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1 Real Numbers

There are two ways to introduce the real numbers. The first is to construct the
natural numbers using sets. For example, we could define 0 to be the empty set (),

then 1 to be the set {0}, 2 to be {0, {0} }, and 3 to be {0, {0}, {0, {0}}}. Then we
construct the integer numbers Z, the rational numbers Q, and, finally, the real
numbers R are constructed as "limits of rational numbers". This construction
is lengthy, so we will not pursue it.

The second way to introduce the real numbers is to give them in an axiomatic
way. We will use this method. The real numbers are a set R with two binary
operations, addition and multiplication

+:RxR—-R RxR—R

(,y) ~z+y (z,y) —z-y
and a relation < such that (R, +, ., <) is an ordered field satisfying the supremum
property. To be precise,

(4) (R,+) is an commutative group, that is,

(A1) (commutativity) for every a,b € R, a+b="b+ a,
(A2) (distributivity) for every a,b,c € R, (a+b)+c=a+ (b+c),

(A3) there exists a unique element in R, called zero and denoted 0, such
that 0+ a =a+ 0 = a for every a € R,

(Ay) for every a € R there exists a unique element in R, called the opposite
of a and denoted —a, such that (—a) + a = a + (—a) = 0,
(M)

(M7) (commutativity) for every a,b € R, a-b=10-a,
(Ms) (distributivity) for every a,b,c € R, (a-b)-c=a-(b-¢),

(Ms) there exists a unique element in R, called one and denoted 1, such
that 1 #0and 1-a=a-1 = a for every a € R with a # 0,

(My) for every a € R with a # 0 there exists a unique element in R, called
the inverse of a and denoted ¢!, such that a™* - a =a-a ' =1,

(O) < is a total order relation, that is,

(Oy) for every a,b € R either a <bor b < q,

(Og) for every a,b,ce Rif a < band b <c, then a <,
(O3) for every a,b € Rif a < band b < a, then a = b,
(O4)

for every a € R we have a < a,



(AM) for every a,b,ce R, a-(b+¢)=(a-b)+ (a-c),

(AO) for every a,b,ce Rifa<b,a+c<b+ec,

(MO) for every a,b e Rif 0 <aand 0 <b, then 0 <a-b,
(S) (supremum property)

If a <band a # b, we write a < b.

Exercise 1 Using only the axioms (A), (M), (0), (AO), (AM) and (MO) of
R, prove the following properties of R:

(i) if a-b =0 then either a =0 orb=0,
(ii) if a > 0 then —a <0,
(iii) if a < b and c < 0 then ac > be,
(iv) for every a € R we have a® > 0,
(v) 1>0.
Definition 2 Let E C R be a nonempty set.

(i) An element L € R is called an upper bound of E if v < L for all x € E;
(i) E is said to be bounded from above if it has at least an upper bound;

(iii) if E is bounded from above, the least of all its upper bounds, if it exists, is
called the supremum of E and is denoted sup E.

(iv) E has a maximum if there exists L € E such that © < L for all x € E.
We write L = max E.

We are now ready to state the supremum property.

(S) (supremum property) every nonempty set £ C R bounded from above
has a supremum in R.

The supremum property says that in R the supremum of a nonempty set
bounded from above always exists in R. We will see that this is not the case for
the rationals numbers.

Remark 3 (i) Note that if a set has a mazimum L, then L is also the supre-
mum of the set.

(i) If E C R is a set bounded from above, to prove that a number L € R is
the supremum of E, we need to show that L is an upper bound of E, that
is, that x < L for every x € E, and that any number s < L cannot be an
upper bound of E, that is, that there exists x € E such that s < x.



Example 4 Let F :={z € R: x < 1}. Then 1 is an upper bound of the set
FE and so E is bounded from above. We claim that 1 is the supremum of the set
E. To see this, let y € R with y < 1. We need to prove that y is not an upper
bound of the set E, that is, we need to show that there are elements in the set
that are larger than y. Take x 1= 1+Ty Since y < 1, we have that 1 +y <141,

and so HTy < 1. Thus z belongs to E. On the other hand, r = HTy >y, and
so y is not an upper bound of E. This shows that 1 = sup E. Note that 1 does
not belong to the set E and so the set E has no mazximum.

Definition 5 Let E C R be a nonempty set.
(i) An element ¢ € R is called a lower bound of E if { < x for all x € E;
(i) E is said to be bounded from below if it has at least a lower bound;

(iii) if E is bounded from below, the greatest of all its lower bounds, if it exists,
is called the infimum of E and is denoted inf E;

(tv) E has a minimum if there exists £ € E such that { < z for allz € E. We
write { = min E.

Remark 6 (i) Note that if a set has a minimum £, then £ is also the infimum
of the set.

(ii) If E C R is a set bounded from below, to prove that a number £ € R is
the infimum of E, we need to show that ¢ is a lower bound of E, that is,
that £ < x for every x € E, and that any number £ < s cannot be a lower
bound of F, that is, that there exists x € E such that x < s.
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2 Natural Numbers

Definition 7 A set E C R is called an inductive set if it has the following
properties

(i) the number 1 belongs to E,
(ii) if a number x belongs to E, then x + 1 also belongs to E.

Example 8 The sets [0,00) ={z € R: 0 <z}, [l,00) ={z €R: 1<z}, and
R are all inductive sets.

Definition 9 The set of the natural numbers N is defined as the intersection
of all inductive sets of R.

Note that N is nonempty, since 1 belongs to every inductive set, and so also
to N. We also define
No =Nu{0}.



Example 10 The number % is not a natural number. Indeed, [1,00) is an
iductive set and % does not belong to E, so % cannot belong to N. Also % s not
a natural number. Indeed, the set E = {1} U{n € N: n > 2} is an inductive

set that does not contain % Hence, % cannot be a natural number.

Proposition 11 The set N is an inductive set.

Proof. We already know that 1 belongs to N. If = belongs to N, then it
belongs to every inductive set E but then, since E is an inductive set, it follows
that x + 1 belongs E. Hence, x + 1 belongs to every inductive set, and so by

definition of N, we have that = 4+ 1 also belongs to N. m
The next result is very important.

Theorem 12 (Principle of mathematical induction) Let {p,}, n € N, be
a family of propositions such that

(i) p1 is true,

(ii) if pn is true for some n € N, then p,41 is also true.
Then p,, is true for every n € N.

Proof. Let E := {n € N such that p,, is true}. Note that E C N. It follows
by (i) and (ii) that E is an inductive set, and so E contains N (since N is the
intersection of all inductive sets). Hence, E =N. m

If x € R and n € N, we define

:I; :::I:..-..:E'
n times

If z # 0, we define 2" := 1. We do not define 0°.
The following will be used later on.

Exercise 13 Let x > —1. Prove that

(1+z)">1+nx (1)
for every n € N,
Exercise 14 Prove that
1+ -+n:n("2+1) (2)

for everyn € N

Exercise 15 Let x # 1. Prove that

for allm € N.



In what follows 0! := 1, I!:=1andn!:=1-2..---n for all n € N. The
number n! is called the factorial of n. For n € N and k € Ny, we define

(4) = mo

Exercise 16 Let j,k € N and a € R. Given the function f(x) = (x—i—a)j,
prove that

dk 0 ’ if k> j,
@ =1 00—k )@ ra) " k<,
k! if k= 7.

Exercise 17 Let x,y € R\ {0} and let n € N.

(i) Prove that for every 1 <k <mn,
n n n+1
<k>+(k—1)_( K )

=3 (et

k=0

(i) Prove that

Remark 18 If in Theorem we replace property (i) with
(i) if pn, is true for some ng € N,

then we can conclude that p, is true for all n € N with n > ngy. To see this,
it is enough to define

E :={n € N such that pyyn,—1 is true},
which is still an inductive set.

Exercise 19 Prove that
n > 2"n!

for allm > 6. Hint: Use the binomial theorem.
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Proposition 20 (Archimedean Property) Ifa,b € R witha > 0, then there
exists n € N such that na > b.

Proof. If b < 0, then n = 1 will do. Thus, assume that b > 0. Assume by
contradiction that na < b for all n € N and define the set

E={na: neN}.



Then the set E is nonempty and has an upper bound, b. By the supremum
property, there exists L. = sup E. Hence, for every m € N, we have that
(m+1)a < L, or, equivalently, ma < L — a for all m € N. But this shows that
L — a is an upper bound of E, which contradicts the fact that L is the least
upper bound. m

In the previous section we have defined the natural numbers. Note that
(N, +, -, <) does not satisfy properties (A43), (A4), and (My). In particular, we
cannot subtract two numbers a,b € N unless, a > b+ 1. For this reason, we
define the set of integers Z as follows

Z:={tn: neN}uU{0}.

Theorem 21 (The integer part) Given a real number x € R, there exists an
integer k € Z such that k < x < k+ 1.

Proof. Step 1: Let E={ke€Z: k<uz}. Ifz>0,then0€ E. If z <0,
let’s use the Archimedean property to find n > —x. Then —n < =z, and so,
—nekE.

Step 2: Since E is nonempty and bounded from below by x, by the supre-
mum property, there exists L = sup E£. Then L — 1 is not an upper bound of
FE and so there exists j € F such that L — 1 < j < L. By adding one to both
sides, we get that L < 74 1. Since L is the supremum of E, we have that j + 1
isnot in E, thatis, z <j+ 1. Thus,j<z<z+1. =

Definition 22 Given a real number x € R, the integer k given by the previous
corollary is called the integer part of x and is denoted |x|. The number x — | x|
is called the fractional part of © and is denoted fracx (or {x}). Note that
0<fracz < 1.

Exercise 23 Prove that every nonempty subset of the natural numbers has a
MINIMUm.

3 The Rationals Numbers and the Supremum
Property

Now (Z,+, -, <) satisfies properties (As), (A4), but not (My). To resolve this
issue, we introduce the set of rational numbers Q defined by

Q:Z{z:p,QEZq#O},

where % :=p-q *. Then (Q,+,-, <) satisfies properties (A), (M), (O), (AM),

(AO), (MO). So, what’s wrong? We will see that the rational numbers do not
satisfy the supremum property.

Theorem 24 (Density of the rationals) If a,b € R with a < b, then there
exists T € Q such that a < r < b.



Proof. We start by choosing the denominator. We want to find ¢ € N such
that % < b—a. To do this, we use the Archimedean property (applied with 1

and ﬁ in place of a and b) to find ¢ € N such that 0 < ﬁ < q. So, we have
% <b—a, or, a<a+% < b. Multiply by ¢ to find

qa < qa+ 1 < qb. (3)
By the theorem on the integer part, there exists an integer p € Z such that

p<qga<p+1. (4)
Since p < qa, we have p+ 1 < ga + 1 < gb. Thus,

qga <p+1<qgb.
Multiplying by % > 0 gives

1
a<i<b.

q

p+1
7

It suffices to define r := [ ]

Remark 25 [t follows from the previous theorem that for every x € R, if we
consider the set
E={reQ:r<uz},

then
sup F = z.

Indeed, since x is an upper bound of E, E is bounded from above, and so there
exists sup E = L. Moreover, L < x, since L is the least upper bound of E. We
claim that L = x. To see this, note that if L < x, then by the previous theorem
we can find r € Q such that L < r < x. But then r € E, and L cannot be an
upper bound of E, which is a contradiction. Thus L = x. This property will be
very useful. It says that using rational numbers we can get as close as we want
to every real number.

The set R\ Q is called the set of irrational numbers.

Exercise 26 Prove that there does not exist a rational number r such that
2
re =2

Theorem 27 The set of irrational numbers is nonempty.
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Proof. Take
E = {xER: O<xandx2<2}.

Then F is nonempty, since 1 € E. Moreover, E is bounded from below, since 2
is an upper bound. Hence, by the supremum property, there exists L € R such
that L = sup F.



We claim that L2 = 2. It cannot be L < 0, since 1 € F and 1 > 0. Hence,
L > 0. Let’s prove that it cannot be L? < 2. By the Archimedean property we

can choose n € N so large that n > gfz% Then

( 1)2 1 2L 1 2L oL+ 1
=<2,
n

L+=-) =P+ +=<P+=-+==L"+
n n n n n

by the choice of n. Hence, L + % belongs to F, which contradicts the fact that
L is an upper bound of E.

Let’s prove that if y € R\ E and y > 0, then y is an upper bound of E.
Indeed, let € E. If x > 0, then 22 < 2 < y?, which, since y > 0, implies that
x <y (why?).

Let’s prove that it cannot be L? > 2. By the archimedean property we can

choose n € N so large that n > max{Lg—fz7%}. Then L — % > 0 and

2

1 1 2L 2L

(L—) =L+ 5 -2 >02- s
n n n n

We claim that L — % is an upper bound of FE. To see this, let x € E. Since

$>O,L—%>0, and 22 < 2 < (L—%)Q, Wemusthavex<L—% (why?).

This shows that L — % is an upper bound of E. This contradicts the fact that
L is the least upper bound of E. Hence, it cannot be L? > 2, Thus, L? = 2.
The number L is denoted v/2 and called square root of 2. m

Exercise 28 Prove that the rational numbers do not satisfy the supremum prop-
erty, that is, it is not true that all sets E C Q which are nonempty and bounded
from above admit a supremum in Q.

Corollary 29 (Density of the irrationals) Ifa,b € R witha < b, then there
exists © € R\ Q such that a < x < b.

Proof. Since a < b, we have that v/2a < /2b. By the density of the
rationals, there exists r € Q such that V2a < r < +/2b. Without loss of

generality, we may assume that r # 0 (why?). Hence, a < % < b. Since 7 is
irrational (why?), the result is proved. m

Exercise 30 Let (R, ®,®, <) be another ordered field satisfying the supremum
property. Prove that there exists a bijection T : R — R’ such that T is an
isomorphism between the two fields, that is,

T(a+b) =T (a)dT (), T(a-b)y=T(a) T (b)
for all a,b € R, and a < b if and only if T (a) < T (b).

Remark 31 The previous exercise proves uniqueness of the real numbers. In-
deed every theorem we prove for R would hold for R’ because of the properties
of T. Hence, for all practical purposes, we cannot distinguish R from R’.



Similarly, for every n € N with n even and every x € R with > 0, we can
show that there exists a unique y € R with y > 0 such that ™ = y. On the
other hand, for every n € N with n odd and every x € R, we can show that
there exists a unique y € R such that 2" = y.

The number y is denoted {/z and called n-th root of .

Exercise 32 (The n-th root of a) Given x > 0 and n € N, with n > 2, we
want to define the n-th root of x.

(i) Prove that if r,s € Q with r < s, then r™ < s™.

(i) Prove that the set
E={":reQr>1}

does not have a minimum and that inf £ = 1.
(i1i) Given x > 0 consider the set
F:={yeR:y>0, y" <z}.

Prove that F is bounded from above and nonempty. Let ¢ := sup F'. Prove
that (™ = x.

4 Powers with Real Exponents

If € R and n € N, then we define ™ inductively by

But what does it mean zV2? Or more generally, % if a € R? To define this, we
will assume that 2 > 0 (this is needed to preserve the properties of powers). If
a is positive and rational, say a = I+, where m,n € N, then we define

pra
zm o= ()"
Remark 33 Note that xm = %/x". Indeed, let y = %/x. Then
"™ =m)" =a",
and so y™ = /", that is, (/x)" = /xn.
If a is rational and negative, say a = —--, where m,n € N, then we define
xTm = (x_l)% .
Exercise 34 Prove that if x > 0 and r,q € Q, then

JZT . I’S — :L.TJrS’

()" = (@) =",
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Exercise 35 Let x > 1 and r,q € Q.

(i) Prove that if r > 0, then x” > 1.
(i) Prove that if r < s, then " < x°.
Define
Qt:={reQ: r>0}.

We are now ready to define =% for a real. Assume that x > 1 and a > 0.
Consider the set

E,:={2": reQt, r<a}.

The set FE, is bounded from above and nonempty. We define % := sup F,.
Wednesday, January 26, 2022

Theorem 36 Let a,b € R witha > 0 and b > 0 and let z € R with x > 1.

Then

7% . ZL'b _ xa+b

Proof. Consider the three sets

E,:={2": r€Q", r <al,
Ey:={2°: s€Q"t, s<b},
Eppp:={z": teQt, t<a+b},
and let ¢, = sup E,, ¢, = sup Ey, and £, = sup Eq4p. Let’s prove that

gaeb < €a+b~

If r € Q" is such that » < a and s € QT is such that s < b, then r + 5 € QT
and 7 + s < a + b. Hence,

2" = 2" < Uy

Fix s € Qt with s < b and divide by z*. Then

ga—&-b
s

" <

for all » € Q7 with r < a. This shows that the number e‘;tb is an upper bound
for the set F,. Hence,

~

a+b
xs

by <

Now rewrite this inequality as

11



Recall that s € QT with s < b. Since the previous inequality is true for all such
s, it shows that the number 2‘2—“’ is an upper bound for the set F,. Hence,

€a+b
Ly < .
S ‘.
Thus, we have proved that
Laly < Loqp.
Next let’s prove that
Loyp < Loly.

Consider t € QF with t < a +b. We want to find p,q € QT with ¢t < p + ¢,
p < aand g <b. Since t — a < b, by the density of the rationals there exists
q € Q such that t —a < ¢ < b. Since b > 0 we can assume that ¢ > 0 (if not
apply the density of the rationals once more). Since ¢ — a < g we have that
t —q < a and so again by the density of the rationals there exists p € Q such
that t — ¢ < p < a. Again, since a > 0 we can assume that p > 0 (if not apply
the density of the rationals once more). Thus, ¢t < p+ ¢ and so by Exercises

and

b < Pt =P . 29 < L 0.

Since this is true for all t € QT with t < a 4+ b we have that ¢,¢, is an upper
bound of the set E,+p and so £y < o l,. m
Ifo<z<1, we set

a2 = (z7) 7",
Exercise 37 Let x > 0 and a,b € R. Prove that
(z*)’ = (xb)a =z,
Hint: It is enough to show (:c“)b = 2. Consider first the case in which a is

real and b is rational.

Given a number z € R, the absolute value of x is the number

= 4z ifz >0,
=1 -2 ifz<o.

The absolute value satisfies the following properties, which are left as as exercise.
Theorem 38 Let x,y,z € R. Then the following properties hold.

(i) |x| >0 for all x € R, with |x| =0 if and only if x =0,

(i1) |—x| = |z| for all z € R,

(iii) if y > 0 and x € R, then |z| <y if and only if —y < x <y,

(iv) —|z| <z <|z| for all x € R,

(iii) oyl = || ly| for all 2,y € R,

(iv) |z +yl < |z|+ [y| for all z,y € R.

12



5 Inner Products, Norms, Distances

Definition 39 A vector space, or linear space, over R is a nonempty set X,
whose elements are called vectors, together with two operations, addition and
multiplication by scalars,

XxX—-X d Rx X —X
(,y) —z+y an (t,x) — tx

with the properties that
(i) (X,+) is a commutative group, that is,

(a) x+y=y+zx foralx,ye X (commutative property),
(b)) e+ (y+2)=(x+y)+z forall x,y,z € X (associative property),

(c) there is a vector 0 € X, called zero, such that t +0=0+x =z for
allz € X,

(d) for every x € X there exists a vector in X, called the opposite of x
and denoted —x, such that © + (—z) =0,

(i) for all z,y € X and s,t € R,
(a) s(tz) = (st)x,
(b) 1z =z,

(¢) s(z+y) = (sz)+ (sy),
(d) (s+t)x = (sz) + (tx).

Remark 40 Instead of using real numbers, one can use a field F. For most
or our purposes the real numbers will suffice. From now on, whenever we don’t
specify, it is understood that a vector space is over R.

Example 41 Some important examples of vector spaces over R are the follow-
mg.

(i) The Euclidean space RY is the space of all N-tuples * = (x1,...,TN)
of real numbers. The elements of RN are called vectors or points. The
Euclidean space is a vector space with the following operations

w+y::(a:1—|—y17...,$N+yN)7 t:c::(txl,...,t:cN)
for everyt €R and © = (x1,...,zx) and y = (y1,...,yn) in RY.
(ii) The collection of all polynomials p : R — R.

(iii) The space of continuous functions f : [a,b] — R, where a < b and [a,b] :=
{zeR: a<x<b}.

13



Definition 42 Given a set E and a function f : E — R, we say that f is
bounded from above if the set

f(E)={yeR:y=[f(z), z€k}

is bounded from above. We say that f is bounded from below if the set f (E)
is bounded from below. Finally, we say that f is bounded if the set f (F) is
bounded. We write

sup f :=sup f (E), i%ff :=inf f (E).
E

Exercise 43 Given a set E, consider the vector space X := {f : E — R bounded}.
Prove that X is a vector space.
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Example 44 Consider the space X = {f : [a,b] — R : f is increasing in
[a,b]}. This is not a vector space since the difference of increasing functions
is not increasing. The smallest (in the sense of inclusion) vector space that
contains all increasing functions is the space of functions of pointwise bounded
variation.

Given a < b, consider the interval [a,b]. A partition of [a,b] is a finite set
P :={xo,...,z,} C [a,b], where

a=zg<x1 < - <xy =0
Given a function f : [a,b] — R, the pointwise variation of f on the interval [a, b]

Var f := sup {Z |f (z:) — f($¢—1)|} ;

i=1
where the supremum is taken over all partitions P := {zo,...,x,} of [a,b], and
all n € N. A function f : [a,b] — R has finite or bounded pointwise variation

if Var f < oco. The space of all functions f : [a,b] — R of bounded pointwise
variation is denoted by BPV ([a, b]).

Exercise 45 Prove that BPV ([a,b]) is a vector space.

Definition 46 An inner product, or scalar product, on a vector space X is a
function
() XxX >R

such that

(i) (z,x) >0 for every x € X, (x,2) =0 if and only if x = 0 (positivity);

14



(i1) (z,y) = (y,z) for all x,y € X (symmetry);
(ii1) (sx +ty,z) =s(x,2)+t(y,z) foralx,y,z € X and s, t € R (bilinearity).

An inner product space (X, (+,)) is a vector space X endowed with an inner
product (-, ).

Example 47 Some important examples of inner products are the following.
(i) Consider the Euclidean space RY, then
T-Y:i=T1y1 + - FTNYN,
where € = (x1,...,2n) and Yy = (y1,...,YN), s an inner product.

(i) Consider the space of X of all integrable functions f : [a,b] — R. Then

b
mm:/fmwwm

is not an inner product. Indeed, if f(x) =0 for all x € [a,b], x # “TH’ and
f(%52) =1, then f: f?(z) dz =0 but f is not 0.

To fix this problem one can take X to be the space of all continuous func-
tions f : [a,b] = R. Then

b
(F):= [ f@)g() do
s an inner product.
Definition 48 A norm on a vector space X is a map
[l - X — [0, 00)

such that

(i) ||lx]| = 0 implies x = 0;

(i) ||tx|| = |t] ||=|| for all z € X and t € R;

(iit) ||z +yll < ||zl + [lyll for all z,y € X.

A normed space (X, ||-||) is a vector space X endowed with a norm ||-||. For
simplicity, we often say that X is a normed space.

Example 49 Some important examples of norms are the following.

(i) Consider the space R. By Theorem the absolute value is a norm.
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(ii) Consider the Euclidean space RY | then

)| == V& @ =+/(21)2+ -+ (zn)2,

where € = (1,...,2N), s a norm. We will prove this below.

Exercise 50 Given a set E, consider the vector space X := {f : E — R bounded}.
For f € X, define
[ f1] := sup[f].
E

Prove that ||-|| is a norm.
Given an inner product (-,-) : X x X — R on a vector space X, it turns out
that the function
2] = /(z,z), =€X, (5)
is a norm. This follows from the following result.

Proposition 51 (Cauchy—Schwarz’s inequality) Given an inner product (-,-) :
X x X — R on a vector space X,

[z, 9)] < ll=[ Iy
forallz,y € X.

Proof. If y = 0, then both sides of the previous inequality are zeros, and so
there is nothing to prove. Thus, assume that y # 0 and let t € R. By properties

(1)-(iif),

2 2
0 < (z+ty,x+ty) = [lz|”+ ¢yl + 2t (,). (6)
Taking
_ (zy)
= 2
[yl
in the previous inequality gives
2 2
2 (x,y) 2 (-T,y)
0 < [lof]” + —7 llylI” = 2-—7%-,
[yl [yl

or, equivalently,
2 2, 12
(@, )" < ll=]I" Iyl

It now suffices to take the square root on both sides. =
Monday, January 31, 2022

Remark 52 [t follows from the proof that equality holds in the Cauchy—Schwarz
inequality if and only you have equality in @, that is, if x + ty = 0 for some
teR ory=0.
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Corollary 53 Given a scalar product (-,-) : X x X — R on a vector space X,
the function

2]l == V/(z,2), z€X,
18 a norm.

Proof. By property (i), ||-|| is well-defined and ||z|| = 0 if and only if = 0.
Taking ¢t =1 in @ and using the Cauchy—Schwarz inequality gives

2 2 2
0<llz+yl”=ll=lI" +llyl” + 2 (2,9)
2 2 2
< l=lI” + lylI” + 2 [l Tyl = =l +Tyl)”

which is the triangle inequality for the norm. Moreover, by properties (ii) and
(iii) for every t € R,

[tzll = /(te, tz) = v/t (2, t2) = V/t (tw,2) = V2 (2,2) = [¢] 2]

Thus ||-|| is a norm. m

Proposition 54 (Parallelogram law) Given an inner product (-,-) : X x
X — R on a vector space X,

2 2 2 2
lz+ylI” + llz —ylI” = 2|z + 2|yl
forallz,y € X.
Proof. Taking t = +1 in @, we get
2 2 2
lz+yll” = [lzI” + llyl” + 2 (z,9),
2 2 2
lz = ylI” = [lzI” + llyl” = 2(z,9).
By adding these identities, we obtain the desired result. m
Remark 55 If instead of add, we subtract these two identities we get
2 2
lz+ylI” = llz —ylI” = 4(z,9),
and so 1
2 2
(29) = 7 [le + 9l = lle = y)*].
Exercise 56 Prove that the following are norms in RN :

2o := max {|z1], ..., [zn]},
l2lly = |zaf + - + |zl

1/
I, == (lz2]” + -+ |zn[") 77,

for x = (x1,...,2n5) € RN and where 1 < p < <.

17



Example 57 InRY the norm |-l does not satisfy the parallelogram law. Take
z=(1,1,0,...), y=(1,-1,0,...). Thenz+y = (2,0,...), z—y = (0,2,0,...).
Hence,

2 2
Iz +ylle +llz -yl =4+4=38

2 2
7 2|2l + 2yl
=242

Example 58 In RY the norm |||, for p # 2 does not satisfy the parallelogram
law. Take z = (1,1,0,...), y=(1,-1,0,...). Thenz+y=(2,0,...), x—y =
(0,2,0,...). Hence,

2 2 P 2 p 2 .
lz+yll, + Iz —yll, = (") + (2")» =8

2 2

# 2l + 2 |yll,

—2(1P +17)7 +2(1P + 1P)5 = 2275,

Exercise 59 Consider the vector space X := {f : [0,1] — R bounded} with

[f1I = sup | f].

[0,1]

Let’s prove that ||| does not satisfy the parallelogram law. Take f(x) = —a?

and g(x) = x. Then

)

| =

Sup|f+9|:SUP|—9€2+UC|=HSa1)]<(x—x2):
[ ]

k) ) ’

[\

sup | f — g| = sup | — 2 — 2| = max(2” + z) =
(0,1] [0,1] [0,1]

sup |f| = sup | — z°| = max2? = 1,
[0,1] [0,1] [0,1]

sup|g| = sup |g| = maxz =1,
[0,1] [0,1] [0,1]

2 2
1
(wpﬁ+90 +<wpﬁ—g> :IE+4:
[0,1] [0,1]
2 2
#2 <sup|f|> +2 <sup Ig|>
[0,1] [0,1]

=242

and so

Exercise 60 Let (X, ||-||) be a normed space. Prove that there exists an inner
product (-,+) : X x X — R such that ||z|| = \/(z,z) for all x € X if and only if
Il satisfies the parallelogram law

2 2 2 2
Iz +yll” + llz —ylI” = 2lz[" + 2|y
forallz,y € X.
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Definition 61 A metric on a set X is a map d: X x X — [0,00) such that
(i) d(z,y) =0 if and only if x =y,
(i) d(z,y) =d(y,z) for all z,y € X (symmetry),

(iii) d(z,y) < d(z,z)+d(z,y) for all x,y,z € X (triangle inequality).

A metric space (X,d) is a set X endowed with a metric d. When there is
no possibility of confusion, we abbreviate by saying that X is a metric space.

Proposition 62 Let (X, ||-||) be a normed space. Then
d(z,y) = [lz =yl

18 a metric.

Proof. By property (i) in Definition 48] we have that 0 = d (z,y) = ||z — y||
if and only if x — y = 0, that is, x = y.

By property (ii) in Definition we obtain that

d(y,z) =y =zl = I=1(z =yl = =1 - [z =yl = |z —y| = d(z,y).
Finally, by property (ii) in Definition
d(@,y) =llz—yl=le—z+z—y| <lz—zl+lz-yll =d(@ 2) +d(zy).

[

Exercise 63 Prove that in R the function

x y
d = 7 7
1(@9) L+ [z] 1+ ]yl (™)

18 a metric.
Wednesday, February 2, 2022

Definition 64 Given a metric space (X,d), a point xg € X, and r > 0, the
ball centered at x¢ and of radius r is the set

B (zg,r):={z e X : d(zx,z9) <T}.

Definition 65 Given a metric space (X,d), and a nonempty set E C X, a
point x € E is called an interior point of E if there exists r > 0 such that
B(z,r) C E. The interior E° of a set E C RY is the union of all its interior
points. A subset U C X is open if every x € U is an interior point of U.
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Example 66 Given a metric space (X, d), the ball B (xo,r) is open. To see this,
let x € B(xo,7). Then B (x,r — d(z,x0)) is contained in B (xg,r). Indeed, if
y € B (zg,r —d(x,x0)), then

d(y,SCo) < d(y,l’) + d(ZE,l‘()) <r- d(z7x0) + +d(3§',$0) =,
and soy € B (xo,1).

Example 67 Some simple examples of sets that are open and of some that are
not.

(i) The set (a,00) = {x € R: & > a} is open. Indeed, if v > a, take r :=
x—a>0. Then B(z,r) C (a,00). Similarly, the set (—o0,a) is open.

(i1) The set (a,b) = {x e R: a <z < b} is open. Indeed, given a < x < b,
take r :== min {b — z,x —a} > 0. Then B (z,r) C (a,b).

(iii) The set (a,b] = {x € R: a < x < b} is not open, since b belongs to the set
but there is no ball B (b,r) contained in (a,b).

Example 68 Consider the set E = (0,1)NQ. The interior of this set is empty.
Indeed, if x € E and v > 0, by the density of the irrationals, we can find
y € R\ Q such that min{x — r,0} < y < max{x + r,1}. Hence, the ball
B(z,r) = (x —r,x 4+ r) contains y, which is not a point of E.

Example 69 Consider the set

UzR\({O}U{i:nGN}).

Let’s prove that U is open. If x < 0, taker = —z > 0, then B (z,r) = (—2x O)
U. Ifx > 1, taker =x — 1, thenB(as r)=(L,2z—-1)CU. If—<z< o

taker:min{% -,z — n%_l} = n+1’ then B (x,r) CU. Hence, U is open.

Example 70 Consider the set

E_]R{\({i:neN}).

Let’s prove that E is not open. The point x = 0 belongs to E, but for every
r >0, by the Archimedean principle we can find n E N such that n > X, and
s0 0 < = <, which shows that 1 € (—r,r). Since X does not belong to E the
ball (—r, 7") is not contained in E for any r > 0. Hence E is not open.

The main properties of open sets are given in the next proposition.
In what follows by an arbitrary family of sets of X we mean that there exists
a set I and a function

f:I—-P(X)
a€l— f(a)=U,

We write {Uy} or {Un}; or {Ua},; to denote the set {f (o) : a € I}.
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Proposition 71 Given a metric space (X,d), the following properties hold:

(i) 0 and X are open.

(i) IfU; C X, i=1,...,n, is a finite family of open sets of X, then Uy N
---NU, s open.

(ii1) If {Ua},, is an arbitrary collection of open sets of X, then |J, Uq is open.

Proof. To prove (ii), let x € Uy N---NUpy. Then z € U; for every
i =1,...,n, and since U; is open, there exists r; > 0 such that B (z,r;) C U;.
Take r := min {r1,...,r,} > 0. Then

B(z,r) CULN---NU,,

which shows that Uy N ---NU, is open.

To prove (iii), let € U := |J, Us. Then there is a such that = € U, and
since U, is open, there exists r > 0 such that B (z,r) C U, C U. This shows
that U is open. m

Friday, February 4, 2022

Properties (i)—(iii) are used to define topological spaces.

Definition 72 Let X be a nonempty set and let T be a family of sets of X. The
pair (X, 1) is called a topological space if the following hold.

(1) 0, X €.
(i) fU €T fori=1,...,M, thenUyN...NUpy € T.
(i11) If {Us},, is an arbitrary collection of elements of T, then |J, Us € T.
The elements of the family T are called open sets.

Remark 73 The intersection of infinitely many open sets is not open in gen-
eral. Take U, := (—%, %) forn € N. Then

N (-3.2) =10,

but {0} is not open. Indeed, for every r > 0, the ball (—r,r) is not contained in

{0}.

Remark 74 Proposition shows that the family of open sets in RY defined
in Definition[65] is a a topology, called the Euclidean topology. Unless specified,
in RN we will always consider the Euclidean topology.
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Example 75 Given a nonempty set X, there are always at least two topologies
on X, namely,

T = {@,X}

(so according to 11, the only open sets are the empty set and X ) and
T2 = {all subsets of X'}

(so according to o every set E C X is open).

Exercise 76 Let 1 < p < co. Prove that in RV the norms

llz| ., :=max {|z1],...,|zN]|]},
lz|| := Ve -z,
lzll, = (jz2” + - + |zn )2,

generate the same topology.
The proof of following proposition is left as an exercise.
Proposition 77 Given a metric space (X,d). Then
(i) E° is an open subset of E,

(i) E° is given by the union of all open subsets contained in E; that is, E° is
the largest (in the sense of union) open set contained in E,

(iii) E is open if and only if E = E°,
(iv) (E°)° = E°.

Example 78 Consider the set E = [0,1). Then 0 is not an in interior point
of E, so E° C (0,1). On the other hand, since (0,1) is open and contained
in E, by part (it) of the previous proposition, E° O (0,1), which shows that
E° =(0,1).

Exercise 79 Some properties of the interior.
(i) Prove that if E, F are subsets of RN, then
E°NF°=(ENF)°,
E°UF° C(EUF)°.
(ii) Show that in general E° U F° # (EUF)°.

(iii) Let {E,},, be an arbitrary collection of sets of RN. What is the rela-
tion, if any, between (), (Ua)® and (N, Ua)®? And between |J,, (Uy)® and

(Ua Ua)?
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Definition 80 Given a metric space (X,d), A subset C C X is closed if its
complement X \ C.

The main properties of closed sets are given in the next proposition.
Proposition 81 Given a metric space (X,d), the following properties hold:

(i) O and X are closed.

(i) If C; C X, i=1,...,n, is a finite family of closed sets of X, then C1 U
- U, is closed.

(i11) If {Cya},, is an arbitrary collection of closed sets of X, then (), Cq is
closed.

The proof follows from Proposition and De Morgan’s laws. If {E,}, is
an arbitrary collection of subsets of a set RY, then De Morgan’s laws are

X\(UEQ)=Q<X\EQ>,

X\ (ﬂEa> =X\ E).

Remark 82 Note that the majority of sets are neither open nor closed. The
set E = (0,1] is neither open nor closed.

Definition 83 Given a metric space (X,d) and a set E C X, the closure of E,
denoted E, is the intersection of all closed sets that contain E

In other words, the closure of E is the smallest (with respect to inclusion)
closed set that contains E. It follows by Proposition [81|that E is closed.
The proof of following proposition is left as an exercise.

Proposition 84 Given a metric space (X,d), let C C X. Then C is closed if
and only if C' = C.

The previous proposition leads us to the definition of accumulation points.

Definition 85 Given a metric space (X,d) and a set E C X, a point x € X
is a boundary point of E if for every r > 0 the ball B (z,r) contains at least
one point of E and one point of X \ E. The set of all boundary points of E is
denoted OF.

Proposition 86 Given a metric space (X,d), let E C X. Then

E=FEUJE,
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Proof. Let x € F and assume by contradiction that z ¢ E U JE. Since
x ¢ OF, there exists a ball B(x,r) that either does not intersect E or does not
intersect the complement of E. But since z ¢ E, only the first possibility can
occur. Hence, there exists r > 0 such that B (z,7) N E = . Since B (z,r) is
open and B (z,7) N E =, it follows that X \ B (z,r) is closed and contains E.
By the definition of E, we have that £ C X \ B (z,r), which contradicts the
fact that = € E.

Conversely, let x € EUOE and assume that z ¢ E. Since F is closed, X \ £
is open. Using the fact that € X \ E, we can find B (z,7) C X \ E, which
contradicts the fact that B (z,7) NE #0. m

Monday, February 7, 2022

Definition 87 Given a metric space (X,d) and a set E C X, a point x € X is
an accumulation point, or cluster point of E if for every r > 0 the ball B (x,1)
contains at least one point of E different from x. The set of all accumulation
points of E is denoted acc E.

Note that x does not necessarily belong to the set F.

Remark 88 Note take if x € RN is an accumulation point of E, then by taking
r= %, n € N, there exists a sequence {x,} C FE with x,, # x for alln € N such
that ||z, — z|| < £ — 0. Thus {z,} converges to z. Conversely, if there exists
{z,} C E with z, # x for all n € N such that |x,, — z|| — 0, then x is an
accumulation point of E.

It turns out that the closure of a set is given by the set and all its accumu-
lations points.

Proposition 89 Given a metric space (X,d) and a set E C X, then
E=FEUacckE.

In particular, a set C C X is closed if and only if C contains all its accumulation
points.

Proof. Exercise. m
Exercise 90 (i) Prove that if Ey,. .., E, are subsets of RN, then
Ein---NnE,2E N---NE,,
EiU---UE,=E U---UE,.
(ii) Show that in general Ey N ---NE, # E1N---NE,.

(iii) Let {E,},, be an arbitrary collection of sets of RN. What is the relation,
if any, between between (N, Eo and (), Ea? And between |J, E, and

Uy Ea?
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Definition 91 Given a metric space (X,d), a set E C X is bounded if it is
contained in a ball.

Theorem 92 (Bolzano—Weierstrass) Every bounded set E C RN with infi-
nitely many elements has at least one accumulation point.

The proof relies on a few preliminary results, which are of interest in them-
selves.

Lemma 93 Let {[a,,by]},, be a sequence of closed bounded intervals such that
[@n, bn] D [ant1,bn41] for all n € N. Then the intersection

[@n, bn]

n=1
18 nonempty.
Proof. Since
“Cang1,bn41] € [an,by] € -+ C a1, b1],
we have that

aj
b1

vV IA

Let

By and @D,forneN,
angbn Sbl

Hence, A is bounded from above, and so by the supremum property, there exists
x:=supA € R and
an <

for all n € N. We claim that x < b,, for all n € N. If not, then there exists
m € N such that b,,, < z. Since zx is the least upper bound of A, there exists
n € N such that b, < a,, < z. Find k > m,n. Then by and @D,

bm<an§ak§bkgbmv

which is a contradiction. This proves the claim. Hence, z € [ay,b,] for all
n €N, and soz €\, [an,b,). m

Given N bounded intervals I1,...,Ix C R, a rectangle in RY is a set of the
form

R:=1 x---xIy.

If all the intervals have the same length, we call R a cube.
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Lemma 94 Let {R,}, be a sequence of closed bounded rectangles in RN such
that R, O Ry41 for alln € N. Then the intersection

o0
M £
n=1

18 nonempty.

Proof. Each rectangle R, has the form

Rn = [an,h bn,l] X X [an,N7 bn,N] .

Since R, 2 R,y for all n € N, for every fixed £k = 1,..., N, we have that
[@n K, Onsk] 2 [@nt1,ks buti,k] for all n € N, and so by the previous lemma there
exists zx € (2, [@nk, bni]. Define & = (x1,...,2n). Then & = (z1,...,25) €
[an,1,bn1] X -+ X [an,n,bn,n] = Ry, for every n € N, and so z € (), Ry,. ®
Wednesday, February 9, 2022

We are now ready to prove the Bolzano—Weierstrass theorem.

Proof of the Bolzano—Weierstrass theorem. Since E is bounded, it is
contained in ball, and in turn a ball is contained in a cube @y of side-length
¢. Divide Q; into 2V two closed cubes of side-length %. Since E has infinitely
many elements, at least one of these 2%V closed cubes contains infinitely many
elements of E. Let’s call this closed interval Q2. Then Q2 C (1, and Q2
contains infinitely many elements of F.

Divide Q5 into into 2V two closed cubes of side-length 2%. Since E has in-
finitely many elements, at least one of these 2V closed cubes contains infinitely
many elements of E. Let’s call this closed interval Q3. By induction, we con-
struct a sequence of closed cubes @, n € N, with @,, 2 @41, such that the
side-length of @, is 2,1% and @, contains infinitely many elements of £. By the
previous lemma, there exists x € ﬂf:;l Q. We claim that x is an accumulation
point of E.

Fix 7 > 0 and consider the ball B (z,r). We claim that for n sufficiently
large, @, C B (x,r). To see this, let y € Q,,. Then

on—1 T on

ly— 2l = o1 — )P+t (1 —2)? < N< ¢ )2%m

By the Archimedean property, there exists n € N such that

20N

r

<l4n<2",

and so r > 22—5 N, which proves the claim. Since @,, contains infinitely many
elements of E, the same holds for B (z,r) and so z is an accumulation point of
E =

Definition 95 Given a metric space (X,d) and a set E C X, a point x € is
a boundary point of E if for every r > 0 the ball B (x,r) contains at least one
point of E and one point of X \ E. The set of boundary points of E is denoted
oF.
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The following theorem is left as an exercise.
Theorem 96 Let E C RY. Then
(i) E=EUOJE,
(i) E is closed if and only if it contains all its boundary points,
(iii) OF =8 (RV \ E),
(iv) OE = RN\ E) N E.
6 Compactness

Exercise 97 Let K C RY be closed and bounded. Prove that if E C K has
infinitely many elements, then E has an accumulation point that belongs to K.

Exercise 98 Let K,, C RN be nonempty, bounded, and closed. Assume that
K, O K, 41 for alln € N. Prove that ﬂzozl K, is nonempty.

Definition 99 Given a metric space (X,d), a set K C X is compact if for
every open cover of K, i.e., for every collection {U,}, of open sets such that
U, Ua 2 K, there exists a finite subcover (i.e., a finite subcollection of {Ua},
whose union still contains K).

Example 100 The set (0,1] is not compact, since taking U, := (%, 2), a finite
number of U, does not cover (0, 1].

Here the problem is that 0 does not belong to E. But what if E is closed?

Example 101 The set [0,00) is not compact, since taking U, := (—1,n), a
finite number of U,, does not cover [0, 00).

Here F is closed but the problem is that E is not bounded.

Theorem 102 Given a metric space (X,d), a compact set K C X is closed
and bounded.

Proof. To prove that K is closed, we show that X\ K is open. Fixz € X\ K.

For every y € K consider the balls B (y,r,) and B (z,ry), where r := M.
These two balls do not intersect each other (why?). Then {B (y,ry)}, cf is an
open cover of K| and so there exist y1,...,yn € K such that

K C

—

B (yiaryi> :

i=1

Let r := min{r,,,...,7y, } > 0. Then x € B(z,r) and the ball B(z,r) does not
intersect B (y;,ry,) for any ¢ = 1,...,m. Hence, B (z,r) is contained in X \ K.
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This shows that every point  of X \ K is an interior point, and so X \ K is
open.

To prove that K is bounded, consider a point zo € X and B (xg,n). The
family of balls {B (z9,n)},cy covers the entire space X and in particular K.
By compactness K is contained in a finite number of balls. Since the balls are
one contained into the other, we have that K is contained in the ball of largest
radius. Hence, K is bounded. m

Remark 103 For a topological space (X, T) we can still prove that a compact
set K C X is closed, provided the topological space X is a Hausdorff space, that
18, for every x and y € X, with x # y, there exist disjoint neighborhoods of x
and y.

A wvery simple example of a space that is not Hausdorff can be obtained by
considering a nonempty set X and taking as topology 7 := {0, X}. If X has at
least two elements, then any singleton {x} is compact but not closed.

There is a way to define a notion of boundedness for special topological
spaces, called topological vector spaces.

Friday, February 11, 2022
Theorem 104 A closed and bounded set K C RY is compact.

Proof. Let {U,}, be a family of open sets such that |J, U, 2 K and
assume by contradiction that no finite subcover covers K. Since K is bounded,
it is contained in ball, and in turn a ball is contained in a cube @ of side-length
¢. Divide Q; into 2"V two closed cubes of side-length g. If KN Q' is contained
in a finite subcover for every such subcube, then K would be contained in a
finite subcover. Hence, there exists at least one subcube @1 such that K N(Q1 is
not contained in a finite subcover of {U,},. Note that this imply, in particular,
that K N @1 has infinitely many distinct elements.

By induction, we construct a sequence of closed cubes @,, n € N, with
Qrn 2 Qny1, such that the side-length of @Q,, is 25%1 and K NQ, is not contained
in a finite subcover of {U,},. Again, this implies that K N @, has infinitely
many distinct elements. As in the proof of the Bolzano—Weierstrass theorem,
there exists « € ﬂzozl @, and z is an accumulation point of K. Since K is
closed, K contains all its accumulation points (exercise). Hence, x € K. Since
{U4},, covers K, there exists 3 such that € Ug. On the other hand, Ug is open,
and so, there is a ball B (z,r) contained in Ug. As in the proof of the Bolzano—
Weierstrass theorem, we have that for n sufficiently large, @, C B (z,r) C Ug,
which contradicts the fact that K N @, is not contained in a finite subcover of
{Us},  m

Remark 105 The previous theorem fails for infinite dimensional normed spaces,
and so, in general, for infinite dimensional metric spaces.
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7 Functions

Given two sets X and Y consider a function f : F — Y, where E C X. The
set I is called the domain of f. When X = RM  if E is not specified, then F
should be taken to be the largest set of x for which f (x) makes sense. This
means that:

If there are even roots, their arguments should be nonnegative. If there are
logarithms, their arguments should be strictly positive. Denominators should
be different from zero. If a function is raised to an irrational number, then the
function should be nonnegative.

Given a set F C F, the set f(F) = {ye€Y : y= f(x) for some z € F} is
called the image of F' through f.

Given a set G C R, the set f~1(G) = {z € E: f(x) € G} is called the
inverse image or preimage of F through f. It has NOTHING to do with the
inverse function. It is just one of those unfortunate cases in which we use the
same symbol for two different objects.

The graph of a function is the set of X x Y defined by

grf=A{(z f(z)): € E}.
A function f is said to be
e one-to-one or injective if f (z) # f (z) for all z,z € E with = # z.
e onto or surjective if f (E) =F,

o bijective or invertible if it is one-to-one and onto. The function f~!: F —
E, which assigns to each y € F = f(E) the unique = € E such that
f(z) =y, is called the inverse function of f.

8 Limits of Functions

Definition 106 If (X,dx) and (Y,dy) are two metric spaces, E C X, g € X
18 an accumulation point of E and f : E — Y, we say that { € Y is the
limit of f (x) as x approaches xq if for every € > 0 there exists a real number
0 =40 (g,xo) > 0 with the property that

dy (f (z),0) <e
forall z € E with 0 < dx (x,z0) < §. We write

lim f(x)=4¢ or f(z)—{asx— xo.

T—T0

Remark 107 Note that even when x € E, we cannot take x = xq since in the
definition we require 0 < dx (x, xo).
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Remark 108 Let E C RY, let ¢y € RN be an accumulation point of E, and
let f : E — RYN. We say that a number £ € RM is the limit of f (z) as =
approaches xg if for every e > 0 there exists a real number 6 = 0 (g, 29) > 0
with the property that

If (z) — €]l <e

for all z € E with 0 < ||l — zo|| < §. We write

lim f(x)=£ or f(x)— £ asx— xo.

Tx—x

Remark 109 If (X, 7x) and (Y, Ty) are two topological spaces, E C X, g € X
1s an accumulation point of E and f : E — Y, we say that £ € Y is the limit
of f(x) as x approaches xqy if for every neighborhood V of £ there exists a
neighborhood U of x¢ with the property that

f(z)eV
for all x € E with x € U\ {zo}. We write

lim f(x)=~¢.

T—T

Note that unless the space Y is Hausdorff, the limit may not be unique.

Theorem 110 Let (X,dx) and (Y,dy) be two metric spaces, let E C X, let
zg € X be an accumulation point of E and f : E — Y. If the limit

lim f(x)

rT—TQ
exists, it 1S unique.
Proof. Assume by contradiction that there exist

lim f(z)=¢ and lim f(z)=1L

T—To T—To

with £ # L. Then dy (¢,L) > 0. Fix 0 < & = 1dy (¢, L). Since lim,_.,, f (z) = ¢,
there exists d; > 0 with the property that

dy (f(z),0) <¢e

for all x € E with 0 < dx (z,20) < 01, while, since lim,_,,, f (z) = L, there
exists do > 0 with the property that

dy (f(x),L) <e

for all € F with 0 < dx (z,20) < da.
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Take § = min {01, d2} > 0 and take z € E with 0 < dx (z,20) < d. Note that
such x exists because x( is an accumulation point of . Then by the properties
of the distance,

dY(& L) S dY (f (.’L‘) 76) +dY (f (‘T) 7L)
<e4e=dy(( L),

which implies that dy (¢, L) < dy (¢, L). This contradiction proves the theorem.
[

Remark 111 For topological spaces in general the limit is not unique. Given
(X, 7x) and (Y, 7y) are two topological spaces, E C X, xg € X is an accumu-
lation point of E and f : E —'Y, it can be shown that the limit is unique if the
space Y is Hausdorff. A topological space Y is a Hausdorff space, if for every
x andy €Y, with x # y, there exist disjoint neighborhoods of x and y.

Monday, February 14, 2022

Definition 112 If (X,dx) and (Y,dy) are two metric spaces, E C X, and
f:+E =Y, given a subset ' C E we denote by f|. the restriction of the
function f to the set F, that is, the function f: F — Y.

Remark 113 Let (X,dx) and (Y,dy) be two metric spaces, let E C X, let
xg € X be an accumulation point of E and f : E — Y. Assume that there exists

lim f(z)="¢.

T—T0

Then for every € > 0 there exists a real number 6 = 0 (e,x9) > 0 with the
property that
dy (f(2),0) <e (10)

for all x € E with 0 < dx (z,20) < 4. if F C E is a subset such that xy is an
accumulation point of F, then by restricting (@ we have that

dy (f (x),0) <e

for all x € F with 0 < dx (x,z0) < §. Hence, there exists

lim f|p(z) ="

r—xo

It follows that if we can find two sets F C E and G C E such that x¢ € acc F
and xg € accG

1im0 flp (x) =€ #ly Zwli{go fle (@),

T—T

then by the uniqueness of the limit (which we will prove later), it follows that
the limit over E cannot exist.
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Example 114 Let’s study the limit

lim Y
(@.9)=(00) 2% +y*’
where m € N. In this case f (z,y) = 547 and the domain is E = R?\ {(0,0)}.
Note that (0,0) is an accumulation point of E.
Taking F = {(z,x) : x € R\ {0}}, we have that (0,0) is an accumulation
point of F'. For (z,x) € F we have

2 1
fwe)= g m=5

N | =

as x — 0, while taking G = {(z,0) : z= € R\ {0}}, we have that (0,0) is an
accumulation point of G. For (x,0) € F we have

0

f($,0):m:0—>07

and so the limit does not exist.

Remark 115 Note that the degree of the numerator is 2 and the degree of the
numerator is 2, so that in this particular example the limit does not exist if the
degree of the numerator is the same as the degree of the numerator.

Example 116 Let’s study the limit

.2322,/

lim _
(2,)—(0,0) 2 + 12

In this case f(x,y) = ;Tyy? and the domain is R? \ {(0,0)}. To try to guess
what the limit should be, let’s consider the restriction x = 0. Fory # 0, we have
Oy 0

f(uy) O—i—y? yg -

as y — 0. This says that if the limit exists, then it must be zero. To prove that
the limit exist, we use the fact that 2% < 22 +y? and that |y| = \/y? < /22 + y?

to estimate

2 2 2 2\ S22 2
Ty 0’:$|y|<($+y)$+y:m<g

x2+y2_ 22+ 42 22 + 92

for all (z,y) € R?\ {(0,0)} with 0 < \/22 + y? < §, provided we take § = ¢.

Remark 117 Note that the degree of the numerator is 3 and the degree of the
numerator is 2, so that in this particular example the limit exists if the degree
of the numerator is strictly bigger that the degree of the numerator.
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Example 118 Let’s study the limit
100
lim e y'
(z,9)—(0,0) T — ¥y

100
Y

In this case f(z,y) = =2 and the domain is R? \ {(z,z): = € R}. Taking

=y
y = 0, we have that

f(x,O):L():o-m.

Let us take y = x + x%, where a > 1 has to be chosen. Then

1.100 (CE + LL'U’) xlOl + xlOO—&-a

f(x’x—’_x):x—(x—&—x“)_ —ga
Take a = 101. Then

101 201 101 100

oy . T4z X (1+2')

f(:c,x+x )*7 2101 = 2101
1 100
_ e
1

Hence the limit does not exist.

Remark 119 Note that the degree of the numerator is 101 and the degree of
the numerator is 2, but in this case the limit never exists no matter how high
is the degree of the numerator. The problem is that the domain is R? minus a
curve passing through the origin.

Exercise 120 Study the limit
xty
im < ——.
(z,y)—(0,0) y —sInx

Hint: Try y = 2™ + sinx, where m has to be chosen.

We list some important limits.

i 1— 1 log (1
i SR —1, 1im$:,7 limM:L
z—0 T z—0 T 2 z—0 T
1+2)* -1 v
lim%:a for a € R, lime =1.
z—0 xT z—0 T

Example 121 Let’s study the limit

sin(z™y)
im ——2%,
(2.)—(0,0) 2% +y?

where m € N. In this case f (z,y) = “;;?iz;’) and the domain is R?\ {(0,0)}.
We want to use the limit .

. sint

lim — = 1.

t—0 ¢
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Consider f(x,0) = %H) =0—0asz — 0 and f(0,y) = ﬁ =0—0 as

y — 0. If zy # 0, then we can divide by x™y to see that

sin(z™y) _ sin(z™y) =™y

2 + y2 xmy 2 + y2 '

Then
sin(z™y) 1
1 —_— =
(z.y)—(0,0) ™Y
and so (using the theorem on product of limits which we will prove later) it
remains to study
li z"y
im .
(@y)—(0,0) 2% +y?
If m = 1 we have seen in the previous example that the limit does not exist.
For m > 2, we have that the limit is 0. Indeed, using the facts that |x| =

*/:cZS\/mand |y|:\/y7§\/mwehave

m m m/2 1/2
SR

— 0
~T2+y2 x2_|_,y2— ~T2+y2 -

as (z,y) — (0,0).

Remark 122 Note that the degree of the numerator is m+ 1 and the degree of
the demominator is 2, so that in this particular example the limit exists if the
degree of the numerator is higher than the degree of the denominator, that is, if
m+1>2.

Wednesday, February 16, 2022
The next example shows that checking the limit on every line passing through
T is not enough to guarantee the existence of the limit.

Example 123 Let

T

0 otherwise.

Given the line y = mx, the line intersects the parabola y = 2 only in 0 and in
at most one point. Hence, if x is very small,

fxz,mz)=0—0
as x — 0. However, since f (m, 322) =1—1asz — 0, the limit does not exists.
Exercise 124 Study the limit

m2y

lim —2 .
(z,y)—(0,0) T4 + 32
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Exercise 125 (Important) Let (X,dx) and (Y,dy) be two metric spaces, let
E C X, let xg € X be an accumulation point of E and let f : E — Y. Assume
that there exists £ € Y and a function g : [0,00) — (0, 00) with

i o) =0

such that for every € > 0 there exists a real number § = 6 (,z9) > 0 with the
property that

dy (f (2),0) < g(e)
for all x € E with 0 < dx (x,z0) < §. Prove that there exists

lim f(z)="¢.

r—T

Remark 126 (Important) The previous ezercise says that we do not have to
be very precise when applying the definition of limit, in the sense that, if we can
prove that for every € > 0 there exists a real number § = 0 (e, o) > 0 with the
property that

dy (f (z),0) < 4e*/?

for allx € E with 0 < dx (z,z0) < J or
dy (f (),0) < 4e® + 16¢

for all x € E with 0 < dx (z,x0) < § or anything like that, then we know that
we can conclude that there exists

lim f(z) =¢.

rT—TQ
This is very useful when proving theorems about limits.

Example 127 Let’s compute the limit

lim -,
(z,y)—(z0,90) Y

where zy € R and yo € R, yo # 0. The limit is z—g To prove it, let’s write

T Zo| _ %Yo — YTo| _ |ZTYo — ToYo + LoYo — YZo
Yy Y YYo YYo
_ (x — x0)yo + zo(Yo — ¥) ‘
YYo
|z — ol|yo| + |zollyo — |
lyllyol
|z — 20 lzol|yo — ¥l
-yl lyllyol
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The problem is when y gets too closed to zero. The idea is that since y is close
to yo and yo # 0, we can make sure that y stays away from zero. Assume that
ly = wol < 5lyol- Then

1 Yo
1wl = lool — 1y — ol = lyo| — Lluol = 22!
2 2
and so,
1 2
<=
= Tool

Therefore, given € > 0 for \/(z — z0)2 + (y — yo)2 < § we have

r o |z — xo| | |zollyo — ¥l
Yo Y |y yllyol
2 2|ZL‘0‘
< —lz — ol + —5—yo — ¥l
|vol vg
2 2
< —e+ |3620|s
70 Y5

provided we take § = min{e, §|yo|}.
Exercise 128 Prove that the limit

lim T+ y=x9+ Yo,
(z,y)—(z0,y0)

where g € R and yo € R.

Example 129 Prove that the limit

lim TY = ToYo
(2,9)=(z0.y0) ’

where g € R and yo € R.
Friday, February 18, 2022

Theorem 130 Let (X,dx), (Y,dy), (Z,dz) be three metric spaces, let E C X,
let zg € E be an accumulation point of E, and let F CY. Given two functions
f:E—F andg: F — Z assume that there exist

lim f(z)=/(€Y,

Tx—T0

that £ is an accumulation point of F' and that there exists

limg(y) =L € Z.
y—L

Suppose also that either f(x) # € for all x € E\ {x0}, or that £ € F and
L = g(f). Then there exists lim g (f (x)) = L.
T—x(
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Proof. For every € > 0 there exists n = n (¢, £) > 0 such that

dz(g(y), L) <e (11)

for all y € F with 0 < dy (y,£) < 7.
Since lim, 4, f (z) = ¢, there exists § = §(zo,n) > 0 such that

dy (f(x),£) <n

for all x € E with 0 < dx(z,x0) < 0.
Case 1: Assume that f (z) # £ for all z € E\ {xo}. Then for all z € F with
0 < dx(z,z9) < d, we have that dy (f(x),£) < n, and so we can take y = f(x)
in to get that
dz(g(f(x)), L) <e,
which implies that there exists wlir;l g(f(z))=L.
Case 2: Assume that £ € F a(r)ld L = g(¢). For every € > 0 there exists
n=mn/(e,£) > 0 such that
dz(9(y), 9(0)) < e
for all y € F with 0 < dy (y,¢) < 1. Note that, if we take y = ¢, we have that

dz(g9(0),9(0)) =0 <e.

Thus,
dz(9(y),9(0)) <e (12)

for all y € F with dy (y,¢) <n (so we can take y = £). Then for all x € F with
0 < dx(z,z9) < d, we have that dy (f(x),¢) < n, and so we can take y = f(x)

in to get that
dz(9(f(2)), L) <e,

which implies that there exists lim g (f(z))=L. =
T—T0

Example 131 Let’s prove that the previous theorem fails without the hypotheses
that either f (x) # £ for all * € E near xy. Consider the function

_ |1 iy#0,
g(y)'_{2 ify=0.

Then there exists
lim g (y) = 1.

y—0

So L = 1. Consider the function f(z) := 0 for all z € R. Then for every
o € R, we have that
lim f(z)=0.

T—T0

So £ =0. However, g (f (z)) =g (0) =2 for all x € R. Hence,
lim g(f(z))= lim 2=2+#1,

r—x

which shows that the conclusion of the theorem is violated..
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Theorem 132 Let (X,d) be a metric space, let E C X, let xg € X be an
accumulation point of E. Given two functions f,g: E — R, assume that there
exist

lim f(z) =401 €R, € lim g(z) = £6R.
Tx—T0 T—To
Then
(i) there exists lim (f + g) (z) = €1 + Lo,
T—To

(ii) there exists lim (f -g)(x) =4¢; - {a,

(iii) if €o # 0, then g(x) # 0 for all x close to xy and there exists lim féx)) =
r—z0 (T
2
b

Proof. One can use Theorem to prove Theorem Indeed, f + g is
the composition of the function h; : R x R — R given by

hi(s,t) :==s+1

with the function P : E — R? given by P(z) = (f (z), f (z)), while f - g is the
composition of the function hy : R x R — R given by

ha(s,t) :==s-t

with the function P, while fgx)) is the composition of the function h3 : RxR —
g(x
R given by
S

hS(Svt) = E

with the function P. By Exercises and and Example[127] the functions
h1, ho, and h3 are continuous.

In item (iii), to prove that if £5 # 0, then g(x) # 0 for all x close to zg, take
— &l

€ 5 > 0. Since lim, ., g () = £2, we can find € > 0 such that
L
(@) — ta] < 2

for all x € E with 0 < d(x,z9) < ¢. Hence,

[la] |2
L] R ] )
2 2 -
for all © € E with 0 < d(x,x9) < 8, which implies that g(z) # 0 for all x close
to xzg. W

l9(z)] = [€2 + g(2) — bo] = |la] = |g(2) — Lo] = |6o] =

Remark 133 The previous theorem continues to hold if €1,€s € [—00, 0], pro-
0 oo

vided we avoid the cases 0o — 00, 000, §, =.
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Monday, February 21, 2022

Theorem 134 (Squeeze Theorem) Let (X,d) be a metric space, let E C X,
let g € X be an accumulation point of E. Given three functions f,g,h : E — R,
assume that there exist

lim f(z)= lim g(z) ="

T—x0 T—x0

and that f (x) < h(x) < g(z) for every x € E. Then there exists lim h(z) = £.

T—x

Proof. Given € > 0 there exist §; > 0 such that
[f(z) -t <e
for all z € E with 0 < dx (z,x0) < 01 and d2 > 0 such that
lg(x) =€l <e

forall z € F with 0 < dx (x,20) < 2. Then for all z € F with 0 < dx (z,x0) <
§ = min {1, 42}, we have that

t—e<f(x)<h(z)<g(x)<l+e.
Hence,
[h(z) -t <e
for all x € E with 0 < dx (z,20) < J, which shows that lim h(z)=¢. m

T—T0

Example 135 The previous theorem can be used for example to show that for
a>0

1
lim |z|%sin — = 0.
x—0 €T
Indeed,
0<

1 1
|xasin’ = |x|® sin‘ < |z|®
x x

and since |z|* — 0 as © — 0 we can apply the squeeze theorem. We could also
used the following Fxercise.

Exercise 136 Let (X,d) be a metric space, let E C X, let xg € X be an
accumulation point of . Given two functions f,g: E — R, assume that there
exists

lim f(z) =0,

T—T0

and that g is bounded, that is, |g (z)| < L for all x € E and for some L > 0.
Prove that there exists lim (fg) (z) = 0.
x—xT(
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9 Limits of Monotone Functions
Let E CR and let f: E — R. Then f is said to be

o increasing if f (x) < f(y) for all z,y € E with z < y,

)
strictly increasing if f (z) < f (y) for all z,y € E with = < y,

(
decreasing if f (x) > f (y) for all z,y € E with x < y,
(

strictly decreasing if f (z) > f (y) for all z,y € E with x < y,
e monotone if one of the four property above holds.

Given E C Rand f: E — R | if zg € R is an accumulation point of
E N (—o00,x0), we define the left limit of f as x approaches xg as

lim f(SC) = lim f|E‘ﬁ —00,Z0) (33) ’

T—x) T—To

provided the limit lim,_,,, f|Eﬂ(—oo,zo) () exists. Similarly, if o € R is an
accumulation point of FN(zg,00), we define the right limit of f as « approaches
Zo as
wl_lglo f( ) = aclina}o flEr‘](:z:o,oo) (LE),

provided the limit lim,_, 4, f|Er‘|(.7:0 o) (z) exists.

In what follows if a nonempty set F' C R is not bounded from above, we set
sup F' := oco. Similarly, if a nonempty set F' C R is not bounded from below, we
set inf F' := —o0.

Theorem 137 Let E C R and let f : E — R be a monotone function. If
xo € R is an accumulation point of E N (—oo,xq), then there exists

. _ ) SUPEA(—comy) [ [ is increasing,
lim_f () { infpa(—oo,z0) [ if [ is decreasing,

T—T
while if ©o € R is an accumulation point of E N (xqg,00) then there exists

lim f(z) = SUPpA(z0,00) /U [ is decreasing,
+ infp(eg,00) f if f 48 increasing.

{L"}{L’O

Proof. Assume that zo € R is an accumulation point of E N (—o0, o) and
that f is increasing (the other cases are similar). There are two cases.
Case 1: The function f is bounded from above in E N (—o0,xo). Hence,

there exists

sup f=~CeR
EN(—o00,z0)

We need to prove that there exists

lim f(z)="4¢. (13)

T—x
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Let € > 0. Since £ is the supremum of f(E N (—o00,x¢)), we have that f(z) < /¢
for all x € F with x < zg. On the other hand, since ¢ — ¢ is not an upper
bound for the set f(E N (—o00,xg)) there exists 1 € F N (—00,xg) such that
{—e < f(x1). But since f is increasing, for all z € FE with 21 < x < xy we have
that £ —e < f(xz1) < f(x). Thus,

l—e< flx)<l<l+e

for all z € E N (—o00, ) with 1 < & < zy. Take § := 29 — x1 > 0. Then
|f(x) — €] < e forall z € EN(—o00,x0) with 0 < |z — 20| < d. This proves (L3).

Case 2: The function f is not bounded from above in E N (—oco,xq). We
need to prove that there exists

lim f(x) = oco. (14)

Let M > 0. Since the set f(E N (—00,x0)) is not bounded from above there
exists 1 € F N (—o00,x0) such that f(z1) > M. But since f is increasing, for
all z € F with 21 < < xg we have that M < f(z1) < f(z). Thus,

M < f(z)

for all z € F N (—o00,zp) with 1 < & < zy. Take § := g — 1 > 0. Then
f(z) > M for all x € EN (—00,20) with 0 < |z — x¢| < §. This proves (14). m

Remark 138 A similar result holds if E C R and if f : E — R, where we
recall that R = [—00, 00| is the extended real line.

Definition 139 A set E C RY is countable if there exists a one-to-one func-
tion f: E — N.

Remark 140 It can be shown that Q is countable and that if E, CR, n € N,

is countable, then
E=|]JE,
n=1

is countable. Using Cantor’s diagonal argument one can show that R and the
irrationals are NOT countable.

Definition 141 A set I C R is an interval if for every x,y € I, with x < y,
we have that the interval [z,y] is contained in I.

Definition 142 Given a set X and a function f : X — [0,00] the infinite sum

> @)

zeX

18 defined as

> f@) :=sup{2f(x): YCX,Yﬁmte}.

reX zeY
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Proposition 143 Given a set X and a function f : X — [0, 00], if

> f (@) <o,

zeX

then the set {x € X : f(x) > 0} is countable. Moreover, f does not take the
value 0o.

Proof. Define
M = Z f(z) < 0.

zeX

For k € Nset X := {z € X: f(x) > 1} and let Y be a finite subset of Xj.
Then

1
Enumber of elements of Y < ; fz)< M,

which shows that Y cannot have more than |kM | elements, where || is the
integer part. In turn, X, has a finite number of elements, and so

{reX: flx)>0}= )X
k=1
is countable. m

Exercise 144 Given a nonempty set X and two functions f,g: X — [0, 00].

(i) Prove that

D (f@) +g@) <D f@)+ > g@).

zeX zeX zeX

(ii) If f <g, then

@< g@).

reX zeX

Wednesday, February 23, 2022

Theorem 145 Let I C R be an interval and let f : I — R be a monotone
function. Then there exists

lim f(y) = f(z)

y—a
for all x € I except at most for countably many.

Proof. Step 1: Assume that I = [a, b] and, without loss of generality, that
f is increasing. For every x € (a,b) there exist

Jim, fy) = fr (@), lm fy) =/ (2).
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Let S (x) := fy () — f— () > 0 be the jump of f at z. Then
lim f(y) = f(x)
if and only if S (z) = 0. Let J C [a, b] be any finite subset, and write
J=Ax1,...,z}, wherex; < - < xp.

Since f is increasing, we have that

fla) < fo(z1) < fy (1) < fo(22) < fi (72)
<< fo (k) < fy (k) S £ (D),

and so,

k
oS =) (fr (@) = f- (@) < F(b) — f(a),
zeJ i=1
which implies that
Y S@ < f)—f(a).
z€(a,b)

By the previous proposition, it follows that the set of discontinuity points of f
is at most countable.

Step 2: If I is an arbitrary interval, construct an increasing sequence of intervals
[an, by] such that

ap \yinfI, b, /supl.

Since the union of countable sets is countable and on each interval [a,, b, the
set of discontinuity points of f is at most countable, by the previous step it
follows that the set of discontinuity points of f in I is at most countable. m

Conversely, given a countable set E = {r, : n € N}, we can construct an
increasing function f : R — R such that

lim f(y) = (=)
for all z € R\ F and f jumps at every point of E. Consider

% ifx >ry,,
0 ifx<r,.

fn(x) =

Then the function f: R — R, defined by
f@):=) falx), z€R,
n=1

is increasing and has the desired properties. We will see this later.

Exercise 146 Let E C R be not bounded from above and let f : E — R be an
increasing function. Prove that there exists

lim f(xz) = sup f(x).
To0 z€E
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10 Series

Definition 147 Given a normed space X and a sequence {z,}, of vectors in
X, we call the n-th partial sum the vector

Spn =21+ -+ Tn.

The sequence {s,}, of partial sums is called infinite series or series and is

denoted -
S

n=1

If there exists lim,, .o S, = S € X, we say that the series Zfﬁ:l T, 1S conver-
gent. The number S is called sum of the series. while if the lim, ..o S, does
not exist, we say that the series >, &, oscillates.

If X =R and lim, . s, = oo or lim, . s, = —oc0, we say that series
Soo2 | @y is divergent.
Friday, February 25, 2022
First interim exam.
Monday, March 01, 2022
Solutions, first interim exam.
Wednesday, March 03, 2022

Remark 148 There is nothing special about 1, we will also consider series of
the type Y 0" o Ty OT ZZO:”O Zn, where ng € N. The only change is that in the
partial sums, one should consider s,, = xo + -+ + T and Sp, = Tpy + -+ + Ty,
respectively.

Theorem 149 Given a normed space X and a sequence {x,}, of vectors in
X, if the series Y .. | x, converges, then there exists

lim z, =0.
n—oo

Proof. Since the series ZZO:1 T, converges, there exists lim, .., s, = 5 €
X. Hence,
Gp = Spt1—Sp —= S —9=0

as n — oo. Note that here it is important that S € X. m

Corollary 150 Given a series Zzozl Ty, if either the limit lim, . ©, does
not exist or it exists but is different from zero, then the series > oo | x, cannot
converge.

Example 151 (Geometric series) The series
oo
> "
n=0

44



where © € R, is called a geometric series with ratio x. Since

lim 2" =0 ifand only if — 1<z <1,

n—oo

by the previous theorem for |x| > 1, the series cannot converge. It remains to
study what happens when —1 < x < 1. By FEzercise

l_mn+1
Sp=14+x - +2"=——,
1—2
and so
1—gnt! 1
lim s, = lim = .
n—oo n—oo 1 —x 1—x

Thus for —1 < x© < 1, the series converges and its sum is ﬁ

10.1 Series of Nonnegative Terms

A series Y7 | x,, is called a series of nonnegative terms if z,, > 0 for all n € N.
These series have the important property that they cannot oscillate.

Theorem 152 Given a series Y .-, &, with x, > 0 for all n € N, then the
series either converges or it diverges to co.

Proof. For all n € N, we have that s,11 = s, +a, > s,, and so the sequence
{sn} is increasing. Thus, by Exercise there exists limy, o $p = S € [0, o0].
Hence, the series either converges or it diverges to co. m

Remark 153 The same proof continues to work if we only assume that there
exists ng € N such that x, > 0 for all n > ng. In this case, we have that
Sn+1 = Spn for all n > ng, which still implies that the limit lim, o S, exists,
although this time it can also be negative.

Next we study some texts for convergence of series of nonnegative terms.

Theorem 154 (Comparison Test) Given two series Y -, Ty and > o1 Yn
with ©,, > 0 and y, > 0 for all n € N. Assume that there exists N € N such
that

Tn < Yn

for allm > N.
(i) If the series Y | yn converges, then so does the series Y o | Tp.

(ii) If the series Y ., x, diverges to co, then so does the series Y | Yn.
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Proof. (i) Let t, = y1 + - - + yn. By hypothesis, there exists lim,_, o t, =
T € R. It follows that {t,} is bounded by T. Hence, 0 < t, <T for all n € N.
For n > N, we have that

sp=x1+ tanataN oy < (@1t ava) Fyv ot U
<@t dav)Fu oty = (@ ano1) F s
§($1+"'—|—$N_1)+T.

Thus, the sequence {s,} is bounded. Since it is increasing, it follows that it
converges.
(ii) By hypothesis, there exists lim,,_ o, s, = c0. As before, for n > N, we
have that
sp < (14 +axn_1) + it

Letting n — oo, we conclude that lim,, . t, = cc. ®

Example 155 Consider the series

i <1 +§05n>n.

Note that 1 + cosn > 0. Moreover,

0< 1+ cosn < g '
- 3 —\3
00 (1+0303n)”

Hence, by the comparison test, the series Y -, converges.

Given a real number ¢t € R, the positive part of t is defined as ty :=
max{t,0}, while the negrative part of tis t_ := max{—t,0}. Observe that

b=ty —t_, |t|=ty +1_.

Corollary 156 Let {z,}, be a sequence of vectors in RN such that >~ | |@, ||
converges. Then > ", &, converges.

Proof. Step 1. Assume first that N = 1. Then 0 < (z,)+ < |z,| and
0 < (zn)- < |xy|. Since > o7, |x,| converges, by the comparison principle, so

do Y0 (zn)— and >, (%) +. In turn, by the theorem on the sum of limits,

n=1
there exist

lim (214 +2,) = Tm ((@1)5+ -+ (@0)+) = lim (@)= 4+ ((@)-),

n—oo n—oo n—oo

which implies that the series > - | @, converges.

Step 2. If N > 2, write x,, = (:c%l),...,x%N)). Then for each i =1,..., N,

12| < \/(:vgll))erer(:r%N))z = ||x,||. Hence, by the previous step, the

series Y > | zd) converges for every ¢ =1,..., N. In turn, Y .-, @, converges.
[
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Remark 157 You will see in other courses, that if X is a complete normed
space, then the previous corollary continues to hold.

Remark 158 In step 2 of the previous proof, we used the fact that if f : E —
RM, where E C X and xo € X is an accumulation point of E, then there exists

lim f(x)=2¢

T—To

if and only for each i = 1,..., M, there exists limy_,,, fi(z) = £;, where f =
(f1,---, fm). We leave this fact as an exercise.

Monday, March 14, 2022

Theorem 159 (Root Test) Given a series Y . | Tn with x, > 0 for alln €
N, if
limsup /x,, <1,

n—oo

then the series converges. If

limsup ¢z, > 1,

n—oo

then the series diverges to oc.

Proof. Let ¢ = limsup,,_,., /Z,. Assume first that £ < 1 and fix ¢ > 0 so
small that £4+¢ < 1. By an exercise in your homework, there exists N € N such

that
Y, <Ll+e

for all n > N, and so
T, <(l+e)"

for all n > N. Since ¢ + ¢ < 1, the geometric series Y, _, (£ + )" converges.
Hence, so does Y o, z,, by the comparison test.
On the other hand, if ¢ > 1, fix ¢ > 0 so small that £ —e > 1. Again by your

homework,

Yy >Ll—¢
for infinitely many n, and so

Tn > (0—¢)"
for infinitely many n. Thus,

lim sup z,, > limsup (¢ — )" = oo,
n—oo n—oo

since £ —e > 1. Tt follows by Theorem [149| that the series >~ z;, cannot
converge. In turn, by Theorem (152} > | z,, diverges to co.
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Remark 160 If limsup,,_,.. /Zn = 1, then the test is inconclusive and one
should try a different test. We will see that the series >~ % diverges, while
the series 27010:1 # However, in both cases, limsup,,_, ., /T, = 1. Indeed,

1

o1 (1> _ ou(3)7 _ ghion(3) ZTE 0 g

n n
1 1\*  [1\" 2
n " " 1\n 2 1 —2logn
—2: —2 = _— :elOg(n)n :e"rlOg(n):e n —)eO::L
n n n

Example 161 Consider the series of functions
> na
2
Note that % > 0. Then

I e [ oo ifx >0,
i 10 ifz<o.

n—oo N

Thus, by Theorems and [I57 the series diverges to oo for x > 0. It remains
to study what happens for x < 0. We have that

1
enr 1\~ 1 qna( 1 —logn
[ — =¢" ( = eTen 08(%) = T TR el < 1
n n

forx < 0. Thus, for x <0, the series converges by the root test, while for x =0
we have Y 07, %, which diverges, as you will see later.
To study the uniform convergence of the series, consider € > 0 and a set E =

nx

(—00, —¢]. Since (=) = €™ > 0, the function f,(z) = % is increasing.
Therefore,

—ne

e

sup fn(w) = fn(*g) =

(70075] n

Hence,
e —ne

D WACE

n—1 (—o0,e]

We have already seen that Y . % converges. Thus, 7 | SUp(_ o o fn()

na ) )
converges, so by your homework, > ° | <— converges uniformly in (—oo, —€].

It remains to show that if E C (—00,0) is such that sup E = 0, then the series
does not converge uniformly in E. I will skip this because is very similar to your
homework.

Theorem 162 (Ratio Test) Given a series Y . | @, with x, >0 for alln €
N, if
lim sup Tnti <1,

n—oo Tn
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then the series converges. If

. . Tn+1
lim inf =2F
n—oo Tn

> 1,

then the series diverges to oc.

Tn41

Proof. Iflimsup,,_, ., 2= < 1, then by your homework, lim sup,, ., /T, <
1, and so by the root test, the series converges. On the other hand, if £ =
liminf,,_, x; L > 1, fix £ > 0 so small that £ — e > 1. By an exercise in your

homework, there exists N € N such that

Tn+1
Tn

>0 —c¢

for all n > N, and so xp41 > ({ —¢€)x, > x, for all n > N, which implies
the sequence {xn}n is increasing for n > N. Hence, there exists lim,, .o, z, =
sup,,>n Tn > 0. It follows by Theorem that the series >~ |z, cannot
converge. In turn, by Theorem (152} >°>° | z,, diverges to co. m

Remark 163 It follows from the second part of the proof, that if there exists
N € N such that % > 1 for alln > N, then the series Y., x,, diverges to
0.

Remark 164 In view of your homework, the ratio test is worse than the root
test.

Example 165 Consider the series

n

> nl
Z n.x
)
nn"
n=1

where x > 0. Note that ’fﬁ" . By Stirling’s formula

nlx” n"e "/ 2nmwa" oo ifx>e,

. . T\ ™
lim = lim ——— = lim <7) 2nm = :
n—oo NN n— 00 nmn n—oo \ e 0 ZfZL' <e.

Thus, by Theorems 149 and[153 the series diverges to oo for z > e. It remains
to study what happens for x < e. We have that

(n+1)!x"+1 n!(n+1)z"x n
Totl _ (D)1 AD"(ety) TR T x N
- nlxn - nlz™ - 1)" T (n+l\" T 1\"
N NGO L

for x < e. Thus, for x < e, the series converges by the ratio test.
Let’s prove that we have uniform convergence in the set E = (0,e—¢|, where
0 <e<e. Sincezx™ is increasing for x > 0,

sup fo(x) = fule —¢) = e~/ 2nm(e — E)".

(076_8] nn
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Hence,

Z sup fo() = Z n"e~"/2nm(e — 6)".

n
n—1 (0,e—¢] n=1 n

e "V2nm(e—e)"

We have already seen that Y7 | "= converges. Thus, Y " Supg ¢ fn()

nlz"™

converges, so by your homework, > >~ - converges uniformly in E. It re-
mains to show that if E C (0,¢) is such that sup E = e, then the series does
not converge uniformly in E. I will skip this because is very similar to your
homework.

Wednesday, March 16, 2022

11 Continuity
We recall that

Definition 166 Let (X,dx), (Y,dy) be metric spaces, let E C X, and let
f:E =Y. We say that f is continuous at xo € E Nacc E if there exists

lim f(x) = f(zo).

r—TQ
If f is continuous at every point of E Nacc B we say that f is continuous on E
and we write f € C(E) or f € CY(E).

Remark 167 If (X,7x) and (Y,7y) are two topological spaces, E C X, xy €
EnNnaccE, and f : E — Y, we say that f is continuous at xq if for every
neighborhood V' of f (xq) there exists a neighborhood U of xo with the property
that

fx)eV

forallx € E withx € U.

Exercise 168 Prove that the functions sinz, cosx, ™, where n € N, are con-
tinuous.

The following theorems follows from the analogous results for limits.

Theorem 169 Let (X,d), be a metric space, let E C X, and let xg € E. Given
two functions f, g : E — R assume that f and g are continuous at xo. Then

(i) f+g and fg are continuous at xo;
(i) if g(z) # 0 for all x € E, then f is continuous at xg.
g

Example 170 In view of Ezercise[168 and the previous theorem, the functions
tanxz = Z2L gnd cotx = 5L are continuous in their domain of definition.

cosx sin x
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Theorem 171 Let (X,dx), (Y,dy), (Z,dz) be metric spaces, let E C X, let
FCY,andlet f: FE— F and g: F — Z. Assume that f is continuous at xg
and that g is continuous at f(xg). Then go f: E — Z is continuous at xg.

Let E C RN and let f : E — RM. Given z, € E, what happens when f
is discontinuous at xy? Then x( is an accumulation point of E. The following
situations can arise. It can happen that there exists

lim f (z) =£cRM

T—T0

but £ # f (). In this case, we say that xg is a removable discontinuity. Indeed,
consider the function g : E — R defined by

g(w)::{ f(x) ifx+# xo,

£ if € = xg.

Then there exists
lim g(z)=£=g(zo),

T—xT

and so the new function g is continuous at x.
Another type of discontinuity is when z( is an accumulation point of £~ :=
E N (—o00,x] and of ET := E N (9, 00) and there exist

lim f (z)=£¢cRM, lim+f(x):L€RM
Ty T

but £ # L. In this case the point xq is called a jump discontinuity of f.

Example 172 The integer and fractional part of x have jump discontinuity at
every integer.

Finally, the last type of discontinuity is when at least one of the limits
lim, - f (z) and lim, .+ f (x) is not finite or does not exist. In this case, the

point zq is called an essential discontinuity of f.

Example 173 The function

. sin% if x #0,
f@y_{l ifz=0,

and ;
| logz ifx >0,
9@“{1 ifz=0,

have an essential discontinuity at x = 0.

Theorem 174 Let (X,dx), (Y,dy) be metric spaces, let E C X, and let f :
E-Y.

(i) Then f is continuous if and only if f=1 (V) is relatively open for every
open set V CY.
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(ii) Then f is continuous if and only if f=1(C) is relatively closed for every
closed set C CY.

Proof. (i) Step 1: Let V C Y be open. Assume that f is continuous. If
f~1(V) is empty, then there is nothing to prove. Otherwise, let zo € f~1 (V).
Since V is open and f (x¢) € V, there exists € > 0 such that By (f (z¢),g) C V.
Since f is continuous at z( there exists d,, > 0 such that for all x € E with
dx(z,z9) < 0z,, we have

dy (f(z), f(z0)) <e.

Hence, for all z € E with dx(z,x0) < 6,
f(fﬂ) € BY (f (1’0) ,5) C V,

and so Bx (%9,0.,) N E C f~1 (V).
Take
U= |J Bx(zd).
zef~1(V)

Then U is open and f~1 (V) C U. Hence,
UNE=f""(V),

which shows that =1 (V) is relatively open.

Step 2: Assume that f~! (V) is relatively open for every open set V C Y.
Let g € ENaccE and let € > 0. Consider the open set V = By (f (z¢) ,¢).
Then f~!(V) is relatively open and so there exists an open set U C X such
that UNE = f~1 (V). Since xg € f~1 (U), we have 2o € U. Hence there exists
Bx (x0,6) C U. It follows that for every z € U N E with 0 < dx(z,z) < 6,
then z belongs to UNE = f~1 (V) and so f(z) € V = By (f (w9) ,€), that is,

dy (f(x), f(z0)) <e,

which shows that there exists

lim f(z) = f(2o).

T—XT0

(ii) Exercise. ®
As a corollary, we get.

Corollary 175 Let (X,dx), (Y,dy) be metric spaces, let E C X, and let f :
E—-Y.

(i) If E is open, then f is continuous if and only if f= (V') is open for every
open set V CY.

(ii) If E is closed, then f is continuous if and only if f=1(C) is relatively
closed for every closed set C CY.
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Remark 176 The previous characterization of continuous functions is useful
to define continuity in a topological space.

Example 177 The previous theorem implies in particular that sets of the form
{z €R: 4sinz —log (1 + |z|) > 0}
are open. We used this in the exercises.
Next we show that continuous functions preserve compactness.

Proposition 178 Let (X,dx), (Y,dy) be metric spaces, let E C X, and let
f: E —Y be continuous. Then f (K) is compact for every compact set K C E.

Proof. Let {Us},cp be an open cover of f(K). By continuity, f~! (Ua)
is relatively open for every @ € A, and so there exists W, open such that
[ (Us) = ENW,. The family {Ws},c, is an open cover of K. Since K

is compact, we may find U,,,...,U,, such that {I/Vai}i:1 cover K. In turn,
Uays---,Uq, cover f(K). Indeed, if y € f(K), then there exists © € K such
that f(z) =y. Let i = 1,...,1 be such that z € f~1 (U,,) = E N W,,. Then
y=f(x)€U,,. m

An important consequence of the previous theorem is the following result.

Theorem 179 (Weierstrass) Let (X,d) be a metric space, let K C X be
compact and let f : K — R be continuous. Then there exist xg,z1 € K such
that

flzo) =min f(z), f(z1)=maxf(z)

Proof. By the previous theorem f(K) is compact in R. It follows that f(K)
is closed and bounded. Hence, there exist L = sup f(K). There are now two
cases. Either L € f(K) or L ¢ f(K). In the first case, there exists z; € K such
that f(z1) = L = sup f(K), that is, f(z1) > f(z) for all z € K. On the other
hand, if L ¢ f(K), then L would be an accumulation point of the set f(K),
but a closed set contains all its accumulation points. Hence, the case L ¢ f(K)
cannot happen. This shows that f admits a maximum.

Similarly, taking ¢ = inf f(K), we can show that £ € f(K). m

We now discuss the continuity of inverse functions and of composite func-
tions. If a continuous function f is invertible its inverse function f~! may not
be continuous.

Example 180 Let

T if0<ax<1,

f@y_{x—l if2 <z <3.
Then f=1:]0,2] — R is given by

1 L T ZfOSZESl,
f (a:)—{ z+1 ifl<z<2,

which is not continuous at x = 1.
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Friday, March 18, 2022
We will see that this cannot happen if f : I — R with [ an interval and
when F is a compact set.

Exercise 181 Consider the function f : (—m,m) — R? given by f (t) = (sin(2t),sint).
Prove that f is injective, continuous but that the inverse is not continuous.

Remark 182 However, if U C RY and f : U — RY is continuous and injec-
tive, then f(U) is open and ' : £(U) — RY is continuous. This is a deep
theorem known as invariance of the domain. We will not prove it in this course.

Theorem 183 Let (X,dx), (Y,dy) be metric spaces, let K C X be compact,
and let f : K — Y be one-to-one and continuous. Then the inverse function
f~t:f(K)— X is continuous.

Lemma 184 Let (X,dx), let K C X be a compact set, and let C C K be a
closed set. Then C' is compact.

Proof. Let {U,},cp be an open cover of C. Since C is closed, the set
U := X\ C is open. Note that

K=(K\C)uC cUU|JU..
Since K is compact, there exist U,,, ..., Uy, such that
I
KcUuulJU.,.

=1

But since U = X \ C, it follows that

l
¢ < JUa,
i=1

which shows that C' is compact. =

Proof of Theorem[183] Let C' C X be a closed set. By the previous lemma
K NC is compact. By Proposition we have that f (K NC) is compact. In
particular, f (K NC) is closed by Theorem Let g := f~!. Then

FIKNC)=g71(C),

which shows that g=1 (C) is closed for every closed set C C X. Thus, by
Theorem [174} g is continuous. m

Remark 185 Here we used the fact that a compact set is closed, so to extend
this to a function f : K — Y, where K C X and X and Y are topological
spaces, we need Y to be a Hausdorff topological space (see Remark ,
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Example 186 In view of the previous theorem and Ezercise[168, the functions
arccos x, arcsinz, arctanz are continuous.

Given a > 0, the function log, x is continuous for x > 0, since it is the
inverse of a”.

Given n € N, the function *"*/x, © € R, is continuous, since it is the
inverse of x*"*1. The function */x, v € [0,00), is continuous, since it is the
inverse of x".

Given a > 0, since e* and logx are continuous in (0,00), by writing

~a .
a :elogm — eotlogaa7

X

% :elogm _ ewlogw7

it follows from Theorems[169 and that @ and x® are continuous in (0, o).

12 Directional Derivatives and Differentiability

Let (X, |l x), (Y5 |-lly) be normed spaces, let E C X, let f: E — Y and let
zo € E. Given a direction v € X with ||v||x = 1, let L be the line through =z
in the direction v, that is,

L:={zxeX:xz=ux9+1tzx,teR},

and assume that z( is an accumulation point of the set £ N L. The directional
derivative of f at x( in the direction v is defined as

P _
a%j (20) = lim [ (xo +t”l;) f(ffo),

provided the limit exists in Y.

If X = RY and v = e;, where e; is a vector of the canonical basis, the

directional derivative 2L (zo), if it exists, is called the partial derivative of f
de;

with respect to z; and is denoted % (zo) or fz, (xo) or D;f (xp).

Remark 187 When X =R, taking v =1, we get that
i {00500~ 00

t—0

)

which is the standard definition of derivative f'(xo). It can be shown that if
1’ (x0) exists in R, then f is continuous at xg.

In view of the previous remark, one would be tempted to say that if the
directional derivatives at xy exist and are finite in every direction, then f is
continuous at xg. This is false in general, as the following example shows.

Example 188 Let
1 ify=22 2 #0,
fla,y) = { i s

0 otherwise.
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Given a direction v = (v1,vs), the line L through (0,0) in the direction v inter-
sects the parabola y = x2 only in (0,0) and in at most one point. Hence, if t is
very small,

f(0+tv1,0+tv2) = 0

It follows that

of
9y (00) = Jim

f(o+tv1,0+ttvz) —f(0,0) _ ,Wg? —0.

However, f is not continuous in (0,0), since f (m,mg) =1—1asx— 0, while
f(z,00=0—0asx— 0.

Example 189 Let

vy ] S i (2,y) £ (0,0),

Let’s find the directional derivatives of f at (0,0). Given a direction v = (v1,v2),
with v +v3 = 1, we have

f(0+t'l)1,0+t’02) =0.

It follows that

(tvl)Qt'UQ .
fO+tv1,0+tv2) = £(0,0)  Gon)™(ws)?
t t
t3’l]%1}2

5ok 1 43,2
tovy + tov;

If v =0 then
(0 +1tv1,0+tvs) — £(0,0) _ 40 — 050
t t5U1+0
ast— 0, so %(0,0) =0. Ifva #0, then,
fO+101,04tv2) = f(0,0) _ wfvy  vfvp _ o}
; 2of 03 0+ vy
SO af 2
v
=~ (0,0) = L.
(9'0(’) V2

In particular, % (0,0) = % = 0. Now let’s prove that f is not continuous at

(0,0). We have

0
=0—0
0+ y2 -

f(l‘,O) -
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as x — 0, while

x2a?

zt + ot

DO =

1
! (xvxz) = = 9 -
as x — 0. Hence, the limit lim, ) (0,0) f (x,y) does not exists and so f is not
continuous at (0,0). Note that f is continuous at all other points (x,y) # (0,0)
by Theorem[169, since h(z,y) =z and g (z,y) =y are continuous functions in
R2.

Monday, March 21, 2022
The previous examples show that in dimension N > 2 partial derivatives do
not give the same kind of results as in the case N = 1. To solve this problem, we
introduce a stronger notion of derivative, namely, the notion of differentiability.
Let (X, |[[x); (Y,]]]ly) be normed spaces. We recall that a function L :
X — Y is linear if
L (1’1 + LUQ) = L(.’ﬂl) + L (1’2)

for all z1,20 € X and
L (sz) = sL(x)

forallse R and z € X.

Remark 190 If X = RN and Y = RM, then every linear function L : RN —
RM s continuous. Indeed, Write x = Zf\;l zi€e;. Then by the linearity of L,

N N
i=1 i=1
Define b; :== L (e;) € RM. Then the previous calculation shows that
N
L(m):inbi for all ¢ € RN,
i=1

which is continuous by Theorem [169,

The following example shows that when X is infinite-dimensional there exist
linear functions which are not continuous.

Example 191 Let X :={f:[-1,1] = R : there exists f'(x) € R for all z € [-1,1]}.
The vector space X is a normed space with the norm | f|| := max,e;—1 17| f (z)].

Note that since f has a finite derivative at every x, it follows that f is contin-

uwous at every x. By the theorem on composition of continuous functions, the
function | f (x)| is also continuous. Since [—1,1] is compact, by the Weierstrass
theorem, there exists maxye(—1,1) |f (x)]. Hence, ||f|| is well-defined. We have
already seen in Erercise[5(] that it is a norm.

Consider the linear function L : X — R defined by

L(f)=f(0).
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Then L is linear. To prove that L is not continuous, consider

fn (z) := % sin (n’z) .

Then .
[fn=0<——0
n
but
£l (z) = ncos (n’z)
so that

L(fn):fr/L(O) =n—oo
and so L is not continuous, since L (f,) - L(0)=0.
Definition 192 Let (X, ||| ), (Y, []-|ly) be normed spaces, let E C X, let f :
E — Y, and let xg € E be an accumulation point of E. The function f is

differentiable at =y if there exists a continuous linear function L : X — Y
(depending on f and xq) such that

lim f(x) = f(x0) — L (z — x0)

a0 [l = ol x

=0. (15)
provided the limit exists. The function L, if it exists, is called the differential of
f at xo and is denoted df (xo) or dfy,.

Remark 193 Since f takes values in'Y the limit is equivalent to

f(x) = f(20) — L (z — x0)

=0.
[ = oll x

lim

T—x

Y

Exercise 194 Prove that if N = 1, then f is differentiable at xo if and only
there exists the derivative f' (xo) € R.

The next theorem shows that differentiability in dimension N > 2 plays the
same role of the derivative in dimension N = 1.

Theorem 195 Let (X, ||-|[y). (Y, [-|ly) be normed spaces, let E C X, let f :
E =Y, and let xg € E be an accumulation point of E. If f is differentiable at
xg, then f is continuous at xg.

Proof. Let L be the differential of f at xo. We have

f (@) = f(xo) = [ (2) = [ (x0) = Lz — @o)+L(z — z0)
_ f(.’L‘) _f(i) —L(LL'—.’EO) Hl’-.’Eo” +L({E—£C()).
[l = woll x
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Hence, by the properties of the norm for = € E, x # xy,

Hf (z) = Lz — o)

Hx— m0||X

0<|f () = f (@o)lly <

= [0lly I0l[x + [[L0)]| = O

[ = ol x + [[L(z = zo)ly
Y

as x — xg. It follows that f is continuous at xg. m
Next we study the relation between directional derivatives and differentia-
bility. Here we need zy to be an interior point of E.

Theorem 196 Let (X, ||-[y), (Y [|ly) be normed spaces, let E C X, let f :
E =Y, and let xo € E°. If f is differentiable at xo, then all the directional
derivatives of [ at xo exist and

o (o) = L),

where L is the differential of f at xg. In particular, the function

v 2 ()

ov

is linear.

Proof. Since zy is an interior point, there exists B (zo,7) C E. Let v € X
be a direction, so that ||v||y =1, and take z = x¢ + tv. Note that for |t| < r,
we have that

[ = 2ol x = [lzo +tv = @ollx = [[tv]lx = [t |[ol x = [t <7

and so xo + tv € B (xg,7) C E. Moreover, © — xg as t — 0 and so, since f is
differentiable at xg,

f(x) = f(xo) — L(x— x0) [ (w0 +tv) — f(x0) = L (20 + tv — x0)

0= lim = lim
T o |z — 2ol x t—0 |zo + tv — xo|
_ }in(l) f (g + tv) —|{ (xg) —tL (v)

By considering the left and right limits we get
f (o +tv) — f (w0) — tL (v)

t—0t t
0= lim [ (o +tv) — f(xo) —tL(v) _ Clm f(zo + tv) — f (z0) — tL (v)
= —t o t
and so
0 — Jim f(zo +tv) = f (w0) —tL(v) _ ~ lim (2o + tv) — f (o) L
t—0 t 150 L

This shows that there exists f S (o) = L(v). m
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Remark 197 If in the previous theorem xq is not an interior point but for some
direction v € X, the point zy is an accumulation point of the set E N L, where
L is the line through xq in the direction v, then as in the first part of the proof
we can show that there exists the directional derivative % (z9) and

of

o (@0) =T ().

Remark 198 In particular, if X = R, then by the previous theorem

L(e;) = gﬂi (z0),

and so, writing v = Ziil v;€;, by the linearity of L we have
N N N af
L(v)=1L (; Uie¢> = ;viL (e;) = 2 90, (zo) v;.
Thus, only at interior points of E, to check differentiability it is enough to prove

that N
o L@ = f (@0) = S B (o) (i — 7o)
1m
@0 ERE

—0. (16)

Wednesday, March 23, 2022
If all the partial derivatives of f at x( exist, the vector

(52 @0 g (an)) € RY

8w1 7.”,(%L'N

is called the gradient of f at x¢ and is denoted by Vf (xp) or grad f (zg) or
Df (). Note the previous theorem shows that

of
8$i

N
df (zo) (v) = L (v) = V[ (20) - v = Z (o) vi- (17)

for all directions v.

Exercise 199 Let

B if () # (0,0,
f(x’y)~—{0+y if () = _

Prove that f is continuous at 0, that all directional derivatives of f at 0 exist
but that the formula

of

ov

0.0 =5 0.0u + 5 0.0

fails.
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Exercise 200 Let

B i (my) #(0,0),

Find all directional derivatives of f at 0. Study the continuity and the differen-
tiability of f at 0.

Exercise 201 Let f : E — R be Lipschitz and let &y € E°.

(i) Assume that all the directional derivatives of f at xq exist and that g—i (xg) =

Zivzl % (zo) v; for every direction v. Prove that f is differentiable at xy.

(i) Assume that all the partial derivatives of f at g exist, that the directional
derivatives % (zo) exist for all v € S, where S is dense in the unit sphere,
and that g—i (xg) = Zil g—a{i (zo) v; for every direction v € S. Prove that
f s differentiable at xg.

The next theorem gives an important sufficient condition for differentiability
at a point xg.

Theorem 202 Let ECRY letf: E— R, letxy € E°, and leti € {1,...,N}.
Assume that there exists r > 0 such that B (zg,r) C E and for all j # i and for

all x € B (xo,r) the partial derivative % exists at ¢ and is continuous at xg.
J

Assume also that é% (xo) exists. Then f is differentiable at xg.

The proof makes use of the following theorem, which was proved in recita-
tions.

Theorem 203 (Lagrange or Mean Value Theorem) Assume that f : [a,b] —
R is continuous in [a, b] and has a derivative in (a,b). Then there exists ¢ € (a,b)
such that

fO)=f(a)=f(c)(b—a).

We turn to the proof of Theorem [202
We are now ready to prove Theorem [202]
Proof of Theorem Without loss of generality, we may assume that
i=N. Let € B(xz,r). Write € = (21,...,2n) and g = (y1,...,yn). Then
f(ﬂ'}) - f(ﬂ:o) = (f(xl,...7$N) - f(yla'r27"'7$N))
+- (f(ylw")nyth) - f(ylaayN))

By the mean value theorem applied to the function of one variable f (-, za, ..., zxN),

F@resmn) = s o) = o (1) (21 - 30),
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where z1 := (0121 + (1 — 01) y1, 22, ..., z) for some 01 € (0,1). Note that
21 — ol < [lz — zol|-
Similarly, for i =2,..., N — 1,

0
f(yla7yz—17x177IN)_f(y1’7yl—1ayL77mN) a:‘Ef( )(xl_yl)v

where z; = (y1,..-,Yi—1,0;7; + (1 — 0;) ys, Tit1,...,xy) for some 0; € (0,1)
and
T -

Write

f(yla""yN—laxN)7f(y17"'7yN) af
+ ( N —Un T ($0)> (N —yn)
Then
|f (z) = £ (o) = Vi (z0) - (z — m0)| _ of s — il
&= ol : E o 5 g, )| o)
f(y17"'ayN—17yN+($N7yN)) (yla ,yN)i af ‘xN yN|
+ (z0)
TN — YN dxn | — o]
Since |“ : UL||\ < 1, we have that
|f (&) — f (=) = V[ (z0) - (2 — z0)| s ‘ of
0< Ep—— g ax, zi) ~ o (zo)| (18)

TN — YN oxn

n ’f(yl,---7yN1,yN+(mN—3/N))—f(yl,-n,yzv) of (20)|.

Using the fact that ||z; — @o|| < ||z — zo|| — 0 as ¢ — x¢, together with the
continuity of 5=~ at xo, gives

of of
B 1) T g (20)

while, since t :=zxy —yny — 0 as £ — xg, we have that

)

f(ylw"ayN*l?yN—i_(mN_yN))_f(ylv"‘vyN)

IN — YN
:f(y17"'7yN—1ayN+t)7f(y1a"'7yN)_) af (m0)7
t Oxn

and so the right-hand side of goes to zero as € — xp. W
Friday, March 25, 2022
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Example 204 Let

ey B i (1) £ (0,0),
Few: {o+ i (a.y) = (0.0).

Let’s study continuity, partial derivatives and diﬁerentiability For (z,y) #
(0,0), we have that f is continuous by Theorem while for (z,y) = (0,0),
we need to check that

lim f(z,y) = f(0,0).

(z,)—(0,0)

We have

0<[f(z,y) = £(0,0)] =

2 2 $2+2
22 |yl 0‘_ 2yl @)l

$2+y2 -T2+y2_ x2+y2

as (z,y) — (0,0). Hence, f is continuous at (0,0).
Neat, let’s study partial derivatives. For (x,y) # (0,0), by the quotient rule,
we have

of _2zly| (2% +y?) — 27 |y| (22 +0) 19
% (l',y) - (1:2 I y2)2 ; ( )
while for (z,y) = (0,0),
t210]
o (0,0) = lim fOF1040) =700 o0y, 0
oz t—0 t t—0 t t—0 t3 '
For y £ 0, by the quotient rule, we have
o )_xzﬁ(w2+y2)—w2|yl(0+2y) (20)
dy V= (22 +12)? ’
while at a point (xo,0),
g lt]
1) — oz — 0
O (25,0) = lim L@ F 10,048 = fl@0,0) ) 5em 77 ) [ xO .
Oy t—0 t t—0 t P t a: + 2

If zg =0, then% f+°t2 = lz‘o-ﬁ)ﬁ =0—0ast—0, so é—y(O 0) = 0, while if

g # 0, we have

t 22 . t 22 . x2 2
1U202: S = lim = =1
t—0+ ¢t x5 +1 t—o+ tag+t t—0+ x5+t x5+ 0

M b ot b o e s
s a2 412 ot b a2 412 t~>0+$0+f2 ozi+0

Hence, 85 (0,0) does not exist at (x¢,0) for xg # 0, and so by Theorem
f is not differentiable at (xg,0) for xo # 0.
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On the other hand, at points (x,y) with y # 0, we have that % and g—g exist

in a small ball centered at (z,y) (see (19) and (20)) and they are continuous
by Theorem[169 Hence, we can apply Theorem [209 below to conclude that f is
differentiable at all points (x,y) with y # 0.

It remains to study differentiability at (0,0). By we need to prove that

lim f (l’,y) — f (030) — Vf (070) ) ((a:,y) - (070))
(@,4)—(0,0) l[(@,y) = (0,0)]
We have

=0.

)~ £1(0,0) = V7 0,0 ((w9) — (0,0)) _ 22— 0 (0,0) - ((5:9) — (0,0))

1(z, y) — (0,0)] a NoEwrl

Taking y = x, with x > 0, we get
z? |z| %z 1

(22 +x2)3/2 (22 +m2)3/2 (2)3/2

Hence, f is not differentiable at (0,0).

Exercise 205 Study the differentiability of the function
flay)=lzly, (z,y) €R®.
Exercise 206 Given the function
flay) =V (y —a?)(y — 227),

defined in E = {(x,y) € R?: (y — 2?)(y — 22%) > 0}, study the differentiability
of fin E.

Remark 207 In the previous exercise, at points on OE we cannot use @
since we only proved it for interior points.

We study the differentiability of composite functions.

Theorem 208 (Chain Rule) Let (X, ||| x), (Y, |-lly); (Z,]-Il;) be three normed
spaces, let E C X, let xg € E be an accumulation point of E, let F CY, and let
f:E—Fandg:F — Z. Assume that there exists the directional derivative
%(mo), that f(xo) € F and that g is differentiable at f(xo). Then there exists
the directional derivative

2025 o) = ag( o)) (G o)) 21

Moreover, if [ is differentiable at xo, then g o f is differentiable at xo with
d(g o f)(zo) = dg(f(z0)) o df (xo).
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Remark 209 Assume that Y = R™ and Z = R. Then f : E — RM. Let
Yo :=f (xo). If yy € F°, then by @),

M dg
dg(yo) (v) = Vg (yy) v = Z Em (Yo) vi-

Hence, becomes

M
P90 () = 3 52 (5 w0)) G (20)
= Vg (f (o)) (a0

Monday, March 28, 2022
Proof. Since g is differentiable at f (x(), there exists L : Y — Z linear and
continuous such that

b 90 = 9 (@) — Ly — f (w0))
y—f(zo) ly — f (xo)lly

where L is the differential of g at f (z¢), so L = dg(f (z0)).
Since there exists the directional derivative % (z0), we have that there exists

— 0
}E% I (xo +t1;) f (o) _ 8*5(300)' (23)

=0, (22)

It follows that the function of one variable
t— f(zo + tv)
is continuous at ¢ = 0. Hence, if we take y = f(xo + tv), we have that
y = f(xo+tv) — f(zo) ast— 0. (24)
Case 1: Assume that f(zo + tv) # f(xo) for all ¢ small. Then by (22), (23),

(22
9(f (o + 1)) —g(f(z0) <8f (m0)>

t ov
_ 9(f(mo +tw)) — g(f (x0)) — L(f (0 + tv) — [ (0))
t
+L (f(x() +t’Ut) - f(xo) . % ($O)>
_ 9(f(zo + 1)) — g(f (z0)) — L(f(zo + tv) — [ (20)) H f(@o +tv) — f(zo) || [t
1f (2o + tv) — f(z0)lly t y !

i, (f(xo—i-tvt) — f(x0) % (x0)>

(£1) + L(0) = 0.

of
— 0 Hav (1‘0) v
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This shows that there exists

20201 (L)

Case 2: There exists countably many ¢ approaching zero such that f(zo+tv) =
f(zo). Hence, for these t,

flzo +tv) — f(zo)

=0—0
t

as t — 0, which implies that ( 0) =0.
LetF—{teR f(aco—i—tv) f(zo)}. Fort € F,

9(f (@0 + tv)) — g(f (z0)) _ 0
t

On the other hand, if t ¢ F', then f(zo + tv) # f(zo) and so

g(f(zo +tv)) — g(f (z0))
t

9(f (o + tv)) = g(f (w0)) = L(f(xo + tv) — [ (20))
t

+L<f(a:0+tv )

9(f (w0 + tv)) — g(f (0)) — L{f (w0 + tv) — f (20)) H f(zo +tv) = f(z0)
Hf(wo+tv f(@o)lly t

+L<f(mo+tv )

ol Z

— 0.

el

y t

(£1) + L(0) =

by , , . This proves the first part of the statement.
The second part of the statement is left as an exercise. m

Exercise 210 Prove the second part of the theorem.

Example 211 (Quotient Rule) Let (X, ||| y) be a normed space, let E C X
and let f : E — R?, with f(z) = (fi(z), f2(x)), be such that fo(x) # 0 for all
v €FE. Let g: R? — R be defined by g(y1,y2) = Z; Then (exercise)

ﬁ(?ﬂ 92) = i @(yl yz) = - s .
o ’ v Oya ’ (yz)z
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If there exists g—f(aco), then by Remark

o (1) (o) = 22

= 9 (F (o)) G a0) + 5 (F (o) 2 (a0)
- ;%(mo) __filzo) Ofe

fa(zg) Ov (fa(z0))? Ov
G (o) fa(@o) — f1(wo) B (w0)
B (f2(w0))? ’

(o)

which is the quotient rule.

Example 212 (Product Rule) Let (X, ||[y) be a normed space, let E C X
and let f : E — R2. Let g : R? — R be defined by g(y1,vy2) = y1y2. Then
(exercise)

0 0
29 (41, 5) = o, aTi(yhm) =Y.

oy
If there exists %(370), then by Remark
0 d(go
7y f1f2) (w0) = (gavf) (o)
0 0
= 5 (F (ao)) G a0) + 5 (F (a) 2 (a0)

=f2($0)%

(wo) + f1(xo) Ee (o),

which is the product rule.

Example 213 Consider the function

p@)i=allel) =g (Vof +a3 44} ).

where g : [0,00) — R is differentiable. Since the norm is differentiable at all

x # 0, by Theorem |208, we have that h is differentiable at © # 0,

Oh

2x;
— 24 220 4 g2 i
axl(ac) g( x7 + x5+ +xN>2(

VAT Al k)

On the other hand, the Euclidean norm is not differentiable at € = 0 and so we
cannot apply the previous results. Hence, we use the definition to get

h(0 +te:) — 1(0) _ g(llteill) — g(llol) _ g(lt[1) — 9(0)

t t t
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We have

o 90D =00) _ 00 =) _
t—0t t t—0t t
o 90D =00) _ 090 a0 -00) o
t—0- t t—0- t t—0- —t

Hence, 2%(0) exists if and only if g'(0) = 0. Neat, assume that g'(0) = 0 and

let’s studyl differentiability at € = 0. We have
h(z) —h(0)—Vh(0)-(x—-0) g(lzll)—g(l0])-0-=

|z — 0] |

= S0 =90 g0 =0

as z — 0.
Next we define the Jacobian of a vectorial function f : & — RM,

Definition 214 Given a set E C RY and a function f : E — RM | the Jacobian
matrix of f = (f1,...,fm) at some point ¢y € E, whenever it exists, is the
M x N matrix

Jy (mo) := : =1 : :
Vi (o) %’;ﬁ’ (o) - ‘3;%’ (o)
It is also denoted o )
1y JM
Twr, o) PO

When M = N, Jg (z0) is an N x N square matriz and its determinant is called
the Jacobian determinant of f at xg. Thus,

det J¢ (o) = det <afj (m0)> .
9 ij=1,,N

i

Remark 215 Let E C RN, let f : E — RM, and let xy € E°. Assume
that f is differentiable at xo. Then all its components f;, j = 1,...,M, are
differentiable at o with

df (11}0) = (dfl(wo), ey dfM(:I:o)) .
Since o is an interior point, it follows from that for every direction v,

- Of
dfj(xo) (v) = V fj (@o) - v = Z B, (€0) vi-

Hence,

df (o) (v) = (df1(20) (v), .-, dfm(z0) (v))
= Jg (zg) v7.
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As a corollary of Theorem [208] we have the following result.

Corollary 216 Let ECRN, FCRM, letf : E — F and let g : F — RF.
Assume that f is differentiable at some point xy € E° and that g is differentiable
at the point f (zo) and that f (x¢) € F°. Then the composite function go f is
differentiable at Ty and

Jgof (z0) = Jg (f (%0)) J¢ (z0) -
Wednesday, March 30, 2022

13 Higher Order Derivatives

Let ECRY let f: E— Randlet ¢y € E. Let i € {1,..., N} and assume
that there exists the partial derivatives % (z)forallz e E. If j € {1,...,N}
and x( is an accumulation point of £ N L, where L is the line through zq in

the direction e;, then we can consider the partial derivative of the function %

with respect to x;, that is,
0 (or\_ &f
833]' 8.731 o 81‘]8331

Note that in general the order in which we take derivatives is important.

Example 217 Let

f(z,y) ::{ ‘”35%1533 if (z,y) #(0,0),

0 if (z,y) =(0,0).
If (z,y) # (0,0), then by Examples[219 and [211],
af (z.5) = 0 (Py—zy®\ B2y —19°) (@ +y°) — (¢Py — 2¢°) (22 1 0)
oz Y T \ 2ty ) T (22 + y2)° '
and
O ooy~ 2 <x3y - xy3> _ (@1 —a3y?)(2? +¢?) — (@%y — 2y’) (0 + 2y)
8y yY) = ay 1’2 +y2 - (],‘2 +y2)2 ’
while at (0,0) we have:
0
_ - —0
ai (0’0) — lim f (t,O) f (050) — lim t24-0 — 07
Oox -0 t t—0 t
0
_ 0 _
9 (0,0) = 1im L0 FD =S OO0 1 wE =Y
8y t—0 t t—0 t
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Thus,

220—103) (22 412) — (23 y—zv®) (2 .
o (4 y>={ Gt g e B f (ay) #(0,0),
Oz 0 if (z,y) = (0,0),
231 —23u2) (22 4v2) — (23 y—zy® .
Of (o gy = | = i (a,y) 2 (0,0),
oy 0 if (x,y) = (0,0)

To find aa:gz (0,0), we calculate

02 f ( )_Q <8f) © 0)_hm%(o,o+t)—%(o,o)
Oyox ' oy \ Oz ’ t—0 t
(0-1t3)(0+t%)—0 0
= lim — O = lim —1 =1,
t—0 t t—0
while
o2 f ( ):ﬂ <6f) 0 O>:Hm%§(0+t,0)—%(0,0)
dxdy oz \ oy ) =0 t
(t*1-0)(t*+0)—0 0
— lim — +O° —lim1=1.
t—0 t t—0

2 2
Hence, 44 (0,0) # 44 (0,0).

Exercise 218 Let

2 T .
_ | yrarctan ¢ if y # 0,
Prove that aa;gy (0,0) # 3‘23% (0,0).

We present an improved version of the Schwartz theorem.

Theorem 219 (Schwartz) Let E CRY, let f: E — R, let ¢y € E°, and let
i,7 € {1,...,N}. Assume that there existsr > 0 such that B (xzo,r) C E and for

all x € B (o, ), the partial derivatives % (z), % (x), and % (x) ewist.
; ; ;075

Assume also that % is continuous at xg. Then there exists dg?jiafa:j (xo) and
0% f (o) = 0% f

c’)xiaxj 0= 8.%]({91’1

Lemma 220 Let A : ((—r,7)\ {0}) x ((—=r,7)\ {0}) — R. Assume that the

double limit im s 4)—.(0,0) A (s,t) exists in R and that the limit lim; .o A (s,t)

exists in R for all s € (—r,r)\{0}. Then the iterated limit lims_,q lim;—,o A (s, )
exists and

(zo) -

lim lim A (s,t) = lim A(s,t).
s—0t—0 (s,t)—(0,0)

70



Taking the lemma for granted for the time being, let’s prove the theorem.

Proof of Theorem Step 1: Assume that N = 2. Let 0 < |t],]|s| <
%. Then the points (zg + $,¥y0), (xo + $,y0 + 1), and (zo,yo + ¢) belong to
B ((xo0,y0) ,7). Define

f(xo+s,y0+1t) — f(xo+s,50) — f(xo,y0 +1) + f(x0,%0)
st

r

A(s,t) = 7

. 0<t],]s] <

Fix 0 < [t] < 5 and consider the function

g(x) = f(z,90 +1) — f(z,90)

By the mean value theorem

Afsp)= @ ts) —g(e) _g() A (&0 +1) — 2L (&, 90)

st t t

where £ is between xy and xy + ¢t. Consider the function

_9of

h(y) = oz

(gtay) .

By the mean value theorem,

2

o+ ) =) = (1) o+ £~ ) = 51 (€m0t

for some 7, is between yg and yo + t. This gives

of of o f

e (& yo +1) — e (& 90) = Byoz (&ome) t.

Hence,
*f *f
A = —_— -
(S7t) ayax (§t777t) - 5‘y3:17 (37071/0)7
where we have used the fact that (£,7) — (xo,v0) as (s,t) — (0,0) together

with the continuity of aa;gw at (zo,y0). Note that this shows that there exists
the limit

lim A(s,t) = ﬁ (o, Yo)
(5,8)—(0,0) " Oyox 0,40/ -

On the other hand, for all s # 0,

f(zo+s,y0+1t) — f(xo+5s,90)  f(@o:y0+1) — f (20, 0)

1
lim A (s,t) = - lim
t—0

§ t—0 n v
_ gT]; (zo +8,90) — % (20, Yo)
s
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Hence, we are in a position to apply the previous lemma to obtain

*f : N
Bgog Foovo) = Mim Als ) = lim Hm A s, )
— im %(550-1—873/0)—%(960,%) _9*f (0. 10)
_S—>0 s - 8xay 073/0 .
Step 2: In the case N > 2 let ¢ = (x1,...,2n), o = (¢1,...,¢cn). Assume

that 1 < ¢ < j < N (the cases i = 1 and j = N are similar) and apply Step 1
to the function of two variables

F (l’i,l'j) = f (Cl7 ey Ci—1, T4, Cig 1y - - .,Cj_l,l‘j,Cj+1, . .,CN)

]
Friday, April,1 2022
Let’s now prove the lemma.
Proof. Let £ = lim( ;) (0,0)A(s,t). Then for every ¢ > 0 there exists
0 =10((0,0),e) > 0 such that

[A(s,t) =€ <e

for all (s,t) € ((=r,r) \ {0}) x ((=r,7) \ {0}), with \/|3 — 0+ |t—0 <4.
Fix s € (=3,3)\ {0}. Then for all t € (—3,3)\ {0},

|A(S>t)_€‘ <e

and so letting ¢ — 0 in the previous inequality (and using the fact that the limit
lim; o A (s,1) exists), we get

lim A (s,t) — 4| <e
t—0

forall s € (—g, g) \{0}. But this implies that there exists lim;_,q lim; g A (s,t) =
(. m

Next we prove Taylor’s formula in higher dimensions. We recall that Ng :=
NU{0}. A multi-index a is a vector & = (v, ...,ay) € NIY. The length of a
multi-index is defined as

o := a1 + -+ + an.
Given a multi-index «, the partial derivative 669:—1 is defined as
o« glel
oz~ Ozt 9z
2°f
where & = (z1,...,zy). If a =0, we set 56 := f.
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Example 221 If N =3 and a = (2,1,0), then

9(2,1,0) 93
0 (w,y,2) 0~ 022y’

Given a multi-index v and = € RY, we set

al:=ai!l---an!, =¥ :=a7" 2.

If a =0, we set 2° := 1.

Definition 222 Given an open set U C RY, for every nonnegative integer
m € Ny, we denote by C™ (U) the space of all functions that are continuous
in U together with their partial derivatives up to order m (included). We set

C>(U) := ﬁ C™(U). When N =1 we also define C™ ([a,b]) the space of all
m=0

functions that are continuous in [a, b] together with their derivatives up to order
m (included).

Theorem 223 (Taylor’s Formula) Let U C RY be an open set, let f €
C™(U), meN, and let xy € U. Then for every x € U,

1 0« o
f(z) = f(mo) + __Z a%—i(mo) (x — o) + Ry (z),
a multi-indez, 1<|a|<m

where R
lim (@) g

. m —
z—zo ||z — 0|

Definition 224 Given a metric space (X,dx), a set E C X, and two functions
fiE—-Randg: E— R and a point xg € acc E, we say that the function f is
a little o of g as x — xo, and we write f =0(g), if g # 0 in E and

i
A g @)

Hence, a little o of g is simply a function that goes to zero faster than g as
x — x9. Therefore, Taylor’s formula can be written as

1 ooy

ok (@0) (2 — 20)* + o |1z — 2o ]")

f (@)= f (o) + Z

a multi-index, 1<|a|<m

as € — xg.
Thursday, March 31, 2022
Recitation
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Theorem 225 (Taylor’s Formula) Let f € C™) ((a,b)) and let zo € (a,b).
Then for every x € (a,b),

f($) :f(ifo)-f—f’ (xo) ($_{E0)+ f//2(;L'()) (iC_:L'O)Z
(m) (g
+m+fT(!0)($—xo)m+Rm(x),

where the remainder Ry, (r, o) satisfies

lim B ()

w0 (T — 20) "

=0.

Lemma 226 Let g € C™) ((a,b)) and let zo € (a,b). Then

: glz) _
Jim @) 0 (25)
if and only if
g (z0) = g (wo) = -+ = g"™ (o) = 0. (26)

Proof. Assume that holds. By applying De 'Hopital’s theorem several
times we get

/ (2
a—wo (& — o) =0 m (x — X0) =0 m (m — 1) (x — x0)
(m—1) (m) (m)
e im 9 (@) _ oy 9 @) g™ (20)
a—zo m! (z —x9) a—z0  mll m!

Conversely, assume . If g*%) (z0) # 0 for some 0 < k < m, then by what we
just proved (with & in place of m)

(k)
i 9(®) 9 (o)
T—xo (17 _ xO) k!

£0.

On the other hand,

gx) g (x_xo)mik: 9(@) (x — o

(x— a:o)k (x — a:o)k (x — xo)m_k (x —20)™

as * — xg, which is a contradiction. m
We now turn to the proof of Theorem [225
Proof of Theorem Note that given a polynomial of degree m,

m

p(:c):ao+a1(:z:fx0)+~~+am(xf:c0)m:Zai(mfxo)i,
=0
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we have that

P (@) =i~ 1) (i —k+1)a;(z —a0) ",
1=k

so that
P (20) = klag.

We apply the lemma to the function

to conclude that

if and only if for all £ =0,...,m,

0=9g" (z0) = f® (w0) — p™ (w0) = f™ (w0) — Klax,

that is . (z0)
_ " (o
ap =
Thus
/ f(m) (o) m
9(@) =Ry (x) = f(z)—|f(z0) + f (ffo)(x—ffo)+"'+T($—xo)
|
Exercise 227 Let g : [a,b] — R and m € N. Assume g, ¢, ..., g"" V) exist

and are continuous in [a,b] and that g(™~1) is differentiable in (a,b). Prove that
if

g(a‘):gl(a):"':g(m_l) (G)ZO, g(b):O,
then there exists ¢ € (a,b) such that g™ (c) = 0.

Exercise 228 Let m € N, f € C™) ((a,b)), and ¢ € (a,b). Prove that for
every x € (a,b),

f (@) = f(20) + [ (20) (x —20) + f”2(!$0) (z — o)
(m) (5
o L) R @),

where
R () = %U"’”’) (e) = ™ (w0)] (& — mo)™

for some ¢ between xy and x. Deduce that R, satisfies

lim 7Rm (2)

=0.
e>zo (T — x9)"

(6]



Monday, April 4, 2022
We prove Theorem [223

Exercise 229 (Multinomial theorem) Let = (z1,...,2n) € RY and let
n € N. Prove that

n nl
(x1 4+ +ay)" = Z —
(8 3]

o multi-indez, |o|=n

We are now ready to prove Taylor’s formula.
Proof of Theorem [223] Since zy € U and U is open, there exists
B(xzg,r) C U. Fix x € B(zo,r), ¢ # o and let v := Ta—moy and con-

sider the function g (t) := f (zo + tv) defined for ¢t € [0,r]. By Theorem [208]
we have that

N
i;(t)zggxfl (zg+tv)v; = (v V) f(xg + tv)

with for all ¢ € [0,7]. By repeated applications of Theorem we get that

d™g
dtm

(t) = (v- V)" f (@0 + tv)
for all n = 1,...,m, where (v- V)" means that we apply the operator

T A
a 18%‘1 NaxN

n times to f. By the multinomial theorem, and the fact that for functions in
C™ partial derivatives commute,

6 n
V)" = — 4.
(v-V) (m pr +---Fon axN>
_ Z n' 'Ua 50‘
= — v,
a multi-index, |a|=n o Oz
and so )

d™g . nl ,0%f
din (t) - Z a’v 76.’13‘1 (w() + t’U) .

a multi-index, |a|=n

Using Taylor’s formula for g (see Exercise [228)) we get

m 1 d(n)g

9(t) = g(0)+ > — S22 (0) (t=0)" + Ra(t),
where 1
R (t) = m[g“”’) (c) — g™ (0™ (27)



for some 0 < |¢| < |t|. Substituting, we obtain

T nl ,0%f
f@wmw:f@@+§:a 'E: 17 5o () + R (?)
n=1 a multi-index, |a|=n
tlel g f
= f(mo) + _’j{: o U 5 (@) + Run(t).
a multi-index, 1<|a|<m
Take t = ||z — xp||. Then
T — I
rot+tv=zo+ ||z —xg|| ——— ==
|z — ol
and o
el = flo = ol LEZEUT (5 g
& — aol|'™
and so

S BB ) b Rulle )

f(z)=f(zo) +

a multi-index, 1<|a|<m

Similarly, by ,

Rin([lz — zof) = Z (@ — ) [8"‘]” (o + cv) — (mo)} .

o! ox™

a multi-index, |a|=m

Hence,
|Bn (|| — o)) |z —zo||™ |0%f ovf
™ < m To +cv) — €z
||CU - 330” a multi-i%x |la|=n HIB - IB()H al [dz ( ’ ) Oz ( O)
oo f oo f
S Z &Bia(:l:o-l-cv)—a?(mo) — 0

a multi-index, |a|=n

as ¢ — xg since 0 < |¢| < ||z — zo|| = 0. =
Wednesday, April 6, 2022

Properties of little o

o f(x)o(g) =0o(fg)

Example: as z — 0
z%0 (x‘S) =0 (x°+3) =0 (xg)

e o(f)+o0(g9) =o(f+g)=o(the slower between f and g)

Example: asz — 0
0 (a:5) +o0 (333) =0 (325 + x?’) =0 (x3)
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e (0(f)*=o0(f*) wherea >0

Example: as z — 0

(0 ()" =0 ((2%)"") =0 (=5%)

e co(f)=o(f) where c is any number different from zero

Examples: as ¢ — 0
3o (x4) =0 (x4)

—o (%) = o ()
o f+o(g9)=o0(g)if f is faster than g

Example: asz — 0

2° + 22t + o (m4) —22 42842 =22 +o0 (x4) — 22 + x (hence the little
00 (x4) absorbs all the powers of degree strictly bigger than 4, while all the
powers of degree 4 or smaller than 4 remain)

e o(o(g)) =o(g)

. o)
0(g)

Example 230 Let’s calculate the limit

does not make sense in general.

, (1+z)Y -1
hm —_—.
(z.y)—(0,0) 2% +y?

First Method: Let’s use Taylor’s formula of order m = 2 at (0,0),

f(z,y)=£(0,0)+ % (0,0) (z — 0) + %(0,0) (y — 0)
1 62f 1 82f
+ Gonae OO0 + G5, 00 -0 -0)
2

There are too many derivatives to compute so we will skip this.
Second Method: A simpler method is to use the Taylor’s formulas for e
and log (1 + x). We have

t

10g<1+$):$—%.’1}2+0($2),

1
et:1+t+at2+0(t2),
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and so

f (LB, y) = 6ylog(1+m) —1= ey(17%12+0(m2)) —1

1 1 1 ? 1 ?
=1+ <xy - §x2y +o0 (ny)> + 2 <xy — §x2y+ 0 (x2y)> +o0 ((zy - §x2y—|—o (zzy)> ) -1

1 1 1 2 1
=xy — ia:Qy +o0 (arQy) + = (xy - fx2y+0 (ny)) +o ((my — fxzy—&— 0

2! 2 2

= ay +o(z” +y%)

and so
flxy)  my+o(a® +y°) Ty o(z* + y?) Ty
2 2 2 2 =2 2 2 2 2 2 +o(1).
x4 +y e +y T4 +y x4 +y x4 +y

Taking x = y we have

fla,)  a?

.'E2+.'132 l’2+.’152

+

1
0(1)H§+0 as x — 0.

while taking v = 0 we have

£(0,9) 0
0+ 42 :$2+y2 +0(1) -0 asy—0.

Hence, the limit does not exist.
Third Method: (This method in general does not work for m > 2)
If either x =0 or y =0, we get

(I4+z)’-1 0
m2—|—y2 _$2+y2_

If x 20 and y # 0, then

(1+2)Y =1 evlos(+2) _1log(1+2) wy

w2 +y2  ylog (1l +x) x 2 +y?’
Now, using the limits lim;_,¢ etT_l =1 and lim,_,( w =1, we have
ylog(1+z) __ 1 1 1
im T limM:L
(@y)—(0,0) ylog(1l+z) =0
while if g(x,y) = ﬁ and we take x =y we get that g(z,z) = % = % and
80
z2 + 22 2

as x — 0. Hence, the limit does not exist.
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Important Taylor’s formulas with center x =0

o ¢ =1+a+ g2’ + Fa® + g2t + -+ La" + 0 (2") hence the first order
formula is
e =1+z+o0(x)

while the second order formula is

N 1
e =1+x—|—ax2+o($2)

elog(l+a)=a— 3%+ 3% — 12t +-- 4 (=1)"*! 12"+ 0(2™) hence the
first order formula is
log(14+2) =z +o(x)

while the second order formula is

10g(1+x):x—%x2+0(x2)

o (1+2)"=14az+ia(a—1)a’+3a(a—1)(a—2)2 +fa(a—1)(a—2)
(a—3)a*+ - +La(a—1)(a—2)(a—3)---(a—n+1)z"+0(a") hence
the first order formula is

(1+2)"=1+ar+o(x)

while the second order formula is

1
(1—|—x)“:1+ax+§a(a—1)x2+o(a:2)

1 - n
o r:(ler) "ml—z+a?—ad4at+ 4+ (=1)"T 2" 40 (2™) hence
T
the first order formula is
1 _
1+x:(1—|—x) '—1-z+o0(x)
while the second order formula is
1 -1 2 2
=(1 =1—
T (1+42x) z+2° + o (2?)

S 1.2, 1,4 1.6, 1.8 k1 2k 2k+1
o cosz=1— g2+ izt — ab + gab -+ (1) gz + o (x ) hence

the third order formula is
L 5 3
cosle—am —|—0(x )
while the fifth order formula is

_ L o L4 5
cosx—l—ax +I$ —|—o(ac)

80



k 1
CTESIRY

. 1 1 1 1
o sinz =z — 328 + fa° — 27 + g2 -+ (1)
hence the second order formula is

sinr =x4+o0 (372)
while the fourth order formula is

. 1
sSinr =x — ixg +0(x4)

- 1,3, 1,5 1,7 41,9 4 (_1)F__1 _
e arctanz =z — 32° + z2° — zx' + gw +(-1) YL
hence the second order formula is

arctanz = x4+ o (12)

while the fourth order formula is

arctanz = x — %x?’ +o (x4) .

Example 231 Let’s calculate

log (1 + sin? (zy)) — 2%y?
im
(,y)—(0,0) (22 4 ¢2)

Taylor’s formula of sint of order one is given by
sint=%t+o0 (tz)
and so

sin?t = (40 (12))> = £ + (0 (12))* + 2to ()
=t +o(t)

where we have used the properties of the little 0. Hence
log (1 + sin? t) = log (1 +t2+o (t3)) ,
Let’s use now Taylor’s formula
log(14+s)=s+o0(s),
where for us s =sin’t =t + o (t?’). We get

log (1+ sin®¢) = log (1+ > + o (%))
= +0(t®) +o(+0(t?) =t"+0(t?).
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Hence,

log (1 + sin? (zy)) — 2*y? _ 2%y? + o (2%y?) — 2?y?
2

(22 +y2) B (22 +y2)°
_o(@y?) a2ty o(a%y)

(@ +y2)° (@492 2%

ifx #0 and y #0. Now
w2y?

0< —Y
(% +?)

1
< 57
-2
and so -
?y? o (2%y?) .
(a2 +y2)° 2%y
by Theorem while if either x =0 or y =0, we get

log (1 + sin® (zy)) — z%y? B 0
(22 +4?)° RGO

Hence,

0

log (1 + sin? (zy)) — 2%y?
im =
(@)~ (0,0) (22 +y2)?

Exercise 232 Calculate the limit

. log (1 + sin? (zy)) — z%y?
lim I .
(2,y)—(0,0) (2 4+ y?)

Monday, April 11, 2022

14 Local Minima and Maxima
‘We recall that

Definition 233 Let (X,d) be a metric space, let E C X, let f : E — R, and
let xg € E. We say that

(i) f attains a local minimum at zo if there exists v > 0 such that f (z) >
f (o) for allz € EN B (xg,r),

(ii) f attains a global minimum at xo if f () > f (xo) for allx € E,

(i) f attains a local maximum at xo if there exists r > 0 such that f(x) <
f (zo) for all x € EN B (xo,7),

(iv) f attains a global maximum at zq if f (z) < f (x) for all z € E.
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Theorem 234 Let (X,||-||) be a normed space, let E C X, let f : E — R,
and let xog € E. Assume that f attains a local minimum (or mazimum) at xq
and that there exists the directional derivative % (zo). If ¢ is an accumulation
point for both sets EN{xg +tv: t > 0} and EN{xg+tv: t < 0}, then
necessarily, g—f) (z9) = 0. In particular, if xo is an interior point of E and f is
differentiable at xg, then all the directional derivatives of f at xy are zero.

Proof. Assume that f attains a local minimum (the case of a local maximum
is similar). Then there exists r > 0 such that f(z) > f (o) for all x € EN
B (zg,r). Take & = x¢ + tv, where [¢| < r/||v||. Then

[z +tv — mol| = [[tv]| = [¢] [Jo]] <,
and so f (xo +tv) > f(zg). If t > 0, then

[ (xo +tv) — f (20) >0
: > 0.

Since xg is an accumulation point for the set E N {xg + tv : ¢t > 0}, there are
infinitely many ¢ > 0 approaching zero. Hence, letting ¢ — 0T and using the
fact that there exists % (x0), we get that % (zg) > 0.

If t <0, then f (xo+tv) > f(x0) and

[ (zo +tv) — f(z0) <0
p <0.

Since xg is an accumulation point for the set E N {xo + tv : ¢t < 0}, there are
infinitely many ¢ < 0 approaching zero. Hence, letting ¢ — 0~ and using the
fact that there exists % (x0), we get that % (zg) <0.

This shows that % (£9)=0. m

Remark 235 If if x¢ is a point of local minimum and % (zo) exists, then
xo i an accumulation point for the set EN{xg +tv : t € R}, so xg is an
accumulation point for E N {xo +tv: t > 0}, in which case % (x0) >0, or xo

is an accumulation point for EN{xo +tv: t <0}, in which case g—i (z9) <0.

Remark 236 In view of Theorem[23], when looking for local minima and maz-
ima, we have to search among the following:

o Interior points at which f is differentiable and Vf (x) = 0, these are
called critical points. Note that if V[ (xg) = 0, the function f may not
attain a local minimum or maximum at xg. Indeed, consider the function
f(x) = 2% Then f'(0) = 0, but f is strictly increasing, and so f does
not attain a local minimum or mazimum at 0.

o Interior points at which f is not differentiable. The function f (x) = |x|
attains a global minimum at x = 0, but f is not differentiable at x = 0.

e Boundary points.
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To find sufficient conditions for a critical point to be a point of local minimum
or local maximum, we study the second order derivatives of f.

Definition 237 Let f : E — R, where E C RN, and let ¢y € E. The Hessian
matriz of f at xy is the N x N matriz

8?2 82
Gheo) o gk (@)
Hf ($(]) L= :
8?2 8?2
axlaj;N (o) - ﬁ (20)

o2 f N
= —_— (w )) s
<5$iaxj ’ i,j=1

whenever it is defined.

Remark 238 If the hypotheses of Schwartz’s theorem are satisfied for all i,j =
1,...,N, then
0*f 0*f
axi(’)xj (.’110) o 85%8.’1@ (:B0)7

which means that the Hessian matriz Hy (o) is symmetric.

Given an N x N matrix H, the characteristic polynomial of H is the poly-
nomial

p(t):=det(tIy —H), teR.

Theorem 239 Let H be an N x N matriz. If H is symmetric, then all roots
of the characteristic polynomial are real.

Theorem 240 Given a polynomial of the form
pt) =tV +ay 1tV +an otV TP+t ait +ag, tER,

where the coefficients a; are real for everyi =0,..., N —1, assume that all roots
of p are real. Then

(i) all roots of p are positive if and only if the coefficients alternate sign, that
18, any_1 <0, an_2>0, any_3 <0, etc.

(ii) all roots of p are negative if and only a; > 0 for everyi=0,...,N — 1.

Remark 241 Given a vector z = (z1,...,7x5) € RN we can identify x with
the 1 x N matrix ( x1 - TN ) In turn, its transpose €7 becomes the N x 1
matric

xy

N
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Hence, given an N x N matriz

hig -+ hinw
H= ,
hn1 hn N
we have that
hii -+ hin x1 hiizi+ -+ hi NN
Ha' = | L= :
hna hn N TN hnizi+---+hy TN
In turn, cHx™ becomes
hiizi+ -+ hi NN T
cHz' = : (28)
hnizi+---+hyNTN TN
N N
j=11i=1
If H is symmetric, then its eigenvalues A1, ..., Ay are real. Moreover, we can
find corresponding eigenvectors vy, ..., v which forms an orthonormal basis.
Since
Hv! = \v!
for everyi=1,..., N, we get
Since {vy,...,v1} forms a basis in R, we can write
r=cv1+- -+ CNUN.
Then
N N
zHz! = chvj H (Z cm?)
j=1 i=1
N N N
= Z cjv;j (Z ciHviT> = Z Z Ajciciv; - v
Jj=1 i=1 j=11i=1
N
=26
j=1
where we used the fact that v; - v; =1 if i = j and 0 otherwise. In particular,
if we let m :=min{\y,...,An}, we have that

N N
zHz! = Z)\jc? > ch? =m|z|?.
j=1 j=1
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Definition 242 Given an N x N matriz H, we say that
(i) H is positive definite if eHz™ > 0 for all z € RV \ {0},
(ii) H is positive semidefinite if x HxT > 0 for all x € RY,
(iii) H is negative definite if tHzT < 0 for all z € RV \ {0},
(iii) H is negative semidefinite if zHzT < 0 for all x € RV \ {0}.
Exercise 243 Let H be an N x N symmetric matriz.
(i) Prove that H is positive definite if and only if all its eigenvalues are pos-
wtve.
(i) Prove that H is positive semidefinite if and only if all its eigenvalues are

nonnegative.

(iii) Prove that H is negative definite if and only if all its eigenvalues are
negative.

(iv) Prove that H is negative semidefinite if and only if all its eigenvalues are
nonpositive.

The next theorem gives necessary and sufficient conditions for a point to be
of local minimum or maximum.

Theorem 244 Let U C RY be open, let f : U — R be of class C% (U) and let
zo € U be a critical point of f.

(1) If Hy (x0) is positive definite, then f attains a local minimum at xo,

(i1) if f attains a local minimum at x, then Hy (xo) is positive semidefinite,
(i) if Hy (x0) is negative definite, then f attains a local mazimum at xo,
(w) if f attains a local mazimum at xo, then Hy (xo) is negative semidefinite.

Proof. (i) Assume that Hy (o) is positive definite. Then by Remark [241]

S5 2L 0y sy = iy (en) o7 > ol (30)
J [

j=114i=1

for all y € RN and for some m > 0.
We now apply Taylor’s formula of order two to obtain

F (@) = f(@0) + Vf (w0) - (@ —wo) + 3 — 0t

ol B (@0) (@~ o) + Ry ()
|| =2

=f(zo) +0+ = Zzaxﬁm ) (x — x0),; (a:—wo) + Ry ()
jUL4

— f @) + 0+ 5 (@~ 20) Hy (o) (@ — 20)" + Bz ()
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where we have used the fact that x is a critical point and where

Ry (x)

@=wo (| — @l o

]
Wednesday, April 12, 2022

Proof. Using the definition of limit with e = %, we can find § > 0 such
that
Ry () | < m
| — ol 2

for all € E with ||@ — @0 < §. Using this property and (30)), we get

f (@) 2 f (o) +m |lw —@o|* + Re () = [ (w0) + | & — aol|” (m+ R‘””)
|2 — x|

> [ (@) + @ — ol (m = 2) = f (@0) + ]2 — 20> 5 > 1 (20)

for all z € E with 0 < ||& — zo|| < J. This shows that f attains a (strict) local
minimum at xg.

(ii) Assume that if f attains a local minimum at @¢. Then there exists
B (xp,7) C U such that

f(=) = [ (o)

for all € € B(xo,r). Assume by contradiction that Hy () is not positive
semidefinite. This means that there exists an eigenvalue \; < 0. Let v be an
eigenvector of norm 1 for A\;. Then

vHy (zo) vl =\
As in the previous step
1
f(z) =f($0)+0+§($—$0)Hf(w0)(w—w0)y+32($)o
Take ¢ = x¢ + tv;, Then
1
f(xo +tv;) = f(x0) +0+ §t2>\i + Ry (zo + tv;)
Ag
= f(=xo) + ?tQ + o(t?)
by 2
= f(zo) +1° <+ ol )> :

2 t2
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Take € = —% > 0, as in the previous step we have that

f(wO + t’Ui) = f (wo) + tz <)\Z + 0(t2)>

2 t2

i N
< 2 (2 7
< fmo) +t (2 4>

Ai
= f(z) +t22 < f(xo),
since \; < 0. This contradicts the fact that f has a local minimum at zo. =

Remark 245 Note that in view of the previous theorem, if at a critical point xg
the characteristic polynomial of Hy (o) has one positive root and one negative
root, then f does not admit a local minimum or a local maximum at xq.

Example 246 Let f (z,y,2) := 22 + y* + y? + 23 — 222. We have
9 =21 —22=0

r—2=0 r—2z=0
g = H2y=0 = 4q y(2P+1) =0 y=0
%:322_2;5:0 322 -2x=0 322 -22=0
r—2=0
<= y=20
z2(32—-2)=0

and so the critical points are (0,0,0) and (%,0, %) Note that (0,0,0) is not a
point of local minimum or maximum, since f (0,0, z) = 23 which changes sign
near 0. Let’s study the point (%, 0, %) We have

i 9% f 9% f

82? 8y261 6z281 2 0 —2
f o oy -2 0 62
0xdz  Oyoz 022
and so
2 0 -2
2 2
Hy (3,0, 3) = 0o 2 0
2 0 6
We have
1 0 O 2 0 -2
O=det{¢t| O 1 O — 0o 2 0
0 1 -2 0 4
t—2 0 2
= det 0 t—2 0 =13 — 82 + 16t — 8.
2 0 t—4

The eigenvalues are all positive by Theorem . Hence, at (%,O, %) we have a
local minimum.
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15 Lagrange Multipliers

In Section [[4] (see Theorem [244)) we have seen how to find points of local minima
and maxima of a function f : E — R in the interior E° of E. Now we are ready
to find points of local minima and maxima of a function f : E — R on the
boundary OF of E. We assume that the boundary of E has a special form, that
is, it is given by a set of the form

{zeRY: g(z)=0}.

Definition 247 Let f : E — R, where E CRY, let F C E and let g € F.
We say that

(i) f attains a constrained local minimum at xo if there exists r > 0 such
that f (x) > f (xo) for all ® € F N B (xo,r),

(i) f attains a constrained local maximum at xg if there exists r > 0 such
that f (x) < f(xo) for all © € F N B (xzo,T).

The set F' is called the constraint.

Theorem 248 (Lagrange multipliers) Let U C RY be an open set, let f :
U — R be a function of class C* and let g : U — RM be a class of function C*,
where M < N, and let

F:={zxeU: g(z)=0}.

Let g € F and assume that f attains a constrained local minimum (or maz-
imum) at xo. If the vectors Vg; (xg), i = 1,..., M are linearly independent,
then there exist A1, ..., Ay € R such that

Vi(xo) = Vg (xo)+ -+ A Van (o).
We will prove this theorem using manifolds in MS.
Example 249 Given a point €y € RN, find
dist(zo, Sy—1),
where Sy_1 := 0B(0,1) is the unit sphere in RY. Note that

diSt(IBQ,SNfl) = inf{||a:0 — 11:” S SNfl}
= inf{||zo — x| : [lz| =1}
To simplify our life, we can square everything, so we are looking for the minimum

of the function ,
f(@) = |lwo — ||

subject to the constraint |||> = 1. Take g(z) := ||z||> — 1. Since Sy_1 is closed
and bounded and f is continuous, by the Weierstrass theorem f has a global
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minimum and a global mazimum in Sy_1. Thus, we can apply the theorem on
Lagrange multipliers. We are looking for a solution of the following system

Vf=AVy,
subject to g = 0, that is

{ O (@) = A\ (x) =0, i=1,...,N,
g(x) = 0.
We have
{2(%‘1—%0,1')—2/\331‘:0, iZl,...,N,
2
[[]]” =1,
that is,
{ (17)\)%1‘:50071', iil,...,N, { (17)\).’13:1130,
2 ~ 2
2] =1, z||* = 1.

If o = 0, then A = 1, and so every point on the sphere is at maximum distance
from 0. If ¢y # 0, then A # 1, and so ¢ = ﬁmo, Plugging this into Hm\|2 =1,

we get
1

T

which gives A = 1 £ ||z, and in turn

2 2
1= ol” & (1-X)?= =

1
r=+——x.
[[zoll

The closest point to xy will be m:ﬂg and the furthest —m:l:o, as we expected.

16 Implicit and Inverse Function

Definition 250 Given an open set U C RN and a function f : U — RM,
we say that f is of class C™ for some nonnegative integer m € Ny, if all

its components f;, i = 1,..., M, are of class C™. The space of all functions
f U — RM of class C™ is denoted C™ (U;RM). We set C* (U;RM) =

ﬁOC’m (U;RM).
Theorem 251 (Inverse Function) Let U C RY be open, let f : U — RY,
and let a € U. Assume that f € C™ (U;RN) for some m € N and that
det J¢ (a) # 0.
Then there exists B (a,r) C U such that f (B (a,r)) is open, the function
f:B(ar)—f (B(a,r)
is invertible and f ' € C™ (f (B(a,r));RY). Moreover,

Jp-1 () = (Js (F7' (1))

—1
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We will prove this theorem using a fixed point theorem in MS.
The next exercise shows that differentiability is not enough for the inverse
function theorem.

Exercise 252 Consider the function f : R? — R? defined by

_fJ o0 ifx =0,
fl(x,y)—{ x4 2x%sind  ifx £0,

f2(z,y) =y.

Prove that f = (f1, f2) is differentiable in (0,0) and J¢ (0,0) = 1. Prove that
f is not one-to-one in any neighborhood of (0,0).

The next exercise shows that the existence of a local inverse at every point
does not imply the existence of a global inverse.

Exercise 253 Consider the function f : R? — R? defined by
f (z,y) = (" cosy, e’ siny).
Prove that det J¢ (z,y) # 0 for all (x,y) € R? but that f is not injective.
Given a function f of two variables (z,y) € R?, consider the equation
f(z,y) =0.

We want to solve for y, that is, we are interested in finding a function y = g ()
such that

[z, g(x)) =0.
We will see under which conditions we can do this. The result is going to be

local.
In what follows given & € RY and y € R™ and f (z, y), we write

o 2]
and
W (g, y) - 2(xy)
o \ T Y duar \ T Y
of .
e (z,y) = :
Y (z,y) - DL (z,y)

Theorem 254 (Implicit Function) Let U C RN x RM be open, let f : U —
RM and let (a,b) € U. Assume that f € C™ (U;RM) for some m € N, that

f(a,b)=0 and detg—{/ (a, b) # 0.
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Then there exist By(a,r9) C RN and By (b,r1) € RM, with By (a,r0) X
By (b,r1) CU and a unique function

g: BN (CL, TU) - BM (b7 Tl)

such that f (z,g(x)) = 0 for all x € By (a,r9). Moreover, g is of class C™
and g(a) = b.

Remark 255 When we say "unique function” we mean that for every x €
By (a,rg) there exists a unique y, € By (b,r1) (depending on x) such that
f(z,y,) =0. The function g is defined by g(x) := y,. Hence, we are saying
that in the set By (a,r9) X Bps (b,r1) the only solutions to the equation

f(z,y)=0
are given by (x, g (x)), ¢ € By (a,ro).

Proof. We apply the inverse function theorem to the function h : U —
RY x RM defined by

h (:Bv y) = (il:,f (:1:7 y))
We have

Inxn Onxar of
det Jh (a, b) = det =det =— (a, b 0
crsntan =as (G0 Gy ) —a gy 2

Hence, by the inverse function theorem there exists B ((a, b) ,7) C U such that
h(B((a,b),r)) is open, the function

h:B((a,b),r) — h(B((a,b),r))

is invertible and =" € C™ (h (B ((a, b), 7)) ; RY). Note that k (a, b) = (a,0) €
h (B ((a,b),r)). Since h (B ((a,b),r)) is open, we can find ro > 0 and r; > 0
such that B (a,m9) x B(0,71) C h(B((a,b),r)).

Write h™'(z,y) = (p(z, ), q(z,y)) € RY x RM. Then for (z,y) €
B (a,rg) x B(0,r1),

(z,y) = h(h_l(m, y)) = h((p(z, y), q(z, y))

SO

z = p(z, y),
y=f(p(z,y), a(z, y)).

Substituting the first identity into the second, we obtain

y=f(z, q(z,y))
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for (z,y) € B(a,rg) X B(0,r1). In particular, taking y = 0 gives

for ¢ € B (a,ro). So we can define g(z) := ¢q(z,0) for x € B(a,r). =
The next examples show that when det % (a,b) = 0, then anything can
happen.

Example 256 In all these examples N = M =1 and % (2o,90) = 0.

(i) Consider the function
f (@)= (y—2)".
Then f(0,0) =0, g—?’; (0,0) =0 and g () = x satisfies f (x,g(x)) =0.
(i) Consider the function
flay) =2 +y%

Then f(0,0) = 0, %}yc (0,0) = 0 but there is no function g defined near
x =0 such that f (x,g(z)) =0.

(iii) Consider the function
flayy) = (ay = 1) (2% + 7).
Then f(0,0) =0, 3£ (0,0) =0 but

s ={
which is discontinuous.

Friday, April 22, 2022

Next we give an example on how to apply the implicit function theorem.

ifx =0,
ifx #0,

8= O

Example 257 Consider the function

f(z,y,2) = (ycos (zz) — 2® + 1, ysin (v2) — z).

Let’s prove that there exist r > 0 and g : (1 —7,1+7) — R? of class C*>° such

that g(1) = (1,%) and f (z,g(z)) = 0. Note that f is of class C*. Here the
point s (1, 1, g) and

f (1,1,%) - <1cos (1%) —141,1sin (1%) — 1) = (0,0).

Moreover,

of

0
12}
0

2

1
9
2 (2,y,2) G2 (wy,2)

( % (ycos(zz) —2?+1) 2 (ycos(z2) — 2% +1) >

(z,y,2) Yt (z,.2) )
9
0
Lol

5y (ysin (z2) — z)

0z
lcos(zz) —0—0 —zysin(zz)—0—-0
1sin (zz) — 0 zycos(zz) — 0
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and so

of ™ _ cos(ll) —1sin(1£) B

2
Hence, by the implicit function theorem there existr >0 andg: (1 —r,1+71) —
R? of class C* such that g(1) = (1,%) and f (z,g(z)) = 0 for all z €
(1=r,147r), that is,

{ g1 (w) cos (g2 (x)) — 2% +1 =10,
g1 (z)sin (zg2 (z)) —z = 0.

Reasoning as before, we can use Taylor’s formula to find the behavior of g1 and
gs near x = 1, that s,

(@) =g1(1)+g1(1)(x—1)+o((x—1)),
g2(@)=g2(1) +g5(1) (x = 1) +o((z - 1)).
Let’s differentiate the two equations. We get

{ 91 () cos (zg2 (2)) — g1 (x) (1g2 () + 2g5 (2)) sin (zg2 (x)) — 22+ 0 =0,
91 () sin (zg2 () + g1 () (192 (%) + 293 (2)) cos (zg2 (x)) — 1 = 0.

Taking © = 1 and using the fact that g, (1) = 1 and g2 (1) = 5, we obtain

{ g} (1)cos (13) 1 (5 + 145 (1)) sin Elg; _g—y,
9

()sin (15) + 1 (5 + 1g5 (1)) cos (15) —1 =0,
that is,
0-1(5+g5(1)1—-2=0,
and so g1 (1) =1 and g5 (1) = =2 — . Hence,

l(z—1)+o((x—-1)),

1+
g2(2) =5+ (2-3) @=D+o(@—1).

17 Lebesgue Measure
Given a bounded interval I C R, the length of I is defined as
length I :=sup I —inf I.

Given N bounded intervals I, ..., Iy C R, a rectangle in RY is a set of the

form
R:=1 x---x1Iyn.

The elementary measure of a rectangle R as

meas R := length I - --- - length I'y.
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Given a set E C RY™, we recall that the Lebesque outer measure of E is
defined by

LY (F) = inf {Zmeas R; : R, rectangles, U R; D E} . (31)
i=1 =1
Proposition 258 Let R C RY be a rectangle. Then LY (R) = meas R.
Monday, April 25, 2022

Exercise 259 Let R C RN be a rectangle and assume that

with R; pairwise disjoint rectangles. Prove that
n
meas R = Z meas R;.
i=1

Exercise 260 Let R C RN be a rectangle and assume that

RC CJ R;,
i=1
with R; rectangles (not necessarily disjoint). Prove that
meas R < i meas R;.
i=1
Exercise 261 Let R C RY be a rectangle. Prove that LY (OR) = 0.
Proposition 262 The following properties hold.
(i) If EC F CRY, then LY(E) < LY (F).
(ii) If E C U, En, then £X(E) < Y00, £ ().
We now show that if E N F = (), then it can happen that
LN(EUF) # LY (B) + LY (F).
Exercise 263 Let E CRYN and let o € RY. Prove that
LN (B) = £ (wo + E)

Example 264 On the real line we consider the equivalence relation x ~ y if x —
y € Q. By the axiom of choice we may construct a set E C (0,1) that contains
exactly one element from each equivalence class. The following properties are
satisfied:
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(i) If z € (0,1), then x € r+ E for somer € (—1,1)NQ. To see this, observe
that by construction of E, for any x € (0,1) there exists y € E such that
that x ~ gy, that is, x —y=r € (—-1,1) N Q.

(i) Ifr, g € Q, withr # q, then (r + E)N(¢+ E) = 0. Indeed, if not, then we
may write r+x = q+y for somex, y € E. But then x—y = g—r € Q\{0},
which implies that x ~ y. By the construction of E this is possible only if
x =1y, which is impossible.

Define
F= |J (+BEc(-12).
re(—1,1)NQ

Observ that F O (0,1) by property (a)
Assume by contradiction that

LY(E1 U Ey) = LY)(Ey) + L(E2) (32)

for all E1, By C R with Ey N Ey = (. Consider an enumeration {r, : n € N} of
(—=1,1) NQ and define
E,=r,+F.

Then the sets E, are pairwise disjoint and so if @ were to hold, then by
induction

3> L},( U En) =3 LME) = 3 LU(E) = mLY(E).
n=1 n=1 n=1
Taking m large enough we have a contradiction unless L1(E) = 0, but if L1(F) =

0, then LL(F) = 0, which contradicts the fact that F D (0,1).

To recover property (32)), we need to introduce the notion of Lebesgue mea-
surability.

Definition 265 Given a set E C RN, we say that E is Lebesgue measurable
if for every e > 0 there exists an open set U 2O E such that

LY(U\E)<e.
Proposition 266 The following properties hold.

(i) Open sets are Lebesgue measurable.

(ii) If E C RN has Lebesgue outer measure zero, then E and its subsets are
Lebesgue measurable.

(iii) If E = J,—, En. and each E, is Lebesgue measurable, then E is Lebesgue
measurable.

(iv) Compact sets are Lebesgue measurable.
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(v) Closed sets are Lebesgue measurable.
(vi) If E C RY is Lebesgue measurable, then RN \ E is Lebesgue measurable.

(vii) If E =(\,", En, and each E,, is Lebesque measurable, then E is Lebesque
measurable.

Let
M = {E CRY : Fis Lebesgue measurable}.

For every E € 9, the Lebesgue measure of E is defined to be LN (E) := LY (E).
Proposition 267 Let E, C RN, n € N, be Lebesgue measurable.
(i) If the sets E,, are disjoint, then
o0 (o)
N (U E) =Y LN(E,).
n=1 n=1
(ii) If B, C Eptq for all n, then
ﬁNOJEJ:hmEWEJ
n=1
(iii) If B, 2 Epyq for allm and LN (E,) < oo for some n, then
LNOWE):hm£WEJ
n=1

17.1 Integrable Functions

We are now in a position to introduce the notion of integral. Given a set F' C RY
the characteristic function of F'is the function xy, defined by

@y { L ifecF
XF 1 0 otherwise.

Let E C RN be a Lebesgue measurable set and let ' C E be a Lebesgue
measurable set. We define the Lebesgue integral of xr over F' as

/ xrdx =LY (F).
E
Wednesday, April 27, 2022

Definition 268 Let E C RN be a Lebesque measurable set. A simple function
s a function s : E — R that can be written as

14
s = § CnXE,>
n=1

where c1,...,c¢ € R and the sets E,, are Lebesque measurable.
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Let E C RY be a Lebesgue measurable set and let s : E — [0,00) be a
nonnegative simple function. If s # 0, we can write

14
s = E CnXE,>
n=1

where the sets E,, C E are pairwise disjoint, F,, N E, = 0 if n # k, and ¢, > 0
forallm =1,...,¢. We define the Lebesgue integral of s over E as

¢
/ sdx = Z cnlN (E,) . (33)
E n=1

Exercise 269 Let E C RY be a Lebesgue measurable set. Let s, t: E — [0,00)
be simple functions. Prove that for every Lebesgue measurable set G C E,

/(s—l—t)dw:/sdm—i—/tdw.
G el el

Definition 270 Let E C RY be a Lebesque measurable set and let f : E —
[0,00]. We say that f is Lebesgue measurable if there exists a sequence of
simple functions s, : E — [0,00) such that s, < f for every n and s, — f
pointwise in E.

Theorem 271 Let E C RY be a Lebesgue measurable set and let f : E — [0, 00)
be a continuous function. Then f is Lebesque measurable.

Let E C RY be a Lebesgue measurable set and let f : E — [0,00] be a
measurable function. The Lebesgue integral of f over E is defined as

/fdm:—sup{/sdm: ssimple,OgsgfinE}.
E E

We list below some basic properties of Lebesgue integration for nonnegative
functions.

Proposition 272 Let E C RN be a Lebesque measurable set, let f, g : E —
[0, 0] be two Lebesgue measurable functions.

(i) If0< f<ginE, then [, fde < [, gdz.
(i) If c € [0,00), then [, cfdx =c [, fdx (here we set 0co := 0).

(iii) If fEfdm = 0 then there exists a Lebesgue measurable set G C E with
LN (G) =0 such that f =0 in E\ G.

(iv) If LN (E) =0, then [, fdxz =0, even if f = oo in E.

(v) fF fdx = fE xrfdx for every Lebesque measurable set F C E.
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17.2 Lebesgue Integration of Functions of Arbitrary Sign

Let E C RY be a Lebesgue measurable set. In order to extend the notion of
integral to functions of arbitrary sign, consider f : E — [—00, 0] and set

er ::max{f,()}, f7 ::max{ff,O}.

Note that f = fT— f~, |f| = fT + f~.We say that f is Lebesgue measurable if
fT and f~ are Lebesgue measurable.

Definition 273 Let E C RN be a Lebesque measurable set and let f : E —
[—00, 0] be a measurable function. If at least one of the two integrals fE frd=z
and fE [~ d=z is finite, then we define the Lebesgue integral of f over E by

/Efdw::/Eerd:z:—/Ef_da:.

If both [, fT dx and [, f~ dx are finite, then f is said to be Lebesgue integrable
over E.

Example 274 Consider the function

f(z):= SH;:E, T >
Let’s prove that the limit
“sinz
lim dr € R,
{—oo T

exists so that f is Riemann integrable in [, 00). Integrating by parts, we have

. =¢
sin 1 * |
dr = |——cosx — —2coszdx
x T T e x T

1 1 |
:—fcosﬁ—f—/ — cosz dx.
14 T ). @2

Since

- COoS T

e
T | T

>~ 1 1
dmﬁ/ — dz = — < o0,
. T ™

we have that there exists the limit

L

. 1
lim ﬁcosxd:rzﬁeR.
{— 00 i
Hence,
0 Y
. sinx . 1 1 . 1
lim dr = lim —-cosf/ — — — lim Tcosxdx:—f—é.
L—oo | x l—oo F s L—oo [ T s
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On the other hand,

o) : + 0o . —
/ (smx) dm:/ (smm) dz = oo,

so that the Lebesque integral of f is not defined. To see this, observe that

00 . + s 2nm . + 0 2nm
1

/ (smx) dx > E / (smx) dx > E — (sinz)" dzx
T € n—1v@2n-1)m T n—1 2nm 2n—1)m

s 1 2

= E 2—/ (sinz)" dz = co.
nmw
n=1 77

The other integral can be estimated in a similar way.

Proposition 275 Let E C RY be a Lebesque measurable set and let f, g: E —
[—00, 00] be two measurable functions.

(i) If f and g are integrable and o, § € R, then af + Bg is integrable and

/E(ozf+ﬁg)dm=a/Efda:+ﬁ/Egdm.

(ii) | [, f da| < [51f] da.

(i11) If f is Lebesgue integrable, then the set {x € E : |f (z)| = oo} has measure
zero.

(iv) If f(z) = g(x) for LY a.e. € E, then [, f*dx = [, g% dx, so that
| [ dx is well-defined if and only if [, gdx is well-defined, and in this

case we have
/ fdx= / gdx. (34)
E E

Given a set E C RN x RM | for every £ € RN consider the section
Ep:={yeRM: (z,y) € F},
and for y € RM consider the section
Ey:={z cRY: (z,y) € E}.

Let
G:={zecR": E, #0}, H:={yecRM: E, #0}.

Theorem 276 Let E C RY x RM pe q Lebesgue measurable set. Then G is
Lebesque measurable, for LN -a.e. x € G the section E, is Lebesque measurable,
and the function € € G — LM (E,) is measurable. Similarly, H is Lebesgue
measurable, for LM -a.e. y € H the section Ey is Lebesque measurable, and the
function y € H — EN(Ey) is Lebesgue measurable. Moreover,

LM () = /G £M(By) do — /H £M(E,) dy.
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By applying the previous theorem first to x g, then to simple functions, then
to pointwise limits of simple functions we obtain the following theorem.

Theorem 277 (Tonelli) Let E C RY x R™ be a Lebesgue measurable set,
and let f : E — [0,00] be a Lebesque measurable function. Then for LN -a.e.
x € G the section E, is Lebesque measurable, the function y € Ey — f(x,y)
is Lebesque measurable, and the function € € G — fEm f(x,y)dy is mea-

surable. Similarly, for LM -a.e. y € H the section Ey is Lebesgue measur-
able, the function © € Ey — f(x,y) is Lebesgue measurable, and the function
ye H— fE f(z,y)dx is measurable. Moreover,

Yy

[s@wiey = [ ([ fwyiy)d
:/H (/Ey f(m,y)dw) dy.

The version of Tonelli’s theorem for integrable functions of arbitrary sign is
the well-known Fubini’s theorem:

Theorem 278 (Fubini) Let E C RY x RM be a Lebesgue measurable set,
and let f : E — [—00,00| be Lebesque integrable. Then for LN -a.e. € G
the section E, is Lebesgue measurable, the function y € E, — f(x,y) is
Lebesgue integrable, and the function x € G +— wa f(z,y)dy is Lebesgue in-

tegrable. Similarly, for LM -a.e. y € H the section E, is Lebesgque measur-
able, the function © € E, — f(z,y) is Lebesgue integrable, and the function
ye Hw— [ f(x,y)dx is Lebesgue integrable. Moreover,

[ e = [ ( [t dy) Iz

_ /H (/E f@,y) da:) dy.

Exercise 279 The next example shows that Fubini’s theorem fails without as-
suming the integrability of the function f. Consider the function

22 — 2

—_—5 X 2 .
e BV ER{0.0)

f(z,y):=

Prove that the Lebesgue integral of f is not defined over [0,1]? \ {(0,0}) is not
defined and that the iterated integrals are different.

1 1 2 2 1 r=1 1
==y x 1 =1 1
————dx | dy :/ [} dy :/ —— _dy = — [arctany]’=t = — -,
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while

22 — y 1 y y=1 1 1
/ / / dx = / [22} dx = / ———dx = [arctan z]}
x2+y o LT7 1ty l,=o o ¥ +1

On the other hand

—_ 1 J—
// v~ y) dxdy—/ / vy LY i dy
0o Jo x2+y y x2+y

=1 1
T 1 1
/0 { $2+y2L_y Y /0 2y 21"
while

. 1
[ = [ ([ )
(2 +9?) (22 +9?)
1
1 1

dx = — — ———dx = oc.

{ ] v /0 9r  wrt1 F
Corollary 280 Let E C RY be a Lebesgue measurable set, let « : E — R and
B : E — R be two Lebesque measurable functions, with a(x) < f(x) for all

x € F, and let

F:={(z,y) e ExR: a(zx)<y<p(x)}.

Then F' is Lebesgque measurable. Moreover, if f : F' — R is Lebesgue integrable
or f: F — [0,00) is Lebesque measurable, then

/Ff(m,y)d(m,y)z/E(/::)f(m,y) dy> da.

Example 281 Let’s calculate the integral

//Ex(l—y) dxdy,

E::{(w,y)eRQ:y§$,x2+y2§1,x20,y20}.

where

We can rewrite E as follows,

E:{(m,y)€R2:0<y<\/i,y<x<\/1—y2}

2

and since the function f (x,y) := x (1 — y) is continuous in E and the functions
a(y) ==y and B(y) := /1 —y? are continuous, we can apply the previous
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corollary to conclude that

V2

//EﬂC(l—y)dmdy:/oT (/J 1_yzfﬂ(l—y)dw> dy:/oz (1-y) [x

2 1—y ]
= 1— —Z )4
/0 ( y)( 5 2) y
1 1
=-v2- —.
6 16

Exercise 282 Cualculate the integral

///E (x + 2) dzdydz,

E::{(m,y,z)€R3:x+y+z§l,x20,y20,z20}.

where
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