√
2nπ =

{
∞ if x ≥ e,
0 if x < e.

Thus, by Theorems 149 and 152 the series diverges to ∞ for x ≥ e. It remains
to study what happens for x < e. We have that

xn+1

xn
=

(n+1)!xn+1

(n+1)n+1

n!xn

nn

=

n!(n+1)xnx
(n+1)n(n+1)

n!xn

nn

=
xnn

(n+ 1)
n =

x(
n+1
n

)n =
x(

1 + 1
n

)n → x

e
< 1

for x < e. Thus, for x < e, the series converges by the ratio test.
Let’s prove that we have uniform convergence in the set E = (0, e−ε], where

0 < ε < e. Since xn is increasing for x > 0,

sup
(0,e−ε]

fn(x) = fn(e− ε) =
nne−n

√
2nπ(e− ε)n
nn

.
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Hence,
∞∑
n=1

sup
(0,e−ε]

fn(x) =

∞∑
n=1

nne−n
√

2nπ(e− ε)n
nn

.

We have already seen that
∑∞
n=1

nne−n
√

2nπ(e−ε)n
nn converges. Thus,

∑∞
n=1 sup(0,e−ε] fn(x)

converges, so by your homework,
∑∞
n=1

n!xn

nn converges uniformly in E. It re-
mains to show that if E ⊆ (0, e) is such that supE = e, then the series does
not converge uniformly in E. I will skip this because is very similar to your
homework.

Wednesday, March 16, 2022

11 Continuity

We recall that

Definition 166 Let (X, dX), (Y, dY ) be metric spaces, let E ⊆ X, and let
f : E → Y . We say that f is continuous at x0 ∈ E ∩ accE if there exists

lim
x→x0

f(x) = f(x0).

If f is continuous at every point of E ∩ accE we say that f is continuous on E
and we write f ∈ C (E) or f ∈ C0 (E).

Remark 167 If (X, τX) and (Y, τY ) are two topological spaces, E ⊆ X, x0 ∈
E ∩ accE, and f : E → Y , we say that f is continuous at x0 if for every
neighborhood V of f (x0) there exists a neighborhood U of x0 with the property
that

f (x) ∈ V

for all x ∈ E with x ∈ U .

Exercise 168 Prove that the functions sinx, cosx, xn, where n ∈ N, are con-
tinuous.

The following theorems follows from the analogous results for limits.

Theorem 169 Let (X, d), be a metric space, let E ⊆ X, and let x0 ∈ E. Given
two functions f , g : E → R assume that f and g are continuous at x0. Then

(i) f + g and fg are continuous at x0;

(ii) if g (x) 6= 0 for all x ∈ E, then f

g
is continuous at x0.

Example 170 In view of Exercise 168 and the previous theorem, the functions
tanx = sin x

cos x and cotx = cos x
sin x are continuous in their domain of definition.
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Theorem 171 Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces, let E ⊆ X, let
F ⊆ Y , and let f : E → F and g : F → Z. Assume that f is continuous at x0

and that g is continuous at f(x0). Then g ◦ f : E → Z is continuous at x0.

Let E ⊆ RN and let f : E → RM . Given x0 ∈ E, what happens when f
is discontinuous at x0? Then x0 is an accumulation point of E. The following
situations can arise. It can happen that there exists

lim
x→x0

f (x) = ` ∈ RM

but ` 6= f (x0). In this case, we say that x0 is a removable discontinuity. Indeed,
consider the function g : E → RM defined by

g (x) :=

{
f (x) if x 6= x0,
` if x = x0.

Then there exists
lim
x→x0

g (x) = ` = g (x0) ,

and so the new function g is continuous at x0.
Another type of discontinuity is when x0 is an accumulation point of E− :=

E ∩ (−∞, x0] and of E+ := E ∩ (x0,∞) and there exist

lim
x→x−0

f (x) = ` ∈ RM , lim
x→x+0

f (x) = L ∈ RM

but ` 6= L. In this case the point x0 is called a jump discontinuity of f .

Example 172 The integer and fractional part of x have jump discontinuity at
every integer.

Finally, the last type of discontinuity is when at least one of the limits
limx→x−0

f (x) and limx→x+0
f (x) is not finite or does not exist. In this case, the

point x0 is called an essential discontinuity of f .

Example 173 The function

f (x) :=

{
sin 1

x if x 6= 0,
1 if x = 0,

and

g (x) :=

{
log x if x > 0,
1 if x = 0,

have an essential discontinuity at x = 0.

Theorem 174 Let (X, dX), (Y, dY ) be metric spaces, let E ⊆ X, and let f :
E → Y .

(i) Then f is continuous if and only if f−1 (V ) is relatively open for every
open set V ⊆ Y .

51



(ii) Then f is continuous if and only if f−1 (C) is relatively closed for every
closed set C ⊆ Y .

Proof. (i) Step 1: Let V ⊆ Y be open. Assume that f is continuous. If
f−1 (V ) is empty, then there is nothing to prove. Otherwise, let x0 ∈ f−1 (V ).
Since V is open and f (x0) ∈ V , there exists ε > 0 such that BY (f (x0) , ε) ⊆ V .
Since f is continuous at x0 there exists δx0 > 0 such that for all x ∈ E with
dX(x, x0) < δx0 , we have

dY (f(x), f(x0)) < ε.

Hence, for all x ∈ E with dX(x, x0) < δx0 ,

f (x) ∈ BY (f (x0) , ε) ⊆ V,

and so BX (x0, δx0) ∩ E ⊆ f−1 (V ).
Take

U :=
⋃

x∈f−1(V )

BX (x, δx) .

Then U is open and f−1 (V ) ⊆ U . Hence,

U ∩ E = f−1 (V ) ,

which shows that f−1 (V ) is relatively open.
Step 2: Assume that f−1 (V ) is relatively open for every open set V ⊆ Y .

Let x0 ∈ E ∩ accE and let ε > 0. Consider the open set V = BY (f (x0) , ε).
Then f−1 (V ) is relatively open and so there exists an open set U ⊆ X such
that U ∩E = f−1 (V ). Since x0 ∈ f−1 (U), we have x0 ∈ U . Hence there exists
BX (x0, δ) ⊆ U . It follows that for every x ∈ U ∩ E with 0 < dX(x, x0) < δ,
then x belongs to U ∩ E = f−1 (V ) and so f(x) ∈ V = BY (f (x0) , ε), that is,

dY (f(x), f(x0)) < ε,

which shows that there exists

lim
x→x0

f(x) = f(x0).

(ii) Exercise.
As a corollary, we get.

Corollary 175 Let (X, dX), (Y, dY ) be metric spaces, let E ⊆ X, and let f :
E → Y .

(i) If E is open, then f is continuous if and only if f−1 (V ) is open for every
open set V ⊆ Y .

(ii) If E is closed, then f is continuous if and only if f−1 (C) is relatively
closed for every closed set C ⊆ Y .
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Remark 176 The previous characterization of continuous functions is useful
to define continuity in a topological space.

Example 177 The previous theorem implies in particular that sets of the form

{x ∈ R : 4 sinx− log (1 + |x|) > 0}

are open. We used this in the exercises.

Next we show that continuous functions preserve compactness.

Proposition 178 Let (X, dX), (Y, dY ) be metric spaces, let E ⊆ X, and let
f : E → Y be continuous. Then f (K) is compact for every compact set K ⊆ E.

Proof. Let {Uα}α∈Λ be an open cover of f (K). By continuity, f−1 (Uα)
is relatively open for every α ∈ Λ, and so there exists Wα open such that
f−1 (Uα) = E ∩ Wα. The family {Wα}α∈Λ is an open cover of K. Since K

is compact, we may find Uα1 , . . . , Uαl such that {Wαi}
l
i=1 cover K. In turn,

Uα1 , . . . , Uαl cover f (K). Indeed, if y ∈ f (K), then there exists x ∈ K such
that f (x) = y. Let i = 1, . . . , l be such that x ∈ f−1 (Uαi) = E ∩Wαi . Then
y = f (x) ∈ Uαi .

An important consequence of the previous theorem is the following result.

Theorem 179 (Weierstrass) Let (X, d) be a metric space, let K ⊆ X be
compact and let f : K → R be continuous. Then there exist x0, x1 ∈ K such
that

f (x0) = min
x∈K

f (x) , f (x1) = max
x∈K

f (x)

Proof. By the previous theorem f(K) is compact in R. It follows that f(K)
is closed and bounded. Hence, there exist L = sup f(K). There are now two
cases. Either L ∈ f(K) or L /∈ f(K). In the first case, there exists x1 ∈ K such
that f(x1) = L = sup f(K), that is, f(x1) ≥ f(x) for all x ∈ K. On the other
hand, if L /∈ f(K), then L would be an accumulation point of the set f(K),
but a closed set contains all its accumulation points. Hence, the case L /∈ f(K)
cannot happen. This shows that f admits a maximum.

Similarly, taking ` = inf f(K), we can show that ` ∈ f(K).
We now discuss the continuity of inverse functions and of composite func-

tions. If a continuous function f is invertible its inverse function f−1 may not
be continuous.

Example 180 Let

f (x) :=

{
x if 0 ≤ x ≤ 1,
x− 1 if 2 < x ≤ 3.

Then f−1 : [0, 2]→ R is given by

f−1 (x) :=

{
x if 0 ≤ x ≤ 1,
x+ 1 if 1 < x ≤ 2,

which is not continuous at x = 1.
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Friday, March 18, 2022
We will see that this cannot happen if f : I → R with I an interval and

when E is a compact set.

Exercise 181 Consider the function f : (−π, π)→ R2 given by f(t) = (sin(2t), sin t).
Prove that f is injective, continuous but that the inverse is not continuous.

Remark 182 However, if U ⊆ RN and f : U → RN is continuous and injec-
tive, then f(U) is open and f−1 : f(U) → RN is continuous. This is a deep
theorem known as invariance of the domain. We will not prove it in this course.

Theorem 183 Let (X, dX), (Y, dY ) be metric spaces, let K ⊆ X be compact,
and let f : K → Y be one-to-one and continuous. Then the inverse function
f−1 : f (K)→ X is continuous.

Lemma 184 Let (X, dX), let K ⊂ X be a compact set, and let C ⊆ K be a
closed set. Then C is compact.

Proof. Let {Uα}α∈Λ be an open cover of C. Since C is closed, the set
U := X \ C is open. Note that

K = (K \ C) ∪ C ⊆ U ∪
⋃
α

Uα.

Since K is compact, there exist Uα1 , . . . , Uαl such that

K ⊆ U ∪
l⋃
i=1

Uαi .

But since U = X \ C, it follows that

C ⊆
l⋃
i=1

Uαi ,

which shows that C is compact.
Proof of Theorem 183. Let C ⊆ X be a closed set. By the previous lemma

K ∩ C is compact. By Proposition 178 we have that f (K ∩ C) is compact. In
particular, f (K ∩ C) is closed by Theorem 102. Let g := f−1. Then

f (K ∩ C) = g−1 (C) ,

which shows that g−1 (C) is closed for every closed set C ⊆ X. Thus, by
Theorem 174, g is continuous.

Remark 185 Here we used the fact that a compact set is closed, so to extend
this to a function f : K → Y , where K ⊆ X and X and Y are topological
spaces, we need Y to be a Hausdorff topological space (see Remark 103).
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Example 186 In view of the previous theorem and Exercise 168, the functions
arccosx, arcsinx, arctanx are continuous.
Given a > 0, the function loga x is continuous for x > 0, since it is the

inverse of ax.
Given n ∈ N, the function 2n+1

√
x, x ∈ R, is continuous, since it is the

inverse of x2n+1. The function 2n
√
x, x ∈ [0,∞), is continuous, since it is the

inverse of x2n.
Given a > 0, since ex and log x are continuous in (0,∞), by writing

xa = elog xa = ea log x,

xx = elog xx = ex log x,

it follows from Theorems 169 and 171, that xa and xx are continuous in (0,∞).

12 Directional Derivatives and Differentiability

Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed spaces, let E ⊆ X, let f : E → Y and let
x0 ∈ E. Given a direction v ∈ X with ‖v‖X = 1, let L be the line through x0

in the direction v, that is,

L := {x ∈ X : x = x0 + tx, t ∈ R} ,

and assume that x0 is an accumulation point of the set E ∩ L. The directional
derivative of f at x0 in the direction v is defined as

∂f

∂v
(x0) := lim

t→0

f (x0 + tv)− f (x0)

t
,

provided the limit exists in Y .
If X = RN and v = ei, where ei is a vector of the canonical basis, the

directional derivative ∂f
∂ei

(x0), if it exists, is called the partial derivative of f

with respect to xi and is denoted
∂f
∂xi

(x0) or fxi (x0) or Dif (x0).

Remark 187 When X = R, taking v = 1, we get that

lim
t→0

f (x0 + t)− f (x0)

t
,

which is the standard definition of derivative f ′(x0). It can be shown that if
f ′ (x0) exists in R, then f is continuous at x0.

In view of the previous remark, one would be tempted to say that if the
directional derivatives at x0 exist and are finite in every direction, then f is
continuous at x0. This is false in general, as the following example shows.

Example 188 Let

f (x, y) :=

{
1 if y = x2, x 6= 0,
0 otherwise.
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Given a direction v = (v1, v2), the line L through (0, 0) in the direction v inter-
sects the parabola y = x2 only in (0, 0) and in at most one point. Hence, if t is
very small,

f (0 + tv1, 0 + tv2) = 0.

It follows that

∂f

∂v
(0, 0) = lim

t→0

f (0 + tv1, 0 + tv2)− f (0, 0)

t
= lim
t→0

0− 0

t
= 0.

However, f is not continuous in (0, 0), since f
(
x, x2

)
= 1→ 1 as x→ 0, while

f (x, 0) = 0→ 0 as x→ 0.

Example 189 Let

f (x, y) :=

{
x2y
x4+y2 if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Let’s find the directional derivatives of f at (0, 0). Given a direction v = (v1, v2),
with v2

1 + v2
2 = 1, we have

f (0 + tv1, 0 + tv2) = 0.

It follows that

f (0 + tv1, 0 + tv2)− f (0, 0)

t
=

(tv1)2tv2
(tv1)4+(tv2)2

− 0

t

=
t3v2

1v2

t5v4
1 + t3v2

2

.

If v2 = 0 then

f (0 + tv1, 0 + tv2)− f (0, 0)

t
=

0

t5v4
1 + 0

= 0→ 0

as t→ 0, so ∂f
∂x (0, 0) = 0. If v2 6= 0, then,

f (0 + tv1, 0 + tv2)− f (0, 0)

t
=

v2
1v2

t2v4
1 + v2

2

→ v2
1v2

0 + v2
2

=
v2

1

v2
,

so
∂f

∂v
(0, 0) =

v2
1

v2
.

In particular, ∂f
∂y (0, 0) = 0

1 = 0. Now let’s prove that f is not continuous at
(0, 0). We have

f (x, 0) =
0

0 + y2
= 0→ 0
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as x→ 0, while

f
(
x, x2

)
=

x2x2

x4 + x4
=

1

2
→ 1

2

as x→ 0. Hence, the limit lim(x,y)→(0,0) f (x, y) does not exists and so f is not
continuous at (0, 0). Note that f is continuous at all other points (x, y) 6= (0, 0)
by Theorem 169, since h (x, y) = x and g (x, y) = y are continuous functions in
R2.

Monday, March 21, 2022
The previous examples show that in dimension N ≥ 2 partial derivatives do

not give the same kind of results as in the case N = 1. To solve this problem, we
introduce a stronger notion of derivative, namely, the notion of differentiability.
Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed spaces. We recall that a function L :

X → Y is linear if
L (x1 + x2) = L(x1) + L (x2)

for all x1, x2 ∈ X and
L (sx) = sL (x)

for all s ∈ R and x ∈ X.

Remark 190 If X = RN and Y = RM , then every linear function L : RN →
RM is continuous. Indeed, Write x =

∑N
i=1 xiei. Then by the linearity of L,

L (x) = L

(
N∑
i=1

xiei

)
=

N∑
i=1

xiL (ei) .

Define bi := L (ei) ∈ RM . Then the previous calculation shows that

L (x) =

N∑
i=1

xibi for all x ∈ RN ,

which is continuous by Theorem 169.

The following example shows that when X is infinite-dimensional there exist
linear functions which are not continuous.

Example 191 Let X := {f : [−1, 1]→ R : there exists f ′(x) ∈ R for all x ∈ [−1, 1]}.
The vector space X is a normed space with the norm ‖f‖ := maxx∈[−1,1] |f (x)|.
Note that since f has a finite derivative at every x, it follows that f is contin-
uous at every x. By the theorem on composition of continuous functions, the
function |f (x)| is also continuous. Since [−1, 1] is compact, by the Weierstrass
theorem, there exists maxx∈[−1,1] |f (x)|. Hence, ‖f‖ is well-defined. We have
already seen in Exercise 50 that it is a norm.
Consider the linear function L : X → R defined by

L (f) := f ′ (0) .
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Then L is linear. To prove that L is not continuous, consider

fn (x) :=
1

n
sin
(
n2x

)
.

Then
‖fn − 0‖ ≤ 1

n
→ 0

but
f ′n (x) = n cos

(
n2x

)
so that

L (fn) = f ′n (0) = n→∞

and so L is not continuous, since L (fn) 9 L (0) = 0.

Definition 192 Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed spaces, let E ⊆ X, let f :
E → Y , and let x0 ∈ E be an accumulation point of E. The function f is
differentiable at x0 if there exists a continuous linear function L : X → Y
(depending on f and x0) such that

lim
x→x0

f (x)− f (x0)− L (x− x0)

‖x− x0‖X
= 0. (15)

provided the limit exists. The function L, if it exists, is called the differential of
f at x0 and is denoted df (x0) or dfx0 .

Remark 193 Since f takes values in Y the limit (15) is equivalent to

lim
x→x0

∥∥∥∥f (x)− f (x0)− L (x− x0)

‖x− x0‖X

∥∥∥∥
Y

= 0.

Exercise 194 Prove that if N = 1, then f is differentiable at x0 if and only
there exists the derivative f ′ (x0) ∈ R.

The next theorem shows that differentiability in dimension N ≥ 2 plays the
same role of the derivative in dimension N = 1.

Theorem 195 Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed spaces, let E ⊆ X, let f :
E → Y , and let x0 ∈ E be an accumulation point of E. If f is differentiable at
x0, then f is continuous at x0.

Proof. Let L be the differential of f at x0. We have

f (x)− f (x0) = f (x)− f (x0)− L(x− x0)+L(x− x0)

=
f (x)− f (x)− L(x− x0)

‖x− x0‖X
‖x− x0‖+ L(x− x0).
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Hence, by the properties of the norm for x ∈ E, x 6= x0,

0 ≤ ‖f (x)− f (x0)‖Y ≤
∥∥∥∥f (x)− f (x)− L(x− x0)

‖x− x0‖X

∥∥∥∥
Y

‖x− x0‖X + ‖L(x− x0)‖Y

→ ‖0‖Y ‖0‖X + ‖L(0)‖ = 0

as x→ x0. It follows that f is continuous at x0.
Next we study the relation between directional derivatives and differentia-

bility. Here we need x0 to be an interior point of E.

Theorem 196 Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed spaces, let E ⊆ X, let f :
E → Y , and let x0 ∈ E◦. If f is differentiable at x0, then all the directional
derivatives of f at x0 exist and

∂f

∂v
(x0) = L (v) ,

where L is the differential of f at x0. In particular, the function

v 7→ ∂f

∂v
(x0)

is linear.

Proof. Since x0 is an interior point, there exists B (x0, r) ⊆ E. Let v ∈ X
be a direction, so that ‖v‖X = 1, and take x = x0 + tv. Note that for |t| < r,
we have that

‖x− x0‖X = ‖x0 + tv − x0‖X = ‖tv‖X = |t| ‖v‖X = |t| < r

and so x0 + tv ∈ B (x0, r) ⊆ E. Moreover, x → x0 as t → 0 and so, since f is
differentiable at x0,

0 = lim
x→x0

f (x)− f (x0)− L (x− x0)

‖x− x0‖X
= lim
t→0

f (x0 + tv)− f (x0)− L (x0 + tv − x0)

‖x0 + tv − x0‖

= lim
t→0

f (x0 + tv)− f (x0)− tL (v)

|t| .

By considering the left and right limits we get

0 = lim
t→0+

f (x0 + tv)− f (x0)− tL (v)

t
= 0,

0 = lim
t→0−

f (x0 + tv)− f (x0)− tL (v)

−t = − lim
t→0−

f (x0 + tv)− f (x0)− tL (v)

t

and so

0 = lim
t→0

f (x0 + tv)− f (x0)− tL (v)

t
= lim
t→0

f (x0 + tv)− f (x0)

t
− L (v) .

This shows that there exists ∂f∂v (x0) = L (v).
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Remark 197 If in the previous theorem x0 is not an interior point but for some
direction v ∈ X, the point x0 is an accumulation point of the set E ∩ L, where
L is the line through x0 in the direction v, then as in the first part of the proof
we can show that there exists the directional derivative ∂f

∂v (x0) and

∂f

∂v
(x0) = T (v) .

Remark 198 In particular, if X = RN , then by the previous theorem

L (ei) =
∂f

∂xi
(x0) ,

and so, writing v =
∑N
i=1 viei, by the linearity of L we have

L (v) = L

(
N∑
i=1

viei

)
=

N∑
i=1

viL (ei) =

N∑
i=1

∂f

∂xi
(x0) vi.

Thus, only at interior points of E, to check differentiability it is enough to prove
that

lim
x→x0

f (x)− f (x0)−
∑N
i=1

∂f
∂xi

(x0) (xi − x0i)

‖x− x0‖
= 0. (16)

Wednesday, March 23, 2022
If all the partial derivatives of f at x0 exist, the vector(

∂f

∂x1
(x0) , . . . ,

∂f

∂xN
(x0)

)
∈ RN

is called the gradient of f at x0 and is denoted by ∇f (x0) or grad f (x0) or
Df (x0). Note the previous theorem shows that

df(x0) (v) = L (v) = ∇f (x0) · v =

N∑
i=1

∂f

∂xi
(x0) vi. (17)

for all directions v.

Exercise 199 Let

f (x, y) :=

{
x2y
x2+y2 if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Prove that f is continuous at 0, that all directional derivatives of f at 0 exist
but that the formula

∂f

∂v
(0, 0) =

∂f

∂x
(0, 0) v1 +

∂f

∂y
(0, 0) v2

fails.
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Exercise 200 Let

f (x, y) :=

{
x2y
x2+y4 if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Find all directional derivatives of f at 0. Study the continuity and the differen-
tiability of f at 0.

Exercise 201 Let f : E → R be Lipschitz and let x0 ∈ E◦.

(i) Assume that all the directional derivatives of f at x0 exist and that
∂f
∂v (x0) =∑N

i=1
∂f
∂xi

(x0) vi for every direction v. Prove that f is differentiable at x0.

(ii) Assume that all the partial derivatives of f at x0 exist, that the directional
derivatives ∂f∂v (x0) exist for all v ∈ S, where S is dense in the unit sphere,
and that ∂f∂v (x0) =

∑N
i=1

∂f
∂xi

(x0) vi for every direction v ∈ S. Prove that
f is differentiable at x0.

The next theorem gives an important suffi cient condition for differentiability
at a point x0.

Theorem 202 Let E ⊆ RN , let f : E → R, let x0 ∈ E◦, and let i ∈ {1, . . . , N}.
Assume that there exists r > 0 such that B (x0, r) ⊆ E and for all j 6= i and for
all x ∈ B (x0, r) the partial derivative

∂f
∂xj

exists at x and is continuous at x0.

Assume also that ∂f
∂xi

(x0) exists. Then f is differentiable at x0.

The proof makes use of the following theorem, which was proved in recita-
tions.

Theorem 203 (Lagrange or Mean Value Theorem) Assume that f : [a, b]→
R is continuous in [a, b] and has a derivative in (a, b). Then there exists c ∈ (a, b)
such that

f (b)− f (a) = f ′ (c) (b− a) .

We turn to the proof of Theorem 202.
We are now ready to prove Theorem 202
Proof of Theorem 202. Without loss of generality, we may assume that

i = N . Let x ∈ B (x0, r). Write x = (x1, . . . , xN ) and x0 = (y1, . . . , yN ). Then

f (x)− f (x0) = (f (x1, . . . , xN )− f (y1, x2, . . . , xN ))

+ · · ·+ (f (y1, . . . , yN−1, xN )− f (y1, . . . , yN )) .

By the mean value theorem applied to the function of one variable f (·, x2, . . . , xN ),

f (x1, . . . , xN )− f (y1, x2, . . . , xN ) =
∂f

∂x1
(z1) (x1 − y1) ,
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where z1 := (θ1x1 + (1− θ1) y1, x2, . . . , xN ) for some θ1 ∈ (0, 1). Note that

‖z1 − x0‖ ≤ ‖x− x0‖ .

Similarly, for i = 2, . . . , N − 1,

f (y1, . . . , yi−1, xi, . . . , xN )− f (y1, . . . , yi−1, yi, . . . , xN ) =
∂f

∂xi
(zi) (xi − yi) ,

where zi := (y1, . . . , yi−1, θixi + (1− θi) yi, xi+1, . . . , xN ) for some θi ∈ (0, 1)
and

‖zi − x0‖ ≤ ‖x− x0‖ .
Write

f (x)− f (x0)−∇f (x0) · (x− x0)

=

N−1∑
i=1

(
∂f

∂xi
(zi)−

∂f

∂xi
(x0)

)
(xi − yi)

+

(
f (y1, . . . , yN−1, xN )− f (y1, . . . , yN )

xN − yN
− ∂f

∂xN
(x0)

)
(xN − yN ) .

Then

|f (x)− f (x0)−∇f (x0) · (x− x0)|
‖x− x0‖

≤
N−1∑
i=1

∣∣∣∣ ∂f∂xi (zi)−
∂f

∂xi
(x0)

∣∣∣∣ |xi − yi|‖x− x0‖

+

∣∣∣∣f (y1, . . . , yN−1, yN + (xN − yN ))− f (y1, . . . , yN )

xN − yN
− ∂f

∂xN
(x0)

∣∣∣∣ |xN − yN |‖x− x0‖
.

Since |xi−yi|‖x−x0‖ ≤ 1, we have that

0 ≤ |f (x)− f (x0)−∇f (x0) · (x− x0)|
‖x− x0‖

≤
N−1∑
i=1

∣∣∣∣ ∂f∂xi (zi)−
∂f

∂xi
(x0)

∣∣∣∣ (18)

+

∣∣∣∣f (y1, . . . , yN−1, yN + (xN − yN ))− f (y1, . . . , yN )

xN − yN
− ∂f

∂xN
(x0)

∣∣∣∣ .
Using the fact that ‖zi − x0‖ ≤ ‖x− x0‖ → 0 as x → x0, together with the
continuity of ∂f

∂xi
at x0, gives∣∣∣∣ ∂f∂xi (zi)−

∂f

∂xi
(x0)

∣∣∣∣→ 0,

while, since t := xN − yN → 0 as x→ x0, we have that

f (y1, . . . , yN−1, yN + (xN − yN ))− f (y1, . . . , yN )

xN − yN

=
f (y1, . . . , yN−1, yN + t)− f (y1, . . . , yN )

t
→ ∂f

∂xN
(x0) ,

and so the right-hand side of (18) goes to zero as x→ x0.
Friday, March 25, 2022
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Example 204 Let

f (x, y) :=

{
x2|y|
x2+y2 if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

Let’s study continuity, partial derivatives and differentiability. For (x, y) 6=
(0, 0), we have that f is continuous by Theorem 169, while for (x, y) = (0, 0),
we need to check that

lim
(x,y)→(0,0)

f (x, y) = f (0, 0) .

We have

0 ≤ |f (x, y)− f (0, 0)| =
∣∣∣∣ x2 |y|
x2 + y2

− 0

∣∣∣∣ =
x2 |y|
x2 + y2

≤
(
x2 + y2

)
|y|

x2 + y2
= |y| → 0

as (x, y)→ (0, 0). Hence, f is continuous at (0, 0).
Next, let’s study partial derivatives. For (x, y) 6= (0, 0), by the quotient rule,

we have
∂f

∂x
(x, y) =

2x |y|
(
x2 + y2

)
− x2 |y| (2x+ 0)

(x2 + y2)
2 , (19)

while for (x, y) = (0, 0),

∂f

∂x
(0, 0) = lim

t→0

f (0 + t1, 0 + t0)− f (0, 0)

t
= lim
t→0

t2|0|
t2+0 − 0

t
= lim
t→0

0

t3
= 0.

For y 6= 0, by the quotient rule, we have

∂f

∂y
(x, y) =

x2 y
|y|
(
x2 + y2

)
− x2 |y| (0 + 2y)

(x2 + y2)
2 , (20)

while at a point (x0, 0),

∂f

∂y
(x0, 0) = lim

t→0

f (x0 + t0, 0 + t1)− f (x0, 0)

t
= lim
t→0

x20|t|
x20+t2

− 0

t
= lim
t→0

|t|
t

x2
0

x2
0 + t2

.

If x0 = 0, then |t|t
x20

x20+t2
= |t|

t
0

0+t2 = 0 → 0 as t → 0, so ∂f
∂y (0, 0) = 0, while if

x0 6= 0, we have

lim
t→0+

|t|
t

x2
0

x2
0 + t2

= lim
t→0+

t

t

x2
0

x2
0 + t2

= lim
t→0+

x2
0

x2
0 + t2

=
x2

0

x2
0 + 0

= 1,

lim
t→0−

|t|
t

x2
0

x2
0 + t2

= lim
t→0+

−t
t

x2
0

x2
0 + t2

= − lim
t→0+

x2
0

x2
0 + t2

= − x2
0

x2
0 + 0

= −1.

Hence, ∂f∂y (x0, 0) does not exist at (x0, 0) for x0 6= 0, and so by Theorem 196,
f is not differentiable at (x0, 0) for x0 6= 0.
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On the other hand, at points (x, y) with y 6= 0, we have that ∂f∂x and
∂f
∂y exist

in a small ball centered at (x, y) (see (19) and (20)) and they are continuous
by Theorem 169. Hence, we can apply Theorem 202 below to conclude that f is
differentiable at all points (x, y) with y 6= 0.
It remains to study differentiability at (0, 0). By 16, we need to prove that

lim
(x,y)→(0,0)

f (x, y)− f (0, 0)−∇f (0, 0) · ((x, y)− (0, 0))

‖(x, y)− (0, 0)‖ = 0.

We have

f (x, y)− f (0, 0)−∇f (0, 0) · ((x, y)− (0, 0))

‖(x, y)− (0, 0)‖ =

x2|y|
x2+y2 − 0− (0, 0) · ((x, y)− (0, 0))√

x2 + y2

=
x2 |y|

(x2 + y2)
3/2

.

Taking y = x, with x > 0, we get

x2 |x|
(x2 + x2)

3/2
=

x2x3

(x2 + x2)
3/2

=
1

(2)
3/2

9 0.

Hence, f is not differentiable at (0, 0).

Exercise 205 Study the differentiability of the function

f(x, y) = |x|y, (x, y) ∈ R2.

Exercise 206 Given the function

f(x, y) =
√

(y − x2)(y − 2x2),

defined in E = {(x, y) ∈ R2 : (y − x2)(y − 2x2) ≥ 0}, study the differentiability
of f in E.

Remark 207 In the previous exercise, at points on ∂E we cannot use (16)
since we only proved it for interior points.

We study the differentiability of composite functions.

Theorem 208 (Chain Rule) Let (X, ‖·‖X), (Y, ‖·‖Y ), (Z, ‖·‖Z) be three normed
spaces, let E ⊆ X, let x0 ∈ E be an accumulation point of E, let F ⊆ Y , and let
f : E → F and g : F → Z. Assume that there exists the directional derivative
∂f
∂v (x0), that f(x0) ∈ F and that g is differentiable at f(x0). Then there exists
the directional derivative

∂(g ◦ f)

∂v
(x0) = dg(f(x0))

(
∂f

∂v
(x0)

)
. (21)

Moreover, if f is differentiable at x0, then g ◦ f is differentiable at x0 with

d(g ◦ f)(x0) = dg(f(x0)) ◦ df(x0).
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Remark 209 Assume that Y = RM and Z = R. Then f : E → RM . Let
y0 := f (x0). If y0 ∈ F ◦, then by (16),

dg(y0) (v) = ∇g (y0) · v =

M∑
i=1

∂g

∂yi
(y0) vi.

Hence, (21)becomes

∂ (g ◦ f)

∂v
(x0) =

M∑
i=1

∂g

∂yi
(f (x0))

∂fi
∂v

(x0)

= ∇g (f (x0)) · ∂f
∂v

(x0) .

Monday, March 28, 2022
Proof. Since g is differentiable at f (x0), there exists L : Y → Z linear and

continuous such that

lim
y→f(x0)

g(y)− g(f (x0))− L(y − f (x0))

‖y − f (x0)‖Y
= 0, (22)

where L is the differential of g at f (x0), so L = dg(f (x0)).
Since there exists the directional derivative ∂f∂v (x0), we have that there exists

lim
t→0

f (x0 + tv)− f (x0)

t
=
∂f

∂v
(x0). (23)

It follows that the function of one variable

t 7→ f(x0 + tv)

is continuous at t = 0. Hence, if we take y = f(x0 + tv), we have that

y = f(x0 + tv)→ f(x0) as t→ 0. (24)

Case 1: Assume that f(x0 + tv) 6= f(x0) for all t small. Then by (22), (23),
(24),

g(f(x0 + tv))− g(f (x0))

t
− L

(
∂f

∂v
(x0)

)
=
g(f(x0 + tv))− g(f (x0))− L(f(x0 + tv)− f (x0))

t

+ L

(
f(x0 + tv)− f (x0)

t
− ∂f

∂v
(x0)

)
=
g(f(x0 + tv))− g(f (x0))− L(f(x0 + tv)− f (x0))

‖f(x0 + tv)− f(x0)‖Y

∥∥∥∥f(x0 + tv)− f(x0)

t

∥∥∥∥
Y

|t|
t

+ L

(
f(x0 + tv)− f (x0)

t
− ∂f

∂v
(x0)

)
→ 0

∥∥∥∥∂f∂v (x0)

∥∥∥∥
Y

(±1) + L(0) = 0.
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This shows that there exists

∂(g ◦ f)

∂v
(x0) = L

(
∂f

∂v
(x0)

)
.

Case 2: There exists countably many t approaching zero such that f(x0 +tv) =
f(x0). Hence, for these t,

f(x0 + tv)− f(x0)

t
= 0→ 0

as t→ 0, which implies that ∂f∂v (x0) = 0.
Let F := {t ∈ R : f(x0 + tv) = f(x0)}. For t ∈ F ,

g(f(x0 + tv))− g(f (x0))

t
=

0

t
→ 0.

On the other hand, if t /∈ F , then f(x0 + tv) 6= f(x0) and so

g(f(x0 + tv))− g(f (x0))

t

=
g(f(x0 + tv))− g(f (x0))− L(f(x0 + tv)− f (x0))

t

+ L

(
f(x0 + tv)− f (x0)

t

)
=
g(f(x0 + tv))− g(f (x0))− L(f(x0 + tv)− f (x0))

‖f(x0 + tv)− f(x0)‖Y

∥∥∥∥f(x0 + tv)− f(x0)

t

∥∥∥∥
Y

|t|
t

+ L

(
f(x0 + tv)− f (x0)

t

)
→ 0

∥∥∥∥∂f∂v (x0)

∥∥∥∥
Y

(±1) + L(0) = 0.

by (22), (23), (24). This proves the first part of the statement.
The second part of the statement is left as an exercise.

Exercise 210 Prove the second part of the theorem.

Example 211 (Quotient Rule) Let (X, ‖·‖X) be a normed space, let E ⊆ X
and let f : E → R2, with f(x) = (f1(x), f2(x)), be such that f2(x) 6= 0 for all
x ∈ E. Let g : R2 → R be defined by g(y1, y2) = y1

y2
. Then (exercise)

∂g

∂y1
(y1, y2) =

1

y2
,

∂g

∂y2
(y1, y2) = − y1

(y2)2
.
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If there exists ∂f
∂v (x0), then by Remark 209,

∂

∂v

(
f1

f2

)
(x0) =

∂(g ◦ f)

∂v
(x0)

=
∂g

∂y1
(f (x0))

∂f1

∂v
(x0) +

∂g

∂y2
(f (x0))

∂f2

∂v
(x0)

=
1

f2(x0)

∂f1

∂v
(x0)− f1(x0)

(f2(x0))2

∂f2

∂v
(x0)

=
∂f1
∂v (x0)f2(x0)− f1(x0)∂f1∂v (x0)

(f2(x0))2
,

which is the quotient rule.

Example 212 (Product Rule) Let (X, ‖·‖X) be a normed space, let E ⊆ X
and let f : E → R2. Let g : R2 → R be defined by g(y1, y2) = y1y2. Then
(exercise)

∂g

∂y1
(y1, y2) = y2,

∂g

∂y2
(y1, y2) = y1.

If there exists ∂f
∂v (x0), then by Remark 209,

∂

∂v
(f1f2) (x0) =

∂(g ◦ f)

∂v
(x0)

=
∂g

∂y1
(f (x0))

∂f1

∂v
(x0) +

∂g

∂y2
(f (x0))

∂f2

∂v
(x0)

= f2(x0)
∂f1

∂v
(x0) + f1(x0)

∂f2

∂v
(x0),

which is the product rule.

Example 213 Consider the function

h (x) := g (‖x‖) = g

(√
x2

1 + x2
2 + · · ·+ x2

N

)
,

where g : [0,∞) → R is differentiable. Since the norm is differentiable at all
x 6= 0, by Theorem 208, we have that h is differentiable at x 6= 0,

∂h

∂xi
(x) = g′

(√
x2

1 + x2
2 + · · ·+ x2

N

)
2xi

2
(√

x2
1 + x2

2 + · · ·+ x2
N

) .
On the other hand, the Euclidean norm is not differentiable at x = 0 and so we
cannot apply the previous results. Hence, we use the definition to get

h(0+ tei)− h(0)

t
=
g(‖tei‖)− g(‖0‖)

t
=
g(|t|1)− g(0)

t
.
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We have

lim
t→0+

g(|t|1)− g(0)

t
= lim
t→0+

g(t)− g(0)

t
= g′(0),

lim
t→0−

g(|t|1)− g(0)

t
= lim
t→0−

g(−t)− g(0)

t
= − lim

t→0−

g(−t)− g(0)

−t = −g′(0).

Hence, ∂h
∂xi

(0) exists if and only if g′(0) = 0. Next, assume that g′(0) = 0 and
let’s study differentiability at x = 0. We have

h (x)− h (0)−∇h (0) · (x− 0)

‖x− 0‖ =
g (‖x‖)− g (‖0‖)− 0 · x

‖x‖

=
g (‖x‖)− g (0)

‖x‖ → g′(0) = 0

as x→ 0.

Next we define the Jacobian of a vectorial function f : E → RM .

Definition 214 Given a set E ⊆ RN and a function f : E → RM , the Jacobian
matrix of f = (f1, . . . , fM ) at some point x0 ∈ E, whenever it exists, is the
M ×N matrix

Jf (x0) :=

 ∇f1 (x0)
...

∇fM (x0)

 =


∂f1
∂x1

(x0) · · · ∂f1
∂xN

(x0)
...

...
∂fM
∂x1

(x0) · · · ∂fM
∂xN

(x0)

 .

It is also denoted
∂ (f1, . . . , fM )

∂ (x1, . . . , xN )
(x0) .

When M = N , Jf (x0) is an N ×N square matrix and its determinant is called
the Jacobian determinant of f at x0. Thus,

det Jf (x0) = det

(
∂fj
∂xi

(x0)

)
i,j=1,...,N

.

Remark 215 Let E ⊆ RN , let f : E → RM , and let x0 ∈ E◦. Assume
that f is differentiable at x0. Then all its components fj, j = 1, . . . ,M , are
differentiable at x0 with

df(x0) = (df1(x0), . . . , dfM (x0)) .

Since x0 is an interior point, it follows from (17) that for every direction v,

dfj(x0) (v) = ∇fj (x0) · v =

N∑
i=1

∂fj
∂xi

(x0) vi.

Hence,

df(x0) (v) = (df1(x0) (v) , . . . , dfM (x0) (v))

= Jf (x0)vT .
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As a corollary of Theorem 208, we have the following result.

Corollary 216 Let E ⊆ RN , F ⊆ RM , let f : E → F and let g : F → RP .
Assume that f is differentiable at some point x0 ∈ E◦ and that g is differentiable
at the point f (x0) and that f (x0) ∈ F ◦. Then the composite function g ◦ f is
differentiable at x0 and

Jg◦f (x0) = Jg (f (x0)) Jf (x0) .

Wednesday, March 30, 2022

13 Higher Order Derivatives

Let E ⊆ RN , let f : E → R and let x0 ∈ E. Let i ∈ {1, . . . , N} and assume
that there exists the partial derivatives ∂f

∂xi
(x) for all x ∈ E. If j ∈ {1, . . . , N}

and x0 is an accumulation point of E ∩ L, where L is the line through x0 in
the direction ej , then we can consider the partial derivative of the function

∂f
∂xi

with respect to xj , that is,

∂

∂xj

(
∂f

∂xi

)
=:

∂2f

∂xj∂xi
.

Note that in general the order in which we take derivatives is important.

Example 217 Let

f (x, y) :=

{
x3y−xy3
x2+y2 if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

If (x, y) 6= (0, 0), then by Examples 212 and 211,

∂f

∂x
(x, y) =

∂

∂x

(
x3y − xy3

x2 + y2

)
=

(3x2y − 1y3)(x2 + y2)− (x3y − xy3)(2x+ 0)

(x2 + y2)
2 ,

and

∂f

∂y
(x, y) =

∂

∂y

(
x3y − xy3

x2 + y2

)
=

(x31− x3y2)(x2 + y2)− (x3y − xy3)(0 + 2y)

(x2 + y2)
2 ,

while at (0, 0) we have:

∂f

∂x
(0, 0) = lim

t→0

f (t, 0)− f (0, 0)

t
= lim
t→0

0
t2+0 − 0

t
= 0,

∂f

∂y
(0, 0) = lim

t→0

f (0, 0 + t)− f (0, 0)

t
= lim
t→0

0
0+t2 − 0

t
= 0.
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Thus,

∂f

∂x
(x, y) =

{
(3x2y−1y3)(x2+y2)−(x3y−xy3)(2x+0)

(x2+y2)2
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) ,

∂f

∂y
(x, y) =

{
(x31−x3y2)(x2+y2)−(x3y−xy3)(0+2y)

(x2+y2)2
if (x, y) 6= (0, 0) ,

0 if (x, y) = (0, 0) .

To find ∂2f
∂y∂x (0, 0), we calculate

∂2f

∂y∂x
(0, 0) =

∂

∂y

(
∂f

∂x

)
(0, 0) = lim

t→0

∂f
∂x (0, 0 + t)− ∂f

∂x (0, 0)

t

= lim
t→0

(0−1t3)(0+t2)−0

(0+t2)2
− 0

t
= lim
t→0
−1 = −1,

while

∂2f

∂x∂y
(0, 0) =

∂

∂x

(
∂f

∂y

)
(0, 0) = lim

t→0

∂f
∂y (0 + t, 0)− ∂f

∂y (0, 0)

t

= lim
t→0

(t31−0)(t2+0)−0

(t2+0)2
− 0

t
= lim
t→0

1 = 1.

Hence, ∂2f
∂x∂y (0, 0) 6= ∂2f

∂y∂x (0, 0).

Exercise 218 Let

f (x, y) :=

{
y2 arctan x

y if y 6= 0,

0 if y = 0.

Prove that ∂2f
∂x∂y (0, 0) 6= ∂2f

∂y∂x (0, 0).

We present an improved version of the Schwartz theorem.

Theorem 219 (Schwartz) Let E ⊆ RN , let f : E → R, let x0 ∈ E◦, and let
i, j ∈ {1, . . . , N}. Assume that there exists r > 0 such that B (x0, r) ⊆ E and for
all x ∈ B (x0, r), the partial derivatives

∂f
∂xi

(x), ∂f
∂xj

(x), and ∂2f
∂xj∂xi

(x) exist.

Assume also that ∂2f
∂xj∂xi

is continuous at x0. Then there exists
∂2f

∂xi∂xj
(x0) and

∂2f

∂xi∂xj
(x0) =

∂2f

∂xj∂xi
(x0) .

Lemma 220 Let A : ((−r, r) \ {0}) × ((−r, r) \ {0}) → R. Assume that the
double limit lim(s,t)→(0,0)A (s, t) exists in R and that the limit limt→0A (s, t)
exists in R for all s ∈ (−r, r)\{0}. Then the iterated limit lims→0 limt→0A (s, t)
exists and

lim
s→0

lim
t→0

A (s, t) = lim
(s,t)→(0,0)

A (s, t) .
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Taking the lemma for granted for the time being, let’s prove the theorem.
Proof of Theorem 219. Step 1: Assume that N = 2. Let 0 < |t| , |s| <

r√
2
. Then the points (x0 + s, y0), (x0 + s, y0 + t), and (x0, y0 + t) belong to

B ((x0, y0) , r). Define

A (s, t) :=
f (x0 + s, y0 + t)− f (x0 + s, y0)− f (x0, y0 + t) + f (x0, y0)

st
, 0 < |t| , |s| < r√

2
.

Fix 0 < |t| < r√
2
and consider the function

g (x) := f (x, y0 + t)− f (x, y0)

By the mean value theorem

A (s, t) =
g (x0 + s)− g (x0)

st
=
g′ (ξ)

t
=

∂f
∂x (ξt, y0 + t)− ∂f

∂x (ξt, y0)

t

where ξ is between x0 and x0 + t. Consider the function

h (y) :=
∂f

∂x
(ξt, y) .

By the mean value theorem,

h (y0 + t)− h (y0) = h′ (ηt) (y0 + t− y0) =
∂2f

∂y∂x
(ξt, ηt) t

for some ηt is between y0 and y0 + t. This gives

∂f

∂x
(ξt, y0 + t)− ∂f

∂x
(ξt, y0) =

∂2f

∂y∂x
(ξt, ηt) t.

Hence,

A (s, t) =
∂2f

∂y∂x
(ξt, ηt)→

∂2f

∂y∂x
(x0, y0) ,

where we have used the fact that (ξ, η) → (x0, y0) as (s, t) → (0, 0) together
with the continuity of ∂2f

∂y∂x at (x0, y0). Note that this shows that there exists
the limit

lim
(s,t)→(0,0)

A (s, t) =
∂2f

∂y∂x
(x0, y0) .

On the other hand, for all s 6= 0,

lim
t→0

A (s, t) =
1

s
lim
t→0

[
f (x0 + s, y0 + t)− f (x0 + s, y0)

t
− f (x0, y0 + t)− f (x0, y0)

t

]
=

∂f
∂y (x0 + s, y0)− ∂f

∂y (x0, y0)

s
.
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Hence, we are in a position to apply the previous lemma to obtain

∂2f

∂y∂x
(x0, y0) = lim

(s,t)→(0,0)
A (s, t) = lim

s→0
lim
t→0

A (s, t)

= lim
s→0

∂f
∂y (x0 + s, y0)− ∂f

∂y (x0, y0)

s
=

∂2f

∂x∂y
(x0, y0) .

Step 2: In the case N ≥ 2 let x = (x1, . . . , xN ), x0 = (c1, . . . , cN ). Assume
that 1 < i < j < N (the cases i = 1 and j = N are similar) and apply Step 1
to the function of two variables

F (xi, xj) := f (c1, . . . , ci−1, xi, ci+1, . . . , cj−1, xj , cj+1, . . . , cN )

Friday, April,1 2022
Let’s now prove the lemma.
Proof. Let ` = lim(s,t)→(0,0)A (s, t). Then for every ε > 0 there exists

δ = δ ((0, 0) , ε) > 0 such that

|A (s, t)− `| ≤ ε

for all (s, t) ∈ ((−r, r) \ {0})× ((−r, r) \ {0}), with
√
|s− 0|2 + |t− 0|2 ≤ δ.

Fix s ∈
(
− δ2 ,

δ
2

)
\ {0}. Then for all t ∈

(
− δ2 ,

δ
2

)
\ {0},

|A (s, t)− `| ≤ ε

and so letting t→ 0 in the previous inequality (and using the fact that the limit
limt→0A (s, t) exists), we get ∣∣∣lim

t→0
A (s, t)− `

∣∣∣ ≤ ε
for all s ∈

(
− δ2 ,

δ
2

)
\{0}. But this implies that there exists lims→0 limt→0A (s, t) =

`.
Next we prove Taylor’s formula in higher dimensions. We recall that N0 :=

N ∪ {0}. A multi-index α is a vector α = (α1, . . . , αN ) ∈ NN0 . The length of a
multi-index is defined as

|α| := α1 + · · ·+ αN .

Given a multi-index α, the partial derivative ∂α

∂xα is defined as

∂α

∂xα
:=

∂|α|

∂xα11 · · · ∂x
αN
N

,

where x = (x1, . . . , xN ). If α = 0, we set ∂0f
∂x0 := f .
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Example 221 If N = 3 and α = (2, 1, 0), then

∂(2,1,0)

∂ (x, y, z)
(2,1,0)

=
∂3

∂x2∂y
.

Given a multi-index α and x ∈ RN , we set

α! := α1! · · ·αN !, xα := xα11 · · ·x
αN
N .

If α = 0, we set x0 := 1.

Definition 222 Given an open set U ⊆ RN , for every nonnegative integer
m ∈ N0, we denote by Cm (U) the space of all functions that are continuous
in U together with their partial derivatives up to order m (included). We set

C∞ (U) :=
∞⋂
m=0

Cm (U). When N = 1 we also define Cm ([a, b]) the space of all

functions that are continuous in [a, b] together with their derivatives up to order
m (included).

Theorem 223 (Taylor’s Formula) Let U ⊆ RN be an open set, let f ∈
Cm (U), m ∈ N, and let x0 ∈ U . Then for every x ∈ U ,

f (x) = f (x0) +
∑

α multi-index, 1≤|α|≤m

1

α!

∂αf

∂xα
(x0) (x− x0)

α
+Rm (x) ,

where

lim
x→x0

Rm (x)

‖x− x0‖m
= 0.

Definition 224 Given a metric space (X, dX), a set E ⊆ X, and two functions
f : E → R and g : E → R and a point x0 ∈ accE, we say that the function f is
a little o of g as x→ x0, and we write f = o (g), if g 6= 0 in E and

lim
x→x0

f (x)

g (x)
= 0.

Hence, a little o of g is simply a function that goes to zero faster than g as
x→ x0. Therefore, Taylor’s formula can be written as

f (x) = f (x0) +
∑

α multi-index, 1≤|α|≤m

1

α!

∂αf

∂xα
(x0) (x− x0)

α
+ o (‖x− x0‖m)

as x→ x0.
Thursday, March 31, 2022

Recitation
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Theorem 225 (Taylor’s Formula) Let f ∈ C(m) ((a, b)) and let x0 ∈ (a, b).
Then for every x ∈ (a, b),

f (x) = f (x0) + f ′ (x0) (x− x0) +
f ′′ (x0)

2!
(x− x0)

2

+ · · ·+ f (m) (x0)

m!
(x− x0)

m
+Rm (x) ,

where the remainder Rm (x, x0) satisfies

lim
x→x0

Rm (x)

(x− x0)
m = 0.

Lemma 226 Let g ∈ C(m) ((a, b)) and let x0 ∈ (a, b). Then

lim
x→x0

g (x)

(x− x0)
m = 0 (25)

if and only if
g (x0) = g′ (x0) = · · · = g(m) (x0) = 0. (26)

Proof. Assume that (26) holds. By applying De l’Hôpital’s theorem several
times we get

lim
x→x0

g (x)

(x− x0)
m = lim

x→x0

g′ (x)

m (x− x0)
m−1 = lim

x→x0

g(2) (x)

m (m− 1) (x− x0)
m−2

= · · · = lim
x→x0

g(m−1) (x)

m! (x− x0)
= lim
x→x0

g(m) (x)

m!1
=
g(m) (x0)

m!
= 0.

Conversely, assume (25). If g(k) (x0) 6= 0 for some 0 ≤ k < m, then by what we
just proved (with k in place of m)

lim
x→x0

g (x)

(x− x0)
k

=
g(k) (x0)

k!
6= 0.

On the other hand,

g (x)

(x− x0)
k

=
g (x)

(x− x0)
k

(x− x0)
m−k

(x− x0)
m−k =

g (x)

(x− x0)
m (x− x0)

m−k → 0

as x→ x0, which is a contradiction.
We now turn to the proof of Theorem 225.
Proof of Theorem 225. Note that given a polynomial of degree m,

p (x) = a0 + a1 (x− x0) + · · ·+ am (x− x0)
m

=

m∑
i=0

ai (x− x0)
i
,
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we have that

p(k) (x) =

m∑
i=k

i (i− 1) · · · (i− k + 1) ai (x− x0)
i−k

,

so that
p(k) (x0) = k!ak.

We apply the lemma to the function

g (x) := f (x)− p (x)

to conclude that

lim
x→x0

f (x)− p (x)

(x− x0)
m = 0

if and only if for all k = 0, . . . ,m,

0 = g(k) (x0) = f (k) (x0)− p(k) (x0) = f (k) (x0)− k!ak,

that is

ak =
f (k) (x0)

k!
.

Thus

g (x) = Rm (x) = f (x)−
[
f (x0) + f ′ (x0) (x− x0) + · · ·+ f (m) (x0)

m!
(x− x0)

m

]
.

Exercise 227 Let g : [a, b] → R and m ∈ N. Assume g, g′, . . . , g(m−1) exist
and are continuous in [a, b] and that g(m−1) is differentiable in (a, b). Prove that
if

g (a) = g′ (a) = · · · = g(m−1) (a) = 0, g(b) = 0,

then there exists c ∈ (a, b) such that g(m)(c) = 0.

Exercise 228 Let m ∈ N, f ∈ C(m) ((a, b)), and x0 ∈ (a, b). Prove that for
every x ∈ (a, b),

f (x) = f (x0) + f ′ (x0) (x− x0) +
f ′′ (x0)

2!
(x− x0)

2

+ · · ·+ f (m) (x0)

m!
(x− x0)

m
+Rm (x) ,

where
Rm (x) =

1

m!
[f (m) (c)− f (m) (x0)] (x− x0)

m

for some c between x0 and x. Deduce that Rm satisfies

lim
x→x0

Rm (x)

(x− x0)
m = 0.
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Monday, April 4, 2022
We prove Theorem 223.

Exercise 229 (Multinomial theorem) Let x = (x1, . . . , xN ) ∈ RN and let
n ∈ N. Prove that

(x1 + · · ·+ xN )
n

=
∑

α multi-index, |α|=n

n!

α!
xα.

We are now ready to prove Taylor’s formula.
Proof of Theorem 223. Since x0 ∈ U and U is open, there exists

B (x0, r) ⊆ U . Fix x ∈ B (x0, r), x 6= x0 and let v := x−x0
‖x−x0‖ and con-

sider the function g (t) := f (x0 + tv) defined for t ∈ [0, r]. By Theorem 208,
we have that

dg

dt
(t) =

N∑
i=1

∂f

∂xi
(x0 + tv) vi = (v · ∇) f (x0 + tv)

with for all t ∈ [0, r]. By repeated applications of Theorem 208, we get that

d(n)g

dtn
(t) = (v · ∇)

n
f (x0 + tv)

for all n = 1, . . . ,m, where (v · ∇)
n means that we apply the operator

v · ∇ = v1
∂

∂x1
+ · · ·+ vN

∂

∂xN

n times to f . By the multinomial theorem, and the fact that for functions in
Cm partial derivatives commute,

(v · ∇)
n

=

(
v1

∂

∂x1
+ · · ·+ vN

∂

∂xN

)n
=

∑
α multi-index, |α|=n

n!

α!
vα

∂α

∂xα
,

and so
d(n)g

dtn
(t) =

∑
α multi-index, |α|=n

n!

α!
vα

∂αf

∂xα
(x0 + tv) .

Using Taylor’s formula for g (see Exercise 228) we get

g (t) = g (0) +

m∑
n=1

1

n!

d(n)g

dtn
(0) (t− 0)

n
+Rm(t),

where
Rm (t) =

1

m!
[g(m) (c)− g(m) (0)]tm (27)
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for some 0 < |c| < |t|. Substituting, we obtain

f (x0 + tv) = f (x0) +

m∑
n=1

tn

n!

∑
α multi-index, |α|=n

n!

α!
vα

∂αf

∂xα
(x0) +Rm(t)

= f (x0) +
∑

α multi-index, 1≤|α|≤m

t|α|

α!
vα

∂αf

∂xα
(x0) +Rm(t).

Take t = ‖x− x0‖. Then

x0 + tv = x0 + ‖x− x0‖
x− x0

‖x− x0‖
= x

and

t|α|vα = ‖x− x0‖|α|
(x− x0)α

‖x− x0‖|α|
= (x− x0)α

and so

f (x) = f (x0) +
∑

α multi-index, 1≤|α|≤m

(x− x0)α

α!

∂αf

∂xα
(x0) +Rm(‖x− x0‖).

Similarly, by (27),

Rm(‖x− x0‖) =
∑

α multi-index, |α|=m

(x− x0)α

α!

[
∂αf

∂xα
(x0 + cv)− ∂αf

∂xα
(x0)

]
.

Hence,

|Rm(‖x− x0‖)|
‖x− x0‖m

≤
∑

α multi-index, |α|=n

‖x− x0‖m

‖x− x0‖mα!

∣∣∣∣∂αf∂xα
(x0 + cv)− ∂αf

∂xα
(x0)

∣∣∣∣
≤

∑
α multi-index, |α|=n

∣∣∣∣∂αf∂xα
(x0 + cv)− ∂αf

∂xα
(x0)

∣∣∣∣→ 0

as x→ x0 since 0 < |c| < ‖x− x0‖ → 0.
Wednesday, April 6, 2022

Properties of little o

• f (x) o (g) = o (fg)

Example: as x→ 0
x6o

(
x3
)

= o
(
x6+3

)
= o

(
x9
)

• o (f) + o (g) = o (f + g) = o (the slower between f and g)

Example: as x→ 0
o
(
x5
)

+ o
(
x3
)

= o
(
x5 + x3

)
= o

(
x3
)
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• (o (f))
a

= o (fa) where a > 0

Example: as x→ 0(
o
(
x5
))1/3

= o
((
x5
)1/3)

= o
(
x5/3

)
• c o (f) = o (f) where c is any number different from zero

Examples: as x→ 0
3o
(
x4
)

= o
(
x4
)

−o
(
x5
)

= o
(
x5
)

• f + o (g) = o (g) if f is faster than g

Example: as x→ 0
x5 + 2x4 + o

(
x4
)
− x2 + x8 + x = 2x4 + o

(
x4
)
− x2 + x (hence the little

o o
(
x4
)
absorbs all the powers of degree strictly bigger than 4, while all the

powers of degree 4 or smaller than 4 remain)

• o (o (g)) = o (g)

• o (f)

o (g)
does not make sense in general.

Example 230 Let’s calculate the limit

lim
(x,y)→(0,0)

(1 + x)
y − 1

x2 + y2
.

First Method: Let’s use Taylor’s formula of order m = 2 at (0, 0),

f (x, y) = f (0, 0) +
∂f

∂x
(0, 0) (x− 0) +

∂f

∂y
(0, 0) (y − 0)

+
1

(2, 0)!

∂2f

∂x2
(0, 0) (x− 0)

2
+

1

(1, 1)!

∂2f

∂x∂y
(0, 0) (x− 0) (y − 0)

+
1

(0, 2)!

∂2f

∂y2
(0, 0) (y − 0)

2
+ o

(
x2 + y2

)
.

There are too many derivatives to compute so we will skip this.
Second Method: A simpler method is to use the Taylor’s formulas for et

and log (1 + x). We have

log (1 + x) = x− 1

2
x2 + o

(
x2
)
,

et = 1 + t+
1

2!
t2 + o

(
t2
)
,
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and so

f (x, y) = ey log(1+x) − 1 = ey(x− 1
2x

2+o(x2)) − 1

= 1 +

(
xy − 1

2
x2y + o

(
x2y
))

+
1

2!

(
xy − 1

2
x2y + o

(
x2y
))2

+ o

((
xy − 1

2
x2y + o

(
x2y
))2

)
− 1

= xy − 1

2
x2y + o

(
x2y
)

+
1

2!

(
xy − 1

2
x2y + o

(
x2y
))2

+ o

((
xy − 1

2
x2y + o

(
x2y
))2

)
= xy + o(x2 + y2)

and so

f(x, y)

x2 + y2
=
xy + o(x2 + y2)

x2 + y2
=

xy

x2 + y2
+
o(x2 + y2)

x2 + y2
=

xy

x2 + y2
+ o(1).

Taking x = y we have

f(x, x)

x2 + x2
=

x2

x2 + x2
+ o(1)→ 1

2
+ 0 as x→ 0.

while taking x = 0 we have

f(0, y)

0 + y2
=

0

x2 + y2
+ o(1)→ 0 as y → 0.

Hence, the limit does not exist.
Third Method: (This method in general does not work for m ≥ 2)

If either x = 0 or y = 0, we get

(1 + x)
y − 1

x2 + y2
=

0

x2 + y2
= 0.

If x 6= 0 and y 6= 0, then

(1 + x)
y − 1

x2 + y2
=
ey log(1+x) − 1

y log (1 + x)

log (1 + x)

x

xy

x2 + y2
.

Now, using the limits limt→0
et−1
t = 1 and limx→0

log(1+x)
x = 1, we have

lim
(x,y)→(0,0)

ey log(1+x) − 1

y log (1 + x)
= 1, lim

x→0

log (1 + x)

x
= 1,

while if g(x, y) = xy
x2+y2 and we take x = y we get that g(x, x) = x2

x2+x2 = 1
2 and

so
f(x, x)

x2 + x2
→ 1× 1× 1

2

as x→ 0. Hence, the limit does not exist.
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Important Taylor’s formulas with center x = 0

• ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · ·+ 1
n!x

n + o (xn) hence the first order
formula is

ex = 1 + x+ o (x)

while the second order formula is

ex = 1 + x+
1

2!
x2 + o

(
x2
)

• log (1 + x) = x− 1
2x

2 + 1
3x

3− 1
4x

4 + · · ·+ (−1)
n+1 1

nx
n + o (xn) hence the

first order formula is
log (1 + x) = x+ o (x)

while the second order formula is

log (1 + x) = x− 1

2
x2 + o

(
x2
)

• (1 + x)
a

= 1+ax+ 1
2a (a− 1)x2+ 1

6a (a− 1) (a− 2)x3 + 1
4!a (a− 1) (a− 2)

(a− 3)x4+· · ·+ 1
n!a (a− 1) (a− 2) (a− 3) · · · (a− n+ 1)xn+o (xn) hence

the first order formula is

(1 + x)
a

= 1 + ax+ o (x)

while the second order formula is

(1 + x)
a

= 1 + ax+
1

2
a (a− 1)x2 + o

(
x2
)

• 1

1 + x
= (1 + x)

−1
= 1−x+x2−x3 +x4 + · · ·+(−1)

n+1
xn+o (xn) hence

the first order formula is

1

1 + x
= (1 + x)

−1
= 1− x+ o (x)

while the second order formula is

1

1 + x
= (1 + x)

−1
= 1− x+ x2 + o

(
x2
)

• cosx = 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 · · ·+ (−1)
k 1

2k!x
2k + o

(
x2k+1

)
hence

the third order formula is

cosx = 1− 1

2!
x2 + o

(
x3
)

while the fifth order formula is

cosx = 1− 1

2!
x2 +

1

4!
x4 + o

(
x5
)
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• sinx = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + 1
9!x

9 · · ·+ (−1)
k 1

(2k+1)!x
2k+1 + o

(
x2k+2

)
hence the second order formula is

sinx = x+ o
(
x2
)

while the fourth order formula is

sinx = x− 1

3!
x3 + o

(
x4
)

• arctanx = x− 1
3x

3 + 1
5x

5− 1
7x

7 + 1
9x

9 · · ·+ (−1)
k 1

(2k+1)x
2k+1 + o

(
x2k+2

)
hence the second order formula is

arctanx = x+ o
(
x2
)

while the fourth order formula is

arctanx = x− 1

3
x3 + o

(
x4
)
.

Example 231 Let’s calculate

lim
(x,y)→(0,0)

log
(
1 + sin2 (xy)

)
− x2y2

(x2 + y2)
2

Taylor’s formula of sin t of order one is given by

sin t = t+ o
(
t2
)

and so

sin2 t =
(
t+ o

(
t2
))2

= t2 +
(
o
(
t2
))2

+ 2to
(
t2
)

= t2 + o
(
t3
)

where we have used the properties of the little o. Hence

log
(
1 + sin2 t

)
= log

(
1 + t2 + o

(
t3
))
,

Let’s use now Taylor’s formula

log (1 + s) = s+ o (s) ,

where for us s = sin2 t = t2 + o
(
t3
)
. We get

log
(
1 + sin2 t

)
= log

(
1 + t2 + o

(
t3
))

=
(
t2 + o

(
t3
))

+ o
(
t2 + o

(
t3
))

= t2 + o
(
t2
)
.
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Hence,

log
(
1 + sin2 (xy)

)
− x2y2

(x2 + y2)
2 =

x2y2 + o
(
x2y2

)
− x2y2

(x2 + y2)
2

=
o
(
x2y2

)
(x2 + y2)

2 =
x2y2

(x2 + y2)
2

o
(
x2y2

)
x2y2

if x 6= 0 and y 6= 0. Now

0 ≤ x2y2

(x2 + y2)
2 ≤

1

2
,

and so
x2y2

(x2 + y2)
2

o
(
x2y2

)
x2y2

→ 0

by Theorem while if either x = 0 or y = 0, we get

log
(
1 + sin2 (xy)

)
− x2y2

(x2 + y2)
2 =

0

(x2 + y2)
2 = 0.

Hence,

lim
(x,y)→(0,0)

log
(
1 + sin2 (xy)

)
− x2y2

(x2 + y2)
2 = 0

Exercise 232 Calculate the limit

lim
(x,y)→(0,0)

log
(
1 + sin2 (xy)

)
− x2y2

(x2 + y2)
4 .

Monday, April 11, 2022

14 Local Minima and Maxima

We recall that

Definition 233 Let (X, d) be a metric space, let E ⊆ X, let f : E → R, and
let x0 ∈ E. We say that

(i) f attains a local minimum at x0 if there exists r > 0 such that f (x) ≥
f (x0) for all x ∈ E ∩B (x0, r),

(ii) f attains a global minimum at x0 if f (x) ≥ f (x0) for all x ∈ E,

(iii) f attains a local maximum at x0 if there exists r > 0 such that f (x) ≤
f (x0) for all x ∈ E ∩B (x0, r),

(iv) f attains a global maximum at x0 if f (x) ≤ f (x0) for all x ∈ E.
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Theorem 234 Let (X, ‖·‖) be a normed space, let E ⊆ X, let f : E → R,
and let x0 ∈ E. Assume that f attains a local minimum (or maximum) at x0

and that there exists the directional derivative ∂f
∂v (x0). If x0 is an accumulation

point for both sets E ∩ {x0 + tv : t > 0} and E ∩ {x0 + tv : t < 0}, then
necessarily, ∂f∂v (x0) = 0. In particular, if x0 is an interior point of E and f is
differentiable at x0, then all the directional derivatives of f at x0 are zero.

Proof. Assume that f attains a local minimum (the case of a local maximum
is similar). Then there exists r > 0 such that f (x) ≥ f (x0) for all x ∈ E ∩
B (x0, r). Take x = x0 + tv, where |t| < r/ ‖v‖. Then

‖x0 + tv − x0‖ = ‖tv‖ = |t| ‖v‖ < r,

and so f (x0 + tv) ≥ f (x0). If t > 0, then

f (x0 + tv)− f (x0)

t
≥ 0.

Since x0 is an accumulation point for the set E ∩ {x0 + tv : t > 0}, there are
infinitely many t > 0 approaching zero. Hence, letting t → 0+ and using the
fact that there exists ∂f∂v (x0), we get that ∂f∂v (x0) ≥ 0.
If t < 0, then f (x0 + tv) ≥ f (x0) and

f (x0 + tv)− f (x0)

t
≤ 0.

Since x0 is an accumulation point for the set E ∩ {x0 + tv : t < 0}, there are
infinitely many t < 0 approaching zero. Hence, letting t → 0− and using the
fact that there exists ∂f∂v (x0), we get that ∂f∂v (x0) ≤ 0.

This shows that ∂f∂v (x0) = 0.

Remark 235 If if x0 is a point of local minimum and ∂f
∂v (x0) exists, then

x0 is an accumulation point for the set E ∩ {x0 + tv : t ∈ R}, so x0 is an
accumulation point for E ∩ {x0 + tv : t > 0}, in which case ∂f

∂v (x0) ≥ 0, or x0

is an accumulation point for E ∩ {x0 + tv : t < 0}, in which case ∂f
∂v (x0) ≤ 0.

Remark 236 In view of Theorem 234, when looking for local minima and max-
ima, we have to search among the following:

• Interior points at which f is differentiable and ∇f (x) = 0, these are
called critical points. Note that if ∇f (x0) = 0, the function f may not
attain a local minimum or maximum at x0. Indeed, consider the function
f (x) = x3. Then f ′ (0) = 0, but f is strictly increasing, and so f does
not attain a local minimum or maximum at 0.

• Interior points at which f is not differentiable. The function f (x) = |x|
attains a global minimum at x = 0, but f is not differentiable at x = 0.

• Boundary points.
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To find suffi cient conditions for a critical point to be a point of local minimum
or local maximum, we study the second order derivatives of f .

Definition 237 Let f : E → R, where E ⊆ RN , and let x0 ∈ E. The Hessian
matrix of f at x0 is the N ×N matrix

Hf (x0) : =


∂2f
∂x21

(x0) · · · ∂2f
∂xN∂x1

(x0)

...
...

∂2f
∂x1∂xN

(x0) · · · ∂2f
∂x2N

(x0)


=

(
∂2f

∂xi∂xj
(x0)

)N
i,j=1

,

whenever it is defined.

Remark 238 If the hypotheses of Schwartz’s theorem are satisfied for all i, j =
1, . . . , N , then

∂2f

∂xi∂xj
(x0) =

∂2f

∂xj∂xi
(x0) ,

which means that the Hessian matrix Hf (x0) is symmetric.

Given an N ×N matrix H, the characteristic polynomial of H is the poly-
nomial

p (t) := det (tIN −H) , t ∈ R.

Theorem 239 Let H be an N × N matrix. If H is symmetric, then all roots
of the characteristic polynomial are real.

Theorem 240 Given a polynomial of the form

p (t) = tN + aN−1t
N−1 + aN−2t

N−2 + · · ·+ a1t+ a0, t ∈ R,

where the coeffi cients ai are real for every i = 0, . . . , N−1, assume that all roots
of p are real. Then

(i) all roots of p are positive if and only if the coeffi cients alternate sign, that
is, aN−1 < 0, aN−2 > 0, aN−3 < 0, etc.

(ii) all roots of p are negative if and only ai > 0 for every i = 0, . . . , N − 1.

Remark 241 Given a vector x = (x1, . . . , xN ) ∈ RN we can identify x with
the 1×N matrix

(
x1 · · · xN

)
. In turn, its transpose xT becomes the N×1

matrix  x1

...
xN

 .
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Hence, given an N ×N matrix

H =

 h1,1 · · · h1,N

...
hN,1 hN,N

 ,

we have that

HxT =

 h1,1 · · · h1,N

...
hN,1 hN,N


 x1

...
xN

 =

 h1,1x1 + · · ·+ h1,NxN
...

hN,1x1 + · · ·+ hN,NxN

 .

In turn, xHxT becomes

xHxT =

 h1,1x1 + · · ·+ h1,NxN
...

hN,1x1 + · · ·+ hN,NxN


 x1

...
xN

 (28)

=

N∑
j=1

N∑
i=1

hi,jxjxi.

If H is symmetric, then its eigenvalues λ1, . . . , λN are real. Moreover, we can
find corresponding eigenvectors v1, . . . , v1 which forms an orthonormal basis.
Since

HvTi = λiv
T
i

for every i = 1, . . . , N , we get

viHv
T
i = λivi · vi = λi ‖vi‖2 = λi1. (29)

Since {v1, . . . ,v1} forms a basis in RN , we can write

x = c1v1 + · · ·+ cNvN .

Then

xHxT =

 N∑
j=1

cjvj

H

(
N∑
i=1

civ
T
i

)

=

 N∑
j=1

cjvj

( N∑
i=1

ciHv
T
i

)
=

N∑
j=1

N∑
i=1

λjcicjvi · vj

=

N∑
j=1

λjc
2
j ,

where we used the fact that vi · vj = 1 if i = j and 0 otherwise. In particular,
if we let m := min{λ1, . . . , λN}, we have that

xHxT =

N∑
j=1

λjc
2
j ≥ m

N∑
j=1

c2j = m ‖x‖2 .
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Definition 242 Given an N ×N matrix H, we say that

(i) H is positive definite if xHxT > 0 for all x ∈ RN \ {0},

(ii) H is positive semidefinite if xHxT ≥ 0 for all x ∈ RN ,

(iii) H is negative definite if xHxT < 0 for all x ∈ RN \ {0},

(iii) H is negative semidefinite if xHxT ≤ 0 for all x ∈ RN \ {0}.

Exercise 243 Let H be an N ×N symmetric matrix.

(i) Prove that H is positive definite if and only if all its eigenvalues are pos-
itive.

(ii) Prove that H is positive semidefinite if and only if all its eigenvalues are
nonnegative.

(iii) Prove that H is negative definite if and only if all its eigenvalues are
negative.

(iv) Prove that H is negative semidefinite if and only if all its eigenvalues are
nonpositive.

The next theorem gives necessary and suffi cient conditions for a point to be
of local minimum or maximum.

Theorem 244 Let U ⊆ RN be open, let f : U → R be of class C2 (U) and let
x0 ∈ U be a critical point of f .

(i) If Hf (x0) is positive definite, then f attains a local minimum at x0,

(ii) if f attains a local minimum at x0, then Hf (x0) is positive semidefinite,

(iii) if Hf (x0) is negative definite, then f attains a local maximum at x0,

(iv) if f attains a local maximum at x0, then Hf (x0) is negative semidefinite.

Proof. (i) Assume that Hf (x0) is positive definite. Then by Remark 241,

N∑
j=1

N∑
i=1

∂2f

∂xj∂xi
(x0) yiyj = yHf (x0)yY ≥ m ‖y‖2 (30)

for all y ∈ RN and for some m > 0.
We now apply Taylor’s formula of order two to obtain

f (x) = f (x0) +∇f (x0) · (x− x0) +
∑
|α|=2

1

α!

∂αf

∂xα
(x0) · (x− x0)

α
+R2 (x)

= f (x0) + 0 +
1

2

N∑
j=1

N∑
i=1

∂2f

∂xj∂xi
(x0) (x− x0)i (x− x0)j +R2 (x)

= f (x0) + 0 +
1

2
(x− x0)Hf (x0) (x− x0)

Y
+R2 (x)
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where we have used the fact that x0 is a critical point and where

lim
x→x0

R2 (x)

‖x− x0‖2
= 0.

Wednesday, April 12, 2022
Proof. Using the definition of limit with ε = m

2 , we can find δ > 0 such
that ∣∣∣∣∣ R2 (x)

‖x− x0‖2

∣∣∣∣∣ ≤ m

2

for all x ∈ E with ‖x− x0‖ ≤ δ. Using this property and (30), we get

f (x) ≥ f (x0) +m ‖x− x0‖2 +R2 (x) = f (x0) + ‖x− x0‖2
(
m+

R2 (x)

‖x− x0‖2

)
≥ f (x0) + ‖x− x0‖2

(
m− m

2

)
= f (x0) + ‖x− x0‖2

m

2
> f (x0)

for all x ∈ E with 0 < ‖x− x0‖ ≤ δ. This shows that f attains a (strict) local
minimum at x0.
(ii) Assume that if f attains a local minimum at x0. Then there exists

B (x0, r) ⊆ U such that
f (x) ≥ f (x0)

for all x ∈ B (x0, r). Assume by contradiction that Hf (x0) is not positive
semidefinite. This means that there exists an eigenvalue λi < 0. Let v be an
eigenvector of norm 1 for λi. Then

vHf (x0)vT = λi

As in the previous step

f(x) = f (x0) + 0 +
1

2
(x− x0)Hf (x0) (x− x0)

Y
+R2 (x) .

Take x = x0 + tvi, Then

f(x0 + tvi) = f (x0) + 0 +
1

2
t2λi +R2 (x0 + tvi)

= f (x0) +
λi
2
t2 + o(t2)

= f (x0) + t2
(
λi
2

+
o(t2)

t2

)
.
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Take ε = −λi4 > 0, as in the previous step we have that

f(x0 + tvi) = f (x0) + t2
(
λi
2

+
o(t2)

t2

)
≤ f (x0) + t2

(
λi
2
− λi

4

)
= f (x0) + t2

λi
4
< f (x0) ,

since λi < 0. This contradicts the fact that f has a local minimum at x0.

Remark 245 Note that in view of the previous theorem, if at a critical point x0

the characteristic polynomial of Hf (x0) has one positive root and one negative
root, then f does not admit a local minimum or a local maximum at x0.

Example 246 Let f (x, y, z) := x2 + y4 + y2 + z3 − 2xz. We have
∂f
∂x = 2x− 2z = 0
∂f
∂y = 4y3 + 2y = 0
∂f
∂z = 3z2 − 2x = 0

⇐⇒

 x− z = 0
y
(
2y2 + 1

)
= 0

3z2 − 2x = 0
⇐⇒

 x− z = 0
y = 0

3z2 − 2z = 0

⇐⇒

 x− z = 0
y = 0

z (3z − 2) = 0

and so the critical points are (0, 0, 0) and
(

2
3 , 0,

2
3

)
. Note that (0, 0, 0) is not a

point of local minimum or maximum, since f (0, 0, z) = z3 which changes sign
near 0. Let’s study the point

(
2
3 , 0,

2
3

)
. We have

Hf =


∂2f
∂x2

∂2f
∂y∂x

∂2f
∂z∂x

∂2f
∂x∂y

∂2f
∂y2

∂2f
∂z∂y

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2

 =

 2 0 −2
0 12y2 + 2 0
−2 0 6z


and so

Hf

(
2

3
, 0,

2

3

)
=

 2 0 −2
0 2 0
−2 0 6

 .

We have

0 = det

t
 1 0 0

0 1 0
0 0 1

−
 2 0 −2

0 2 0
−2 0 4


= det

 t− 2 0 2
0 t− 2 0
2 0 t− 4

 = t3 − 8t2 + 16t− 8.

The eigenvalues are all positive by Theorem 240. Hence, at
(

2
3 , 0,

2
3

)
we have a

local minimum.
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15 Lagrange Multipliers

In Section 14 (see Theorem 244) we have seen how to find points of local minima
and maxima of a function f : E → R in the interior E◦ of E. Now we are ready
to find points of local minima and maxima of a function f : E → R on the
boundary ∂E of E. We assume that the boundary of E has a special form, that
is, it is given by a set of the form{

x ∈ RN : g (x) = 0
}
.

Definition 247 Let f : E → R, where E ⊆ RN , let F ⊆ E and let x0 ∈ F .
We say that

(i) f attains a constrained local minimum at x0 if there exists r > 0 such
that f (x) ≥ f (x0) for all x ∈ F ∩B (x0, r),

(ii) f attains a constrained local maximum at x0 if there exists r > 0 such
that f (x) ≤ f (x0) for all x ∈ F ∩B (x0, r).

The set F is called the constraint.

Theorem 248 (Lagrange multipliers) Let U ⊆ RN be an open set, let f :
U → R be a function of class C1 and let g : U → RM be a class of function C1,
where M ≤ N , and let

F := {x ∈ U : g (x) = 0} .

Let x0 ∈ F and assume that f attains a constrained local minimum (or max-
imum) at x0. If the vectors ∇gi (x0), i = 1, . . . ,M are linearly independent,
then there exist λ1, . . . , λM ∈ R such that

∇f (x0) = λ1∇g1 (x0) + · · ·+ λM∇gM (x0) .

We will prove this theorem using manifolds in MS.

Example 249 Given a point x0 ∈ RN , find

dist(x0, SN−1),

where SN−1 := ∂B(0, 1) is the unit sphere in RN . Note that

dist(x0, SN−1) = inf{‖x0 − x‖ : x ∈ SN−1}
= inf{‖x0 − x‖ : ‖x‖ = 1}.

To simplify our life, we can square everything, so we are looking for the minimum
of the function

f(x) = ‖x0 − x‖2

subject to the constraint ‖x‖2 = 1. Take g(x) := ‖x‖2−1. Since SN−1 is closed
and bounded and f is continuous, by the Weierstrass theorem f has a global
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minimum and a global maximum in SN−1. Thus, we can apply the theorem on
Lagrange multipliers. We are looking for a solution of the following system

∇f = λ∇g,

subject to g = 0, that is{
∂f
∂xi

(x)− λ ∂g
∂xi

(x) = 0, i = 1, . . . , N,

g(x) = 0.

We have {
2(xi − x0,i)− 2λxi = 0, i = 1, . . . , N,

‖x‖2 = 1,

that is, {
(1− λ)xi = x0,i, i = 1, . . . , N,

‖x‖2 = 1,
⇔

{
(1− λ)x = x0,

‖x‖2 = 1.

If x0 = 0, then λ = 1, and so every point on the sphere is at maximum distance
from 0. If x0 6= 0, then λ 6= 1, and so x = 1

1−λx0. Plugging this into ‖x‖2 = 1,
we get

1 =
1

(1− λ)2
‖x0‖2 ⇔ (1− λ)2 = ‖x0‖2

which gives λ = 1± ‖x0‖, and in turn

x = ± 1

‖x0‖
x0.

The closest point to x0 will be 1
‖x0‖x0 and the furthest − 1

‖x0‖x0, as we expected.

16 Implicit and Inverse Function

Definition 250 Given an open set U ⊆ RN and a function f : U → RM ,
we say that f is of class Cm for some nonnegative integer m ∈ N0, if all
its components fi, i = 1, . . . ,M , are of class Cm. The space of all functions
f : U → RM of class Cm is denoted Cm

(
U ;RM

)
. We set C∞

(
U ;RM

)
:=

∞⋂
m=0

Cm
(
U ;RM

)
.

Theorem 251 (Inverse Function) Let U ⊆ RN be open, let f : U → RN ,
and let a ∈ U . Assume that f ∈ Cm

(
U ;RN

)
for some m ∈ N and that

det Jf (a) 6= 0.

Then there exists B (a, r) ⊆ U such that f (B (a, r)) is open, the function

f : B (a, r)→ f (B (a, r))

is invertible and f−1 ∈ Cm
(
f (B (a, r)) ;RN

)
. Moreover,

Jf−1 (y) =
(
Jf
(
f−1 (y)

))−1
.
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We will prove this theorem using a fixed point theorem in MS.
The next exercise shows that differentiability is not enough for the inverse

function theorem.

Exercise 252 Consider the function f : R2 → R2 defined by

f1 (x, y) =

{
0 if x = 0,
x+ 2x2 sin 1

x if x 6= 0,

f2 (x, y) = y.

Prove that f = (f1, f2) is differentiable in (0, 0) and Jf (0, 0) = 1. Prove that
f is not one-to-one in any neighborhood of (0, 0).

The next exercise shows that the existence of a local inverse at every point
does not imply the existence of a global inverse.

Exercise 253 Consider the function f : R2 → R2 defined by

f (x, y) = (ex cos y, ex sin y) .

Prove that det Jf (x, y) 6= 0 for all (x, y) ∈ R2 but that f is not injective.

Given a function f of two variables (x, y) ∈ R2, consider the equation

f (x, y) = 0.

We want to solve for y, that is, we are interested in finding a function y = g (x)
such that

f (x, g (x)) = 0.

We will see under which conditions we can do this. The result is going to be
local.
In what follows given x ∈ RN and y ∈ RM and f (x,y), we write

∂f

∂x
(x,y) :=


∂f1
∂x1

(x,y) · · · ∂f1
∂xN

(x,y)
...

...
∂fM
∂x1

(x,y) · · · ∂fM
∂xN

(x,y)


and

∂f

∂y
(x,y) :=


∂f1
∂y1

(x,y) · · · ∂f1
∂yM

(x,y)
...

...
∂fM
∂y1

(x,y) · · · ∂fM
∂yM

(x,y)

 .

Theorem 254 (Implicit Function) Let U ⊆ RN × RM be open, let f : U →
RM , and let (a, b) ∈ U . Assume that f ∈ Cm

(
U ;RM

)
for some m ∈ N, that

f (a, b) = 0 and det
∂f

∂y
(a, b) 6= 0.
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Then there exist BN (a, r0) ⊂ RN and BM (b, r1) ⊂ RM , with BN (a, r0) ×
BM (b, r1) ⊆ U and a unique function

g : BN (a, r0)→ BM (b, r1)

such that f (x, g (x)) = 0 for all x ∈ BN (a, r0). Moreover, g is of class Cm

and g (a) = b.

Remark 255 When we say "unique function" we mean that for every x ∈
BN (a, r0) there exists a unique yx ∈ BM (b, r1) (depending on x) such that
f (x,yx) = 0. The function g is defined by g(x) := yx. Hence, we are saying
that in the set BN (a, r0)×BM (b, r1) the only solutions to the equation

f (x,y) = 0

are given by (x, g (x)), x ∈ BN (a, r0).

Proof. We apply the inverse function theorem to the function h : U →
RN × RM defined by

h (x,y) := (x,f (x,y)).

We have

det Jh (a, b) = det

(
IN×N 0N×M
∂f
∂x (a, b) ∂f

∂y (a, b)

)
= det

∂f

∂y
(a, b) 6= 0.

Hence, by the inverse function theorem there exists B ((a, b) , r) ⊆ U such that
h (B ((a, b) , r)) is open, the function

h : B ((a, b) , r)→ h (B ((a, b) , r))

is invertible and h−1 ∈ Cm
(
h (B ((a, b) , r)) ;RN

)
. Note that h (a, b) = (a,0) ∈

h (B ((a, b) , r)). Since h (B ((a, b) , r)) is open, we can find r0 > 0 and r1 > 0
such that B (a, r0)×B (0, r1) ⊆ h (B ((a, b) , r)).
Write h−1(x, y) = (p(x, y), q(x, y)) ∈ RN × RM . Then for (x, y) ∈

B (a, r0)×B (0, r1),

(x, y) = h(h−1(x, y)) = h((p(x, y), q(x, y))

= (p(x, y),f(p(x, y), q(x, y))),

so

x = p(x, y),

y = f(p(x, y), q(x, y)).

Substituting the first identity into the second, we obtain

y = f(x, q(x, y))
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for (x, y) ∈ B (a, r0)×B (0, r1). In particular, taking y = 0 gives

0 = f(x, q(x, 0))

for x ∈ B (a, r0). So we can define g(x) := q(x, 0) for x ∈ B (a, r0).
The next examples show that when det ∂f∂y (a, b) = 0, then anything can

happen.

Example 256 In all these examples N = M = 1 and ∂f
∂y (x0, y0) = 0.

(i) Consider the function
f (x, y) := (y − x)

2
.

Then f (0, 0) = 0, ∂f∂y (0, 0) = 0 and g (x) = x satisfies f (x, g (x)) = 0.

(ii) Consider the function
f (x, y) := x2 + y2.

Then f (0, 0) = 0, ∂f
∂y (0, 0) = 0 but there is no function g defined near

x = 0 such that f (x, g (x)) = 0.

(iii) Consider the function

f (x, y) := (xy − 1)
(
x2 + y2

)
.

Then f (0, 0) = 0, ∂f∂y (0, 0) = 0 but

g (x) =

{
0 if x = 0,
1
x if x 6= 0,

which is discontinuous.

Friday, April 22, 2022
Next we give an example on how to apply the implicit function theorem.

Example 257 Consider the function

f (x, y, z) =
(
y cos (xz)− x2 + 1, y sin (xz)− x

)
.

Let’s prove that there exist r > 0 and g : (1− r, 1 + r) → R2 of class C∞ such
that g (1) =

(
1, π2

)
and f (x, g (x)) = 0. Note that f is of class C∞. Here the

point is
(
1, 1, π2

)
and

f
(

1, 1,
π

2

)
=
(

1 cos
(

1
π

2

)
− 1 + 1, 1 sin

(
1
π

2

)
− 1
)

= (0, 0) .

Moreover,

∂f

∂ (y, z)
(x, y, z) =

(
∂f1
∂y (x, y, z) ∂f1

∂z (x, y, z)
∂f2
∂y (x, y, z) ∂f1

∂z (x, y, z)

)

=

(
∂
∂y

(
y cos (xz)− x2 + 1

)
∂
∂z

(
y cos (xz)− x2 + 1

)
∂
∂y (y sin (xz)− x) ∂

∂z (y sin (xz)− x)

)

=

(
1 cos (xz)− 0− 0 −xy sin (xz)− 0− 0
1 sin (xz)− 0 xy cos (xz)− 0

)
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and so

det
∂f

∂ (y, z)

(
1, 1,

π

2

)
= det

(
cos
(
1π2
)
−1 sin

(
1π2
)

sin
(
1π2
)

1 cos
(
1π2
) )

= 1 6= 0.

Hence, by the implicit function theorem there exist r > 0 and g : (1− r, 1 + r)→
R2 of class C∞ such that g (1) =

(
1, π2

)
and f (x, g (x)) = 0 for all x ∈

(1− r, 1 + r), that is,{
g1 (x) cos (xg2 (x))− x2 + 1 = 0,
g1 (x) sin (xg2 (x))− x = 0.

Reasoning as before, we can use Taylor’s formula to find the behavior of g1 and
g2 near x = 1, that is,

g1 (x) = g1 (1) + g′1 (1) (x− 1) + o ((x− 1)) ,

g2 (x) = g2 (1) + g′2 (1) (x− 1) + o ((x− 1)) .

Let’s differentiate the two equations. We get{
g′1 (x) cos (xg2 (x))− g1 (x) (1g2 (x) + xg′2 (x)) sin (xg2 (x))− 2x+ 0 = 0,
g′1 (x) sin (xg2 (x)) + g1 (x) (1g2 (x) + xg′2 (x)) cos (xg2 (x))− 1 = 0.

Taking x = 1 and using the fact that g1 (1) = 1 and g2 (1) = π
2 , we obtain{

g′1 (1) cos
(
1π2
)
− 1

(
π
2 + 1g′2 (1)

)
sin
(
1π2
)
− 2 = 0,

g′1 (1) sin
(
1π2
)

+ 1
(
π
2 + 1g′2 (1)

)
cos
(
1π2
)
− 1 = 0,

that is, {
0− 1

(
π
2 + g′2 (1)

)
1− 2 = 0,

g′1 (1) 1 + 0− 1 = 0,

and so g′1 (1) = 1 and g′2 (1) = −2− π
2 . Hence,

g1 (x) = 1 + 1 (x− 1) + o ((x− 1)) ,

g2 (x) =
π

2
+
(
−2− π

2

)
(x− 1) + o ((x− 1)) .

17 Lebesgue Measure

Given a bounded interval I ⊆ R, the length of I is defined as

length I := sup I − inf I.

Given N bounded intervals I1, . . . , IN ⊂ R, a rectangle in RN is a set of the
form

R := I1 × · · · × IN .
The elementary measure of a rectangle R as

measR := length I1 · · · · · length IN .
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Given a set E ⊆ RN , we recall that the Lebesgue outer measure of E is
defined by

LNo (E) := inf

{ ∞∑
i=1

measRi : Ri rectangles,
∞⋃
i=1

Ri ⊇ E
}
. (31)

Proposition 258 Let R ⊂ RN be a rectangle. Then LNo (R) = measR.

Monday, April 25, 2022

Exercise 259 Let R ⊂ RN be a rectangle and assume that

R =

n⋃
i=1

Ri,

with Ri pairwise disjoint rectangles. Prove that

measR =

n∑
i=1

measRi.

Exercise 260 Let R ⊂ RN be a rectangle and assume that

R ⊆
n⋃
i=1

Ri,

with Ri rectangles (not necessarily disjoint). Prove that

measR ≤
n∑
i=1

measRi.

Exercise 261 Let R ⊂ RN be a rectangle. Prove that LNo (∂R) = 0.

Proposition 262 The following properties hold.

(i) If E ⊆ F ⊆ RN , then LNo (E) ≤ LNo (F ).

(ii) If E ⊆
⋃∞
n=1En, then LNo (E) ≤

∑∞
n=1 LNo (En).

We now show that if E ∩ F = ∅, then it can happen that

LNo (E ∪ F ) 6= LNo (E) + LNo (F ).

Exercise 263 Let E ⊆ RN and let x0 ∈ RN . Prove that

LNo (E) = LNo (x0 + E)

Example 264 On the real line we consider the equivalence relation x ∼ y if x−
y ∈ Q. By the axiom of choice we may construct a set E ⊂ (0, 1) that contains
exactly one element from each equivalence class. The following properties are
satisfied:

95



(i) If x ∈ (0, 1), then x ∈ r+E for some r ∈ (−1, 1)∩Q. To see this, observe
that by construction of E, for any x ∈ (0, 1) there exists y ∈ E such that
that x ∼ y, that is, x− y = r ∈ (−1, 1) ∩Q.

(ii) If r, q ∈ Q, with r 6= q, then (r + E)∩(q + E) = ∅. Indeed, if not, then we
may write r+x = q+y for some x, y ∈ E. But then x−y = q−r ∈ Q\{0},
which implies that x ∼ y. By the construction of E this is possible only if
x = y, which is impossible.

Define
F :=

⋃
r∈(−1,1)∩Q

(r + E) ⊂ (−1, 2) .

Observ that F ⊃ (0, 1) by property (a)
Assume by contradiction that

L1
o(E1 ∪ E2) = L1

o(E1) + L1
o(E2) (32)

for all E1, E2 ⊆ R with E1 ∩E2 = ∅. Consider an enumeration {rn : n ∈ N} of
(−1, 1) ∩Q and define

En := rn + E.

Then the sets En are pairwise disjoint and so if (32) were to hold, then by
induction

3 ≥ L1
o

( m⋃
n=1

En

)
=

m∑
n=1

L1
o(En) =

m∑
n=1

L1
o(E) = mL1

o(E).

Takingm large enough we have a contradiction unless L1
o(E) = 0, but if L1

o(E) =
0, then L1

o(F ) = 0, which contradicts the fact that F ⊃ (0, 1).

To recover property (32), we need to introduce the notion of Lebesgue mea-
surability.

Definition 265 Given a set E ⊆ RN , we say that E is Lebesgue measurable
if for every ε > 0 there exists an open set U ⊇ E such that

LNo (U \ E) ≤ ε.

Proposition 266 The following properties hold.

(i) Open sets are Lebesgue measurable.

(ii) If E ⊆ RN has Lebesgue outer measure zero, then E and its subsets are
Lebesgue measurable.

(iii) If E =
⋃∞
n=1En, and each En is Lebesgue measurable, then E is Lebesgue

measurable.

(iv) Compact sets are Lebesgue measurable.
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(v) Closed sets are Lebesgue measurable.

(vi) If E ⊆ RN is Lebesgue measurable, then RN \ E is Lebesgue measurable.

(vii) If E =
⋂∞
n=1En, and each En is Lebesgue measurable, then E is Lebesgue

measurable.

Let
M = {E ⊆ RN : E is Lebesgue measurable}.

For every E ∈M, the Lebesgue measure of E is defined to be LN (E) := LNo (E).

Proposition 267 Let En ⊆ RN , n ∈ N, be Lebesgue measurable.

(i) If the sets En are disjoint, then

LN
( ∞⋃
n=1

En

)
=

∞∑
n=1

LN (En).

(ii) If En ⊆ En+1 for all n, then

LN
( ∞⋃
n=1

En

)
= lim
n→∞

LN (En).

(iii) If En ⊇ En+1 for all n and LN (En) <∞ for some n, then

LN
( ∞⋂
n=1

En

)
= lim
n→∞

LN (En).

17.1 Integrable Functions

We are now in a position to introduce the notion of integral. Given a set F ⊆ RN
the characteristic function of F is the function χf , defined by

χF (x) :=

{
1 if x ∈ F,
0 otherwise.

Let E ⊆ RN be a Lebesgue measurable set and let F ⊆ E be a Lebesgue
measurable set. We define the Lebesgue integral of χF over F as∫

E

χF dx := LN (F ) .

Wednesday, April 27, 2022

Definition 268 Let E ⊆ RN be a Lebesgue measurable set. A simple function
is a function s : E → R that can be written as

s =
∑̀
n=1

cnχEn ,

where c1, . . . , c` ∈ R and the sets En are Lebesgue measurable.
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Let E ⊆ RN be a Lebesgue measurable set and let s : E → [0,∞) be a
nonnegative simple function. If s 6= 0, we can write

s =
∑̀
n=1

cnχEn ,

where the sets En ⊆ E are pairwise disjoint, En ∩ Ek = ∅ if n 6= k, and cn > 0
for all n = 1, . . . , `. We define the Lebesgue integral of s over E as∫

E

s dx :=
∑̀
n=1

cnLN (En) . (33)

Exercise 269 Let E ⊆ RN be a Lebesgue measurable set. Let s, t : E → [0,∞)
be simple functions. Prove that for every Lebesgue measurable set G ⊆ E,∫

G

(s+ t) dx =

∫
G

s dx+

∫
G

t dx.

Definition 270 Let E ⊆ RN be a Lebesgue measurable set and let f : E →
[0,∞]. We say that f is Lebesgue measurable if there exists a sequence of
simple functions sn : E → [0,∞) such that sn ≤ f for every n and sn → f
pointwise in E.

Theorem 271 Let E ⊆ RN be a Lebesgue measurable set and let f : E → [0,∞)
be a continuous function. Then f is Lebesgue measurable.

Let E ⊆ RN be a Lebesgue measurable set and let f : E → [0,∞] be a
measurable function. The Lebesgue integral of f over E is defined as∫

E

f dx := sup

{∫
E

s dx : s simple, 0 ≤ s ≤ f in E
}
.

We list below some basic properties of Lebesgue integration for nonnegative
functions.

Proposition 272 Let E ⊆ RN be a Lebesgue measurable set, let f , g : E →
[0,∞] be two Lebesgue measurable functions.

(i) If 0 ≤ f ≤ g in E, then
∫
E
f dx ≤

∫
E
g dx.

(ii) If c ∈ [0,∞), then
∫
E
cf dx = c

∫
E
f dx (here we set 0∞ := 0).

(iii) If
∫
E
f dx = 0 then there exists a Lebesgue measurable set G ⊆ E with

LN (G) = 0 such that f = 0 in E \G.

(iv) If LN (E) = 0, then
∫
E
f dx = 0, even if f ≡ ∞ in E.

(v)
∫
F
f dx =

∫
E
χF f dx for every Lebesgue measurable set F ⊆ E.

98



17.2 Lebesgue Integration of Functions of Arbitrary Sign

Let E ⊆ RN be a Lebesgue measurable set. In order to extend the notion of
integral to functions of arbitrary sign, consider f : E → [−∞,∞] and set

f+ := max {f, 0} , f− := max {−f, 0} .

Note that f = f+ − f−, |f | = f+ + f−.We say that f is Lebesgue measurable if
f+ and f− are Lebesgue measurable.

Definition 273 Let E ⊆ RN be a Lebesgue measurable set and let f : E →
[−∞,∞] be a measurable function. If at least one of the two integrals

∫
E
f+ dx

and
∫
E
f− dx is finite, then we define the Lebesgue integral of f over E by∫

E

f dx :=

∫
E

f+ dx−
∫
E

f− dx.

If both
∫
E
f+ dx and

∫
E
f− dx are finite, then f is said to be Lebesgue integrable

over E.

Example 274 Consider the function

f (x) :=
sinx

x
, x ≥ π.

Let’s prove that the limit

lim
`→∞

∫ `

π

sinx

x
dx ∈ R,

exists so that f is Riemann integrable in [π,∞). Integrating by parts, we have∫ `

π

sinx

x
dx =

[
− 1

x
cosx

]x=`

x=π

−
∫ `

π

1

x2
cosx dx

= −1

`
cos `− 1

π
−
∫ `

π

1

x2
cosx dx.

Since ∫ `

π

∣∣∣∣ 1

x2
cosx

∣∣∣∣ dx ≤ ∫ ∞
π

1

x2
dx =

1

π
<∞,

we have that there exists the limit

lim
`→∞

∫ `

π

1

x2
cosx dx = ` ∈ R.

Hence,

lim
`→∞

∫ `

π

sinx

x
dx = lim

`→∞
−1

`
cos `− 1

π
− lim
`→∞

∫ `

π

1

x2
cosx dx = − 1

π
− `.
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On the other hand,∫ ∞
π

(
sinx

x

)+

dx =

∫ ∞
π

(
sinx

x

)−
dx =∞,

so that the Lebesgue integral of f is not defined. To see this, observe that∫ ∞
π

(
sinx

x

)+

dx ≥
∞∑
n=1

∫ 2nπ

(2n−1)π

(
sinx

x

)+

dx ≥
∞∑
n=1

1

2nπ

∫ 2nπ

(2n−1)π

(sinx)
+
dx

=

∞∑
n=1

1

2nπ

∫ 2π

π

(sinx)
+
dx =∞.

The other integral can be estimated in a similar way.

Proposition 275 Let E ⊆ RN be a Lebesgue measurable set and let f , g : E →
[−∞,∞] be two measurable functions.

(i) If f and g are integrable and α, β ∈ R, then αf + βg is integrable and∫
E

(αf + βg) dx = α

∫
E

f dx+ β

∫
E

g dx.

(ii)
∣∣∫
E
f dx

∣∣ ≤ ∫
E
|f | dx.

(iii) If f is Lebesgue integrable, then the set {x ∈ E : |f (x)| =∞} has measure
zero.

(iv) If f (x) = g (x) for LN a.e. x ∈ E, then
∫
E
f± dx =

∫
E
g± dx, so that∫

E
f dx is well-defined if and only if

∫
E
g dx is well-defined, and in this

case we have ∫
E

f dx =

∫
E

g dx. (34)

Given a set E ⊆ RN × RM , for every x ∈ RN consider the section

Ex := {y ∈ RM : (x,y) ∈ E},

and for y ∈ RM consider the section

Ey := {x ∈ RN : (x,y) ∈ E}.

Let
G := {x ∈ RN : Ex 6= ∅}, H := {y ∈ RM : Ey 6= ∅}.

Theorem 276 Let E ⊆ RN × RM be a Lebesgue measurable set. Then G is
Lebesgue measurable, for LN -a.e. x ∈ G the section Ex is Lebesgue measurable,
and the function x ∈ G 7→ LM (Ex) is measurable. Similarly, H is Lebesgue
measurable, for LM -a.e. y ∈ H the section Ey is Lebesgue measurable, and the
function y ∈ H 7→ LN (Ey) is Lebesgue measurable. Moreover,

LN+M (E) =

∫
G

LM (Ex) dx =

∫
H

LM (Ey) dy.

100



Friday, April 27, 2022
By applying the previous theorem first to χE , then to simple functions, then

to pointwise limits of simple functions we obtain the following theorem.

Theorem 277 (Tonelli) Let E ⊆ RN × RM be a Lebesgue measurable set,
and let f : E → [0,∞] be a Lebesgue measurable function. Then for LN -a.e.
x ∈ G the section Ex is Lebesgue measurable, the function y ∈ Ex 7→ f(x,y)
is Lebesgue measurable, and the function x ∈ G 7→

∫
Ex
f(x,y) dy is mea-

surable. Similarly, for LM -a.e. y ∈ H the section Ey is Lebesgue measur-
able, the function x ∈ Ey 7→ f(x,y) is Lebesgue measurable, and the function
y ∈ H 7→

∫
Ey
f(x,y) dx is measurable. Moreover,∫

E

f(x,y) d(x,y) =

∫
G

(∫
Ex

f(x,y) dy

)
dx

=

∫
H

(∫
Ey

f(x,y) dx

)
dy.

The version of Tonelli’s theorem for integrable functions of arbitrary sign is
the well—known Fubini’s theorem:

Theorem 278 (Fubini) Let E ⊆ RN × RM be a Lebesgue measurable set,
and let f : E → [−∞,∞] be Lebesgue integrable. Then for LN -a.e. x ∈ G
the section Ex is Lebesgue measurable, the function y ∈ Ex 7→ f(x,y) is
Lebesgue integrable, and the function x ∈ G 7→

∫
Ex
f(x,y) dy is Lebesgue in-

tegrable. Similarly, for LM -a.e. y ∈ H the section Ey is Lebesgue measur-
able, the function x ∈ Ey 7→ f(x,y) is Lebesgue integrable, and the function
y ∈ H 7→

∫
Ey
f(x,y) dx is Lebesgue integrable. Moreover,∫

E

f(x,y) d(x,y) =

∫
G

(∫
Ex

f(x,y) dy

)
dx

=

∫
H

(∫
Ey

f(x,y) dx

)
dy.

Exercise 279 The next example shows that Fubini’s theorem fails without as-
suming the integrability of the function f . Consider the function

f (x, y) :=
x2 − y2

(x2 + y2)
2 , (x, y) ∈ R2 \ {(0, 0)} .

Prove that the Lebesgue integral of f is not defined over [0, 1]2 \ {(0, 0}) is not
defined and that the iterated integrals are different.∫ 1

0

(∫ 1

0

x2 − y2

(x2 + y2)
2 dx

)
dy =

∫ 1

0

[
− x

x2 + y2

]x=1

x=0

dy =

∫ 1

0

− 1

y2 + 1
dy = − [arctan y]

y=1
y=0 = −1

4
π,
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while∫ 1

0

(∫ 1

0

∫
x2 − y2

(x2 + y2)
2 dy

)
dx =

∫ 1

0

[
y

x2 + y2

]y=1

y=0

dx =

∫ 1

0

1

x2 + 1
dx = [arctanx]

x=1
x=0 =

1

4
π,

On the other hand∫ 1

0

∫ 1

0

(x2 − y2)+

(x2 + y2)
2 dxdy =

∫ 1

0

(∫ 1

y

x2 − y2

(x2 + y2)
2 dx

)
dy

=

∫ 1

0

[
− x

x2 + y2

]x=1

x=y

dy =

∫ 1

0

1

2y
− 1

y2 + 1
dy =∞

while∫ 1

0

∫ 1

0

(x2 − y2)−

(x2 + y2)
2 dxdy =

∫ 1

0

(∫ 1

x

y2 − x2

(x2 + y2)
2 dy

)
dx

=

∫ 1

0

[
− y

x2 + y2

]y=1

y=x

dx =

∫ 1

0

1

2x
− 1

x2 + 1
dx =∞.

Corollary 280 Let E ⊆ RN be a Lebesgue measurable set, let α : E → R and
β : E → R be two Lebesgue measurable functions, with α (x) ≤ β (x) for all
x ∈ E, and let

F := {(x, y) ∈ E × R : α (x) ≤ y ≤ β (x)} .

Then F is Lebesgue measurable. Moreover, if f : F → R is Lebesgue integrable
or f : F → [0,∞) is Lebesgue measurable, then∫

F

f (x, y) d (x, y) =

∫
E

(∫ β(x)

α(x)

f (x, y) dy

)
dx.

Example 281 Let’s calculate the integral∫∫
E

x (1− y) dxdy,

where
E :=

{
(x, y) ∈ R2 : y ≤ x, x2 + y2 ≤ 1, x ≥ 0, y ≥ 0

}
.

We can rewrite E as follows,

E =

{
(x, y) ∈ R2 : 0 ≤ y ≤

√
2

2
, y ≤ x ≤

√
1− y2

}

and since the function f (x, y) := x (1− y) is continuous in E and the functions
α (y) := y and β (y) :=

√
1− y2 are continuous, we can apply the previous
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corollary to conclude that

∫∫
E

x (1− y) dxdy =

∫ √
2
2

0

(∫ √1−y2

y

x (1− y) dx

)
dy =

∫ √
2
2

0

(1− y)

[x2

2

]x=
√

1−y2

x=y

 dy

=

∫ √
2
2

0

(1− y)

(
1− y2

2
− y2

2

)
dy

=
1

6

√
2− 1

16
.

Exercise 282 Calculate the integral∫∫∫
E

(x+ z) dxdydz,

where

E :=
{

(x, y, z) ∈ R3 : x+ y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0
}
.
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