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1 Sobolev and BV spaces

Consider the differential equation

f'@)=g(), zel

where I is an open interval and g : I — R is a continuous function. For this
ode to make sense, we need the solution f to be at least of class C?. Consider a
function ¢ € C2° (I) and multiply the equation by ¢. If we integrate by parts,
we get

/ F@e @ o= [ o) s (1)

This integral makes sense for functions f that are less regular than C?. For
example C! is enough.
If we integrate by parts once more, we get

/I [(2)6" () du = / 9(2)(z) da. (2)

This integral makes sense provided f : I — R is locally integrable. The integrals
(1) and (2) can be considered weak formulations of the differential equation

=g
Motivated by this discussion, we define the weak derivative of a function.

Definition 1 Let Q C RY be an open set, 1 <p < oo, and f € L} (). Given
i=1,...,N, we say that f admits a weak or distributional derivative in L”(2)
if there exists a function g; € LP(Q) such that

| 1@ 5 @ de =~ [ a(@)oe) do

for every ¢ € C*(Q). The function g; is called the weak, or distributional,
partial derivative of f with respect to x; and is denoted aani'

Remark 2 Observe that if f € CY(Q), then by the divergence theorem we can
always integrate by parts to conclude that

of
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for all € C* (Q). Hence, if 52 af € LP? (), then the classical partial derivative

g—i is the weak derivative of f. We will use this fact without further notice.

Exercise 3 Let Q C RY be an open set, 1 < p < oo, and LY, (Q). Prove that if

f admits a weak derivative % in LP(Q), then the weak derivative % s unique.



Similarly, we have

Definition 4 Let 2 C R be an open set and f € LY (Q). Giveni=1,...,N,
we say that f admits a weak or distributional derivative in the space of measures

if there exists a signed measure X; : B () — R such that

/Qfgidw:—/g¢d)\i

forall € CX (). The measure \; is called the weak, or distributional, partial
derivative of f with respect to x; and is denoted D, f.

We can now define the Sobolev space WP (Q).

Definition 5 Let Q C RN be an open set and 1 < p < co. The Sobolev space
WP (Q) is the space of all functions f € LP () that admit all weak derivatives
a(% in LP(Q), endowed with the norm
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When p = 2 we write H1(2) = W12(Q). In this case, we have an inner
product, given by

NI
(f)g) 1Q ::(fag)2Q+ ( ) ) .
H(Q) L2(Q) ZZ:; ox;’ Ox; L)
For f € WLP (Q) we set
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Remark 6 In WP (Q) we can consider the equivalent norms
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We define
VVli yi={feLl (): feW" (U) for all open sets U € Q}.
We now show that WP (Q) is a Banach space.

Theorem 7 Let Q C RY be an open set and 1 < p < co. Then the space
WP (Q) is a Banach space.

Proof. Let {f,}, be a Cauchy sequence in W? (), that is,

L”(Q)> .

Then {f,}, and {8f" } ,i=1,...,N, are Cauchy sequences in LP (€2). Since
L? (Q) is a Banach space, there exist f,g; € LP (Q),i=1,..., N, such that
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foralli=1,...,N. Fixi=1,...,N. We claim that af" = g;. To see this let
¢ € C (Q) and note that

[ [rie
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by Holder’s inequality we have

Writing

[In] < (1]l 2o ()
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as n — 00, which shows that

/QQSZZ dw—>/g¢gidm.
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Hence, letting n — oo in y1€1db

/dem:—/gfgid

for all ¢ € C (), which proves the claim. Thus f € W1P (Q). It follows by
(3) that f, — f in WLP(Q). Hence, W1P(Q) is a Banach space. m
More generally, we can define higher order Sobolev spaces.

Similarly,




Definition 8 Let Q C RY be an open set, let m € N, and let 1 < p < co. The
Sobolev space W™P (Q) is the space of all functions f € L? (Q) such that for
every multi-index o with 1 < |a| < m there exists a function go € LP () such

that g
— le]
| 1otz = (-1 [ gavis

forall ¢ € C° (). The function g is called the weak or distributional partial
derivative of f with respect to £ and is denoted (‘;:—i.

Exercise 9 Let Q C RY be an open set, let m € N, and let 1 < p < co. Given
f e Wm™P(Q), prove that the weak derivative of f with respect to £ is unique.

We define
WP (Q) = {f € Li,. () : f € W™P (U) for all open sets U € Q} .

Exercise 10 Let Q@ C RY be an open set and let 1 < p < co.

(i) Prove that a subset of a separable metric space is separable.

(ii) Prove that WP (Q) is separable. Hint: Consider the mapping

WP (Q) — LP (Q) x LP (;RY)
f= (V).

Exercise 11 Let Q C RY be an open set. Prove that W1°° (Q) is not separable.
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Next we prove that smooth functions are dense in WP (Q)

Theorem 12 (Meyers—Serrin) Let Q C RY be an open set and 1 < p < oo.
Then the space C> (Q) N WLP (Q) is dense in WLP ().

We begin with an auxiliary result. We use mollifiers. Given a nonnegative
function ¢ € C2° (RY) with

supp ¢ C B(0,1), / p(z) de =1, (5)
]RN
for every € > 0 we define
1 T N

The functions ¢, are called mollifiers. Given an open set Q C RY and a function
feLL. (Q),for zeQ., wedefine

loc

J (@) = (f+ p0) (2) = /Q ez —y)f(y) dy (6)

for Q. :={x € Q: dist (x,00) > e}. Note that if f € LP(Q2) for some 1 < p <
oo, then by Holder’s inequality, f. (x) is well-defined for all € RY.



Theorem 13 Let 2 C RY be an open set and let f € LP (), 1 < p < co. Then
for every Lebesgue point © € Q (and so for LN a.e. x € Q), f.(z) — f(z) as

e — 0. Moreover,
1
lim </ fsf|pdm> =0.
e—0t Q

Lemma 14 Let Q C RY be an open set, 1 < p < oo, and f € WP (Q). For
every € > 0 define f. := p. * f in RN, where . is a standard mollifier. Then

”fe - fHWl,p(QE) =0,

Proof. Exercise. m

i,
where the open set . is given by
Q. :={x € Q: dist (z,00) > ¢c}.
In particular, if U C Q, with dist (U, 9) > 0, then
Ife = Fllwmaw@y — 0 as e — 0.

Proof. By differentiating under the integral sign we have that f. € C* (]RN)
and for € ). and for every i =1,..., N,

85 0 e 0 B
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where we have used the definition of weak derivative and the fact that for each
z € (). the function p. (z —-) € C° (Q), since supp ¢. (z — ) C B(z,e) C .
The result now follows from Theorem 13 applied to the functions f and %,
i=1,...,N. m '

Remark 15 Note that if Q = RY, then Q. = RY. Hence, f. — f in WhP (IR{N).

Exercise 16 Let Q@ C RN be an open set and 1 < p < co. Prove that if
feWLP(Q) and ¢ € C (Q), then pf € WHP (Q).

We now turn to the proof of the Meyers—Serrin theorem.
Proof of Theorem 12. Let 2; € Q2,11 be such that

oo
o=Ju
1=1

and consider a smooth partition of unity F subordinated to the open cover
{Qi+1 \Qi,1}, where Q_1 = Qg := (0. For each i € N let 1; be the sum of




all the finitely many ¢ € F such that supp¢ C ;41 \ ;-1 and that have not
already been selected at previous steps j < 4. Then ¢; € C° (Qi+1 \ Qi,l) and

D i =1inQ. (7)
i=1
Fix n > 0. For each 7 € N we have that
supp (¥i f) C Qig1 \ Qi—1, (8)
and so, by the previous lemma, we may find ¢; > 0 so small that
supp (¥if)., C Qiy1\ Qi1 (9)

and

[wif)e, =it lysmgey <

where we have used the previous exercise. m
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Proof. Note that in view of (9), for every U €  only finitely many ;41\ Q;—1
cover U, and so the function

:ZWf

belongs to C*° (). In particular, g € W[ (Q).
For & € Qy by (7), (8), and (9),

V4 YA
=> (Wif) (@), glz) =Y @if)., (). (10)

i=1 i=1

Hence

~

L
I = gl < NPz, = oy S g <7 ()

Letting £ — oo it follows from the Lebesgue dominated convergence theorem
that ||f — gHWm,p(Q) < 7. This also implies that f — ¢ (and, in turn, g) belongs
to the space WP (). m

Remark 17 Note that we can adapt the proof of the Meyers-Serrin theorem to
show that if [ € VVltcp (Q) with Vf € L* ([ RY) then for every e > 0 there
exists a function g € C (Q) N WP (Q) such that

loc
||f - g||W1,p(Q) <e,

despite the fact that neither f nor g need belong to WHP (£2).



Exercise 18 Let Q C RY be an open set and let f : & — R be a locally
Lipschitz continuous function (that is, f is Lipschitz continuous in each compact
set K C Q). Prove that f € Wécp(Q) and that the classical derivatives of f are
the weak derivatives.

Exercise 19 Prove that the function f (z) := |z| belongs to W1 (=1,1) but
not to the closure of C* (—1,1) N W1t (—1,1).

The previous exercise shows that the Meyers—Serrin theorem is false for
p = oco. This is intuitively clear, since if & C R is an open set and {f,} C
C® (Q)NW> (Q) is such that || f, — fllyy1.0c () — 0, then f € C* () (why?).
Next we define the space of functions of bounded variation.

Definition 20 Given an open set Q@ C RY | the space Co(RQ) is the space of all
continuous functions f : Q@ — R with the property that for every € > 0 there
exists a compact set K. C § such that |f(x)| < e for all z € Q\ K.. We endow
Co(Q) with the supremum norm || - || co-

Exercise 21 Prove that Cy(Q) is the closure of C.(Q) in the space Cp(S2) of all
continuous and bounded functions with the supremum norm || - ||co-

It turns out that the dual of Cy(€2) can be identified with the space of signed
measures.

Theorem 22 (Riesz representation theorem) Let 2 C RY be an open set.
For every linear and continuous function T : Co(Q2) — R, there exists a unique
signed measure X : B(€2) — R such that

T(p) = /ngd)\ for all p € Cy(Q),

with
1Tl o)y = IAI(),

where || = AT 4+ X7. Conwversely, for every signed measure \ : B(Q) — R, the
Sfunction

Ta(p) = / wdX  for all p € Cp(2),
Q
is linear and continuous.

For the decomposition A = AT — A~ see the Hahn theorem and the Jordan
decomposition theorem. Hence, if we identify T with A, then we can say that
(Co(£2)) is the space of signed measures.

Recalling Definition 4, we can define the space of functions of bounded vari-
ation.



Definition 23 Let Q C RY be an open set. We define the space of functions
of bounded variation BV (Q) as the space of all functions f € L' () such that,
foralli=1,..., N the i-th weak derivative D; f is a signed measure. We endow
BV () with the norm

I£lBvie) = Il + D IDifll oy -
i=1
Exercise 24 Prove that BV (Q) is a Banach space.

Since every function f € C* () N BV (Q) belongs to W () (why?) and

of
D; c= |2 de
1D fll(co)) / ) o1, ‘

for every i = 1,..., N, the closure of C* (Q) N BV () in BV (Q) is Wh! (Q).
Thus, we cannot expect the Meyers—Serrin theorem (see Theorem 12) to hold
in BV (). However, the following weaker version holds.

Theorem 25 Let Q C RN be an open set and let f € BV (Q). Then there
exists a sequence {f,} C C* (Q) N WH(Q) such that f, — f in L' (Q) and

Ofn

lim
n—oo Q

5 dz = ||D;if|l(co)y

for everyi=1,...,N.
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Exercise 26 Let Q = B(0,1) \ {z € RN : ay =0}. Show that the function
f:Q =R, defined by

1 ifxy >0,

f(m)_f(xh’zN)_{O foN<O7

belongs to WLP (Q) for all 1 < p < oo, but cannot be approzimated by functions
in C'* (ﬁ)

Definition 27 Given an open set Q@ C RY | we denote by C*(Q) the space of
all functions f € C>(Q) that can be extended to a function in C°(RY).

The previous exercise shows that in the Meyers—Serrin theorem for general
open sets {2 we may not replace C* (Q2) with C* (ﬁ)

Next we show that if Q has continuous boundary, then C* (Q) N W!7(Q)
is dense in WP (). We recall that a rigid motion T : RY — R¥ is an affine
function given by T(z) = ¢+ R(z), € RV, where R is a rotation and ¢ € RV



Definition 28 Given an open set Q@ C RN we say that its boundary 09 is
Lipschitz continuous if for all zo € 0N there exist a rigid motion T : RN — RN,
with T(xo) = 0, a Lipschitz continuous function h : RN =1 — R, with h(0) = 0,
and r > 0 such that, setting y := T(x), we have

T(Q N B(xo, 7)) = {y € B(0,7) : yn > h(y')}. (12)
We say that 0X) is of class C™, m € Ny, if the functions h are of class C™.

Observe that R, h, and r depend on xy. The coordinates x are called
background coordinates while the coordinates y are called local coordinates.

Remark 29 Without loss of generality, in the previous definition one can re-
place the ball B(xg,r) with any small (open) neighborhood of xy. We will use
this fact without further notice.

Theorem 30 Let ) QiRN be an open set with boundary of class C° and let
1 <p<oo. Then C* (Q) NWHP(Q) is dense in WP ().

To prove the theorem we need an auxiliary result.

Lemma 31 Let Q@ C RY be an open set, let 1 < p < oo, and let f € LP ().
Extend f by zero outside Q). Then for every € > 0 there exists 6 > 0 such that

/Qlf(w+5)—f(:c)|” dz < e

for all € € RN, with ||€] < 6.
Proof. Exercise. m

Proposition 32 Let Q@ C RY be an open set and let 1 < p < co. Then for
every f € WIP(Q) there exists a sequence of functions f, in WP (Q) such that
fo — fin WP(Q) as n — oo and f, = 0 in Q\ B(0,r,) for some (large)
rn > 0.

Proof. Consider a cut-off function ¢ € C°(R¥Y) such that suppp C B(0,2),
p=1in B(0,1) and 0 < ¢ < 1. For n € N, define

fo(®) = pn(@)f(2),  @n(x):=9(x/n), @

By the Lebesgue dominated convergence theorem, we have that f, — fin L?(Q)
as n — 0o, while by Exercise 77,

Again by the Lebesgue dominated convergence theorem, @n% — g—i in LP(Q)

as n — 00, while

J

p
1
de = —
np [e)

o) 7oea) @5 (3)

P C
de < —/ |f(z)[Pde — 0
np Q




as n — o0o. This concludes the proof. m
When studing regular domains, the standard strategy is to consider the
following.

e The flat case, that is Q = Rf
e The case of a supergraph,

Q={xcRY: 2y > h(z)},

e The general case, using partitions of unity.

Lemma 33 Let Q =RY and 1 <p < co. Then the space C>=(Q) NWP(Q) is
dense in WHP(Q).

Proof. Let f € W'P(RY). Given § > 0, consider the function f5 : RV=1 x
(=0,00) — R, given by
fs(z) == f(x',xn +9).

By Lemma 31,
. . of of . I
! _ P — —J / _ —
5141)%1+ Rf |f(w 7xN+5) f($)| 0, 5141>I(r)1+ Rﬁ 8331' (w , TN+ 5) 61“ ($) 0

We leave as an exercise to check that fs € WP(RN~! x (—§,00)) and that
gi‘i (z) = gfi (¢',xzy + §). Since dist (Rf,@(RN*I X (—=9,00))

Lemma 14,
1(f5) * e — f(usl,p(Rf) —0ase— 0",

Note that (fs) * ¢. € C*(RY). =m
Friday, January, 28, 2022

Lemma 34 Let h: RN~1 = R be a continuous function,
Q:={zcRY: zx > h(z')},
and let 1 < p < co. Then the space C*=(Q) N WP(Q) is dense in WHP(Q).

Proof. Let f € WYP(Q). By Proposition 32 we can assume that there exists
r > 0 such that f =0in Q\ B(0,r). Given 0 < 6 << r, consider the set

Qs :={x cRY : zx > h(z') — §}
and the function f5: Qs — R, given by

fs(x) = f(z',zn + ).

By Lemma 31,
. , ) af . |?
jin [ 1@ ex+o)-s@p =0, i [ |2 @ay+0)- SL@) —o

10



We leave as an exercise to check that fs € WP(Qs) and that %(m) =

8B_Tfi(:zz’, xn + ). Since dist (2N B(0, 2r),d(Qs N B(0,47))) > 0, by Lemma 14,

H(f5) * P — f(sHWI,p(QmB(O)QT‘)) —0ase— 0",

Since fs = 0 and (f5) * v = 0 outside Q\ B(0,2r) for 0 < £ < § << r, we have
that

[(fs) * e — f5||W1=P(Q) = [|(fs) * ¢ — friHWLp(QmB(o,zr)) —0
as € — 0F. Note that (f5) * . € C°(RY). =

Remark 35 Observe that if f = 0 in Q\ B(xo, R), then by taking € and 6
sufficiently small, we can assume that (f5) * . =0 in Q\ B(xo,2R).

We now turn to the proof of Theorem 30.
Proof. Fix f € W1?(Q). By the Meyers—Serrin theorem without loss of gener-
ality, we may assume that f € C°°(Q2) N W1P(Q). Moreover, by Proposition 32
we can assume that there exists r > 0 such that f =0in Q\ B(0,r).

For every zo € 09 there exist a rigid motion Ty, : RY — RN with
Ty, (zo) = 0, a continuous function hg, : RYN~1 — R, with hg,(0) = 0, and
Tz, > 0 such that in local coordinates is given by

TZO(Q n B(w()’Qrmo)) = {y € B(072TZ0) DYN > h(y/)} (13)

If the set Q\Uycpn B(®, r2) is nonempty, for every o € Q\ U cpo B(®, r2) let

B(zo,27r4,) be any open ball contained in Q. The family {B(x,rz)},cq is an

open cover of Q. Since f = 0 outside B(0,r), we have that QNB(0, r) is compact.
Hence, there is a finite number of balls By, ..., By, where B, := B(xp,r,),
that covers Q N K. Let {1, }/_, be a smooth partition of unity subordinated
to By, ..., By (Exercise).

Fix n € {1,...,¢} and define f, := fi, € WHP(Q) (see Exercise 16), where
we extend f,, to be zero outside supp v,,. There are two cases.

If supp 1, is contained in 2, then we set g, := ¥, f € C(RN). If supp ¥,
is not contained in 2, then x,, € 9Q. Since supp ¥, C B(xp,ry), if we consider
the function f, o T;,* defined in

Qn ={y eRY : yy > ho(y)},

we have that f,o T, " € W'P(Q,) (exercise). By the previous lemma we can find
a function G,, € C°°(RY) such that G, restricted to €2, belongs to W1P(€,)
and

1Gn = fr o Ty lwiwa,) < n/l(1+ Ly)2"], (14)

where L, := |DT,||co. Moreover, in view of Remark 35, we can assume that
G, = 0 outside B(0,2r,). Then g, := G, o T, belongs to C>(R") and to
WLP(T;, 1 (Q,)) (exercise), with

lgn = Fallwre@) = lgn = fallwir@nB@,.2r)) = 190 = Fallwie @t @nBo.2r)))

= llgn — fn”leP(T;l(Qn))) S Ln|Gn = fno T:LIHWLP(QTL) <n/2",

11



where we used (13), the facts that f, = 0 outside B(z,,r,) and G, = 0
outside B(0,2r,). Define the function g := Zi:l gn. Then g € C(RY) and
g € WHP(Q). Moreover,

¢ ¢
1 = glwrir@) <D 1nf = gnllwroe <nd 27 <n.

i=1 =1
This concludes the proof. m
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Exercise 36 Let Q.U C RN be open sets, let ¥ : U — Q be invertible, with
U and W1 Lipschitz functions, and let f € WP (Q), 1 < p < oco. Then
foWw e WYP(U) and for alli=1,...,N and for LN -a.e. y € U,

A(fo¥)
T (y)—‘

Jj=1

N
S (¥ () G ().

2 Absolute Continuity on Lines

We recall some facts about absolute continuous functions.

Definition 37 Let I C R be an interval. A function f : I — R is said to be
absolutely continuous on I if for every € > 0 there exists 6 > 0 such that

¢
Z |f (k) — flar)| <e (15)
k=1

for every finite number of nonoverlapping intervals (ag,br), k = 1,..., ¢, with

[ak,bk] C I and
¢

Z(bk —ak) S 0.

k=1

The space of all absolutely continuous functions f : I — RN is denoted by

AC ().
Theorem 38 Let g: [a,b] — R be a Lebesgue integrable function and let

f@) = [ o0 ar

Then f is absolutely continuous and f'(z) = g(x) for L' a.e. z € [a,b].

Theorem 39 (Fundamental Theorem of Calculus) Let f : [a,b] — R. Then
f is absolutely continuous in [a,b] if and only if f is differentiable L'-a.e. in
[a,b], [’ is Lebesgue integrable, and the fundamental theorem of calculus is valid,
that is, for all x,xy € [a, b,

f@ﬁ#@@{fﬁ@ﬁ- (16)

12



Definition 40 Let E C R and let f : E — R. We say that f satisfies the Lusin
(N) property if

LY(f(D)) =0
for every set D C E with £(D) = 0.

Theorem 41 (Chain rule) Let I,J C R be two intervals and let f : J — R
and g : I — J be such that f,g, and f o g are differentiable L'-a.e. in their
respective domains. If f satisfies the Lusin (N) property, then for L*-a.e. x € I,

(fo9)(x) = f'(g(x))g (x), (17)

where f'(g(x))g’'(x) is interpreted to be zero whenever ¢g'(x) = 0 (even if f is
not differentiable at g(x)).

The next theorem relates weak partial derivatives with the (classical) partial
derivatives. Given & = (x1,...,2x) € RN and i € {1,..., N} we denote by z/
the vector of RN =1 obtained from « by removing the i-th component z;. With
a slight abuse of notation we write

z = (z},z;) RV xR, (18)

Theorem 42 (Absolute Continuity on Lines) Let Q C RY be an open set
and let 1 < p < co. A function f € LP () belongs to the space WLP (Q) if
and only if it has a representative f that is absolutely continuous on LN~ a.e.
line segments of ) that are parallel to the coordinate azes, and whose first order
(classical) partial derivatives belong to LP (2). Moreover the (classical) partial
derivatives of f agree LV a.e. with the weak derivatives of f.

Proof. Step 1: Assume that f € WP (Q). Consider a sequence of stan-
dard mollifiers {¢.}.., and for every ¢ > 0 define f. := f x ¢. in Q. =
{x € Q: dist (z,00) > ¢}. By Lemma 14,

lim [ ||Vf.(z)— VS (2)|Pdz = 0.

e—0% Jo.

It follows by Fubini’s theorem that for all ¢ =1,..., N,

lim (/
e—0t JrN -1 Q

where (%), = {z; € R: (z;,7;) € Qc}, and so we may find a subsequence
{e,} such that for all i = 1,..., N and for LN~ ! ae. z; € RV 1,

||Vf5 (a:“xz) — Vf (:L‘i, CIjl) |pd$i> d.’EZ = O,

e)mi

lim IV fe, (xi,2;) — Vf (2, 2;) ||Pdz; = 0. (19)

nmee (Qﬁn)mi
Set f, := f., and

E = {:17 € Q: lim f, () exists in R} .

n—oo

13



Since E contains every Lebesgue points of f, we have that £V (Q\ E) = 0.

Define
(a) = { lim f,(z) ifxeck,

n—oo

0 otherwise.

The function f is a representative of f, since by Theorem 13, {f,} converges
pointwise at every Lebesgue point of f. It remains to prove that f has the
desired properties.

By Fubini’s theorem for every i =1,..., N we have that

/ (/ IV f (xi,x;) ||pdxi> dx; < 00
]RN—l Qmi

/}RN?1 [l ({z; € U, : (x4,7;) ¢ E}) de; =0,

where Q, := {z; € R: (z;,z;) € Q}, and so we may find a set N; C RVN~1 with
LN=1(N;) = 0, such that for all z; € R¥~1\ N; for which Q, is nonempty we
have that

and

[ 195 @i Pz < . (20)

T4

(19) holds for all i = 1,..., N and (z;,z;) € E for L a.e. ; € Qp,.

Wednesday, February 2, 2022
Proof. Fix any such z; and let I C Q,, be a maximal interval. Fix ¢y € I
such that (z;,ty) € E and let t € I. For all n large, the interval of endpoints ¢
and o is contained in (€2, )z, and so, since f, € C*(€), ), by the fundamental
theorem of calculus,

"0fn

to O%i

fn (@i t) = fn (2, t0) + (z;,8) ds.

Since (z;,tp) € E. Then f, (x;,t0) — f(xi,to) € R. On the other hand, by
(19)

t1of, Ofn
633,» (mi’S) B 833% (mi’S)

Hencewe have that there exists the limit

lim
n—oo
to

ds = 0. (21)

t
lim fn (:Bi,t) = lim (fn (.’Bi,to) +/ 4 n (331',8) dS)
n—o00 n—o0 to ox;

t
= f (i, t0) +/t gg{ (z;, ) ds.

Note that by the definition of F and f, this implies, in particular, that

(z;,t) € E (22)

14



and that

T(it) =T (i) + [ 5 (ais) ds (23)

to

for all t € I. Since f(z;,-) satisfies the fundamental theorem of calculus, it is
locally absolutely continuous in I and % (x;,t) = 8f - (@i,1) for LYae tel.
We can now apply exercise 43 to conclude that f (m,, ) is absolutely continuous
in 1.

Step 2: Assume that f admits a representative f that is absolutely continuous
on LN~! a.e. line segments of Q that are parallel to the coordinate axes, and
whose first order (classical) partial derivatives belong to LP (). Fixi=1,...,N
and let &; € RNV~ be such that f (x;, -) is absolutely continuous on the open set
Qg,. Then for every function ¢ € C° (), by the integration by parts formula
for absolutely continuous functions, we have

/ f :Ezv (iBl, ) dt = — a? (wivt)w(mivt) dt.

L Qa, 0x;

Since this holds for £L¥N~! a.e. x; € RV~! integrating over RV ~! and using
Fubini’s theorem yields

-
/f ) 5t (2) da = - Qai: (2) ¢ (2) dz,

which implies that € LP (Q) is the weak partial derivative of f with respect
to x; . This shows that feW?P(Q). m

Exercise 43 Let I CR and let f : I — R be locally absolutely continuous with
fe LP(I), 1 <p < oo. Prove that f is absolutely continuous.

As a consequence of Theorem 42 and of the properties of absolutely contin-
uous functions we have the following results.

Exercise 44 Let Q C RY be an open set and let 1 < p < oo. Using Theorem
42 prove the following results.

(i) (Chain rule) Let h: R — R be Lipschitz and let f € WP (Q). Assume
that h (0) = 0 if Q has infinite measure. Then ho f € WLP(Q) and for
alli=1,...,N and for LY a.e. z €,

O(hof) /g of
Txi(m)_h (f(:r:)) oz, (z),

/ (z) = 0.

Lg

where W (f (z)) g—f (x) is interpreted to be zero whenever
z;

What can you say about the case p = oo ?

15



(ii) (Product rule) Let f,g € WP (Q) N L*® (). Then fg € WHP (Q) N
L>(Q) for alli=1,...,N and for LY a.e. z € Q,

O(fg9) , \_ of 9g
oz (z) =g (z) 37%1 87551
What can you say about the case p = o0o?
iii) (Reflection) Let Q = RY = {(z/,2ny) eRV I xR: zx >0} and let
+
fewhtr (Rf) Then the function
g9 () ::{ 1 (=) ifwn >0,

f@,—zy) ifan <0

(@) + f () 5~ (=).

belongs to W (RN) and for alli=1, ..., N and for LV a.e. x € RN
of .
dg ) o (x) ifen >0,
oz T sin Of
Ti (=)™ (z',—zn) ifzn <O.

8xi
(iv) Let E C R be such that L' (E) = 0, let f € W,2' (Q), and let f be its

precise representative given in Theorem 42. Prove that Vf (x) = 0 for

LY ae ze (1) (B).

Friday, February 4, 2022

3 Difference Quotients
Let © C RN be an open set and for every i = 1,..., N and h > 0, let
Qpi={zecQ:z+te; €Q forall0<t<h}.

Theorem 45 Let Q C RN be an open set, 1 < p < oo, and f € LP (Q) be such

that . )
imine [ @) I@ gy o
h—0t+ Qs hp
for everyi=1,...,N, then f € WP (Q) and
: ;) — p
[ @ do < e [ Szthed il
Q 8$z h—0+ Qi hp

Definition 46 Let E C RN be a Lebesque measurable set, 1 < p < oo, and
fn, [ € LP(E). We say that the sequence { [y}, converges weakly in L?(FE) to
f, and we write f, — f in LP(E), if for every g € LP (E),

lim anWszéjwmwa

n—o0 E
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The following compactness theorem is crucial.

Theorem 47 Let E C RN be a Lebesque measurable set, 1 < p < oo, and let
{fu}n be a bounded sequence in LP(E). Then there exist a subsequence { fn, }
of {fn}tn and f € L? (E) such that f,, — f in LP (E).

The previous theorem is a consequence of the fact that when 1 < p < oo,
the space LP (E) is reflexive, which means that the bidual of L? (E) can be
identified with LP (E).

Theorem 48 (Riesz representation theorem) Let E C RY be a Lebesgue
measurable set, 1 < p < oo. For every linear and continuous function T :
L? (E) — R, there exists a unique function g € LP (E) such that

T(f) = /Ef(m)g(m) dx  for every f € LP(E),

with
1Tl ey = N9l Lo (1)
Conversely, for every g € LPI(Q), the functional

7,(5) = [ f@gla)de for cvery | € L7(E)
E
1s linear and continuous.

Hence, by identifying T, with g, we can identify the dual of LP (E) with
LP (E). Since 1 < p/ < 00, we also have that (L*' (E))’ can be identified with
L? (E). Thus,

(LP (E))" = (L7 (B))) = (IF' (E))' = L? (E),

which shows that LP(FE) is reflexive when 1 < p < co. This is no longer true for
p=1and p = oco.
We begin with a useful compactness result.

Lemma 49 (Compactness) Let Q C RY be an open set and let 1 < p < o0o.
Assume that { fn}n is bounded WP (Q). Then there exist a subsequence { fn, }x

of {un}n and f € WHP(Q) such that f,, — f in LP (Q) and %f—;i’“ - 8‘% in
Lr(Q)

Proof. Since {f,}n and {Vf,}, are bounded in the reflexive Banach spaces
LP () and L? (€ RY), respectively, we may select the subsequence { f,,, }x such
that f,, — f in LP (2) and aaf—:f — p; in LP (Q) for all ¢ = 1,..., N and for
some functions f,v1,...,vx € LP (). It remains to show that f € WP (Q).
For every ¢ € C° (), i=1,...,N, and k € N we have

9 ,  _ 9 o,
/S;fnkaigjldm__\/g; axl QZ/)dZL'
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Letting k — oo in the previous equality yields

/Qfaai dm:—/gviqﬁdm,

which shows that % = v;. Hence, u € W17 (Q). =

Lemma 50 Let E C RY be a Lebesque measurable set, 1 < p < oo, and
f € LP(E). Then for every Lebesgue measurable set F' C E,

| if@rae< [ 1f@)Pda

where fo = fx@. and F. = {x € F: dist(x, F) < €}.

Proof. For x € F' we have

fo(z) = /E oe(z — y)f(y) dy
- /E (pe(@ — )7 (el — 1)) VP f(y) dy.

Hence, by Holder’s inequality

< ([oa-v dy)w ([ ote-wirwra) "

(@) < /E pe(z — y)|f(w)Pdy

In turn,

—[ e wlfwly
B(xz,e)NE
where we used the fact that [, ¢.(z—y)dy < [pnx v(x—y)dy = 1. Note that

if y € B(z,e) N E, then ||z — y|| < ¢, and so, dist(x, F) < ¢, that is, y € F..
Therefore, B(x,e) N E C F., and so,

fe(@)l < / p-(z — y)|f(y)Pdy

€

Integrating over F' and using Fubini’s theorem gives

[ t@ras [ | pulw— y) () dyd

- [ 1w ([ oo vz ay
< [ ([ eta=waz)ay = [ 1wy

18



[ ]

We turn to the proof of the theorem.
Proof. Step 1: Assume that f € C (). Let U € Q. Then U C ,; for all
h > 0 sufficiently small. For every & € U,

of (x) = lim f(x+ he;) — f(x)

ox; h—0+ h

)

and so, by Fatou’s lemma,

p ) p
U azcl U h—0t hP
) p
h—0t Jur hp
< liminf/ |f(@ + hei) = f(@)l” de.
h—0+ Qh,i hp

Letting U * 2 and using the Lebesgue monotone convergence theorem, we have

/3f : / [f(z + hei) — f(=)|
Q Qi

Ay dx < liminf B
Step 2: Let p > 1 and f € LP(Q2) be such that

h—0+
) P
liminf/ (@t he) = F@F 0y o o

p
dx.

(2)

Let U € Q and for 0 < e < dist (U, 09) define f. := ¢, * f, where ¢, is a
standard mollifier. Then for 0 < h < dist (U, 9Q) — ¢, by Lemma 50,

[ ek L@, [ Cxhe) D)o@,
Up,i Un,i

hP hP

|f(z 4 he;) — f(=)]
< /(Uh,7,;) o dx

|f(x+ he;) — f(z)|
< /QM B dx.

Letting h — 07 and using the previous step applied to f. gives

/8f6 ? / [f (= + hei) — f(2)|°
U Qi

g, ()] 2 < imne i
By compactness, there exist €, — 07 and v € WHP(U) such that f., — v in
WLP(U), but since f., — f in LP(U), necessarily, f = v. Thus, f € WhP(U).

Since this is true for every U € €1, we have that f € Wﬁ)f(Q) Since % — %

(z)

dx. (25)
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in LP (U) as € — 07 by Lemma 14, letting ¢ — 0T in the previous inequality,we

obtain 5 » " »
/ (@) d < liminf/ [f(@+he) = f@)° ) (26)
U 8.’)31‘ h—0t Qi hp
By letting U € and using the Lebesgue monotone convergence theorem, we
obtain 5 v ,
he;) —
/ / ()| dr <liminf (@ +he) = f(2)] dx. (27)
v |0z h—=0t Jq, hP
]

Exercise 51 Prove that for p =1 the last part of the statement of the theorem
18 false. Hint: It is enough to construct an example for N = 1.

Exercise 52 Let Q CRY be an open set and 1 < p < co. Prove that for every
fewhr(Q),

J

p L) —
o i [ @+ he) — f(@)
IL—>O+ Qh,i hp

of
85&'

p
dx.

(2)

Monday, February 7, 2022

4 Embeddings: 1 <p< N

Consider a function f € Li_(RY) such that its distributional gradient Vf
belongs to LP (RY;RY) for some 1 < p < oo. We are interested in finding an
exponent g such that f € L9 (]RN ) , and so we are after an inequality of the
type
||fHLq(RN) < chfHLP(RN;RN) ) (28)

which should hold for all such f.

Assume for simplicity that f € C! (RN ) and for » > 0 define the rescaled
function

fr(@):=f(ra), @eRY,
Applying the previous inequality to f, we get

([ e aa) =([ 15 @i i)’
<o [ vn@ ) =e (o [ 1vsenipe),

or, equivalently, after the change of variables y := ra,

(v [rora) <c(% [ wrwra)

20



that is,

(/RN |f (y)|* cly)é < o= 5T (/RN IV (y) ||pdy>; .

If1— ¥4+ 850, let r— 0% to conclude that f =0, whileif 1 — ¥ + ¥ <0,
let r — oo to conclude again that f = 0. Hence, the only possible case is when

N N
g p
So in order for ¢ to be positive, we need p < IN in which case
q=p" = NP
s

The number p* is called Sobolev critical exponent.

Theorem 53 (Sobolev—Gagliardo—Nirenberg Embedding) Let 1 < p <
N. Then for every f € WP (RN),

([, 1@ dw)”l* <o /@) ||Pdw)’1’,

where C = C (N,p) > 0. In particular, WP (RN) is continuously embedded in
LY (RN).

The proof makes use of the following result, which follows from Hélder’s
inequality.

Exercise 54 Let 1 < p1,...,pn, 0 < 00, with p%—|—~--+ p% = %, and f; €
LPi (IRN), i=1,...,n. Prove that

n n
Hfi SH”JC@HLM
1=1 =1

Exercise 55 Prove that if g : R — R is measurable with [, g (t)[" dt < oo for
some p > 0, then

Lp

liminf|g ()] =0, liminf|g(z)]=0

r——00
and that in general one cannot replace the limit inferiors with actual limits.
In what follows, we use the notation (18).

Lemma 56 Let N > 2 and let f; € LN"' (RN™1), i = 1,...,N. Then the
function

f(@) = fi (@) f2 () - v (2ly), zE€RY,
belongs to L' (RN) and

N
11 ey < LIl sy -
=1
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Proof. The proof is by induction on N. If N = 2, then
f(@) = fi(x2) fa (1), o= (x1,22) €R?

Integrating both sides with respect to  and using Fubini’s theorem, we get

[Vt @ldw= [ 1 (wa)l dos [ 1fa (o) don
R2 R R
Assume next that the result is true for NV and let’s prove it for N + 1. Let

f(@) = fi(@) fa(@h) - fngr (Tyy), = eRVT

where f; € LV (RN), i=1,...,N+1. Fix xny41 € R. Integrating both sides
with respect to x1,...,xn and using Holder’s inequality we get

/ |f (z)] dzy -+ - dzn
RN

N P
= ||fN+1HLN(RN) /NH|fi ()| VT dxy - day
RY =1

For every i = 1,..., N we denote by &/ the N — 1 dimensional vector obtained
by removing the last component from «; and with an abuse of notation we
write @} = (!, 2nx41) € RV™! x R, Since zx1 is fixed, by the induction

N

N
hypothesis applied to the functions g; (/) := |f; (2!, 2n11)| ¥, ! € RV~
i1=1,..., N, we obtain that

N

N N
[T oo < T oo

N
i=1 i=1

and so

/ If (z)] dzy---dzn
RN

N
N N
< vl pn g H (/RN |fi (&}, xni1)] dwg)
i=1 -t

Integrating both sides with respect to z 41 and using Fubini’s theorem and the
extended Holder’s inequality (see the previous exercise), with

we get
N+1

[ r@lde < T Il
RN i=1
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which concludes the proof. =
Wednesday, February 9, 2022

We now turn to the proof of the Sobolev—Gagliardo—Nirenberg embedding
theorem.
Proof. Step 1: Assume first that p = 1. By mollification we can assume that
feC'RY)NnWHY(RYN). Fix i = 1,...,N. By Fubini’s theorem for £N~1
a.e. o € RV~ we have that the function g (t) := f(z},t), t € R, belongs to
LP (R) N C* (R) with ¢’ € L' (R). By the previous exercise

liminf |g (¢)| = 0,
t——o0

and so we may find a sequence t,, — —oo such that g (¢,,) — 0. Hence, for every
t € R we have that

Letting n — oo and using the fact that ¢’ € L' (R), by Lebesgue dominated

K2

convergence theorem we conclude that for each i = 1,..., N and € RV we
have 5
f@= [ 5@ du
and so o7
< )| dyi
f@I< [ |55 @) dy

for all x € RY. Multiplying these N inequalities and raising to power ﬁ, we

get
N N S N
(@)™ < ( dyi) = T ows ()
In(/, 1

for all z € RY. We now apply the previous lemma to the function

af (
al‘i
N
w(zx) = sz(ﬂii), xRN,
i=1
to obtain that

N
_N
[ @i da< [ @) da < ]l
N

=1
:ﬁgw dm)l\ll_l§</RN||Vf(m)d:c>N_l,

where we have used Fubini’s theorem. This gives the desired inequality for
p=1

Note that Step 1 continues to hold if we assume that f € L4(RY) for some
¢>1and Vf e L'Y(RY;RY).

of
8{Ei

(2)
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Step 2: Assume next that 1 < p < N and that f € LP (RYN) n WP (RYN)
Again by mollification we can assume that f € C! (RN ) Define
L q _ D (N _ 1)
g=1f1" q:= N
Note that since ¢ > 1, we have that g € C! (RN). Moreover, Vg € LP (RN, RN)
(see below), while g € L (RY). Applying Step 1 to the function g we get

([ 15 ae) ™ = ([ a7 ae) "

< / Vgl dz < g / NV f ) dae
RN RN

<o [ an)” ([ 1wspa)

where in the last inequality we have used Holder’s inequality. Since

*

(q—1)p" =p",

if f # 0 we obtain

(/ e dw) =(/ e d:c) §q</ IIVfII”dw> ,
RN RN RN

which proves the result. Note that here it was important to know that f €

L (IR{N), since we divided by (fRN fI Dr g
Step 3: Assume that f € WP (RN). For n € N and € RY define

f(z)|— 2% ifL<|f(z) <n,
gn(x) =< 0 if |f(z)] <2,
n—+ if [f (2)] > .

By the chain rule (see Exercise 44 (i) and (vi)) for £V a.e. z € RV

if L
¥on 1l = { 57 e <"

and so Vg, € LP (IR{N; RN), while for every s > 1,

/RN \gn|® dz = [{|f>;} |9a” dz
< <n1)S£N ({mGRN: |f ()| > i}) < 00,

n
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since f € L? (R). Hence, g, € L¥" (RY) nwh? (RY) and so by the previous
step

1 % Tpp oy NN:),)
n d n| NP d
(/;<|f<n} <|f($)| n) m) < </RN |9n| a:)
<q </]RN ||V9n||1’da:) " q (/{1<f|< } |prda:> <4 (/RN ||Vf|pdaz) v

Letting first n — oo and using Fatou’s lemma we obtain the desired result. m

Exercise 57 Let k € N and 1 < p < 0o be such that k > 2 and kp < N. Prove
that

(i) Wktip (RN) is continuously embedded in W34 (RN) for all j € N and for

allp < q < 55,

Np
N—kp-

(i) WhP (RYN) is continuously embedded in L1 (RY) for allp < q <

Remark 58 Note that in the last step of the proof of the previous theorem
we only used the fact that f vanishes at infinity and its distributional gradient
VfelP (]RN;RN). In particular, it holds if we assume that f € LI(RN) for
some 1 < q < oo and the distributional gradiend Vf € LP (]RN;]RN).

Remark 59 In view of Theorem 30 in Step 1 and 2 we could have assumed
that f € CL(RYN) and so avoid Step 3. However, see the previous remark.

Remark 60 The previous theorem continues to hold in BV . To be precise, one
can show that if N > 2 and f € BV (RN), then

L
53

( [ dw)l < C|DFIERY),
RN
where C' = C (N) > 0.

Friday, February 11, 2022
Next we discuss the validity of the Sobolev—Gagliardo—Nirenberg embedding
theorem for arbitrary domains.

Exercise 61 (Room and Passages) Let {h,} and {da,} be two sequences of
positive numbers such that

hn+1
hn,

oo
Zhn=£<oo, 0 < const. < <1, 0<do, < hoptt,
n=1

and for n € N let



Define Q2 C R? to be the union of all sets of the form

1 1
Rj = (Cj — hj,Cj) X (—th, 2h]> y

1

1
Piy1:=[ej, ¢+ hja] X (—25j+1, 25j+1> ;

forj=1,3,5,...,
(i) Prove that O is a rectifiable curve but 2 is not of class C.
(ii) Let

1 1
hn = T3 52'” = 5
n2 n2
and for j =1,3,5,...,
J ‘
= K R;
) log2j J o
f(z,y) = T—cj .
Kj+ (Kj2 — Kj) 5—in Pj11.
j+1

Prove that f € WY2(Q) but f ¢ L9 (Q) for any q > 2.
(iii) Letp>1,q> % (2p—1),

1 1
h2n—1 = h2n = ) 62n =
n

and for n € N,
1 .
flz,y) = — Rop—1,

and 1y .
Vi) = (U 0) i,
e
Prove that V f € L* (O R?*2) but f ¢ L*(Q).

Theorem 62 (Rellich-Kondrachov) Let 1 < p < N and let {f,}, be a
bounded sequence in WP (RN). Then there exist a subsequence { fu, }), of {fn},,
and a function f € LP" (RN) such that f,, — f in L{ (RN) foralll < g < p*.
Moreover, f € WHP(RYN) if p > 1.

The proof makes use of the following auxiliary results.

Lemma 63 Let 1 < p < oo and let f € WP (RY). Then for all h € RV \ {0},

/ @+ h)— f (@) de < ||B] / IVf () |Pde.
RN RN

Proof. Exercise. m
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Lemma 64 Let 1 < p < co and let f € WP (RN). For ¢ > 0 consider
standard mollifiers p.. Then

/ (F *02) (@) — f (@) d < CeP / IVF () | de.
RN RN

Proof. By Holder’s inequality and (5) we have

\(f*sos)(w)—f(fv)l”s/

R

Jee(@—y)lf (y) - f (@) dy
¢ P
<< f @+ h)— f (@) dh.
€7 JB(0,¢)
Hence, by Fubini’s Theorem,

p C p
[eea@—s@raes g [ ] e n) g @ dein

(29)
In turn, by the previous lemma we get

p C P dax p
[pa@ @ de< S [ 9@ e [ i

B(0,¢)
—Cer / V] ()| de.
RN

]

We now turn to the proof of the Rellich-Kondrachov Theorem.
Proof of Theorem 62. Since the sequence {f,}, is bounded in W? (RN),
by the Sobolev-Gagliardo-Nirenberg embedding theorem, {f,}, is bounded in
e (RN). Since p* > 1, by the reflexivity of LP" (RN) we may find a subse-
quence { fn, }, such that

fap — fin L (RY).

We claim that f,, — fin L? (Q2) for every open set  C RY with finite measure.
By the previous lemma and the fact that {f,, }, is bounded in W» (RY),
we get

Sup/ |fnk*()08_fnk|p dwgogpsuf)/ vank”pdeMgp,
keN JRN keN JRN

and so,

lim sup/ |frn * e — fail? dz = 0. (30)
e—0% keN JRN
By Minkowski’s inequality

[ i — f”LP(Q) < e * e — fnk”LP(Q)—'_”fnk, * e — f x <Ps||Lp(Q)+||f * e — fHLp(Q) :
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Fix € > 0. By (30) and Theorem 13(iii) there exists £ depending only on e such
that for all 0 < ¢ < £ and all k¥ € N the first and last term in the previous
inequality are both bounded by €, and so

[ o — f||Lp(Q) S * e — fx ‘PeHLP(Q) + 2¢ (31)

for all 0 < ¢ < & and all k£ € N. Hence, to complete the proof it suffices to show
that

klggonnk *<P§—f*<P€||Lp(Q) =0. (32)
Since f,, — f in L? (RY) it follows that for all z € RY

(o) (@) = [

vz (z —y) fu(y) dy
]RN

- RNsoé(w—y)f(y) dy = (f * ¢&) (x)

as k — o0o. Moreover, reasoning as in (29) and since {f,}, is bounded in
LP (RY), we get

|(fui * 02) () — (f *+ @2) (2)]" < eN/B(Oﬁ)Ifnk (+h)—f(z+h)]" dh

Si

for all € RY and all k£ € N. Since  has finite measure, we are in a position
to apply the Lebesgue dominated convergence theorem to conclude that (32)
holds.

Hence, we have shown that f,, — f in LP (Q). Since {f,, }, is bounded in
LP" (RY), by Vitali’s convergence theorem this implies that f,, — f in L7 (Q)
forall1<g¢<p*. m

Remark 65 Note that in the case p > 1 we do not need to use the Sobolev—
Gagliardo—Nirenberg embedding theorem since LP (RN) is reflexive.

Remark 66 Ifp =1, one can show that the function f in the previous theorem
belongs to BV (RY).

The following exercises show that compactness fails for ¢ = p* even for nice
domains and that for general domains even the embedding

Wh? (Q) — L1(Q)
f=f

may fail to be compact.
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Exercise 67 Let 1 <p < N and consider the sequence of functions
N-p

fu () { now (L=nfzl) if ||z

<
0 if 2| =

1
)

1

n

Prove that the sequence { f,}, is bounded in WP (B (0,1)), but does not admit
any subsequence strongly convergent in LP™ (€2).

Remark 68 In the proof of the Rellich—Kondrachov compactness theorem, we
used the fact that if 1 < p < q < oo and {fn}n is bounded in LP(RY) and
fn — f in LY(RYN), then f € LP(RYN). To see this, consider a ball B and a
function g € Lp'(B). Since p' > ¢, we have that g € LY (B). Therefore,

/Bfngda:—>/Bfgd:B

as n — oo. This shows that f, — [ in LP(B). By the lower semicontinuity of
the norm with respect to weak convergence,

1Al ey < Timinf || fo ey < Hminf [ fol[Le @) < M.

Taking B = B(0,7) and letting j — oo, it follows from the Lebesgue monotone
convergence theorem that

Il ey < hnnlioréf I fll o ey < M.

Monday, February 14, 2022

5 Embeddings: p =N

The argument at the beginning of the previous section shows that when p > N
we cannot expect an inequality of the form

”.fHLq(RN) < CvaHLP(RN;RN) :
However, we could still have embeddings of the type
whe (RV) — L9 (RY)
fe=1f
that is, inequalities of the type
HfHLq(RN) <c ||fHW1,p(RN) :

We now show that this is the case when p = N. We begin by observing that
when p N, then p* / oo, and so one would be tempted to say that if f €
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whN (RN), then f € L™ (RN). For N = 1 this is true since if f € W11 (R),
then a representative f is absolutely continuous in R so that

— — z —
F@) =70+ [ T ds
0
and since ?/ = f' € L' (R), we have that f is bounded and continuous. For
N > 1 this is not the case, as the next exercise shows.

Exercise 69 Let 2 = B(0,1) C RN, N > 1, and show that the function

f(z) == log (log <1+1>), z € B(0,1)\ {0},

]
belongs to WHN (B (0,1)) but not to L (B (0,1)).
However, we have the following result.

Theorem 70 The space WHY (RN) is continuously embedded in the space
L4 (RN) for all N < g < 0.

Proof. Let f € WhY (RN). Define g := |f|t, where ¢ > 1 will be determined so
that g € L” (RN) and Vg € L'(RY;RY). By the Sobolev—Gagliardo-Nirenberg
embedding theorem with p = 1 and Remark 58,

N—-1

()™ = ()

< / Vgl de < t / I dae
RN RN

o\ 4
gt(/ DN dm) (/ anNdm) ,
RN RN

where in the last inequality we have used Hoélder’s inequality. Hence,

N— 1

([oeaa) " <o [ P rae) ™ ([ 1varae)”
([oneos=ae) "7 (] |Vdew)N],
RN RN

(33)

-

<cC

where we have used Young’s inequality ab < a’ + bt for a,b > 0. Taking t = N

yields
N N
([ 1 aa) " ([ 19017 de) ]

30

N-—1

([ 15 ae) ™ <c

2|~
2z~




2
so that f € L¥=1 (RN ) with continuous embedding. In turn by Theorem 77,
we conclude that

£l oy < ClF v gy

forallNgquN—jl.
Takingt=N+1< NN—jl in (33) and using what we just proved gives

N(N+1) N-—1
(/ |f‘ N—1 dII:) N(N+1)
RN
N—1 1
N2 N2 N N
([ ae) ™ ([ 1971 ae) ]
RN RN

< Ol fllyrw s

<C

and so the embedding
WP (®Y) - 9 ()
fe=f

is continuous for all N < ¢ < % We proceed in this fashion taking

t=N+2,N+3,etc. m

Exercise 71 Let k € N and 1 < p < oo be such that k > 2 and kp = N. Prove
that

(i) Wktir (RN) is continuously embedded in W31 (RN) for all j € N and for
allp < g < o0,

(i) WhP (RY) is continuously embedded in L9 (RN) for all p < q < oo.
Exercise 72 Prove that for every function f € W1 (RN),

oNf

8x1-~-633N

Il a < .
LN (RN)

Theorem 73 (Rellich-Kondrachov) Let N > 2 and let {f,}, be a bounded

sequence in WHYN (RY). Then there exist a subsequence {fn, }, of {fn}, and a

function f € WHN (RN) such that f,, — f in L{ (RN) foralll < g < .

loc

Proof. The proof is similar to the case p < N with the only difference that in
place of p* we can consider any exponent ¢ > 1. m
Wednesday, February 16, 2022
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6 Embeddings: p > N

We recall that, given an open set © C RY, a function f : @ — R is Holder
continuous with exponent o > 0 if there exists a constant C' > 0 such that

[f (=) = f(y)l < Cllz -y

for all £,y € Q. We define the space O (ﬁ) as the space of all bounded
functions that are Holder continuous with exponent «.

Exercise 74 Let Q@ CRY be an open set and let o > 0.

(i) Prove that if & > 1 and Q) is connected, then any function that is Hélder
continuous with exponent o is constant.

(ii) Prove that the space C%® (ﬁ), 0 < a <1, is a Banach space with the
norm

£ llco.(my = sup I ()| +  sup |f ()~ f ()l

x, yeQ, z#y ||£B - y”a

Note that if 2 is bounded, then every function f : 2 — R that is Holder con-
tinuous with exponent a > 0 is uniformly continuous and thus it can be uniquely
extended to a bounded continuous function on RY. Thus, in the definition of
Ccoe (ﬁ) one can drop the requirement that the functions are bounded.

The next theorem shows that if p > N a function f € Wh? (RN ) has a

representative in the space o (RN).

Theorem 75 (Morrey) Let N < p < co. Then the space WP (RY) is con-
tinuously embedded in co =% (RN). Moreover, if f € WP (RN) and f is its
representative in Co1=% (RN), then

f(z)=0.

[l —o0

Proof. Let f € Whp (]RN) nCce (RN) and let ), be any cube with sides of
length r parallel to the axes. Fix x,y € @, and let

gt):=fz+(1-1t)y), 0<t<1.

By the fundamental theorem of calculus
1
f@=fw) =g =90 = [ o)

= [ vrtera-ny)- @y
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Averaging in the x variable over @, yields

fo. =t W= [ [ im0y @y deda

where fg, is the integral average of f over @, that is,

fo. =1 [ (@) da

1 / /1
rN 8$i

7 1 /1 ; / +Q
rN-1 1-t)y rt

where we have used the fact that |x; —y;| < r in @,, Tonelli’s theorem, and
the change of variables z = tx + (1 —t) y (so that dz = tVdz). By Holder’s
inequality and the fact that (1 —t) y + Q-+ C @, we now have

Hence,

(tz+ (1 —1) y)| |z — y,| dt da

[fo. = F (Y] <

1
N-1

(te+ (1 —1) y)‘ dx dt

8331

dz dt,

L)

IN\
EMziMz i+
=

axz

N N »
t)p/ af
lfo, = f(y / / (z ) dz | dt
Zl 0 (1-t)y+Q,e | OTi
erg 1 t]\u%
N ||Vf||LP(QT;]RN) rN—-1 /0 tN dt (34)

Np _N
7N7"1 P vaHLP(QT;RN)'

Since this is true for all y € Q,, if ¢,y € @Q,., then

[f (@) = F ()l < |f () = fo,l +1f (y) = fa.l

2Np |_«n
T ||vf||LP(QT;]RN)'

<
Sp—N

Now if &,y € RV, consider a cube @, containing z and y and of side length
r:= 2|l — y||. Then the previous inequality yields

(@)= F )] < Clle =yl 7 1V pogo.mn (35)
<Cllz - y”l B ”foLp(RN;]RN) :
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Hence, f is Holder continuous of exponent 17%. To prove that f € co % (RN),

it remains to show that f is bounded. Let & € R and consider a cube Q; con-
taining @ and of side length one. By (34) we get

[f (@) < |fal +1f (@) = fa.| < ’/Q (=) dz| + ClIVflq,mvy  (36)

< fllzo@ny ¥ CIV @y vy < Cllfllwro@y)

where we have used Holder’s inequality.

Next we remove the extra hypothesis that f € C* (RN ) Given any f €
whp (RN)7 let f be a representative of f and let =,y € RY be two Lebesgue
points of f and let f. := f * ¢, where @, is a standard mollifier. By (35) we
have that

[fz (@) = f- (] < Clla = ylI'™ 7 [V fell po e vy -

Since { f.} converge at every Lebesgue point by Theorem 13 and Vf. = (Vf), —
Vfin LP (RN; RN) by Theorems 13, letting e — 07, we get

7 7 N
f (@) = F ()] <Clle =yl 7 IVFll o g (37)
for all Lebesgue points ¢,y € RN of f. This implies that
f : {Lebesgue points of f} — R

can be uniquely extended to RY as a Holder continuous function f of exponent
1-— % in such a way that (37) holds for all ,y € RV.
With a similar argument from (36) we conclude that

1F (@) < Ol (38)
for all z € RY. Hence,
[/ () - [ (y)]

1-N
z, yeRN a2y |z —y|| "7
<Ol -

Finally, we prove that f(z) — 0 as ||| — oco. Let {f,} C C° (R") be any
sequence that converges to f in WhHP (RN ) The inequality (38) implies, in
particular, that f € L™ (RN), with

1l e vy < C 1l -

Replacing f with f — f, gives
1 = Fall e qay < CIF = Fallwrmgen) -

and so ||f = full Lo @) — 0 as m — oo. Fix € > 0 and find # € N such that

1o oy = 510, 17 @)+

If - fn”LOO(]RN) <e¢
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for all n > 7. Since fr € C2° (RY), there exists R; > 0 such that f; (z) =0
for all ||z|| > Ry. Hence, for LV -a.e. £ € RY with ||z|| > R we get

[f (@) = | (@)~ fa (@] <|If = fall =@y <€

and, since f is continuous, we get that the previous inequality actually holds
for all z € RY with ||z| > R;. =

Theorem 76 (Rellich-Kondrachov) Let p > N and let {f,}, be a bounded
sequence in WhHP (RN). Then (up tp precise representatives) there exist a sub-
sequence {fy, }, of {fa}, and a function f € WP (RN) such that f,, — f in

C0« (Q) forall0<a<1-— % and for every bounded open set Q C RV,

Proof. Exercise. m
Friday, February 18, 2022

7 Extension Domains
We begin with the case in which 2 is the half space Rﬁ\_’ .

Theorem 77 For all 1 < p < oo there exists a continuous linear operator
E:WHP(REY) — WHP(RYN) such that for all f € WHP(RY), E(f)(z) = f(=)
for LN -a.e. x € Rf and

0E(f of
IO < Almyy | of

)

Lr(RY)

<2|

Lr(RN)
foralli=1, ..., N.

Proof. We only do the case p < co. Let f € C*(RV~1 x [0,00)) and define

| f&,—zN) iy <O,
g@y_{f@) SN

The g € C(RY) and absolutely continuous on every line parallel to the axes

with
g (z) = %(12/,—1']\]) if xy <0,
oz, aai (z) ifxny >0,

ifi=1,..., N—1, while

dg (z) = —aij;(w/,—m]\r) ifeny <0,
ory ] 2L(x) if zy > 0.

or N

It follows by the theorem on absolute continuity that g € W1P(RY). By a

change of variables we have that |g|lpr@y) = 2Hf||Lp(Rf), %

L»(RN)
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of
ox;

2‘ ®Y) Hence, the mapping f +— g¢ is linear and continuous from
L»(R
x

WLP(RY)NCHRYN ! x [0,00)) to WHP(RY). By Theorem 30 we can extend it
uniquely to a bounded linear map & : WHP(RY) — WHP(RY). m

Note that % is discontinuous at  y = 0 and so we cannot use this extension
for function f € W™P(RY) for m > 2.

Exercise 78 Given m € N, and 1 < p < oo, let f € Wm’p(]Rf). Prove that

there exist c1, ..., ¢m4+1 € R such that the function
o(@) = Zztll enf(x',—nxy) ifzy <0,
flx) if ey >0,

is well-defined and belongs to W™P(RN). Prove also that for every 0 < k < m,
V¥ gl Lo ey < c||ka||Lp(R$) for some constant ¢ = ¢(m, N,p) > 0.

Next we consider the important special case in which 2 lies above the graph
of a Lipschitz continuous function.

Theorem 79 Let h: RVN~! — R be a Lipschitz continuous function and let
Q:={(z',zn) e RN xR : x> h(z)}. (39)

Then for all 1 < p < oo there exists a continuous linear operator € : WHP(Q) —
WLP(RN) such that for all f € WIP(Q), E(f)(z) = f(z) for LN -a.e. £ € Q
and

1€ rr@yy <21 fllr)s  IONE(F)lr@yy < 20N fllLr @), (40)
10:€(P)llLo @y < 2[10ifllLe () + Lip AlON fll o (o) (41)
foralli=1, ..., N.
Proof. The idea of the proof is to first flatten the boundary to reduce to the
case in which Q = Rf and then use the previous theorem. We only prove the
case 1 < p < oo and leave the easier case p = co as an exercise. Consider the
transformation ¥ : RN — RY given by ¥(y) := (v',yn + h(y')). Note that ¥
is invertible, with inverse given by =1(z) = (z’,xx — h(x')). Moreover, for all
y,z € RV,
1W(y) — (=)l = (¥ = 2", h(y") — h(2") + yn — 2n)]
<VIy =22+ Liph|ly — 2| + lyn — 2n )2
< Liphlly — |,

which shows that ¥ (and similarly ¥~1) is Lipschitz continuous. Since h is
Lipschitz continuous, by Rademacher’s theorem it is differentiable for £N~1-
a.e. ¥y € RV~ and so for any such ' € RV~! and for all y, € R we have

)= (g 3 )
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which implies that det Jy(y) = 1. Note that ¥(RY) = Q.
Given a function f € WP(), 1 < p < oo, define the function

w(y) == f(¥(y) = (¥ yn +h(y)), yeRY.

By Exercise 36 the function w belongs to WP (Rf ) and the usual chain rule
formula for the partial derivatives holds. By the previous theorem the function
W : RV — R, defined by

ly) = { w(y',—yn) ifyn <0,

belongs to W1?(RY) and the usual chain rule formula for the partial derivatives
holds.
Define the function v : RY — R by

f(x) if xy > h(x'),

v(@) = (@0 ¥ (z) = { f(@',2n(z") —zn) if zy < h(z). (42)

Again by Exercise 36, we have that v € W1?(RY) and the usual chain rule
formula for the partial derivatives holds.

By a change variables and the fact that det V¥ = det V¥~ = 1, we have
that

[ @iz = [ 5@ @) - avlde = [ |fw)Pay.
RN\Q RN\Q Q
Since for alli = 1,..., N — 1 and for LN-a.e. z € RV \ Q,

Ow(x) = 0 f(2, 2h(x") — xn) + On f(2',2h(x") — xn)Oih(2),  (43)

again by a change variables we have that

1/p 1/p
( / |8iv(m)|pdw) < ( [ st 2hia) - xN>|Pdm)
RN\Q RN\Q

1/p
stipn( [ iows(e2n(a) - ox)lPd)

<(/ |aif<y>|1’dy)1/p +ipn( [ |6Nf<y>|pdy)1/p.

Similarly, using the fact that dyv(z) = —0n f(2',2h(z') — zn) for LN-ac.
z € RV \ Q, we obtain

[ @z = [ joxs(a’ 20(e) - z)|da
RN\Q

RN\
- / O f ()P dy.
Q

Hence, the linear extension operator f € WHP(Q) — E(f) := v € WHP(RY) is
continuous and satisfies (40) and (41). =
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Remark 80 Note that the operator £ defined in the previous theorem does not
depend on p. However, it has the disadvantage that it cannot be used for higher-
order Sobolev spaces since in (43) the derivatives of h appear, unless one assumes
that h is more regular.

Theorem 81 Let Q C RN be an open bounded open set with 02 Lipschitz
continuous. Then for all 1 < p < oo there exists a continuous linear operator
E: WhP(Q) — WEP(RYN) such that for all f € WYP(Q), E(f)(z) = f(z) for
LN-a.e. € Q and

1EH) I Leryy < Cllfllze ),
IVE N Lr@yy < Cllfllwrr
for some constant C = C(N,p,Q) > 0.

Proof. This follows by using partition of unity. The details are in the book. m

Corollary 82 Let Q C RY be an open bounded set with Lipschitz continuous
boundary and let 1 < p < co. Then

(i) If 1 <p < N, then WHP(Q) — L4(Q) for all 1 < q < p*,
(ii) If p= N > 2, then WHP(Q) — LI(Q) for all 1 < q < oo,
(iii) If p > N, then WHP(Q) — C%* (Q) for all0 < a < 1— %.

Proof. We only prove item (i). Given f € W'P(Q), by the previous theorem
E(f) € WHP(RYN). Hence, by the Sobolev—Gagliardo—Nirenberg embedding
theorem,

IEN Lo @ry < CIEN) lwrrmny < Cllfllwre )
Since £(f)(x) = f(x) for LN-a.e. & € Q, it follows that

1 £l o= ) = IED o= @) S NEP) o= @y < Cllfllwrw(ay-
Monday, February 21, 2022

8 Poincaré Inequalities

Let © C RY be an open set and let 1 < p < co. Poincaré’s inequality is the
following

/ f (@) — ful? de < C / IV £ de,
Q Q

where E C 2 is a measurable set of finite positive measure and

1
fg = E/Ef(cc) de. (44)
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Theorem 83 (Poincaré Inequality) Let 1 < p < oo, & C RN be an open
bounded connected set with Lipschitz continuous boundary, and E C € be a mea-
surable set with positive measure. Then there exists a constant C = C (p,Q, E) >
0 such that for all f € W1P(Q),

/ |f () = fel” dz < c/ IV f(z)|? de.
Q Q

Proof. Assume by contradiction that the result is false. Then we may find a
sequence {f,}, in WP (Q) such that

/Ifn — ()l dm>n/ IV £ (2) ||Pdec.

Define
fn — (fn)E

an - (f")E”LIJ(Q)

In ‘=

Then g, € W7 (Q) with

s |-

lgallioiy =1 (gn)5 =0, / IV gal? dz <

Extend g, by reflection to a function G,, € W'2(RYN) with [|Gpllwrr@y) <
Cllgnllw.r(0)- Then {G,}, is bounded in Wh#(RY). By the Rellich-Kondrachov

theorems (p < N, p = N and p > N) there exist a subsequence {G,, }; and a
function G € LP(RN) such that G,,, — G in L} (RY). Let g be the restriction

loc

of G to Q. Since Q) is bounded, we have that g,, — g in L? (Q). It follows that
l9llo) =1, g8 =0.

Moreover, for every ¢ € C} () and i = 1,..., N, by Holder’s inequality
g,

C%
hm ‘/ g”’“@ dx oz,

81‘1
< lim (/ ||Vgnk||pd:n> (/ ol dw) 0
k—o0 Q

and so g € WP (Q) with Vg = 0. Since 2 is connected, this implies that g is
constant (exercise), but since gg = 0, then, necessarily, g = 0. This contradicts
the fact that ||g|[;,q) =1 and completes the proof. m

Wednesday, February 23, 2022

*lm

“

9 The Trace Operator

Since Sobolev functions are LP functions, they are equivalence classes of func-
tions, and thus talking about their pointwise value does not make sense in
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general. One possibility would be to find a good representative. Indeed, in
the supercritical case p > N and if Q is an open bounded set with Lipschitz
continuous boundary, we can extend f to W1P(RY) and then apply Morrey’s
theorem to conclude that f has a Holder continuous representative f. Thus,
the value of f on the boundary of Q is well-defined.

The situation is quite different in the subcritical and critical cases p < N
(unless N = 1). In this case we will prove that if 9 is sufficiently regular, say,
Lipschitz continuous, we can introduce a linear operator

Tr: WhP(Q) — LP

loc

(09, 1Y)

such that Tr(f) = f on 9N for all f € WHP(Q)NC(Q) and for which integration
by parts holds, that is,

/ fondz = / woifdz+ [ @ Te(fy dHV (45)
Q Q o0

for all f € WLP(Q), ¢ € CHRY), and i = 1,..., N, where v is the outward
unit normal to 092. We will study the continuity properties of this operator.
In what follows, we will use the abbreviations

LP(09) == LP(9Q, HN 1),

I~ llzeo) = I - lzra0,7v-1)-

(99) := LP

loc

(0Q, HN 1Y), (46)

L
In this section we establish the existence of a trace operator. As usual, we
begin with the case 2 = Rf.
Theorem 84 Let 1 < p < oo. There exists a unique linear operator
Tr: WhP(RY) — LP(RVN )
such that

(i) Te(f)(&') = f(2',0) for all ' € RN~! and for all f € WHP(RY) N
CRN7! x [0, 00)),

(ii) the integration by parts formula
f(@)o(e) / v@dif(e)dat [ (@ 0) () (@) da
RY RN-1

holds for all f € WHP(RY), allp € CHRYN), and alli=1,...,N,

(iii) for every 0 < e < 1,

/ [f(a",0)|Pda’ < 2?‘15—1/ If(m)lpdw+2p_1€p_l/ |On f(2)|"dz.
RN-1 RY RY
(47)
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The function Tr(f) is called the trace of f on 99.
Proof. Step 1: Assume that f € WHP(RY) N C*(RYN~! x [0,00)). By the
fundamental theorem of calculus, for ' € RN~! and zx > 0, we can write

f(&',0) = f(z',zn) — / ) Onf(x',s)ds.
0
Hence

(@, 0)] < |f( an)| + / " Jow f(a', )] ds.

Raising both sides to the power p and using the inequality (a + b)P < 2P~ 1aP +
2P~1pP and and Holder’s inequalities (if p > 1) gives

TN
HOF <2 @ a2l [ s oPds (48)
0
<2 (e an)l + 28 [ sl o)
0

for ' € RV 1 and 0 < 2y < € < 1. Integrating in 2’ over RV~! and in zy
over (0,¢) gives

€
/ \f(w’,0)|pdm’§2p_15_1/ / |f(z',zn)|Pdend’
RN-1 RN-1 Jg
€
+2p715”71/ / |On f(2', s)|Pdsdz’.
RN-1.Jo

This shows that (iii) holds for every f € W1P(RY) N CHRN ! x [0, 00)).

Step 2: If now f € WhP(RY), reflect f to find a function F € WP (RY)
and consider a sequence F. = ¢, * F € WHP(RY) N C®(RY). Then F. — F in
WP(RY) as e — 0T. Let €, — 0T and let f, be the restriction of F., to RY.
Then f, — f in WHP(RY). Applying (47) to f, — fm, we get

/ (fo — fu) (@, 0) P’ < 27~ / (fo — ) (@) Pda + 20 0~ / 108 (fo — f)(@)|Pde
RN-1 RY RY
— 0 as n,m — oo.

Thus, {f.(+,0)}, is a Cauchy sequence in LP(RY~1) and thus it converges to
a function g € LP(RN~1). Note that if we consider another sequence {g, }, of
functions in WHP(RY) N CY(RY~! x [0,00)) such that g, — f in WHP(RY),
then by applying (47) to f, — gn, we get

/ [(fn = gn)(2',0)|Pdz’ < 2,9_15_1/ |(fn = gn)(z)|Pdz + 2p_15p_1/ ON (fr — gn)()[Pd
RN-1 RY RY
— 0 asn — oo.

Since f,,(-,0) — g in LP(RN~1) it follows that g,(-,0) — g in LP(RN~1). This
argument proves that the function g does not depend on the particular sequence
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of smooth functions that converges to f. We define Tr(f) := g. Applying (47)
to fn, we get

/ !, O)Pda! < 201 / o) Pda + 2010 / O fo() P d.
RN-1 Rf Ri’

Letting n — oo, we obtain (47).
Since (45) holds for each f,, and ¢ € C>°(RY), we have

/R I (@0(a) dm = - /R V) do /R B(a!,0) fula!,0)6; v da.

N-—1

Letting n — oo and using the fact that f, — f in WH?(RY) and f,(-,0) — g
in LP(RY~1), we obtain

F(@)ou() de = — / b@)df(@)de + | (@, 0)g(a)5iy da'.
RY RY

RN-1
]

Remark 85 If we integrate (48) in x’ over a cube Q' and in xy over (0,¢) we
obtain

[ @ opa <2t [ ey pdeda
Q’ Q' J0
€
+2p716p71/ / lOn f(2', s)[Pdsdx’
Q' J0
for every f € WHP(RY)NCHRN 71 x [0, 00)). Reasoning as in Step 2, we obtain
()P <2 [ @)
Q’ Q' x(0,¢)
+2”*1€p*1/ |On f ()P dx
Q' %x(0,e)

for every f € WHP(RY).

An important corollary of the previous theorem is compactness of the trace
operator for p > 1.

Corollary 86 (Compactness of Traces) Let 1 < p < oo, and let {f,}n be a
bounded sequence in W P(RY). Then there exist a subsequence { fy, }r of {fn}n
and a function f € WHP(RY) such that f,, — f in L} (RY) and Tr(f,,) —
Tr(f) in LY (RN-1).

loc
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Proof. Let M > 0 be such that ||fn||W1,p(]R¢r) < M for every n. Extend f, by
reflection to a function F,, € WHP(RY) with || F, [y @y) < CanHWl,p(Rﬁ).
Then {F,}, is bounded in W?(RY). By the Rellich-Kondrachov theorems
(p < N, p= N and p > N) there exist a subsequence {F}, }; and a function
F € WIP(RY) such that F,, — F in L? (RY). Let f be the restriction of G
to RY.

By the previous remark,

/ ITe(f — fu)(@)Pda’ < 27 1c~! / (F = fuu) (@) Pdz
Q' Q'x(0,e)
poriert / 08 (f = fu)(@)Pde
Q' %x(0,e)

< origt / \(f = fur)(@)|Pda + 27710,
Q' %x(0,e)

where in the last inequality we used the fact that || anWLp(Rﬁ) < M. Letting
k — oo and using the fact that F,,, — F in LP(Q’ x (0,¢)) gives

limsup [ |Tr(f — fn,)(z)|Pdx’ < 2PeP~ M.
Q/

k—oo

Letting ¢ — 0T we have

lim sup /Q TS~ fu @) da =0

k—oo

Since Q' is an arbitrary cube in RV~ we have shown that Tr(f,,) — Tr(f) in
L{)OC(RN_l). .

Example 87 The previous corollary fails for p = 1. Indeed, taking f,(z) =
(1—nz)™ forxz € (0,1), we have that Tr(f,)(0) = f,(0) = 1. The sequence {f,}
is bounded in WH((0,1)) and converges to f =0 in L*((0,1)) but Tr(f,)(0) =
1 -» Tr(f)(0) =0.

Exercise 88 Let Q C RN, N > 2, be an open bounded set whose boundary OS2
is Lipschitz continuous. Prove that if f, — f in WH(Q), then Tr(f,) converges
to Tr(f) in L*(09Q). Hint: Use equi-integrability.

Exercise 89 Let N > 2. Prove that for all functions f € Wl’l(Rf),
I Te()C 0l pr@y-1) < 1ON fll o1 ey

Friday, February 25, 2022
Next we prove that the operator Tr is onto. The following theorem is due
to Gagliardo. The proof we present here is due to Mironescu.
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Theorem 90 (Gagliardo) Let g € L*(RN=Y), N > 2. Then for every 0 <
e < 1 there exists a function f € WHH(RY) such that Tr(f) = g and

ey <ellgllor@y-v),  [IVFAlL@y) < A +a)lgllor @y

Proof. Step 1: Assume that g € C°(RY 1), with g # 0. Fix € > 0 and let
@ € C([0,00)) be such that ¢(0) = 1 and [, [¢'(t)|dt < 14 . Note that the
Lipschitz continuous function oo (t) = (1—t)*, t > 0, satisfies [p, |¢f(t)|dt = 1.
Hence, to obtain ¢ it suffices to regularize ¢g. For n € N and = (', zn) €
RYN=1 x [0,00) define f,(x) := g(z')p(nzyn). Then f, € C*(RY~1 x [0,00)),
fn(x',0) = g(z’) for every ' € RVN~1 while

Oifn(x) = Oig(@)p(nay), Onfo(w) = ng(z')¢' (noy)

forz € RY,i=1,..., N — 1. Moreover by Fubini’s theorem and the change of
variables t = nxy,

[ @ndz = [ lo@ia [ je)d—o

as n — o0o. Similarly, fort=1,...,N — 1,
1
[ osa@lde = [ joge)lde’ [ o]0
Ri n JrN-1 R+

as n — 0o, while

[ oxtu@liz= [ lg@)lde [ fewla<are [ g

RY RN -1 R+ RN -1
Since g # 0, by taking n large enough we obtain that

[ n@li<e [ lg@a, [ jon@ldese [ )

RY RN -1 RY RN -1
i=1,...,N — 1, which gives the desired result in the case g € C°(RV~1).

Step 2: Let g € LY(RV"1). Find a sequence g, € C®(RN~1) such that
9= no19n and

Z llgnllLr@y-1y < (1 +e)llgllr@n—1).
n=1
By Step 1 there exists f,, € Wl’l(Rf) such that Tr(f,) = g, and

[fallr@yy < ellgnllii@n-1y,  IVallpieyy < (14 €)llgnllp@y-1).
Then

> [l @yy < e(4e)llgllpr@y-1), > IV fall oy < (14€)*[lgllren-1)

n=1 n=1
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Define -
f = Z fn
n=1

Then f € WH(RY) (as in your homework). Moreover, since Tr is linear,
¢ ¢ ¢
CIPALS SETIAES oY
n=1 n=1 n=1

in L'(RV~1) as £ — oo. Since me:1 fn — fin WHL(RE), it follows by the
continuity of the trace operator, Tr(f) =g. m

Exercise 91 Let X be a Banach space and let Y be a dense subspace. Prove
that for every x € X and every e > 0 there exists a sequence {yn}tn in'Y such

that
o
T = Z Un

n=1

and

Y llyallx < (@ +e)llzlx.

n=1

Remark 92 Peetre has proved that there does not exist a bounded linear oper-
ator

L:L'RY Y —» whHRY)
g~ L(g)
with the property that Tr(L(g)) = g.

In the the case 1 < p < oo the operator Tr : WHP(RY) — LP(RV 1) is not
onto. We will show that

Te(WhP(RY)) = Wi-V/ep(RN-Y),
We begin by showing that
Te(WhP(RY)) 2 Wi-V/ep(RN-D),

Theorem 93 (Gagliardo) Let N >2, 1 < p < oo, and g € W—1/PP(RN-1),

Then there exists a function f € WIP(RY) such that Tr(f) = g and [y <

Cllgllwr-1/pp@n-1) for some constant C = C(N,p) > 0.

Proof. Let ¢ € C2°(RN 1) be such that supp¢ C By—1(0,1) and [pv_, p(2') da’

1. For ' € RV=! and zx > 0 define
1

0() = (Pay * 9)(&') = s / o((@ — o) jen)g(y) dy.  (49)
TN RN-1
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By standard properties of mollifiers, where z plays the role of ¢, for any ¢ =

1,..., N — 1 we have that

2 )= ajxv 22 (! — 9 aw)al)
=L 2y enely) — el
TN JRN-1 8331

where in the second equality we used the fact that

0= am 0= g0 (rr [, (@~ )/ ay)

_(':).’L‘z 8:51-
1 a@ 1 ! ’
= - dy'.
o fow 7 (@ =9 ) dy

Since supp ¢ € By_1(0, 1), we have that

o) < O | o)~ a(a') dy (50)
mN Bn-1(z',zN)
]
Monday, February 28, 2022
Proof. Raising both sides to the power p, integrating in & over Rf , and using

Holder’s inequality, we get

/ |O;v(z)|Pde
RY
1 P
<C Tp(/ Ig(y’)—g(-’l:’)ldy’) dz
Rf l’N Bn 1(9}’,$N)
SN=D(-1)
<C NW/ l9(y') — g(2')|" dy'dz =: CA.
R_IX l‘N Bn 1(:1‘: :EN)

By Tonelli’s theorem, we get that

a= ] / 9(8/) — g(@)|" dy'da’da
0 ]RN 1 BN 1(m CDN) [1+N !
1
—g(z )|p/ — vt don dy'da’
/RN 1/RN* Hm’ Y'lN-1 xN+N '
RN-1 JRN-1 ||£B '||p+N 2 )

Note that N — 1+ sp=N — 1+ (1—%)p:N+p—2
Hence, we have shown that

p
Ov(x)|Pde < C 9(@) dy'dz’
Ny p+N—2
RY RN-1 JRN-1 H;L-/ ’Hp+
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foralli=1,...,N —1.
Similarly, by differentiating under the integral sign (see [?]), we obtain that

o) = [ g (e =) /)ty ay

N15$N

[ o (yrett@ = 9/ o) - o))y
R TN

N-1 81‘]\[

where in the second equality we used the fact that

O_ajN(l)—ajN(/RN 1x%1 150((33 *y)/:rN)dy>
:/]RN ! 8;91\;( %1 (@ _y)/l”N)) dy'.

Since supp ¢ € By_1(0, 1), we have that

oxole) = | o (el = 9)/mm)ota)) — (@] dy

N-1(z',zN) 8$N

Now for ¥y’ € By_1(z',2n),

On (ay Nol(2' —y') fen))| = ’—(N —Dayo((@ —y)/an)
N-1

oy NN die((a — o) Jen) (@ — vz

=1
< Clay™ + |2 — y|no1ay ™) < Ca.

In turn,

Oyo(a)] < O~ / L o) gy
By _1(x',xN

37N

We can now continue as before (see (50)) to conclude that

g(=)P
/ |Onv(z Ipdw<C/RN 1/]RN 1 Hw /”HN s dy'da (52)

Step 2: Since v(-,zn) = (Yzy * 9)(+), by standard properties of mollifiers
(see [?]), we have that for all zy > 0,

/wal lo(a!, )P g/ o) P (53)

RN-1

Integrating in =y in (0, ) gives

/ / (@, o) Pdadey < Ce / l9()Pda. (54)
0 JRN-1 RN-1
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Let ¥ € C*([0,00)) be a decreasing function such that ¢ = 1 in [0,&/2],
Y(zn) = 0 for zy > € and [|¢f|oo < Ce™!. For z = (2/,zy) € RY we de-

fine f(z) := ¢(zn)o(z).
By (54), Tonelli’s theorem, and the fact that ¢(xy) = 0 for 2 > ¢ we have

[ @ = [ @y /  l(@)Pdeldo 9

+
/ / z)[Pdx'dx N
RN-1

< Ce / g2 Pda,
RN—l

while fori =1,...,N — 1

)

10:f (x)] = [ (zn)dv(z)| < Cldjv(z)].

In turn, by (51), we obtain that

g&)Pr
/ os(@lds < e [ 1/RN 1 IIw’ ,pr loty) = 9@ 50

foralli=1,...,N — 1. On the other hand,

Onf(x) = =" (xn)v(z) + ¢Y(zN)Onv(T),

and so, by (52), (54), and the facts that ¢'(zx) = 0 for zx > ¢, and ||| <
Cet,

/ Oy f|Pda

R

<Ce‘p/ / |v|pd:c’da:N+/ |Onv|Pde
RN-1

- -9
< Ce "p/ gPdz’ +/ / dy'dx’.
RN - | | RN-1 JRN-1 ||;1;’ Y ||p+N 2

Step 3: Since v € C'(RY), we have shown that v € Wl*p(Rf). To conclude
the proof, it remains to prove that Tr(v) = g. Using standard mollifiers (ex-
ercise), we may find a sequence {g, }n in C(RN"1) with |gn|pes@y-1) < 00
such that [g — gn|we.rmv-1) — 0. Let v, be defined as in (49) with g replaced
by gn. Then v, € C(RVN~! x [0,00)), with v,(z’,0) = g,(z'). By (52) applied
to v, — v and g, — g, we have that 9;v, — d;v in Lp(Rf) foreveryi=1, ...,
N. In turn, by (?7?), we obtain that Tr(f) = g.Reasoning as in the last part of
the previous theorem we can show that Tr(f) =g. ®

Wednesday, March 2, 2022
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Theorem 94 (Minkowski’s inequality for integrals) Let (X, 0, u) and (Y,0,v)
be two measure spaces. Assume that u and v are complete and o-finite. Let
f: X xY — [0,00] be an (M x MN)-measuradble function and let 1 < p < oo.

Then
[ 1£ @ dnia) < [ 17 @i (o)
X Le(Y,M,v) X

Theorem 95 (Gagliardo) Let N > 2 and 1 < p < oco. Then for dll f €
whr(RY),

| Te(F)lwi-1/ro@y-1) < CIIV Il oy (56)
for some constant C = C(N,p) > 0.

Proof. Let f € W'P(RY). By Theorem 42, f has a representative f that is
absolutely continuous on £V~ !-a.e. line segments of Rf that are parallel to
the coordinate axes. Moreover the first-order (classical) partial derivatives of
f agree LN-a.e. with the weak derivatives of f. Also, Tr(f)(z') = f(=’,0) for
LN~Lae x' € RV-! (exercise). For ', h' € RV~ set v := |h’||y_1. Then

'+ 1.0 - fe 0 < |fiao) - 1 [ @ oan
W / 1 ("= ’
+‘f(w +h,0)—;/0 f(a:,t)dt’
<1 [ 170~ fa@oldee [ 17+ 10 - a0l
+%/T\f(ml-Fh/,O)—f(a:’+h’,t)|dt.
0

Hence, by the inequality (a+b+c)P < 3P~ 1aP + 3P~ 1P + 3P~ 1cP and the change
of variables ' + h' = 72/,

[f(z' +R',0) — f(z",0)F
da'dh
/wal/w—l (et

L f(2',0) = f(2/,t)|dt)”
< gp—1 rfo |f dz'dh’'
<3 /sz_l/]RN 1 5 ”erN 5 T (57)
|f(z' + R t) — f(z',t)|dt)"
3P~ 1/ / G Jo dx'dh’
T e S e ’
e / (o (@' +1,0) = f(a' + R )| dt)"
RN-1 JRN-1 [ et
L™ f(2',0) — )| dt)”?
:317712/ / (el Ve PN (;B LD dz'dh’
RN-1 JRN-1 IR
1 rr o p
-1 (; fO |f ! +h t) (.’13 7t)|dt) 131l . op—1 —1
+rf /RM s T da'dh’ =: 37124 + 3P B.
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Let &' € RV~! be such that f(z',-) is absolutely continuous in (0,7). By the
fundamental theorem of calculus

U
;/O F(a',0) — (', t)|dt<

/aNfa: ) dp] dt</ IV F(a )]l dp.

Using Minkowski’s inequality for integrals,

Lo G [ o i) awr< [ ([ 1eset o) oo

(59)
< ([ 1956 sy o)

Fix 0 < € < 1/p/. By Holder’s inequality and the identity 1 = p~¢p®, the
right-hand side of the previous inequality is bounded from above by

r p/p’ pr
< (/ p~F dp) / PNV PG e @y -1y dp
0 0

yp/p’ —ep

B W/O pé‘p ||vf(7p)||zl)/p(RN_1) dp

Recalling that 7 = ||h||;y_1, by Tonelli’s theorem we have

1 IR Iy -1
A<LC P Vf(x', p)||Pdz dpdh’
<O e |, 00 [ V@ P

1
<c/ / IV )P ( / Edh’) dpda’
RN-1 N-1\Bn-1(0,p) ||h HN e

(59
<c[ [ v pipdpd,
RN=1J0

where we used the facts that 0 < € and

/ 1 d - aN_1 1
RN -1\By_(0,0) [|Bl|IN 2 ep P

To estimate B, define

Xy=2, X, =X, _,+hye,, n=1...,N—1

Then
N-1

f(x' +h't)— f(z' F(X_4,t).
n=1



By fixing &', h’, and t in such a way that f is absolutely continuous along the
segments (X, _; + (1 —n) X! _1,t), n € [0,1] for every n = 1,...,N — 1, by
the fundamental theorem of calculus we have

B B N-1 1
f@ 10 = fa = 3 [ 000X+ (=X h,dn
n=1

Hence,

T N-1 T 1
1 _ _
H RUCEUSCITTED DY RIS SRCICEN: ST
n=1

Using Minkowski’s inequality for integrals and the change of variables nX,_; +
(1 - n)X{nfl = Z/a we get

/sz—l (71“/0 f($/+h',t)_f(w’,t)|dt> Az’

r 1 P
(/ / 0 f Xy 4+ (1= 1) X1, 1) dndt) dz’
0 0

n=1

N-1 roal 1/p
ch</ [ ([ osexi s+ a-nx; ope) dndt>
— \Jo Jo \Jrv—1
r P
<c( / |Vf<-,t>||Lp(Rm>dt) .

Since the right-hand side is the same as the right-hand side in (58) we can now
continue as in the estimate (59) of A to obtain

B<C / / IV (. p)|Pdpde.
RN-1J0

Combining this inequality with (57) and (59) and using the fact that Tr(f)(z") =
f(x',0) for LV lae x' € RV~! we have

/ / | Tr(f)(2' + h') — Tr(f)(m/”pdw/dh/ < C’/ IV f(z)|?d.
RN-1 JRN-1 B R*I\'f
n

p

TN—2
IR I3

Monday, March 14, 2022

10 Interpolation Spaces

Definition 96 A vector space over R is a nonempty set X, whose elements
are called vectors, together with two operations, addition and multiplication by
scalars,

XxX-—-X d Rx X —X

@y oty M (ta) ot

with the properties that
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(i) (X,+) is a commutative group, that is,

(a) x+y=y+x for all z,y € X (commutative property),
(b)) x+(y+z2) =(@x+y)+z foralz,y,z € X (associative property),

(c) there is a vector 0 € X, called zero, such that x +0 =0+ x for all
reX,

(d) for every x € X there exists a vector in X, called the opposite of =
and denoted —z, such that x + (—z) =0,

(i) for all z,y € X and s,t € R,

(a) s(tx) = (st) z,

(b) la =z,

(¢) s(z+y)=(sz)+ (sy),
(d) (s+t)x = (sz) + (tz).

A topological space (X, 7) is a Hausdor[f space if for any z,y € X with z # y
we may find two disjoint open sets U and V' containing x and y, respectively.

Definition 97 Given a topological space (X, T), we say that a sequence {x,}n
in X converges to some x € X if for every open set U € T with x € U there
exists ny € N such that x, € U for all n € N with n > ny. We write x,, — ©
or

lim z, = .
n—0o0

Remark 98 If (X, 1) is a Hausdorff space and x, — x and x, — vy, then
T =y.

Definition 99 Given two topological vector spaces (X, 7x) and (Y, Ty), we say
that X is embedded in Y and we write

X =Y
if X is a subspace of Y and the immersion

i:(X,7x) — (Y, 1v)
T =T

is continuous, that is, if i~ (V) € 7x for every V € 7y in Y.

Remark 100 In particular, if X — Y and if x,, — = in X, thenx, > x inY.
Indeed, for every open set V in'Y containing i(x) = x we have that U := i~ (V)
is open in X and contains x. Since x, — x, there exists ny such that x, € U
for alln > ny and so i(x,) =z, €V for alln > ny.
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We are given two normed spaces, X and X7, with Xy D X3, (for example
C([0,1]) and C*([0, 1]) or L*(]0,1]) and L>°(]0, 1])) we want to construct a family
of intermediate spaces Xg 2 X5 D X3, 0 < s < 1, with the property that

|2l x, < Cllzl%, llx,’
for all x € Xy N X5, where the constants C > 0 and 0 € (0,1) depends on s.

Definition 101 We say that two normed spaces (Xo, || - ||x,), (X1, - |lx,) are
an admissible pair if they are embedded into a common Hausdorff topological
vector space X.

Theorem 102 Let (Xo, || - [x,), (X1, - lx,) be an admissible pair. Then the
vector space Xo N X1 endowed with the norm

[l xonx, = max{[lz] x, ] x, } (60)

18 a normed space. Moreover, if Xg and Xy are Banach spaces, then so is
XoNXy.

Proof. Exercise. =

Theorem 103 Let (Xo, || - [|x,), (X1, - [|x,) be an admissible pair. Then the
vector space

Xo+ Xy ={zeX:z=x0+x1, 0 € Xo,z1 € X1}
s also a normed space when endowed with the norm
%] x0+x, = nf{{|lzollx, + llz1/[x, }, (61)

where the infimum is taken over all possible decompositions © = xg + x1, Tg €
Xo, 1 € X1. Moreover, if Xo and X1 are Banach spaces, then so is Xg + X;.

Proof. Step 1: If ||z||x,+x, = 0, then for every n there exist zj € X, and
2t € Xj such that x = 2§ + 27 and

1 1
It llx, + b, < el +5 =0+

It follows that xff — 0 in Xo and =z} — 0 in X;. In turn, 2§ — 0 in X and
27 — 0in X by Remark, and so zff + 27 — 0in X, but since = z§ +«7, then
z = 0. Conversely, if z = 0, then [|0||x,+x, = 0.

Ifz e Xog+ X1 and t € R, let zg € Xg, ©1 € X1 be such that tx = x¢ + x1.
Assuming t # 0, we have that x = %xo + %xl, and %xo € Xo, %xl € X5. Hence,

]l x40 < 1t @0l + It 21 1x,

=t (llwollxo + 21l x,)-
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Taking the infimum over all such decompositions gives
||'1:||X0+X1 < |t71| Ht$||X0+X1a

or, equivalently, |t|||z|lx,+x, < |ltx]x,+x,. Since this inequality holds for all
z € Xo+ X; and all t € R, by applying it to tz and with ¢! in place of t
we get |t_1|Htx||X0+X1 < ||t_1(tx)HX0+X1 = ||xHXO+X17 that is, Htx”Xo-‘er <
120,

Finally, given xz,y € Xo+ X1, if ¢ = o+ and y = yo+y1, with zg, yo € Xo
and z1,y1 € X1, then 2 +y = (o + vo) + (z1 + 1) with 2o + yo € Xo and
x1 4+ y1 € X1. Hence,

Iz + yllxo+x, < llTo + yollxo + 121 4+ w1l x,
< |lwollx, + lz1llx; + llvollxe + [ly1llx,-

Taking the infimum over all decompositions of = gives

12+ yllxo+x, < 2l x0+x0 + lyollx + llvallx,
for all decompositions of y. Taking the infimum over all decompositions of y
gives
2+ yllxo+x: < ll2llxo+x, + 1Yl x0+x:-
This shows that || - || x,+x, is a norm.
Step 2: Assume that Xy and X; are Banach spaces. To prove that Xq+ X is
a Banach space we use Theorem ??. Let {z,}, be a sequence in Xy + X; such

that Y07, [|#n]lx, 4 x, converges in R. For each n find 2 € Xo and 27 € X,
such that x,, = z§ + 27 and

1
5 llxo + 127 llx: < lznllxo+x: + o

Then
) LS > 4
Z ’|m?z||xo < Z ||$n||X0+X1 + Z 27 < o0,
n=1 n=1 n=1

o] 00 50 1
Z Hxvllel < Z Znll x0+x, + Z o < 0.
n=1 n=1 n=1

Since Xy and X; are Banach spaces, by Theorem 77 there exist yo € Xy and
y1 € Xy such that Y" 2§ — yo in Xp and Y/, 2% — y; in X;. Since
¥ :=1yo+y1 € Xo+ X1, we have

n

y*ZCL’z‘

i=1

n

yo*zl’f)

i=1

n

Y1 *Zfﬂll

i=1

< —0

Jr
Xo

Xo+X1 X1

as n — oo. It follows that > ; z; — y in X + X1, and so the series >~ | =,
converges in Xg + X;. By Theorem 7?7 this implies that Xy + X; is a Banach
space. H
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Given t > 0, in Xy + X7 we can also consider the equivalent norm

z € Xo+ X1 = K(z,1) := inf{[|zol|x, + tllz1]x, }, (62)

where as before the infimum is taken over all possible decompositions z =
xo + 1, ®9g € Xo, 1 € X;. To highlight the dependence of K on X, and
X1, when needed, we write

K(z,t; Xo, X1) := K(z,t). (63)

Remark 104 The function K(-,t) can be extended to X \ (Xo+ X1) by setting
K(z,t) =00 if x € X\ (Xo+ X1), where X is the Hausdorff topological vector
space X in Definition 101.

Proposition 105 Let (Xo, || |lx,), (X1, |- |lx,) be an admissible pair. Then for
every x € Xo + X1, the function t — K(x,t) is an increasing, concave function
and such that t 'K (z,t; Xo, X1) = K(z,t7%; X1, Xo) and

K(z,t) < max{l,t/7}K(x,T)

for everyt >0 and T > 0.

Proof. Exercise. m
For 0 < s < 1and 1 < ¢ < oo we can define the real interpolation space

(X0, X1)s,q = {7 € Xo + X1 : [|z[|s,4 < 00},

where if 1 < ¢ < o0,

° dt \1/a
lelloa = (| K 75) " (69)
while if ¢ = oo,
)5 00 :=supt™*K(x,t). (65)
>0

Theorem 106 Let (Xo, | - [x,), (X1, - llx,) be an admissible pair and let
1<g<ooand0<s<1. Thenl| -|sq is a norm and the following embeddings
hold

X(J N X1 — (XOaXl)s,q — XO + Xl.

Moreover, if Xo and X1 are Banach spaces, then so is (Xo, X1)s.q-

Proof. Step 1: If ||z|s,, = 0, then K(z,t) = 0 for L'-a.e. t € (0,00), but since
K(-,t) is a norm, necessarily, x = 0. On the other hand, since K(0,t) = 0 we
get [|0s,4 = 0.

99



Next if r € R, since K (-,t) is a norm, we have K (rz,t) = |r|K(z,t) and so

*° dt \14
el = (| GG 0y5)

(/OOO(|7'|K(x,t))q7tlitstz>1/q
N |r|(/ooo(K(w,t))qt1dfsq)1/q il

5,9°

Finally, if z,y € (Xo,X1)s,q, since K(-,t) is a norm, K(x + y,t) < K(z,t) +
K(y,t). Hence,

e dt \1/4
o+l = (| G+ )" 5)

= (/OOO(K(QU’ t) + K(y,t))? tl‘iq ) 1/q

< ([ o) ([ o)

where we used the fact that |z|s, is the L7((0,00); ) norm of the function
t — K(x,t) with respect to the measure p = tl‘fsq. ]

Friday, March 18, 2022

Proof. Step 2: In view of (60) and (62) for every z € Xo N X,

K(z,t) <[lzlx, < llellxonx,,  K(z,1) <tzllx, <tlzllxonx,,

and so K(z,t) < min{l, t}||z| x,nx,. In turn, if 1 < ¢ < oo, by (64),

. g 1/q
Il < el (- min{Le7} ) = ellelxnx,,

where ¢, = 1/(q(1 — 8))/9 +1/(sq)"/%. If ¢ = co, then

70K (2,t) < minf{t ™, ' ] xonx, < Mzl xonx

where we used the fact that sup,-, min{t=%,¢'7*} = 1, and so by (65), ||z||s,00 <
lz]| xonx, - Thus, in both cases, we have shown that Xo N X; — (Xo, X1)s,q-
On the other hand, by (61) and (62), for every = € (Xo, X1)s .4,
min{lv t}”xHXoJer < K(:E, t) < max{L t}”xHXUJer (66)
and thus as before, for 1 < ¢ < oo,
callzllxo+x: < 1@]lsq (67)

where co, := 1, which proves that (Xo, X1)s,4 — Xo + X;.

Step 3: Next we claim that (X, X1)s,, is a Banach space. Let {z,}, be

a Cauchy sequence in (Xo, X1)s,4. In view of (67), {z,}, is a Cauchy sequence
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in Xg + X1, and so, since Xy + X7 is a Banach space, x, — z in Xy + X; for
some z € X + X;.
Given ¢ > 0 we can find n. € N such that ||z, —z,||s,q < € for all m, n > n..
Since K (-,t) is a norm in Xy + X5, by the triangle inequality and (66)a,
5K (x — 29, t) <t SK (T — T, t) + max{t 5 1}z — Tl xprx,.  (68)

In turn, if 1 < ¢ < oo, for every £ € N,

¢ . dt \Va
(o= t) ) < lom = sullag +ctaulle ~onllsyix

Se+ CZ;Q»SH‘,E - xm”XOJFXl’

where

¢
dt \1/q
. —s 41—s
Cl,q,s *= (/1/Z(max{t ,t })thSq) < 0.

Letting first m — oo and then ¢ — oo in the previous inequality gives ||z —
Zp||s,q < € for all n > n., which shows that (Xo, X1)s,4 is a Banach space.
If ¢ = oo, then by (65) and (68),

K (x — 2, 1) < e +max{t ™ 'Yz — 20| x0 1., -
Letting m — oo shows that t K (xz — x,,,t) < ¢ for all t > 0 and for all n > n..

Hence, ||z — 2 ||s,00 < € for all n > n., and the proof is complete. ®

Remark 107 If Xo = X1, then it follows from the previous theorem that Xy =
XoNX; = (XO;Xl)s,q = Xo+ X1 = Xp.

On the other hand, if Xo N X1 = {0}, then for every x € Xy + X1 there
exist unique xg € Xo and x1 € X1 such that x = xo + x1. In turn, by (62),
K(z,t) = ||zollx, + tllz1]lx, and so for 1 < ¢ < oo,

~ dt \1a
o= ([ Qs+t ) = o

unless xo = x1 = 0. Similarly, ||z|ls,co = sup;sot *(|zollx, + tlz1|lx,) = o0
unless xg = x1 = 0. Thus, (Xo,X1)s,q = {0} for every 1 < ¢ < oo.

[

Exercise 108 Let (Xo, | - |lx,), (X1, l|x,) be an admissible pair, with X, —
Xo, andlet 1 <g< o0 and 0 < s < 1.

(i) Prove that || - ||x, s an equivalent norm in Xy + X7.
(i) Prove that for every T > 0,

T
dt \1/q
ool + (| (K0 H)

is an equivalent norm in (Xo, X1)s,q for 1 < ¢ < 0o, while

z v |lz||x, + sup tT°K(x,t)
0<t<T

is an equivalent norm in (Xo, X1)s 00-
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Exercise 109 Let (Xo,| - |lx,), (X1, |lx,) be an admissible pair, let 1 < g <
00, and let 0 < s < 1. Prove that © € Xo + X1 belongs to (Xo,X1)s,q if and
only if the sequence {2 %K (x,2%)}rez belongs to LI(Z,H®), where HY is the
counting measure. Prove also that

@ € (Xo, X1)s,q = H27" K (2, 2°) }rezl| oz m0)
is an equivalent norm in (Xo, X1)s,q-

Exercise 110 Let (Xo, | - [[x,), (X1, |- [lx,) be an admissible pair, let 1 < g <
00, and let 0 < s < 1. Prove that (Xo,X1)s,q = (X1,X0)1-5,q-

Next we study the inclusions of different interpolation spaces.

Theorem 111 Let (Xo, | - [|x,), (X1, - llx,) be an admissible pair and let
1< <qga<00and0<s<1. Then the following embeddings hold

(XO,Xl)sm — (X07X1)S,q2 — (XO’Xl)S,oo
Proof. Step 1: We claim that for x € (X¢, X1)s,4, 1 < ¢ <00, and t > 0,

K (2,7) < (sq) '/

5,q9°

To see this note that since K(z,-) is increasing, K(z,t) < K(z,r) for all r > ¢,

and so
o dr \1/4 o dr \1a
lelloa = (| Kary—5)" = ([ Ky )

© dr \1l/a 11
2K(x,t)(/t rmq) = K(,0) o

Taking the supremum over all 7 > 0 gives
500 < ()| s,q- (69)

This proves the embedding (Xo, X1)s,q — (X0, X1)s,00-
Step 2: If now 1 < ¢1 < g2 < 00, then for z € (Xo, X1)s,q,

(/L)M(K(x,t))%tlfih)l/qz
dt )1/q2

—s (g2—q1)/q = q
S(EE%T K(z, 7))l 0 2(/0 (K(m,t))ltH_sql

< (sql)(QQ—QI)/((h(D)||x||gil31_q1)/92+q1/Q2 = ¢||z|

[

5,419

where in the last inequality we used (69) with ¢; in place of . ®
Monday, March 21, 2022
An important property of interpolation spaces is given by the following the-
orem.
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Theorem 112 Let (Xo, || - |x,), (X1, - [Ix,) and (Yo, | - [lvo), (Y1, |- [lv1) be
two admissible pairs and let T : Xg + X1 — Yo + Y1 be a linear operator such
that T : Xog — Yy and T : X1 — Y7 are continuous. Then for every 1 < q < oo
and 0 <o <1, T: (Xo,X1)o,q — (Y0,Y1)s,q with

TN £0(X0, X0 )0a:¥0¥)0a) < IT N Ry 1T (30 v2)-

Proof. Let ¢y, ¢; > 0 be such that

1T (xo)llvy < collzollxy, [1T(w1)llvy < erlloallx,

for all zg € X and 1 € Xi. If € (X0, X1)s,q and & =z + 21, with zp € X
and z1 € X, it follows by the linearity of T' that T'(z) = T'(zo) + T'(x1), with
T(x0) € Yp and T(x1) € Y7. Hence, by (62) and (63),

K(T(x),t; Y0, Y1) < [|T(20) v, + tIT(x1)lv;

< collwollx, + terllzallx, = co(llzollx, + terey lzllx,)-

It follows that K (T'(z),t; Yy, Y1) < coK (z,teicy 5 Xo, X1), and so, if 1 < ¢ < oo,
by (64) and the change of variables T = tcicy

dt )1/<1

IT@leg < cof [ (K tercy s Xo X0) 55

B 00 dr \1/4
:co(clcol)"(/o (K(.%‘,T;Xo,Xl))qm)

=g "] l|z]lo.-

Similarly, if ¢ = oo, [|T(%)|ls.c0 < 5 75| Z]lo0- It remains to let co N\

1T 2(x0:v0) and c1 NNl L(x15v7)- ™

Theorem 113 Let (Xo, |- ||x,), (X1, ]| |lx,) be an admissible pair, let 1 < q <
o0 and 0 < o < 1. Then ||z|sq < c||xH§(;"||a:H§(l for every x € XoN Xy and for
some constant ¢ = ¢(q,0) > 0.

Proof. Let z € XoNX;\{0} and define T'(s) = sz for s € R. Then ||T||(r;x,) =
||$||XO7 ||THL(R;X1) = ||x||X1’ and ||T||L(]R;(YO,Y1),,.’Q) = ||:L'||(X07Xl)o',q' u

Exercise 114 Let (Xo, || - lx,), (X1, - llx,) be a admissible pairs of Banach
spaces, let (Y, - |ly) be a Banach space and let T : Xo + X1 — Y be a linear
operator such that T : Xog — Y is compact and T : X1 — Y is continuous.
Given 1 < ¢ < o0 and 0 < o < 1, prove that T : (Xo,X1)0,q — Y is compact.
Hint: Given € > 0 take t > 0 so large that t° < et and use Fxercise 77.

The following theorem tells us that the interpolation of two interpolation
spaces may be realized as an interpolation between the original spaces. This is
one of the key results in interpolation theory.
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Theorem 115 (Reiteration) Let (Xo, |- ||x,), (X1, |lx,) be an admissible
pair, let 1 < g < oo, and let 0 < o9 < 01 < 1. Then for every 0 < o < 1,

(Xaov Xcrl)a,q = (X()a X1)0,q7

where 0 := (1—0)oo+001, Xo, := (X0, X1)0g,q0 if 00 > 0 for some 1 < gy < 00,
Xoy = (X0,X1)o1,q1 if 01 <1 for some 1 < ¢ < 0.

We now show that W*P(RY) can be obtained as an interpolation space
between LP(RY) and W?(RY). We begin with a preliminary result.

Proposition 116 For every f € WP(RY) and every h € RY,
[ V@ w) — f@pde < P [ [95@)Pd.
RN RN

Proof. Assume first that f € WLP(RY) N C>°(RY). Then by the fundamental
theorem of calculus,

1
flx+h)— f(x)= / Vf(x+th)- hdt.
0
In turn, by Holder’s inequality
1
[f(x+h) = f2)]" < IIhIIP/O IV f(z + th)[["dt.

Integrating both sides in & over RY and using Tonelli’s theorem and the change
of variables y = & + th, so that dy = dx, we obtain

1
/ (@ +h) — f(@)Pdz < ||l / / IV f(x + th)|Pdtda
RN RN JO

1
1wl [ I s ) pdad = 17 [ 1Vl

In the general case when f € W1P(RY), we apply the previous inequality to
fe = pe * f, where ¢, is a standard mollifier, to obtain

[ e+ )= p@Pda < |l [ V5@ de.
RN RN

Using the fact that f. — f pointwise £LV-a.e. in RN and Vf. = p.* Vf — Vf
in LP(RY;RY) (see [?]), it suffices to let ¢ — 0T in the previous inequality and
use Fatou’s lemma on the left. m
Wednesday, March 23, 2022
Midterm Solutions.
Friday, March 25, 2022
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‘We recall that

Il fllwsry == 1 fllwsr) + [ fllwer@),

_ P 1/p
|[flwsr ) = (/Q o dedy) .

Theorem 117 Let 1 <p < oo, and 0 < s < 1. Then

where

(LPRY), WHP(RY))s,p = WP (RY).
Proof. Step 1: In this step we will show that
(LP(RY), WP (RY))s,p — WoP(RY).

Let f € (LP(RN), WLP(RN)),,, and v € LP(RY) and w € WP(RY) be such
that f = v +w. By the change of variables £ + h = vy, and the previous
proposition,

[ Merhter,,

[[R|[NFsr

cof WETH -, [ el -,
RN RN

[[Rof|[ V5P [[Ra][¥+ep

: G /
<O L1 )

1
< O (s + BTl

Taking the infimum over all v and w and using the fact that

K(f,t) == inf{[|v]|p@n) + tlw|lwrr@yy : f=v+w, (71)
ve LP(RY), we WHP(RM)},

we get

[ et IO b < O B D

[[R|[NFs

Integrating both sides in h over RY and using spherical coordinates gives
(z+h)— f(z)]” 1
dedh < C — (K hiNPdh
/]RN /]RN ||h||N+SP LA = . ||h||N+sp( (£, 1IR])

dt
<C/ f,t t1+sp

Since W1P(RY) ¢ LP(RY), by Theorem 106 we have that

(LP(RY), WHP(RY)), p — LP(RY) + WHP(RY) = LP(RY),
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Hence,
[fllr@yy < Clfll(Lr@mywie@yy), ,-
Combining the last two inequalities proves
[fllwer@yy < Cllifllwr@yy)wre@yy.,-

]
Monday, March 21, 2022
Proof. Step 2: In this step we will show the other embedding, namely, that

WHP(RY) — (LP(RY), WHP(RY)),,
Given f € W*P(RY) and t > 0, for z € RY write
f(®) = (f(=) = fi(x)) + fi(x) = vi(z) + fi(@),
where f; = ¢y *t and ¢, is a standard mollifier. Since fRN o (y) dy =1,

w(@) = [ (fw) - f@)eulz - y)dy

Writing ¢ = ¢; 1/p gpi /v , it follows by Holder’s inequality that

i) < [ 1)~ falete vy < 8= [ 1)~ s@pay

where in the last inequality we used the fact that suppoi(xz — ) C B(x,t).
Integrating in = over RV gives

[ merda < b5 [ s - sa)rayas.

In turn, by Tonelli’s theorem

p
J e N e / ) s Pz
1
~llelle [ [ 10t >|/| e didedy

(72)
lplloo / / (z)P
= d d .
N +sp Jrv Jry ||fc - y||N+Sp Y

Next we estimate f;. By standard properties of mollifiers, f; € C>°(RY), with

Viia i L rve (S5) a

= N1 /RN[f(y) f(z )]Vsa( ; )d.%
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where we used the fact that [;x Vo (272) dy = 0 since o @1 (x — y) dy =1

By the change of variables z = =¥,

/ (
RN

Y b __ 4N p’
dy=t [Ve(2)|” dz.
RN
Hence, writing %N IVo| = —tNl/p ||V90||1/p

inequality that

L HVngl/p,7 it follows by Holder’s
1 P
s [ 150~ 1@

tN/p
(537)]
1

<Cowe [, 1@~ S@Piy

V()P < C

where in the last inequality we used the fact that supp Vo((x —-)/t) C B(x, ).
Integrating in = over RV gives

1
[ vs@ e < oo [ ] i) - @iy

In turn, by Tonelli’s theorem

e dt > 1
eI i e <€ [ g [ 1) f@)rdydad:
(73)

e 1
<o [ -s@r | ey

(2)]F
< .
C/RN / ||:c—y||N+sp e — gy

Since || f¢llLrryy < If|lor@n), We have that

dt voodt 1
[ 1 s < 1 sy [ 5 = s

Combining this inequality with (72) and (73) and using (71) gives

! , dt L g dt
: (K(f:t)) e < ; (||Ut||Lp(RN +t ||ftHW1*p(RN))tlTsp

2P
<Ol + [, [ ”m_y”MM 2dy.

Since W1P(RY) — LP(RY), by Exercise 108 we can endow the space (LP(RN), WhP(RY)), ,,
with the equivalent norm

1 d 1/p
Fr Wl + ([ KGOP 5 )

Thus the previous inequality completes the proof. m
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11 Decreasing Rearrangement
Given a measure space (E, 91, 1), for every measurable set F' C F, we define
F* = [0, 1(F)) (74)

if u(F) > 0and F*:= 0 if u(F) = 0. If we now consider the functions xr and
XF+, we see that yp« is decreasing in [0, 00) since xp«(z) = 1 if 0 < x < p(F),
and

p({z € B xp(z) > 1)} = L1 ({y € [0,00) : xp-(y) > 1)}

for every t > 0. We will see that we can extend this procedure to the case when
X E is replaced by a gal measurable function f, that is, we can construct a
function f*, which is decreasing in [0,00), and u({|f| > t)} = L*({f* > t)} for
every t > 0.

Definition 118 Given a measure space (E,9M, ) and a measurable function
f + E — R, the decreasing rearrangement of f is the function f* : [0,00) —
[0, 00], defined by
rw= e yzo (75)
0
where By :={z € E: |f(z)| >t} and

Ef = (E)" = [0, u(Er))- (76)
If W(Ey) =0, we set Ef := ().

Remark 119 Let F C E be a measurable set. Consider the function xp : E —
{0,1}. Then By ={z € E: xp(x) >t} =F f0<t<land B, =0 ift > 1.
In turn,

o 1
(xr)" () = / s () dt = / X+ (8) dt = X+ (3).

Theorem 120 Let (E,9M, ) be a measurable space, f : E — R be a measurable
function, and f* :[0,00) — [0,00] be its decreasing rearrangement. Then

(i) if 0 <y1 <ya, then f*(y1) > f*(y2),
(ii) for everyt >0,
{zeE: |f(x) >t} ={y€[0,00): f(y) >}

and
p{z € B |f(@)] > 1)) =L {y € [0,00): f*(y) > )} (77)

Proof. To prove item (i), observe that if yo € Ef = [0, u(E};)), then, since
0 < y1 < y2, we have that 0 < y; < y2 < p(E:), and so, y; € Ef. Thus,
if xgr(y2) = 1, then xg:(y1) = 1, which implies that xg:(y2) < xE:(y1)-
Integrating in ¢ and using (75) gives f*(y2) < f*(y1).
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To prove item (iii), consider 0 < ¢; < to. Then
Ep,={z€E: |f(x)| >t} C{zcE: [f(x)] >t} = Ey,. (78)

This proves that the function g(¢t) := pu(Ey), t > 0, is decreasing. We claim that
g is right-continuous. Fix ¢y > 0. Since g is decreasing, there exists

lim ¢(t) > g(to).

t—ty

To prove equality, consider a decreasing sequence ¢, — t7. Then E; C Ey .,
and | J°7 | By, = Ey,, and so, we have that

n=1

nh_)rréo g(tn) = nlgr;o LYE,) =Lt ( U Etn) = g(to).
n=1
This proves the claim.

Let t > 0and y € Ef = [0,u(E:)). Then y < u(E;) = g(t). Since g is
right-continuous, there exists 6 > 0 such that g(r) > y for all r € [t,t + §).
Thus, we have shown that y € [0, u(F,)) = EX for all € [t,t+ ). On the other
hand, by (78), we have that y € E* for all 0 < r < ¢. Hence,

0o t+48 0o
f*(y)=/ XE;:(y)drz/ 1dr+/ xe:(y)dr >t+6 >t
0 0 t

+6
This shows that
Ef C{yel0,00): f*(y) >t} (79)
To prove the other inclusion, assume that y ¢ Ef = [0, u(E;)). Assume y

v

p(Ey). Since p(E,) < u(E;) for all » > t by (78), it follows that y ¢ E*
[0, u(E,)), and so,

[ee] t
) = / i () dr = / X (W) dr < £,

which implies that y ¢ {z € [0,00) : f*(2) > t}. Together with (79), this proves
that
Ef ={y € [0,00): [(y) > t}.

Since u(E;) = LY(E}) by (76), it follows that
p({z € B |f(2) > )} = L1Y(B}) = L1 ({y € [0,00) : f*(y) > 1}),
and so item (ii) holds. m
Wednesday, March 23, 2022

Next we show that the decreasing rearrangement preserves LP norms. We
begin by proving the so-called layer-cake representation.
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Theorem 121 Let (E,9M, ) be a measure space, let 0 < p < oo and let f :
E — R be a measurable function. Then

[ 1s@Pdu) =p [0z e s l5@)] > 1) di
E 0

Proof. If y({x € E: |f(z)| > to}) = oo forsome ¢y > 0, then u ({z € E: |f(z)| > t}) =
oo for all 0 <t < tg, and thus both sides of the previous equality are infinite.

Thus, assume that u({x € E: |f(z)| > t}) < oo for all ¢ > 0. Restrict the
measure 4 to the set of o-finite measure

Ey:={z € E: |f(x)] > 0}.

By Tonelli’s theorem, which holds since £! and p restricted to Ey are both
o-finite,

p/o " 'u({z € Eo: |f(x)| > t}) dt:p/o t’“[Eo X{| 1>ty () dp(x)dt

_ /E O /0 T drd(a)
-/ @) dut) = [ lr@raua).

]
Using this result and Theorem 120, we have the following important result.

Theorem 122 Let (E, 9, u) be a measure space and let f : E — R be a mea-
surable function. Then for all 0 < p < oo,

[1s@Paute) = [" 5 @y (50
E 0
while

esssup |fl=sup f* = (0). (81)

Proof. It follows from Theorem 121 and Theorem 120 that
[ @) =p [0 e B 5@ > 0) d
o [ 20 ) > 1) d
- [ wyra
Next we claim that

f*(0) =esssup|f| :=inf {t € [0,00) : |f(z)| <t for pae xz€E}. (82)
E
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Let M := esssupy |f|. Let’s prove that f*(0) < M. Assume that M < oo,
otherwise there is nothing to prove. If ¢ > M, then Ey = {z € E : |f(z)| > t}
has measure zero. Thus, Ef = ), and by (75),

M
£4(0) = /O x- (0 dt < M.

On the other hand, if ¢t < M, then there exists a measurable set F' C E with
p(F) > 0 such that |f(z)] > ¢t for all z € F. In turn, F; 2O F, so Ef =
[0, u(E})) 2 [0, u(F)). In particular, 0 € E}, so that

M M
f"(0)=/0 XE;(O)dt=A 1dt = M.

Corollary 123 Let (E, 9, 1) be a measure space and let f : E — R be a
measurable function. Given tg > 0, let By, :={x € E: |f(z)| > to}. Then

J

Exercise 124 Let (E, 9, 1) be a measure space and let f : E — R be a mea-
surable function. Given t > 0, let E' := {z € E : |f(z)| > f*(t)}. Prove that
w(EY) <t and that f* is constant on [p(E?),t].

w(Eq)
(@) dpu(z) = / £ () dy.

to

Proof. Exercise. m

As an application of the interpolation theory, we prove that the interpolation
space between L!'(E) and L*°(E) is the Lorentz space L4(E),

Theorem 125 Let (E, 9, 1) be a measure space, 1 < p < 0o, and 1 < g < co.
Then
(LH(E), L¥(E))s,g = LPU(E),

where s :=1—1/p. Moreover a norm in LP4(E) is given by

Ifllzpa := (/OOO(/Ot £5(r) dT)qtlthwf/q

t
[fllzre = Supf_s/ fr(r)dr
>0 0

if 1 <q< oo and

if ¢ = oo, where f* is the decreasing rearrangement of f.

Proof. The fact that L!'(E) and L>°(E) are an admissible pair follows from
your homework. Given a Lebesgue measurable function f : E — R and ¢ > 0,
we claim that

K(f.t) = ; fr(r)dr. (83)
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We begin by proving fg frdr < K(f,t). Without loss of generality we may
assume that K(f,t) < oo (see Remark 104), so that f € L'(E)+ L>®(E). Write
f=g+h, where g € L'(E) and h € L>°(E). Then by Exercise ?7, a change of
variables and the fact that h* is decreasing

* d * — d h* d
/Ofm rs/og«l &)r) T+/O (er) dr
<a-97 [ g+
0
=(1- E)_1||9||L1(E) +tl|hl| Lo ()

where the last equality follows from Theorem 122. Letting ¢ — 07 shows that
fot frdr <|lgllr(g) +tl|hll L~ (E). Since this holds for every decomposition of f,

it follows that [, f*dr < K(f,t). m
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Proof. To prove the converse inequality, assume that fot f*dr < oo and define

g(x) := max{[f(x)| = f*(t),0} sgn f(x), h(z):= f(z)—g(z).
Let E' := {x € E : |f(z)] > f*(¢)}. By Exercise 124, u(E") < ¢ and f* is
constant on [u(E?),t]. Hence,

n(E")
ol = [ (S@I= @) du= [ (@) = rw)r
< [wo-rema

where in the second equality we used Corollary 123. On the other hand, |h(x)| =
f*(t) in E* and |h(z)| < f*(t) outside E. It follows that

gl ) + tAll Lo () S/O(f*(T)—f*(t))dTthf*(t)

-/ e

which shows that K(f,t) < fg f*dr. This proves (83). m

Exercise 126 Let (E, DM, 1) be a measure space, 1 < p < oo, and 1 < ¢ < co.
Prove that f € LY(E) + L™ (E) belongs to LP4(E) if and only if

| @rrapd) " <o
0

t

if ¢ < 0o and

sup t/P f*(t) < oo
t>0

if ¢ = 0o. Deduce that LPP(E) = LP(E).
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Corollary 127 Let (E, 9, 1) be a measure space, let 1 < p < oo, and let
l<p<ooandletl <q < g <oo. Then LP9(E) — LP2(E).

Proof. This follows by applying Theorems 111 and 125. m

Corollary 128 Let (E, 9, 1) be a measure space, let 1 < p < oo, and let
1<q<o0. Then

1 FllLra < cllFIIZT5 12
for all f € LY(E)N L*°(E), where s :=1—1/p.

Proof. This follows by applying Theorems 113 and 125. m

Theorem 129 (Marcinkiewicz) Let (E, 9, u) and (F,M, p) be measure spaces,
let
T:LYE)+ L®(E) — LY(F) + L>(F)

be a linear operator such that T : L*(E) — LY(F) with
||T(f)||L1(F) <a ||f||L1(E)
forall f € LY (E) and T : L®(E) — L>®(F) with
||T(f)||Loo(F) <co ||f||Loc(E)
for all f € L™ (E). Then for every 1 < p < oo and 1 < g < oo,
T:LPYE)— LPI(F)

and
1Tl (eoamyzrary < NTUL @y @ 1T (Lo () ()

Proof. This follows by applying Theorems 112 and 125. m

Theorem 130 Let (E,9M, u) be a measure space, let 1 < q,q0,q1 < 00, let
1 < pg,p1 < 00, with pg # p1, and let 0 < s < 1. Then

(LPo®o (), LP19(E)), = LPI(E), (84)

where + = =5 4

=, In particular,
p Po p1

(L7 (E), LPH(E))s,g = LP(E). (85)

Proof. We will only do the case 1 < pg,p1 < oo and leave the other cases as
an exercise. By Theorem 125,
(LN(E), L=(E)1-1/p,q = LPU(E),
(L'(B), L(E = [P (E),
E), L> .

))1—1/1907(10 (
(LY(B), L™(E)) = LP9(E)

1-1/p1,q1

69



Taking@zl—%,sozl—pio,andslzl—p%weget

1 1-—
g=1--=1--°_72
p Po P
1-s s
=1-5)+s— — — = (1—s)sg + ss1,
(1= 8) b= =2 = (1= s)so 51

and so we are in a position to apply the reiteration theorem (see Theorem 115)
to obtain (84). To obtain (85) it suffices to observe that LPoPo(E) = LP(E)
and LP1P1(E) = LP'(E) by your homework. ®

Exercise 131 Let E C RY be a Lebesgue measurable set, let 1 <p <r < s <
oo and let 1 < g < co. Prove that if f € LP>*°(E) N L>*®(E), then f € L™(E)
and estimate its L™1(E) norm.

Exercise 132 Let E C RN be a Lebesgue measurable set, let 1 < p < oo and
let 1 < q < oco. Prove that L*(E) N L*°(E) is dense in LP9(E). Deduce that
simple functions are dense in LP1(E).

Theorem 133 (Marcinkiewicz in Lorentz spaces) Let (E, I, 1) and (F,MN, p)
be measure spaces, let 1 < pg,p1,70,71 < 00 with pg # p1 and ro # r1, let
1 < qo, q1, 50,81 < 00, and let

T - LPO’qO(E) + [Pvar (E) s meqo(F) + [Pvar (F)
be a linear operator such that T : LP>%(E) — L™ (F) and T : LP*"(E) —
L5 (F) with
||T(f)||L7'iv5i(F) <6 ”f”LPi«fIi (E) > i =0,1, (86)

for all f € LP»%(E) and for some positive constants ¢y and ¢; > 0. Then for
every 0 € (0,1), there exists a constant cg > 0 such that

1T ey < 01 oy

for all f € LP1(E), where 1 < ¢ < s < oo and

1 1-60 0 1 1-60 0

p Po p1 r To 71

Proof. This follows by applying Theorems 112 and 130 and Corollary 127. =
Monday, April 4, 2022

12 Rapidly Decreasing Functions and Tempered
Distributions
Definition 134 The space of rapidly decreasing functions S (]RN ) is the space
of all functions f : RN — C of class C™ such that for all multi-indeces o, 3 €
N{,
[flle.5 := sup |z*0P f(x)| < oo.
zeERN
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Thus S (RN ) consists of all functions that, together with all their derivatives,
decay to zero faster than any polynomial. Note that [|f||g o := Supgern |f(2)]-

Remark 135 The space C°(RN) of all C* functions f : RN — C with com-
||

pact support is contained in S (]RN). The function f(z) := e~
of a function in S (RN) without compact support.

s an example

Note that for all multi-indeces a, 8 € N{, |||, g is a seminorm. In S (R")
we consider the topology 7 generated by the family of seminorms H||a 5> Where

a,3 e Ng . We recall the following definitions.

Definition 136 Given a vector space X, a function p: X — [0,00) is a semi-
norm if p(z +y) < p(x) + p(y) for every x,y € X and p(tx) = |t|p(x) for all
t € R and x € X. Given a seminorm, for every x € X and r > 0 we define
By(z,r) ={ye X : plx —y) <r}.

Definition 137 If X is a vector space and P is a family of seminorms, the
topology 7 generated by P is the smallest topology that contains all "balls"
By(z,r) forallz € X, r >0, and p € P.

Theorem 138 Let P be a countable family of seminorms on a vector space X
with the property that for every x # 0 there exists p € P such that p (z) > 0 and
let T be the topology generated by P. Then there exists a translation-invariant
metric d that generates 7.

Proof. Let P = {p, },, and for =,y € X define
1 .
d(z,y) = supﬁmln{Lpn (x—y)}. (88)

We leave as an exercise to prove that d is a metric. Note that d(z,y) =
d(x —y,0), and so d is translation-invariant. Similarly, since every ball

By (z,r)={ye X :py(z—y)<r}=z+B,,(0,7),

we have that U € 7 if and only if  + U € 7 for any x € X. Thus, 7 is
translation-invariant.
Step 1: We claim that

By (0,r):={zr e X: d(z,0)<r}

is open with respect to 7. If » > 1, then B, (0,7) = X. To see this, note that
d(z,0) <1 <r for every x € X, which implies that By (0,r) = X € 7.

Next, fix 0 < r < 1. Let n; € N be so large that % < r for all n > ny and
>rforn <ng. If d(x,0) <r, then

1
n

1 1
sup —min {1, p, (z)} <r if and only if | nax —min{1,p, (x)} <.
n N <n<ni N
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For 1 <n < ny, since £ > r, we have that 1 min{1,p, (z)} < r if and only if
%pn (z) < r. Hence,

ni
By (0,7) = ﬂ By, (0,mn) € T.
n=1
By the translation invariance of d and the seminorms,

ni
By(z,7) =z + B4(0,r) =2 + ﬂ B,, (0,rn) = ﬂ B, (z,rn) € T.

n=1 n=1

Step 2: Let k € N and r > 0. We claim that B,, (0,7) is open with respect to
the topology 74 generated by the metric d. If € By, (0,7), take

k

min{1l,r — pg(x)}
- )

We claim that By(x, R) C By, (0,r). To see this, let y € By(z, R). Then

R =

1
d(x,y) = sup - min{l,p, (z —y)} < R.

min{1,r—py(2)}
} < rk pr(x

In particular, + min {1, pj, (z — y) , which implies that

min {1, py (z —y)} <min{l,r —pp(z)} < 1.
In turn, px (x —y) < min{1,r — px(x)} <r — pi(z), so that
Pe(y) < pr(z —y) +pr(x) <7

Thus, y € Bp, (0,7). We have shown that every « € B, (0,7) is an interior point
with respect to the metric d. Thus, By, (0,7) is open with respect to the metric
d. By translation-invariance the same is true for B, (z,r) = z + B, (0,7). It
follows that every open set in 7 is open with respect to the metric. m
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In view of the previous theorem, the space S (RN ) is metrizable. We now
show that S (RN) is complete.

Theorem 139 The space S (RN) endowed with the metric

amﬁn}

is complete. Moreover, f, — f in S (RY) if and only if || fn — fllag = 0 for
every o, 3 € NYY.

L.
d(f.g) =sup - min {1,|f ~ g

Proof. Let {fr}r be a Cauchy sequence in S (RN). Then

1 .
d(fe, fr) = sup - min {1, | fr — fz||anﬁn} —0
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as k,I — oo, which implies that 2 min{l, Il fx — fl”an,ﬁ } — 0 as k,l — o0

n
for every n. In turn, ||fx — fill,, 5 — 0 as k,I — oo for every n. Thus,
{z>8P f,.}, is a Cauchy sequence in Gy (RY) for every a, 3 € Nj and thus it
converges uniformly to a function gog. Let f := go0. By the fundamental
theorem of calculus

" Of

o Oz

fu(z+te;) = fi(x) + (z + se;) ds.

Letting & — oo it follows by uniform convergence that

t
fle+te) = f(x)+ / go.e, (T + se;) ds.
0
Hence, there exists % = go.e;- This proves that f is of class C'. In a similar
way we can show that f is of class C™ with go.g = z*9Pf. Thus f € S (RN).
Fix € and let n. be so large that = < ¢ for all n > n.. Since ||fj, — fllag — 0

for all o, 3 € Nj we can find k. so large that [|fx — fll,, g < forall k > k.
and alln=1,...,n.. Then

1
Qn, n} + sup E S 26

n>ne

A f) < swp i {117~ i

1<n<n.

for all £ > k.. It follows that S (RN ) is complete. The last part of the statement
is a consequence of the previous theorem. m
The following theorem is important for applications. For f € S (RN ) and

m,n € Ny we define
[l = D D fllas-
la|<n |B]<n

Theorem 140 A linear functional T : S (RN) — C is continuous if and only
if there exist a constant C' > 0 and some m,n € Ngy such that

THI < CUf Nl - (89)
for every f €S (RN),

Proof. Assume that T : S (RY) — C is continuous. Then T-(B(0,1)) is
open. Since 0 € T-1(B(0,1)), we can find 0 < r < 1 such that B4(0,r) C
T1(B(0,1)). We have seen that if r < 1, there exist multi-indeces a1, 31, ...,
oy, B, and r1 >0, ..., r, > 0 such that

Bay g, (0,71) N+ N Ba,g, (0,7¢) = Ba(0,7) € T~(B(0,1)).

This means that if g € S (RY) is such that [9llq; p, <1 foralli=1,....¢
then |T(g)] < 1. Let 0 < p < minr;, m = max|a;|, n = max|3,|. Given
f €8 (RY)\ {0}, we have that

f
g:pr” EBal7ﬁ1 (O,Tl)ﬂ-”ﬁBabﬁe (0777)’
m,n
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and so, by the linearity of T,

p —
||.f||m7n|T(f)| - |T<g)| < 17

that is,
1
IT(f)| < 5 111l -

Conversely, assume that there exist a constant C' > 0 and some m,n € Ny such
that |T'(f)| < C||fl,,,, for every f € S (RY). Let’s prove that T is continuous
at 0. Consider an open set V C C with T(0) =0 € V. Then we can find ¢ > 0
such that B(0,e) C V. Let By, »(0,6) = {f € S (RY) : £l < 0} This set
is open with respect to 7. If f € By, (0, ), then

TN < CN Sl < C6 =,

provided 6 = ¢/C. Hence, T is continuous at 0. Since the topology is translation
invariant, we have continuity at every point. m

Definition 141 The dual of S (RY) is called the space of tempered distribu-
tions and is denoted S’ (RN).

In & (RN ) we consider as a topology the topology generated by the basis of
neighborhoods of 0 given by

B(0,e,F):={T €S (RY): |T(f)| <e forall f e F},

where e > 0 and FF C S (RN ) is a finite set. With this topology a sequence
{T},}», of tempered distributions converges to T if and only if T,,(f) — T'(f) for
every f €S (RN).

Monday, April 11, 2022

Example 142 Given a measure p : B(RN) — [0, 00| with the property that
#(B(0,7)) < Co(1 +r)*

for some Cy > 0, some k € N, and for all r > 0, the linear functional T},
S (RN) — C defined by

Tu(f ) = / fdu
RN
1s well-defined and continuous. Indeed, write

/ mdu:/ ku+§;/ fldu
RN B(0,1 B(0,n)\B(0,n—1)

3

Sl [ G

= JBem\BOn-1) (1+[z])

(14 n)*
< flloe 2C0 + CCo || fl51,0 Z T’“) <0

n=1

Hence by (89), T, € S' (RY).
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Example 143 (Principal value of 1/xz) Let’s prove that the linear mapping

T(f) :== lim @dx, feSR),

0T IR\[-ee] T

is well-defined and belongs to 8’ (R). The functional T is called the principal
value of% and is denoted pv % Write

[ M9 1) o [ L),
R\[-ee] ¥ [(~L1\[-e,e] ¥ R\[-1,1] *

=: Il + 12.

The term Is does not give any troubles, since

[ s [ @
R\[—1,1] R\[—1,1]

> 1
<20/l / L =27,
1 X

T

Let’s study I;. Since 1/x is an odd function,

1
/ Lz =o, (90)
[7111}\[7E>€} z
we can write 0
. fla) - 10)
[-LiN-ee] T 0
Since f € S (R), by the mean value theorem
f(z) — f(0
T = TON o) < o,

for all x € [—1,1], with x # 0, and so by the Lebesgue dominated convergence
theorem, there exists

lim [ = /11 wc&.

e—0+

Moreover, since |I1| < 2||flly . it follows that [lime oy 1| < 2| fllg,. Thus,
we have shown that T(f) is well-defined and

T < 20 flloa + 21110

which, by Theorem 140, implies that pv% e S (R).
Similarly, for xo € R we can define the tempered distribution

<pv ! )(f):: lim J@) 4 fesm).

T — o e—0+ R\[zo—¢,z0+¢] LT — L0

Note that pV% is mot of the form 142.
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Remark 144 The cancellation property (90) will turn out to play a crucial role
in the theory of singular operators.

Next we show that & (]RN ) is embedded in LP for every p.

Theorem 145 The space S (RN) is embedded in LP (]RN) for all 1 < p < oo,
while LP(RY) is embedded in 8" (RN) for all 1 < p < co.

Proof. We only need to consider the case 1 < p < co. Write

1+ ||z N+1
[ irtda= [ AN,
R o 1+ o]
1
<Clfllvaro [
R

——d=x.
N1 e fM
For 1 < p < oo it is enough to observe that
, —1
[ s <512 [ \flda <ClI -
RN RN

This shows that S (RY) is embedded in L? (RY). Given g € LP(RY), consider
the linear functional T': S (RN ) — C defined by

Ty(f) = o fgdex. (91)

Then by Holder’s inequality
To (DI < f e lglle < Cllfllns10

Hence, by (89) the functional T}, belongs to S’ (RN) and the linear mapping
g € LP(RY) T, is a continuous embedding. Indeed, given ¢ > 0 and a finite
set ' C S(RY),

‘gHLp-

To(f) = Th(NI < Cllfllvsr0llg =Pl <e
for all h € LP(RN) with |lg — hl|,, <

< ]
1+Cmaxser ”f”N+1,0 :

Remark 146 In what follows we identify g with T,. Hence, LP(RY), and in
particular S (RN ), can be thought as contained in S’ (RN )

We now define the notion of a derivative of a tempered distribution. Let
ges (RN ) and consider the tempered distribution associated to g, that is,

1(f) = | feb0dx, feSEY).

Given a multi-index o, it is natural to ask that the a-th derivative of T, should
be Typay. Using integration by parts it follows that

Toag(f) := /RN F(x)0%g(x) dx = (=1)!e 9*f(x)g(x) dx = (—1)!*IT, (0> f).

RN

This motivates the following definition:

76



Definition 147 Given T € S’ (RN) and a multi-index o, we define the a-th
derivative of T' as the linear functional 0T : S (RN) — C defined by

(0°T) (f) := (-1)l*IT (0*f), feSRY).

Theorem 148 For every T € S’ (RN) and every multi-index a, the functional
9*T belongs to S’ (RY).

Proof. Since T € &' (RN)7 by Theorem 140 there exist a constant C' > 0 and
some m,n € Ny such that

TN < CNS e -
for every f € S (RN). In turn, since for f € S (RN), 0% f still belongs to
S (RY),
[O°T) () =T (0% /)| < ClO* fllyn < Clf llimntia -
and so, again by Theorem 140 it follows that 0*T belongs to S’ (RN). [

Exercise 149 The derivative of log|z| is the principal value.

Exercise 150 Prove that if P is a polynomial, f € S (RN), and T € S’ (RN),
then PT and fT € §' (RY).

Exercise 151 Let g : RN — C be a function of class C™ such that for every
multi-index a there exist Cyq and ng € N such that

0%g(z)| < Ca(1+ [|2)*)" (92)
for all x € RN
(i) Prove that if f € S (RY) then fg € S (RY).

(ii) Prove that if h : RN — C is a measurable function such that hf € S (RN)
forallfesS (RN) and the mapping f € S (RN) — hf is continuous, then
h must be of class C*> and satisfy (92).

(iii) Given T € S' (RN) prove that the linear functional gT : S (RY) — C
defined by
9T)(f):=T(fg), [eSRY),

belongs to S’ (RN).
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13 Fourier Transforms

Given f € S (RN), the Fourier transform of f is the function
flo) = F(1)(@) = [ e dy (93)
while the inverse Fourier transform of f is the function

~

F@)= Fim) = | ity dy. (94)

Since S (]RN) crL! (RN), the functions fand fV are well-defined.
Wednesday, April 13, 2022

Theorem 152 The Fourier transform F maps S (RN) into S (RN). Moreover,
for every f €S (RN) and for every o, 3 € N7,

~

oo f(z) = 2riz)* f(z), 0°f(z) = ga(x) (95)
where go(x) == (—2miz)P f(z).

Proof. By (93),

@) = [ e ay.

By integrating by parts and using the fact that f and its derivatives decay to
zero at infinity we get

o~

0 1(w) = (<) [ (<2mia)?e Y (y) dy = (2nia)” Fla).

This proves the first formula in (95).
To prove the second we differentiate under the integral sign to get

8,6]? 83 —2miax-
W(m) :/RN W(e 2 Y)f(y)dy

= 4N(*2ﬂiy)ﬁe’2”i“'yf(y) dy = ga(x).

Next we estimate Hf”a[g By (95) we have

°f ,
0" ar (®) = e (2w (2miz) e () dy
— ; _ 720\ B ai —2mix-
- e L i) ) (e ay.
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By integrating by parts and using the fact that f and its derivatives decay to
zero at infinity we get

83A 1 . o« )
& (%g(m) ~ e /RN ¢ gy (C2ri) 1 () dy.

It follows from Leibnitz rule that

f| 9% (LB
Il <€ [ |gp (0P s a
1_|_ N+1 aa
- C/RN 1+ ”Z::N-‘rl oy ((_y)ﬁf(y))‘ dy

S Clfllns14181 00 >

which shows that f es (RN ) and that the linear operator F : S (RN ) —
S (RN ) is continuous. m

Example 153 We compute the Fourier transform of the function f(x) = e~ml=l?,
By Fubini’s theorem and by completing the square we have

N

fm:HAﬂmWW%k

k=1
N

_ H eﬂ(iwk)2 / e—ﬂ(izk+yk)2dyk.
k=1 R

Next observe that the function

g(x) ::/e—w(iz+y)2dy
R
18 constant since
g'(z) = / —omi(iz + y)e "I dy
R
d . 2
— : o —w(txty) dy =0
7 e Y .
g )

Hence,
g(z) = g(0) = / e dy =1.
R

If follows that f(z) = Hivzl emin)” = f(x).

Friday, April 15, 2022
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Example 154 Similarly, by taking
fg(il:) — 6271'1‘@‘;7:0e—7r52||:t:||27

where € > 0 and £y € RY we get
fa(w) — / e—27riac»y627riy-moe—Tr62||y||2 dy
RN

_ . _ ) _ 2 2
= e 2mi@—zo)y —memllyll” gy
RN
1
N

1 - 1 e
= E*Nf((m_wo)/d:?ve l(@=zo)/e

o= N 2
/ e 27t (z—xo) Ze || z|| dz
RN

I

where we have made the change of variables z := €y.
Next we prove that F is invertible with inverse given by F~1(f) = fV.

Proposition 155 For every f, g€ S (RN), we have

f@)j(@)de = | f(z)g(x)da. (96)
RN RN
Proof. By Fubini’s theorem

f@)i@)dz = [

R

= /RN 9(y) /RN e MY f(z) dady
- [ s a.

f(w)/ e 2T Y g(y) dyda
RN N ]RN

which shows (96). =
Theorem 156 (Fourier inversion theorem) For every f € S (]RN),
()Y =) =1

In particular, the Fourier transform F is an isomorphism from S (RN) to
S (RN) with inverse F~1 given by F~(f) = fV for every f € S (RN),

Proof. Fix zy € RY and ¢ > 0 and define g.(z) := e>™i@@c—’l2|® By
Example 153 we have that g.(x) = EiNe_”” (@=20)/ell” and so, taking g = g. in

(96), we get

/ f(m)LNefwumwo)/suEdm:/ e2miv-wo = 191° Fy) dy.
RN e RN
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Note that g. is a mollifier. Hence, the left-hand side converges to f(z). On
the other hand, by the Lebesgue dominated convergence theorem the right-hand
side converges to (f)Y (). Hence,

F(zo) = (f)" (z0)

which shows that (f)¥ = f. Similarly we can show that, (fV) = f.
Next observe that if f = 0, then f = (f)¥ = 0¥ = 0, and so F is one-to-

one. Since (fV) = f, it follows that F is onto and that the inverse of F is
FH=f" m

We recall that for a complex number z = Re z+1Im z, the complex conjugate
of z is the number Z := Rez — ¢Im z.

Corollary 157 For every f, he S (RN),

- fle)h(x)dx = - f(m)ﬁ(m) dx Parseval identity

and
/ |f(z)dz = / 1F(z)|?de = / |f¥(z)|?dz.  Plancherel identity
RN RN RN
In particular, F extends uniquely to an isomorphism of L? (RN) onto itself.

Proof. Let g := h. Then, using the facts that cos is even and sin is odd, we
have

§(z) = / 2T () dy = / Fr=ah(y) dy
RN RN

— / e27riz~m/};(y) dy
RN

= [ @ity dy = ()" (@) = o).

where in the last equality we have used the inversion theorem. Hence, Parseval’s
identity follows by (96). Taking h = f and using the fact that f(x)f(z) =
|f(z)|? gives the first equality Plancherel’s identity. The second equality follows
by replacing f with f¥ and using the inversion theorem.

Since S (RN) is dense in L? (RN), if {fu} € S (]RN) converges to f in
L? (]RN ), then by Plancherel’s identity the sequence {ﬁ} is a Cauchy sequence
in L? (RY) and so it converges to a function g € L? (RY). Again by Plancherel’s
identity, the function g does not depend on the particular sequence {f,}. We

define f:: g. Similar we can extend uniquely the inverse Fourier transform to
L? (RN ) and reasoning as in the last part of the proof of the inversion theorem
we have that the Fourier transform F : L? (RY) — L? (RY) is an isomorphism
with inverse given by the extension of F~! to L? (RN). [ ]
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Remark 158 (Important) Note that the Fourier transform of a function f
in L* (RN) is obtained as a limit in L* (RY) of functions of the type (93), but
in general we cannot say that fA has the form (93), since the integral in (93)
is well-defined for functions in L (]RN) but not for functions in L> (RN). On
the other hand, if f € L*(RY), then (93) is well-defined. Hence, the Fourier
transform of a function in L*(R™N) is defined pointwise by (93), while the Fourier
transform of a function in L*>(RYN) is defined as a limit in L*(RY).

Another consequence of the L? theory is that it allows us to define the
Fourier transform for functions in LP(RY) for 1 < p < 2. More generally,
given f € LY(RY) + L2(RY), we can write f = g + h, where g € LY(RY) and
h € L*>(RY). We define the Fourier transform of f as f =g+ h. To see that
this is a good definition, let f = g1 + hy = g2 + ha, where g; € L*(RY) and
h; € L2(RYN), i =1,2. Then g; — go = hy — hy € L*(RY) N L2(RY). Since the
two definitions of Fourier tranforms coincide for functions in L' (RY) N L2(RY),
we have that g1 — g2 = ﬁ; — ﬁ; that is, g1 + a =g+ }/L;, which shows that
the definition of f is independent of the decomposition of f. In particular, since
LP(RY) € LYRYN) N L2(RYN) for all 1 < p < 2, we have defined the Fourier
transform of every function f € LP(RY) for 1 < p < 2. Next we will show that
fe LY (RY).

Monday, April 18, 2022

Theorem 159 Let f € LY(RY) N L?>(RY). Then the L? Fourier transform 1
of [ satisfies

flo)= [ e sty) y
for LN -a.e. x € RV,

Proof. Define f, := fXxp(o,n). Since |f,| < [f], by the Lebesgue dominated
convergence theorem, f, — f in L*(RY) and f, — f in L?(R"). Consider
fn*@e € C(RY). By the properties of mollifiers, f,, * . — f, in L'(RY) and
fn* e — fnin L2(RY) as ¢ — 0. Hence,

lim hm (an * (Do — f||L1(RN) + |[fn * e — f||L2(RN)) =0.

n—00 g—
Hence, by a diagonal argument, we can construct g, € C°(RY) such that
Jim (llgr = fllzr @~y + llgr = fllL2@yy) = 0.
By selecting a further subsequence, we can assume that gr — f pointwise £V-

a.e. in RV and that |gx(z)| < k(=) for all k and for LN-a.e. & € RN, where h
is a Lebesgue integrable function. Since

Gilz) = / 2V, (4) dy
RN
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and e~ 2™ @Y g (y)| < |gr(y)| < h(y) for all k and for LN-ae. y € RV, it
follows by the Lebesgue dominated convergence theorem that

/ e TG (y)dy — | eV f(y) dy.
RN RN
On the other hand, since gy — f in L2(RY), we have that g — f in L%(RY).
By selecting another subsequence, we have that g, — f pointwise £V-a.e. in
RY. m

Given an open set Q@ C RY, the space Cy(Q) is defined as the space of all

continuous functions f such that for every € > 0 there exists a compact set
K C Q such that |f(z)| < e forall z € 2\ K.

Theorem 160 (Riemann—Lebesgue lemma) F : L1(RY) — Cy(RY), with

o~

sup |f(2)] < [fll 12w (97)
zERN
In particular, N
‘ llim |f(x)| =0.

Proof. By (93), for every f € L'(RY),

~

1F @) < NIfll sy

for every # € RY. Since S (RY) is dense in L' (RY), let {f,}» in S (RY)
converge to f in L' (RN ) By the previous inequality

sup | fu(@) = F(@)] < [l fo = fllpr @) -

zERN

Hence, the sequence {ﬁ}n converges uniformly to f On the other hand, by
Theorem 152 we have that f,, € S (RY) C Co(R™) and hence, since Co(RY) is

a closed under uniform convergence, it follows that f € Co(RV). m
Using the previous theorems we can show that Fourier transform maps
LP(RY) for 1 < p < 2 into LP (RY).

Exercise 161 Let1 <p<oo and 1 <r < q < oo. Prove that
[l Lraenyy < CNFll Lo @y
for all f € LP"(RY).
Corollary 162 (Hausdorff-Young inequality) Let 1 < p < 2. Then
11l o vy < CUF Loy (98)

for every f € LP (RN).
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Proof. By (97), we have that F : L'(RY) — L>(RY), with
[F Mo @y < NNl Lr ey s

while by the Plancherel identity F : L2(RY) — L?(RY),
||f(f)HL2(RN) = ||f||L2(RN)-

Moreover, we have defined the Fourier transform for functions in L*(RY) +
L?(RN), by f :=g + h. Hence,

F o LYRY) + L2(RY) — L®°(RY) + L2(RY).

Hence, by Theorem 112, for every o € (0,1) and 1 < g < oo,
F o (LYRY), LA (RY))oq — (LZRY), LAHRY))o,q,

with
IF N Lozt ®N),L2RN)) g ps(Lo° (RN, L2(RN)), ) < ||7'"||H51(RN);L°0(RN))||7:||Z(L2(RN);L2(RN)) <1
By Theorem 130,

(L'RY), LA(RY))o,p = LPP(RY) = LP(RY),
where % = 1_TU + 3 and

(L=(RY), L*(R™))s,p = L"P(RY),

where 1 = 122 4+ 2. Note that p = 52; € (0,1) and r = p' = 525 /(52; — 1) =

2/6. Thus,
||f(f)“Lp’=p(RN) S C”fHLp(RN)

for every f € LP(RY).
Since p < p’, by the previous exercise,

IF M Lo @y < CNF Do v @ny < CUFIlp g, -

]
We can also define the Fourier transform of tempered distributions. Given
ges (RN ), consider the linear functional T': S (RN ) — C defined by

Ty(f) == - fgdz. (99)

By (96), for every f € S (R"), we have

~ ~ —

T3() = [ f@i@ de = [ F@h(e)de=T,0) = ().
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This motivates the following definition. R
Given T € 8'(RY), the Fourier transform T of T is the tempered distribu-
tion given by

T(f)=T(f), feSR"). (100)

Similarly, given T € S'(RY), the inverse Fourier transform of T is the
tempered distribution given by

TV(f):=T(f"), feSRY). (101)

Since we are identifying ¢g with T} in S’ (RN ) this shows that the Fourier
transform defined on S’ (RN ) extends the Fourier transform defined in & (RN )
In view of Theorem 145, for every function g € L” (RY) with p > 2, the Fourier
transform g of ¢ is the Fourier transform T of the tempered distribution 7j.
Hence, g belongs to &’'(RY) but in general g cannot be identified with a functlon
A simple example is given by g = 1 € L>®(RY). In this case

Ti(f) = fldz, feSRY), (102)
]RN

and so by inverse Fourier theorem,

o~

() =T55) = [ Flayda= [ eovfwyde = (H*0) = 50,

which shows that 1 is do.
Exercise 163 Let T € S’ (RN),
(i) Prove that T € S' (RY).

(ii) Prove that if {T,,} C S'(RY) is such that T, = T in S’ (RY), then
Tn AT
(iii) Prove that F : 8" (RY) — &' (RY) is a bijection.

As another application of Corollary 157, we can give a characterization of
H'(RY) in terms of Fourier transforms.

Theorem 164 A function f € L?(RY) belongs to the space H*(RY) := WL2(RY)
if and only if

|, el F@)Pde < o.

Moreover, for every f € HY(RY),

[ r@kde= [ (f@)pde.

N
S [ os@rde =1 [ jal?ifw)P
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In particular,
~ 1/2
re ([ 0+ laPifia)itae)
RN

is an equivalent norm in H*(RY).
We begin with a preliminary lemma.

Lemma 165 Let s >0 and g € L*(RY) be such that

[ el lg(@)Pde < .
RN
Then there exists g, € C°(RYN) such that
ti [ (04 2l - g2) @) Pdo =0
n—oo JpN
Proof. Step 1: Let g € L?(R") be such that g = 0 for ||| > R for some

R > 0. Consider g * ., where ¢ is a standard mollifier. Then g * . — g in
L*(RY). Moreover, if 0 < ¢ < 1 and ||z| > R + 1, then

(9% 02) () = / oe(@ — y)g(y) dy = / oe(z — y)g(y) dy = 0.
RN B(x,e)NB(0,R)
Thus,
/ <1+||a:||>25|<g—gws><m>|2dm=/ (1 + 2129 — g * po) (@) Pda
RN B(0,R+1)
s<1+<R+1>28>/ (g — g po)(@)|2dz — 0
B(0,R+1)
ase — 07T,

Step 2: Let g be as in the statement. Given n € N consider the function
by = gXB(0,n)- Since |g — hy| < 2|g[, by the Lebesgue dominated convergence
theorem,

lim [ (14 [2])**|(g — hn)(2)[*dz = 0.

n—oo [pN

Each function g satisfies the hypotheses of Step 1. Hence, we can find g, €
C>°(RY) such that

[ @+ 11710 — b)) <

SEES

In turn,

[0+ 12D®l6 - g)@Pde <2 [ 1+ ])*|(g = ho)(@)Pde

2 (1 lal)l(g, ~ ha) (@) e =0

asn—oo. i
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Remark 166 If in the lemma we require
[+ Il lg(a)Pde < o,
RN

then there is a simpler proof (suggested by Spencer). Since the function h(x) =
(14 [|z||?)*2g(z), = € RN, belongs to L*(RN), there exists a sequence h,, €
C=(RN) such that h, — h in L>(RY). Define g,(x) := (14 ||z||*)~%/?hp(x).
Then g, € C(RYN) and satisfy the thesis of the lemma.

We turn to the proof of Theorem 164.
Proof. Step 1: Given f € S (RN), by Theorem 152, for every i = 1,..., N
and every € RV,

0if(z) = 2miz; f(z).

Hence, by the previous corollary

| r@pkde= [ (f@Pde

and

N N N
;/RN |0i f ()|*dz = ;/RN 2mix; f ()| 2de = 47T2/R S 02| flw) Pda

M=
—ir* [ o)l F(@)Pde
RN
Step 2: Let f € L?(RY) be such that
[ lalPlf(@) P < o.
RN
Then by the previous lemma there exists g, € C°(RY) such that
Jim [l ®)I(F - gu)(@) P = 0.

Define f,, := g. By Theorem 152, f, € S (RN), so that, using the previous
step and the Fourier inversion theorem

/ (fu — i) (@) Pz = / (gn — 1) () Pz — 0
RN RN

and
N
;/R 05 - @ P =152 [ Pl - 0@ 0

as n,k — oo. Thus, {f,}, is a Cauchy sequence in H*(RY), so f, — h in in
H'(RV) for some function h € H'(RY). But since g, — f in L%(RY), we have
that f, = gy — f in in L>(RY). Hence, f = h € H*(RY).
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Step 3: Let f € H'(RY). Then by the density of smooth functions we
can find f, € C°(RY) such that f, — f in H*(RY). In turn, fn — fin
L?(RY). By extracting a subsequence, not relabeled, we can assume that ﬁ —
fpointwise LN-a.e. in RN, By Step 1,

in? [P - R |2dm—2/ Jo) (@) 2da.

Letting k — oo, it follows by Fatou’s lemma that

47? /RN )% (fn — )(@)2da < 111?_1)i£f47r2 /RN 1zI21(Fs = Fi)()[2dz

Letting n — oo shows that

Jim 477 [ olPI(F, - Pe)de = lim Z/ (@)da = 0.

In particular,

15 [ olPlF(@)Pde = tim a® [l Fate) da
RN n—oo RN

N N
=i 3 [ s@Pie =3 [ @i

]
Friday, April 22, 2022
In your homework you will show the following result.

Theorem 167 Let 0 < s <1 and let f € L>(RN). Then f € W*2(RY) if and
only

| lellf(@)Pda < .
RN

Moreover, there exists a constant C = C(N,s) > 0 such that

2 ~
[ [ e i~ [ el (@) e
RN JRN || ||V H2e RN

Definition 168 Let Q C RN be an open set, 1 < p < oo, and s > 1, with
s ¢ N. A function f € LP(Q) belongs to the fractional Sobolev space WP ()
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if f € WI2(Q) and for every multi-index o € NY, with |a| = |s], 0°f €
We=Llslr(Q). We endow W*P(Q) with the norm

[ fllwse) = [ fllwisrr) + Z 10% fllwe-Ls1.p ()
|a|=]s]

When p = 2, we write W*2(Q) =: H*(Q2).

Exercise 169 Let s > 1 and f € L*(RY). Prove that f € H*(RY) if and only

| lellf(@)Pda < .
RN
Let’s use Fourier transforms to prove Morrey’s embedding theorem.

Theorem 170 (Morrey) Let s = N/2 + «, where 0 < a < 1, and let [ €
H*(RN), then f admits a representative that is Holder continuous of exponent
Q.

Proof. Step 1: Let’s prove first that f has a representative in Co(RY). By
Holder’s inequality

/ Fle)| de = / (1+ |])52(1 + |l)*/ ()] dao
RN RN

) (/RN de)m </RN<1 + ”"3||2)8J?(:1:)2d93>1/2

= Ol fll = mry-

Hence, f € LY(RY) N L2(RY). In particular, by Theorem 159 (which continues
to hold for the inverse Fourier transform) the inverse Fourier tranform of f is
given by

(f)v(m) = / eQ“im'yf(y) dy for LN-ae. x cRY,
RN
while by the Fourier inversion theorem the right-hand side is given by f() for
LN-ae. z € RYN. Since f € L*(RY), it follows by the Riemann-Lebesgue lemma
that the function
g(x) = / ™Y F(y) dy, xcRY,
RN
belongs to Co(RY), with

lgllco@yy < N fllr@yy < Cllfll s @y

89



Step 2: Let h,z € RY with 0 < ||h|| < 1/2. Then by Hélder’s inequality,

ol + )~ g(a)| =| [ [ - eniev iy dy‘

=| [ @ e - e ) ay

e2mihy 12 \1/? L\
< L 1 s .
<([ S pmrm) ([ s ieriiwka)
Write

|€27rih~y _ 1‘2 |627rih~y _ 1|2 ‘eQTrih‘y _ 1|2
/ 1 2)\s dy :/ 1 2\s dy+/ 1 2\s dy
vy (L+[y?) B/ r 1+ lyl?) e\ B0,/ n) 1+ lyl?)

Since sint =t 4+ o(t) and 1 — cost = % + o(t?), for y € B(0,1/||h||) we have

|2 hy _ 1|2 = (1 — cos(2mh - y))? + sin(27h - y)

< C|hlP|yl?,
and so
|627rih-y _ 1‘2 ) ||y||2
Ly < |l _ll® g,
/R” 1+ [yl B/ L+ 19l2)°
1 VIRl N-1,2
+C ey =GR [
rv\Bo.1/al) (1+[1y]2)* o (I+r2)
o pN-1 P VIRl o )
o Tz [ [T
/iy (1+72)° 0 gy N
= ﬂ [TN+2725]1/HhH " C 1 /Rl /oo ;dr
N +2-2s 0 25— N [r2-N |, LA
Rl 1 oy ,
= C - h [ C h «a

where we used the fact that N +2—-2s=N+2—- N — 20 =2(1 —a) > 0 and
2s — N = 2a > 0. Hence,

R 1/2
ot + 1)~ gta)| < Il ([ 0 Iyl Fo) Pan)

= ORI 1| 22 vy -
On the other hand, if ||h| > 1/2, then

(Ll
lg(z + h) — g(x)] < 2||gllcy@y) = Qannco(RN)

< 27BN Nl vy
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14 Convolutions

Given two measurable functions f : RV — C and ¢ : RV — C, the convolution
of f and g is the function f x g defined by

(Feo)@) = [ fa-vawdy (103)
for all z € RN for which the right-hand side is well-defined.
Theorem 171 Given f,g € S (RN), the function f x g belongs to S (RN).
Proof. Fix £ € RY. For m € N with m > N, we can write

(@< [ 1f@=v)law)]dy

<Cllgl

1 1
U m/ dy.
om W lom [ T ™ (1 Tz — gl

We now split RV in the sets E := {y € RV : L||z|| < ||z — y||} and RV \ E.
Then we have

/ 1 1 dy
e L+ yl)™ A+ [lz—yl)™

< 2m / 1 dy < C(m, N)
Tt Sey A llylD™ T T @+ )™
while in RV \ E, [|ly|| > |lz]| — |z — yll = llz|| - zllz]l = 5]lz]|, and so

/ 1 1 dy
rv\e (L+ [lyl)™ (L + |l —yl)™

m / 1 dy < C(m,N)
2+ lzl)™ Jey A+l —yl)™ =~ 2+ |l=l)™

=1

Hence,

C+[l2I)™(f * 9) (@) [ < Cllgllo,m [1Fllo.m -

This shows that f decays to zero faster than any power of ||x||.
On the other hand, by differentiating under the integral sign, for every multi-
index o,

9% (f*g) o f
2T - Z (e d
prralC) ' 9z (x—y)g(y) dy
o f
= (ama *g) (z),
and so by repeating the same calculations above with f replaced by g:—ic, we get

that all derivatives of f * g decay to zero faster than any power of ||z||, which
shows that fxge S (RN). [
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Exercise 172 Prove that for every f, g, h€ S (RN),
(frg)xh=[x(gxh)
Theorem 173 For every f, g € S (IR{N),
Frg=1Jq.

Proof. For £ € RV by Fubini’s theorem we have

F+9)@) = / IY(f 4 g)(y) dy

-/,
:/ / e S (y — €) g (€) dédy
RN JRN
:/ g(€) / e T f (y — £) dyd€
RN RN
:/ 6727rim-£g(€)/ e 2@ W=8) £ (y — £ dydé
]RN

RN
= [Lemgte) [ e et n) dnde
= §(z)f (=),

where we have made the change of variables n:=y — €. =

Remark 174 The previous theorem continues to hold for f € L' (RN) and
g€ S (RY).

Given two measurable functions f: RV — R and g : RY — R,

Theorem 175 Let f € LP (]RN), 1 <p< oo, and g € L' (RN). Then
(f % g) (z) exists for LN -a.e. z € RN and

||f*g||Lp(RN) < ||f||LP(]RN) HQHLl(RN) :

Proof. Consider two Borel functions fy and go such that fo(z) = f(x) and
go (z) = g (x) for LN-a.e. £ € RY. Since the integral in (103) is unchanged if
we replace f and g with fy and gg, respectively, in what follows, without loss of
generality we may assume that f and g are Borel functions.

Let h: RY x RN — R be the function defined by

hz,y):=f(z—y), (z,y) cRY xR
Then h is a Borel function, since it is the composition of the Borel function f

with the continuous function g : RY x RN — R¥ given by g(z,y) :=z —y. In
turn, the function

(,y) RV xR — f(z—y)g(y)
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is Borel measurable. We are now in a position to apply Minkowski’s inequality
for integrals and Tonelli’s theorem to conclude that

Il = | [ 5= waian] < [ 17600 @l

Lr(RN)
= [ @I = Dlliar dy =l [ o)l d.

where in the last equality we have used the fact that the Lebesgue measure is
translation invariant. Hence, f g belongs to LP (RN), and so it is finite £V -a.e.
inRY. m
Wednesday, April 27, 2022
The following is the generalized form of the previous inequality.

Theorem 176 (Young’s inequality) Let 1 < p < ¢ < oo and let f €
L? (RY) and g € LT (RYN). Then (f * g) (z) ewists for LN -a.e. & € RN and

1f *gHLT(RN) < ”fHLP(]RN) ||9||Lq(RN),

where
1

11
S =14- (104)
P oq r

Proof. If p = 1, then » = g and the result follows from the previous theorem.
Thus assume that p > 1. Fix g € L9 (RN ) and consider the linear operator
Ly(h) := g x h. By the previous theorem we have that L, : L*(RY) — LI(RY)
is linear and continuous, with

HLg(h)”Lq(RN) < ||9||Lq(RN) HhHLl(RN)-

Hence,
I Lgll Lz @™y;La@yy) < M9l parny -

Moreover, by Holder’s inequality for every h € LY (]RN ),

[Lg(h) (=) | =

@ =99 W) dy) < gllpar 1@ = )l o gy

= ”g”Lq(RN) ||hHLq’(RN)’
where in the last equality we used the translation invariance of the Lebesgue
measure. This shows that L, : L9 (RY) — L°°(RY) is linear and continuous,
with
||Lg(h)||Loo(RN) < ”g”Lq(RN) ”hHLq’(RN) .
Hence,
”LQHL(L‘I’(]RN);LOC(]RN)) < HgHLq(RN)'

Next we observe that

Ly : LMRY) + LY (RY) — LYRN) + L®(RY)
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is well-defined. Hence, by Theorem 112, for every o € (0, 1),
Ly : (L'RY), LT (RY))sp — (LURY), L2 (RY))o,p,
with
||Lg||(Lq(]RN),L°°(]RN))U,p < ||Lg| i?ZI(RN);Lq/(]RN)) ||Lg||%(L4(RN);L°°(RN))

< ”9”}:;(0]1&1\’) Hgqu(RN) = ||g||Lq(RN)'
By Theorem 130,
(L'RY), L2(RY))op = LP*P(RY),

1 _ 1-0 o _ l-0o ol¢g=1) 1 o :
Whereps——Jr 7 = 47 +7q =1 q,whlle

(LIRY), L (RY))op = LP+P(RY),

where p%; = I*T" + Z. Since p > 1, it follows from (104) that 7 > ¢ and so we

can find 0 < o < 1 such that ¢ = (1 — o)r. Hence py = r. In turn

1 11 1 1-
S I R S
p q ¢ q q

which shows that ps = p.

1L (Ml rr ey < gl oy, oo @), 1Pl ey < 1911 aqey 1B e,
Since r > p, it follows that
[ Lg(P)||Lrr@ny < Cl|Lg(h))|

Lro@®RN) < C ”g”LQ(]RN) Hh”w,pmw)-

To conclude the proof it remains to show that the convolution is defined point-
wise. This is left as an exercise. ®

15 Convolution of Tempered Distributions

In this section we define the convolution of a tempered distribution 7" and a
function ¢. We begin with the case in which T" = T for some function f €
S(RY), where we recall that Ty € S'(RY) is defined by

Ty(0):= | w(@)o(e) da. < SE)
By Fubini’s theorem

[ rro@oia= [ ow [ - yewdue
= [ 5O [ ole =@ daa
= [ 1© [ 3¢~ @)o(w) dodg

S RGO
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where £ := x — y and ¢(x) := p(—x). Hence, we have shown that T.,(¢) =
Tt(p x ¢) for all ¢ € S(RY). Motivated by this formula we define:

Definition 177 If T € S'(RY) and ¢ € S(RY) the convolution of T and ¢ is
the linear functional T*p : S(RY) — R defined by (T*¢)(¢) := T(*¢), where

o(x) == p(—x), xRV, (105)

It turns out that 7" * ¢ can be identified with a function. Given & € RY and
a function ¢ : RV — R we define the function

o (y) =p(z—y), yeR". (106)

Theorem 178 Let T' € S'(RY) and o, € S(RY). Then T % ¢ = Ty, where
fo is the function given by f,(z) :== T(¢®), z € RN. Moreover

(i) f, € C™ (RN) and for every multi-index c there exist co, > 0 and no, € N
such that
0% fo(@)]| < call + [2]?)" (107)

for all x € RV

(ii) 0% fo(x) = foap(z) = O*T(p®) for all z € RN and for every multi-index
a e NY,

(iii) (T *xp)x =T (p*1).

Friday, April 29, 2022
Proof. Step 1: If z, — x in RY, then by your homework, ¢*» — ¢® in
S(RY), and so by the continuity of T,

ft,a(mn) = T(@mn) - T(@m) = f(,p(m)’

which proves that T % ¢ is a continuous function. Let e; be an element of the
canonical basis of RY and for every & € RY and h # 0 consider the function

2. hi T+ he —y)—p(x—
ohi(y) = & T

Again by your homework, as h — 0, we have that "¢ — gfi (z—-) in S(RY).

Hence, by the linearity and continuity of T',

fo(x + hei) — fo(z)
h

=T(™"") = T((9:)")

as h — 0, which proves that 0;f, = f,,.
Moreover, since for all z,y € RY,

(g;i) (y) = gi(m—y)=—8‘p_(x—y):_8‘?f(y),
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for all z € RY we have

or, .. 0p®
ayz‘(w )__T(ayi>

which, together with an induction argument, gives (ii).

Step 2: Since 0%p € S(RY) and 0% f,(x) = foa,(x) by part (ii), it suffices to
prove the bound (107) for o« = 0. Since T is continuous, there exist a constant
C > 0 and some m,n € Ny such that

|T(g)| S C ||g||'m7n :
for every g € S (RN ) In particular,
[fo(@)| = T (¢")] < Cll*[lm.n-
Now

a—aﬁ(p(w— )| = su
v Gya y)| = sup

l¢®[lq g := sup
ap = SUD
<@+ llzll"™Yllellar,s-

Step 3: Fix ¢ € S(RY). For h > 0 define

fu(@) =0 " G(x — hy)o(hy), zeRY,
yezZN

where h > 0. By your homework f;, — @*¢ in S(R"). Hence, by the continuity
and linearity of 7" and by Theorem 140 we have that

(Tx@)(0) =T(Fx0) = lim T(fy)= lim AV 3 T(G(- — hy))é(hy)

h—0t
yezN

= Jim bY 37 T(e(hy = Nothy) = Jim 0¥ 3" £ o) = [ Fow)o(w)dy

yezN yezN

where in the second to last equality we used Riemann sums and the fact that
fo¢ € S(RY) (which follows from the previous two steps). This shows that
Txo="Ty,.

Step 4: Finally, to prove (iii), we define

fu(@) :==0" " o(x - hy)p(hy), =cRY,

yezN
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where h > 0. As before we have that f,, — @1 in S(R") as h — 0. It follows
that for every o € RN, (f,)® — (o *1)® in S(R™) as h — 0, where

(f)™ (@) = hN Y (o — @+ hy)(hy), =RV
yezZN

(px9)®(2) = (p*¢)(@o — z), xRV
By the linearity and continuity of 7" and we have that
Fovis(0) = T(( $)™) = lim T((fu))

= lim WS T(p(mo — - + hy)y(hy))

yezN

— | N — .

= lim b Y T((zo — - + hy))i(hy)
yezn

= lim b Y 7 fo(ao + hy)u(hy)
yezZN

- / fol@o — )U(y) dy = (f, + ¥)(wo).

This completes the proof. m
As a consequence of the previous theorem, we can approximate distributions
with C'*° functions.

Exercise 179 Let T € S'(RY) and let {¢.}., € > 0, be a family of standard
mollifiers. Prove that T * . — T in S'(RY) as e — 0F.

Given a tempered distribution 7' € §'(RY) and a C* function g : RY — R
such that for every multi-index a« there exist ¢ > 0 and ny € N such that

10%9(2)|| < call + [|lz]*)"=
for all z € RY, we define
(9T)(f) :=T(gf), feSRY)

We leave as an exercise to check that g7 € S'(RY).
Let s <0 and T € S’(RY). We say that T belongs to the fractional Sobolev

space H* (RN if there exists a function g € L2(RN) such that (1+ ||z|[2)/2T =
T,.
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