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1 Sobolev and BV spaces

Consider the differential equation

f ′′(x) = g(x), x ∈ I

where I is an open interval and g : I → R is a continuous function. For this
ode to make sense, we need the solution f to be at least of class C2. Consider a
function φ ∈ C∞c (I) and multiply the equation by φ. If we integrate by parts,
we get

−
∫
I

f ′(x)φ′(x) dx =

∫
I

g(x)φ(x) dx. (1)

This integral makes sense for functions f that are less regular than C2. For
example C1 is enough.
If we integrate by parts once more, we get∫

I

f(x)φ′′(x) dx =

∫
I

g(x)φ(x) dx. (2)

This integral makes sense provided f : I → R is locally integrable. The integrals
(1) and (2) can be considered weak formulations of the differential equation
f ′′ = g.
Motivated by this discussion, we define the weak derivative of a function.

Definition 1 Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞, and f ∈ Lploc(Ω). Given
i = 1, . . . , N , we say that f admits a weak or distributional derivative in Lp(Ω)
if there exists a function gi ∈ Lp(Ω) such that∫

Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

gi(x)φ(x) dx

for every φ ∈ C∞c (Ω). The function gi is called the weak, or distributional,
partial derivative of f with respect to xi and is denoted

∂f
∂xi
.

Remark 2 Observe that if f ∈ C1(Ω), then by the divergence theorem we can
always integrate by parts to conclude that∫

Ω

f(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)φ(x) dx

for all φ ∈ C∞c (Ω). Hence, if ∂f
∂xi
∈ Lp (Ω), then the classical partial derivative

∂f
∂xi

is the weak derivative of f . We will use this fact without further notice.

Exercise 3 Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞, and Lploc(Ω). Prove that if
f admits a weak derivative ∂f

∂xi
in Lp(Ω), then the weak derivative ∂f

∂xi
is unique.
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Similarly, we have

Definition 4 Let Ω ⊆ RN be an open set and f ∈ Lploc(Ω). Given i = 1, . . . , N ,
we say that f admits a weak or distributional derivative in the space of measures
if there exists a signed measure λi : B (Ω)→ R such that∫

Ω

f
∂φ

∂xi
dx = −

∫
Ω

φdλi

for all φ ∈ C∞c (Ω). The measure λi is called the weak, or distributional, partial
derivative of f with respect to xi and is denoted Dif .

We can now define the Sobolev space W 1,p(Ω).

Definition 5 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. The Sobolev space
W 1,p (Ω) is the space of all functions f ∈ Lp (Ω) that admit all weak derivatives
∂f
∂xi

in Lp(Ω), endowed with the norm

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) +

N∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(Ω)

.

When p = 2 we write H1(Ω) = W 1,2(Ω). In this case, we have an inner
product, given by

(f, g)H1(Ω) := (f, g)L2(Ω) +

N∑
i=1

(
∂f

∂xi
,
∂g

∂xi

)
L2(Ω)

.

For f ∈W 1,p (Ω) we set

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xN

)
.

Remark 6 In W 1,p (Ω) we can consider the equivalent norms

‖f‖W 1,p(Ω) :=

(
‖f‖pLp(Ω) +

n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥p
Lp(Ω)

) 1
p

or
‖f‖Wm,p(Ω) := ‖f‖Lp(Ω) + ‖∇f‖Lp(Ω;RN ) ;

for 1 ≤ p <∞, and

‖f‖W 1,∞(Ω) := max

{
‖f‖L∞(Ω) ,

∥∥∥∥ ∂f∂x1

∥∥∥∥
L∞(Ω)

, . . . ,

∥∥∥∥ ∂f

∂xN

∥∥∥∥
L∞(Ω)

}

for p =∞.
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We define

W 1,p
loc (Ω) :=

{
f ∈ Lploc (Ω) : f ∈W 1,p (U) for all open sets U b Ω

}
.

We now show that W 1,p (Ω) is a Banach space.

Theorem 7 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. Then the space
W 1,p (Ω) is a Banach space.

Proof. Let {fn}n be a Cauchy sequence in W 1,p (Ω), that is,

0 = lim
l,n→∞

‖fn − fl‖W 1,p(Ω)

= lim
l,n→∞

(
‖fn − fl‖Lp(Ω) +

N∑
i=1

∥∥∥∥∂fn∂xi
− ∂fl
∂xi

∥∥∥∥
Lp(Ω)

)
.

Then {fn}n and
{
∂fn
∂xi

}
n
, i = 1, . . . , N , are Cauchy sequences in Lp (Ω). Since

Lp (Ω) is a Banach space, there exist f, gi ∈ Lp (Ω), i = 1, . . . , N , such that

lim
n→∞

‖fn − f‖Lp(Ω) = 0, lim
n→∞

∥∥∥∥∂fn∂xi
− gi

∥∥∥∥
Lp(Ω)

= 0 (3)

for all i = 1, . . . , N . Fix i = 1, . . . , N . We claim that ∂fn
∂xi

= gi. To see this let
φ ∈ C∞c (Ω) and note that∫

Ω

φ
∂fn
∂xi

dx = −
∫

Ω

fn
∂φ

∂xi
dx. (4)

Writing ∫
Ω

φ
∂fn
∂xi

dx =

∫
Ω

φ

(
∂fn
∂xi
− gi

)
dx+

∫
Ω

φgi dx =: In + II,

by Hölder’s inequality we have

|In| ≤ ‖φ‖Lp′ (Ω)

∥∥∥∥∂fn∂xi
− gi

∥∥∥∥
Lp(Ω)

→ 0

as n→∞, which shows that∫
Ω

φ
∂fn
∂xi

dx→
∫

Ω

φgi dx.

Similarly,

−
∫

Ω

fn
∂φ

∂xi
dx→ −

∫
Ω

f
∂φ

∂xi
dx.

Hence, letting n→∞ in (4) yields∫
Ω

φgi dx = −
∫

Ω

f
∂φ

∂xi
dx

for all φ ∈ C∞c (Ω), which proves the claim. Thus f ∈ W 1,p (Ω). It follows by
(3) that fn → f in W 1,p(Ω). Hence, W 1,p(Ω) is a Banach space.
More generally, we can define higher order Sobolev spaces.
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Definition 8 Let Ω ⊆ RN be an open set, let m ∈ N, and let 1 ≤ p ≤ ∞. The
Sobolev space Wm,p (Ω) is the space of all functions f ∈ Lp (Ω) such that for
every multi-index α with 1 ≤ |α| ≤ m there exists a function gα ∈ Lp (Ω) such
that ∫

Ω

f
∂αφ

∂xα
dx = (−1)

|α|
∫

Ω

gαφdx

for all φ ∈ C∞c (Ω). The function gα is called the weak or distributional partial
derivative of f with respect to xα and is denoted ∂αf

∂xα .

Exercise 9 Let Ω ⊆ RN be an open set, let m ∈ N, and let 1 ≤ p ≤ ∞. Given
f ∈Wm,p (Ω), prove that the weak derivative of f with respect to xα is unique.

We define

Wm,p
loc (Ω) :=

{
f ∈ L1

loc (Ω) : f ∈Wm,p (U) for all open sets U b Ω
}
.

Exercise 10 Let Ω ⊆ RN be an open set and let 1 ≤ p <∞.

(i) Prove that a subset of a separable metric space is separable.

(ii) Prove that W 1,p (Ω) is separable. Hint: Consider the mapping

W 1,p (Ω)→ Lp (Ω)× Lp
(
Ω;RN

)
f 7→ (f,∇f) .

Exercise 11 Let Ω ⊆ RN be an open set. Prove thatW 1,∞ (Ω) is not separable.

Friday, January, 21, 2022
Next we prove that smooth functions are dense in W 1,p (Ω)

Theorem 12 (Meyers—Serrin) Let Ω ⊆ RN be an open set and 1 ≤ p < ∞.
Then the space C∞ (Ω) ∩W 1,p (Ω) is dense in W 1,p (Ω).

We begin with an auxiliary result. We use mollifiers. Given a nonnegative
function ϕ ∈ C∞c

(
RN
)
with

suppϕ ⊆ B(0, 1),

∫
RN

ϕ (x) dx = 1, (5)

for every ε > 0 we define

ϕε (x) :=
1

εN
ϕ
(x
ε

)
, x ∈ RN .

The functions ϕε are called mollifiers. Given an open set Ω ⊆ RN and a function
f ∈ L1

loc (Ω), for x ∈ Ωε, we define

fε (x) := (f ∗ ϕε) (x) =

∫
Ω

ϕε (x− y) f (y) dy (6)

for Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε}. Note that if f ∈ Lp(Ω) for some 1 ≤ p ≤
∞, then by Hölder’s inequality, fε (x) is well-defined for all x ∈ RN .
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Theorem 13 Let Ω ⊆ RN be an open set and let f ∈ Lp (Ω), 1 ≤ p <∞. Then
for every Lebesgue point x ∈ Ω (and so for LN a.e. x ∈ Ω), fε (x) → f (x) as
ε→ 0+. Moreover,

lim
ε→0+

(∫
Ω

|fε − f |p dx
) 1
p

= 0.

Proof. Exercise.

Lemma 14 Let Ω ⊆ RN be an open set, 1 ≤ p < ∞, and f ∈ W 1,p (Ω). For
every ε > 0 define fε := ϕε ∗ f in RN , where ϕε is a standard mollifier. Then

lim
ε→0+

‖fε − f‖W 1,p(Ωε)
= 0,

where the open set Ωε is given by

Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε} .

In particular, if U ⊂ Ω, with dist (U, ∂Ω) > 0, then

‖fε − f‖Wm,p(U) → 0 as ε→ 0+.

Proof. By differentiating under the integral sign we have that fε ∈ C∞
(
RN
)

and for x ∈ Ωε and for every i = 1, . . . , N ,

∂fε
∂xi

(x) =

∫
Ω

∂ϕε
∂xi

(x− y) f (y) dy = −
∫

Ω

∂ϕε
∂yi

(x− y) f (y) dy

=

∫
Ω

ϕε (x− y)
∂f

∂yi
(y) dy =

(
ϕε ∗

∂f

∂xi

)
(x) ,

where we have used the definition of weak derivative and the fact that for each
x ∈ Ωε the function ϕε (x− ·) ∈ C∞c (Ω), since suppϕε (x− ·) ⊆ B (x, ε) ⊂ Ω.
The result now follows from Theorem 13 applied to the functions f and ∂f

∂xi
,

i = 1, . . . , N .

Remark 15 Note that if Ω = RN , then Ωε = RN . Hence, fε → f inW 1,p
(
RN
)
.

Exercise 16 Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. Prove that if
f ∈W 1,p (Ω) and ϕ ∈ C∞c (Ω), then ϕf ∈W 1,p (Ω).

We now turn to the proof of the Meyers—Serrin theorem.
Proof of Theorem 12. Let Ωi b Ωi+1 be such that

Ω =

∞⋃
i=1

Ωi

and consider a smooth partition of unity F subordinated to the open cover{
Ωi+1 \ Ωi−1

}
, where Ω−1 = Ω0 := ∅. For each i ∈ N let ψi be the sum of
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all the finitely many ψ ∈ F such that suppψ ⊂ Ωi+1 \ Ωi−1 and that have not
already been selected at previous steps j < i. Then ψi ∈ C∞c

(
Ωi+1 \ Ωi−1

)
and

∞∑
i=1

ψi = 1 in Ω. (7)

Fix η > 0. For each i ∈ N we have that

supp (ψif) ⊂ Ωi+1 \ Ωi−1, (8)

and so, by the previous lemma, we may find εi > 0 so small that

supp (ψif)εi ⊂ Ωi+1 \ Ωi−1 (9)

and ∥∥(ψif)εi − ψif
∥∥
W 1,p(Ω)

≤ η

2i
,

where we have used the previous exercise.
Monday, January, 24, 2022

Proof. Note that in view of (9), for every U b Ω only finitely many Ωi+1 \Ωi−1

cover U , and so the function

g :=

∞∑
i=1

(ψif)εi

belongs to C∞ (Ω). In particular, g ∈Wm,p
loc (Ω).

For x ∈ Ω` by (7), (8), and (9),

f (x) =
∑̀
i=1

(ψif) (x) , g (x) =
∑̀
i=1

(ψif)εi (x) . (10)

Hence

‖f − g‖Wm,p(Ω`)
≤
∑̀
i=1

∥∥(ψif)εi − ψif
∥∥
Wm,p(Ω)

≤
∑̀
i=1

η

2i
≤ η. (11)

Letting ` → ∞ it follows from the Lebesgue dominated convergence theorem
that ‖f − g‖Wm,p(Ω) ≤ η. This also implies that f − g (and, in turn, g) belongs
to the space Wm,p (Ω).

Remark 17 Note that we can adapt the proof of the Meyers-Serrin theorem to
show that if f ∈ W 1,p

loc (Ω) with ∇f ∈ Lp
(
Ω;RN

)
then for every ε > 0 there

exists a function g ∈ C∞ (Ω) ∩W 1,p
loc (Ω) such that

‖f − g‖W 1,p(Ω) ≤ ε,

despite the fact that neither f nor g need belong to W 1,p (Ω).
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Exercise 18 Let Ω ⊆ RN be an open set and let f : Ω → R be a locally
Lipschitz continuous function (that is, f is Lipschitz continuous in each compact
set K ⊂ Ω). Prove that f ∈W 1,p

loc (Ω) and that the classical derivatives of f are
the weak derivatives.

Exercise 19 Prove that the function f (x) := |x| belongs to W 1,∞ (−1, 1) but
not to the closure of C∞ (−1, 1) ∩W 1,∞ (−1, 1).

The previous exercise shows that the Meyers—Serrin theorem is false for
p = ∞. This is intuitively clear, since if Ω ⊆ RN is an open set and {fn} ⊂
C∞ (Ω)∩W 1,∞ (Ω) is such that ‖fn − f‖W 1,∞(Ω) → 0, then f ∈ C1 (Ω) (why?).
Next we define the space of functions of bounded variation.

Definition 20 Given an open set Ω ⊆ RN , the space C0(Ω) is the space of all
continuous functions f : Ω → R with the property that for every ε > 0 there
exists a compact set Kε ⊂ Ω such that |f(x)| ≤ ε for all x ∈ Ω \Kε. We endow
C0(Ω) with the supremum norm ‖ · ‖∞.

Exercise 21 Prove that C0(Ω) is the closure of Cc(Ω) in the space Cb(Ω) of all
continuous and bounded functions with the supremum norm ‖ · ‖∞.

It turns out that the dual of C0(Ω) can be identified with the space of signed
measures.

Theorem 22 (Riesz representation theorem) Let Ω ⊆ RN be an open set.
For every linear and continuous function T : C0(Ω)→ R, there exists a unique
signed measure λ : B(Ω)→ R such that

T (ϕ) =

∫
Ω

ϕdλ for all ϕ ∈ C0(Ω),

with
‖T‖(C0(Ω))′ = |λ|(Ω),

where |λ| = λ+ + λ−. Conversely, for every signed measure λ : B(Ω) → R, the
function

Tλ(ϕ) :=

∫
Ω

ϕdλ for all ϕ ∈ C0(Ω),

is linear and continuous.

For the decomposition λ = λ+ − λ− see the Hahn theorem and the Jordan
decomposition theorem. Hence, if we identify Tλ with λ, then we can say that
(C0(Ω))′ is the space of signed measures.
Recalling Definition 4, we can define the space of functions of bounded vari-

ation.
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Definition 23 Let Ω ⊆ RN be an open set. We define the space of functions
of bounded variation BV (Ω) as the space of all functions f ∈ L1 (Ω) such that,
for all i = 1, . . . , N the i-th weak derivative Dif is a signed measure. We endow
BV (Ω) with the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

n∑
i=1

‖Dif‖(C0(Ω))′ .

Exercise 24 Prove that BV (Ω) is a Banach space.

Since every function f ∈ C∞ (Ω) ∩BV (Ω) belongs to W 1,1 (Ω) (why?) and

‖Dif‖(C0(Ω))′ =

∫
Ω

∣∣∣∣ ∂f∂xi
∣∣∣∣ dx

for every i = 1, . . . , N , the closure of C∞ (Ω) ∩ BV (Ω) in BV (Ω) is W 1,1 (Ω).
Thus, we cannot expect the Meyers—Serrin theorem (see Theorem 12) to hold
in BV (Ω). However, the following weaker version holds.

Theorem 25 Let Ω ⊆ RN be an open set and let f ∈ BV (Ω). Then there
exists a sequence {fn} ⊂ C∞ (Ω) ∩W 1,1 (Ω) such that fn → f in L1 (Ω) and

lim
n→∞

∫
Ω

∣∣∣∣∂fn∂xi

∣∣∣∣ dx = ‖Dif‖(C0(Ω))′

for every i = 1, . . . , N .

Wednesday, January, 26, 2022

Exercise 26 Let Ω = B (0, 1) \
{
x ∈ RN : xN = 0

}
. Show that the function

f : Ω→ R, defined by

f (x) = f (x1, . . . , xN ) :=

{
1 if xN > 0,
0 if xN < 0,

belongs to W 1,p (Ω) for all 1 ≤ p ≤ ∞, but cannot be approximated by functions
in C∞

(
Ω
)
.

Definition 27 Given an open set Ω ⊆ RN , we denote by C∞(Ω) the space of
all functions f ∈ C∞(Ω) that can be extended to a function in C∞(RN ).

The previous exercise shows that in the Meyers—Serrin theorem for general
open sets Ω we may not replace C∞ (Ω) with C∞

(
Ω
)
.

Next we show that if Ω has continuous boundary, then C∞
(
Ω
)
∩W 1,p(Ω)

is dense in W 1,p (Ω). We recall that a rigid motion T : RN → RN is an affi ne
function given by T (x) = c+R(x), x ∈ RN , where R is a rotation and c ∈ RN .
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Definition 28 Given an open set Ω ⊆ RN we say that its boundary ∂Ω is
Lipschitz continuous if for all x0 ∈ ∂Ω there exist a rigid motion T : RN → RN ,
with T (x0) = 0, a Lipschitz continuous function h : RN−1 → R, with h(0) = 0,
and r > 0 such that, setting y := T (x), we have

T (Ω ∩B(x0, r)) = {y ∈ B(0, r) : yN > h(y′)}. (12)

We say that ∂Ω is of class Cm, m ∈ N0, if the functions h are of class Cm.

Observe that R, h, and r depend on x0. The coordinates x are called
background coordinates while the coordinates y are called local coordinates.

Remark 29 Without loss of generality, in the previous definition one can re-
place the ball B(x0, r) with any small (open) neighborhood of x0. We will use
this fact without further notice.

Theorem 30 Let Ω ⊆ RN be an open set with boundary of class C0 and let
1 ≤ p <∞. Then C∞

(
Ω
)
∩W 1,p(Ω) is dense in W 1,p (Ω).

To prove the theorem we need an auxiliary result.

Lemma 31 Let Ω ⊆ RN be an open set, let 1 ≤ p < ∞, and let f ∈ Lp (Ω).
Extend f by zero outside Ω. Then for every ε > 0 there exists δ > 0 such that∫

Ω

|f (x+ ξ)− f (x)|p dx ≤ ε

for all ξ ∈ RN , with ‖ξ‖ ≤ δ.

Proof. Exercise.

Proposition 32 Let Ω ⊆ RN be an open set and let 1 ≤ p < ∞. Then for
every f ∈W 1,p(Ω) there exists a sequence of functions fn in W 1,p (Ω) such that
fn → f in W 1,p(Ω) as n → ∞ and fn = 0 in Ω \ B(0, rn) for some (large)
rn > 0.

Proof. Consider a cut-off function ϕ ∈ C∞c (RN ) such that suppϕ ⊆ B(0, 2),
ϕ = 1 in B(0, 1) and 0 ≤ ϕ ≤ 1. For n ∈ N, define

fn(x) := ϕn(x)f(x), ϕn(x) := ϕ(x/n), x ∈ Ω.

By the Lebesgue dominated convergence theorem, we have that fn → f in Lp(Ω)
as n→∞, while by Exercise ??,

∂fn
∂xi

(x) = ϕn(x)
∂f

∂xi
(x) + f(x)

∂ϕn
∂xi

(x).

Again by the Lebesgue dominated convergence theorem, ϕn
∂f
∂xi
→ ∂f

∂xi
in Lp(Ω)

as n→∞, while∫
Ω

∣∣∣∣f(x)
∂ϕn
∂xi

(x)

∣∣∣∣p dx =
1

np

∫
Ω

∣∣∣∣f(x)
∂ϕ

∂xi

(x
n

)∣∣∣∣p dx ≤ C

np

∫
Ω

|f(x)|pdx→ 0
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as n→∞. This concludes the proof.
When studing regular domains, the standard strategy is to consider the

following.

• The flat case, that is Ω = RN+

• The case of a supergraph,

Ω = {x ∈ RN : xN > h(x′)},

• The general case, using partitions of unity.

Lemma 33 Let Ω = RN+ and 1 ≤ p <∞. Then the space C∞(Ω) ∩W 1,p(Ω) is
dense in W 1,p(Ω).

Proof. Let f ∈ W 1,p(RN+ ). Given δ > 0, consider the function fδ : RN−1 ×
(−δ,∞)→ R, given by

fδ(x) := f(x′, xN + δ).

By Lemma 31,

lim
δ→0+

∫
RN+
|f(x′, xN+δ)−f(x)|p = 0, lim

δ→0+

∫
RN+

∣∣∣∣ ∂f∂xi (x′, xN + δ)− ∂f

∂xi
(x)

∣∣∣∣p = 0.

We leave as an exercise to check that fδ ∈ W 1,p(RN−1 × (−δ,∞)) and that
∂fδ
∂xi

(x) = ∂f
∂xi

(x′, xN + δ). Since dist
(
RN+ , ∂(RN−1 × (−δ,∞))

)
= δ > 0, by

Lemma 14,
‖(fδ) ∗ ϕε − fδ‖W 1,p(RN+ ) → 0 as ε→ 0+.

Note that (fδ) ∗ ϕε ∈ C∞(RN ).
Friday, January, 28, 2022

Lemma 34 Let h : RN−1 → R be a continuous function,

Ω := {x ∈ RN : xN > h(x′)},

and let 1 ≤ p <∞. Then the space C∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω).

Proof. Let f ∈ W 1,p(Ω). By Proposition 32 we can assume that there exists
r > 0 such that f = 0 in Ω \B(0, r). Given 0 < δ << r, consider the set

Ωδ := {x ∈ RN : xN > h(x′)− δ}

and the function fδ : Ωδ → R, given by

fδ(x) := f(x′, xN + δ).

By Lemma 31,

lim
δ→0+

∫
Ω

|f(x′, xN+δ)−f(x)|p = 0, lim
δ→0+

∫
Ω

∣∣∣∣ ∂f∂xi (x′, xN + δ)− ∂f

∂xi
(x)

∣∣∣∣p = 0.
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We leave as an exercise to check that fδ ∈ W 1,p(Ωδ) and that
∂fδ
∂xi

(x) =
∂f
∂xi

(x′, xN + δ). Since dist (Ω ∩B(0, 2r), ∂(Ωδ ∩B(0, 4r))) > 0, by Lemma 14,

‖(fδ) ∗ ϕε − fδ‖W 1,p(Ω∩B(0,2r)) → 0 as ε→ 0+.

Since fδ = 0 and (fδ) ∗ϕε = 0 outside Ω \B(0, 2r) for 0 < ε < δ << r, we have
that

‖(fδ) ∗ ϕε − fδ‖W 1,p(Ω) = ‖(fδ) ∗ ϕε − fδ‖W 1,p(Ω∩B(0,2r)) → 0

as ε→ 0+. Note that (fδ) ∗ ϕε ∈ C∞(RN ).

Remark 35 Observe that if f = 0 in Ω \ B(x0, R), then by taking ε and δ
suffi ciently small, we can assume that (fδ) ∗ ϕε = 0 in Ω \B(x0, 2R).

We now turn to the proof of Theorem 30.
Proof. Fix f ∈W 1,p(Ω). By the Meyers—Serrin theorem without loss of gener-
ality, we may assume that f ∈ C∞(Ω)∩W 1,p(Ω). Moreover, by Proposition 32
we can assume that there exists r > 0 such that f = 0 in Ω \B(0, r).

For every x0 ∈ ∂Ω there exist a rigid motion T x0 : RN → RN , with
T x0(x0) = 0, a continuous function hx0 : RN−1 → R, with hx0(0) = 0, and
rx0 > 0 such that in local coordinates is given by

T x0(Ω ∩B(x0, 2rx0)) = {y ∈ B(0, 2rx0) : yN > h(y′)}. (13)

If the set Ω\
⋃
x∈∂ΩB(x, rx) is nonempty, for every x0 ∈ Ω\

⋃
x∈∂ΩB(x, rx) let

B(x0, 2rx0) be any open ball contained in Ω. The family {B(x, rx)}x∈Ω is an
open cover of Ω. Since f = 0 outsideB(0, r), we have that Ω∩B(0, r) is compact.
Hence, there is a finite number of balls B1, . . . , B`, where Bn := B(xn, rn),
that covers Ω ∩K. Let {ψn}`n=1 be a smooth partition of unity subordinated
to B1, . . . , B` (Exercise).
Fix n ∈ {1, . . . , `} and define fn := fψn ∈W 1,p(Ω) (see Exercise 16), where

we extend fn to be zero outside suppψn. There are two cases.
If suppψn is contained in Ω, then we set gn := ψnf ∈ C∞c (RN ). If suppψn

is not contained in Ω, then xn ∈ ∂Ω. Since suppψn ⊂ B(xn, rn), if we consider
the function fn ◦ T−1

n defined in

Ωn := {y ∈ RN : yN > hn(y′)},

we have that fn◦T−1
n ∈W 1,p(Ωn) (exercise). By the previous lemma we can find

a function Gn ∈ C∞(RN ) such that Gn restricted to Ωn belongs to W 1,p(Ωn)
and

‖Gn − fn ◦ T−1
n ‖W 1,p(Ωn) ≤ η/[(1 + Ln)2n], (14)

where Ln := ‖DT n‖∞. Moreover, in view of Remark 35, we can assume that
Gn = 0 outside B(0, 2rn). Then gn := Gn ◦ T n belongs to C∞(RN ) and to
W 1,p(T−1

n (Ωn)) (exercise), with

‖gn − fn‖W 1,p(Ω) = ‖gn − fn‖W 1,p(Ω∩B(xn,2rn)) = ‖gn − fn‖W 1,p(T−1n (Ωn∩B(0,2rn)))

= ‖gn − fn‖W 1,p(T−1n (Ωn))) ≤ Ln‖Gn − fn ◦ T
−1
n ‖W 1,p(Ωn) ≤ η/2n,
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where we used (13), the facts that fn = 0 outside B(xn, rn) and Gn = 0

outside B(0, 2rn). Define the function g :=
∑`
n=1 gn. Then g ∈ C∞(RN ) and

g ∈W 1,p(Ω). Moreover,

‖f − g‖W 1,p(Ω) ≤
∑̀
i=1

‖ψnf − gn‖W 1,p(Ω) ≤ η
∑̀
i=1

2−i ≤ η.

This concludes the proof.
Monday, January 31, 2022

Exercise 36 Let Ω, U ⊆ RN be open sets, let Ψ : U → Ω be invertible, with
Ψ and Ψ−1 Lipschitz functions, and let f ∈ W 1,p (Ω), 1 ≤ p < ∞. Then
f ◦Ψ ∈W 1,p (U) and for all i = 1, . . . , N and for LN -a.e. y ∈ U ,

∂ (f ◦Ψ)

∂yi
(y) =

N∑
j=1

∂f

∂xj
(Ψ (y))

∂Ψj

∂yi
(y) .

2 Absolute Continuity on Lines

We recall some facts about absolute continuous functions.

Definition 37 Let I ⊆ R be an interval. A function f : I → R is said to be
absolutely continuous on I if for every ε > 0 there exists δ > 0 such that∑̀

k=1

|f (bk)− f (ak) | ≤ ε (15)

for every finite number of nonoverlapping intervals (ak, bk), k = 1, . . . , `, with
[ak, bk] ⊆ I and ∑̀

k=1

(bk − ak) ≤ δ.

The space of all absolutely continuous functions f : I → RN is denoted by
AC (I).

Theorem 38 Let g : [a, b]→ R be a Lebesgue integrable function and let

f(x) :=

∫ x

a

g(t) dt.

Then f is absolutely continuous and f ′(x) = g(x) for L1 a.e. x ∈ [a, b].

Theorem 39 (Fundamental Theorem of Calculus) Let f : [a, b]→ R. Then
f is absolutely continuous in [a, b] if and only if f is differentiable L1-a.e. in
[a, b], f ′ is Lebesgue integrable, and the fundamental theorem of calculus is valid,
that is, for all x, x0 ∈ [a, b],

f (x) = f (x0) +

∫ x

x0

f ′(t) dt. (16)
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Definition 40 Let E ⊆ R and let f : E → R. We say that f satisfies the Lusin
(N) property if

L1(f(D)) = 0

for every set D ⊆ E with L1(D) = 0.

Theorem 41 (Chain rule) Let I, J ⊆ R be two intervals and let f : J → R
and g : I → J be such that f, g, and f ◦ g are differentiable L1-a.e. in their
respective domains. If f satisfies the Lusin (N) property, then for L1-a.e. x ∈ I,

(f ◦ g)′(x) = f ′(g(x))g′(x), (17)

where f ′(g(x))g′(x) is interpreted to be zero whenever g′(x) = 0 (even if f is
not differentiable at g(x)).

The next theorem relates weak partial derivatives with the (classical) partial
derivatives. Given x = (x1, . . . , xN ) ∈ RN and i ∈ {1, . . . , N} we denote by x′i
the vector of RN−1 obtained from x by removing the i-th component xi. With
a slight abuse of notation we write

x = (x′i, xi) ∈ RN−1 × R. (18)

Theorem 42 (Absolute Continuity on Lines) Let Ω ⊆ RN be an open set
and let 1 ≤ p < ∞. A function f ∈ Lp (Ω) belongs to the space W 1,p (Ω) if
and only if it has a representative f that is absolutely continuous on LN−1 a.e.
line segments of Ω that are parallel to the coordinate axes, and whose first order
(classical) partial derivatives belong to Lp (Ω). Moreover the (classical) partial
derivatives of f agree LN a.e. with the weak derivatives of f .

Proof. Step 1: Assume that f ∈ W 1,p (Ω). Consider a sequence of stan-
dard mollifiers {ϕε}ε>0 and for every ε > 0 define fε := f ∗ ϕε in Ωε :=
{x ∈ Ω : dist (x, ∂Ω) > ε}. By Lemma 14,

lim
ε→0+

∫
Ωε

‖∇fε (x)−∇f (x) ‖pdx = 0.

It follows by Fubini’s theorem that for all i = 1, . . . , N ,

lim
ε→0+

∫
RN−1

(∫
(Ωε)xi

‖∇fε (xi, xi)−∇f (xi, xi) ‖pdxi

)
dxi = 0,

where (Ωε)xi := {xi ∈ R : (xi, xi) ∈ Ωε}, and so we may find a subsequence
{εn} such that for all i = 1, . . . , N and for LN−1 a.e. xi ∈ RN−1,

lim
n→∞

∫
(Ωεn )xi

‖∇fεn (xi, xi)−∇f (xi, xi) ‖pdxi = 0. (19)

Set fn := fεn and

E :=
{
x ∈ Ω : lim

n→∞
fn (x) exists in R

}
.
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Since E contains every Lebesgue points of f , we have that LN (Ω \ E) = 0.
Define

f (x) :=

{
lim
n→∞

fn (x) if x ∈ E,
0 otherwise.

The function f is a representative of f , since by Theorem 13, {fn} converges
pointwise at every Lebesgue point of f . It remains to prove that f has the
desired properties.
By Fubini’s theorem for every i = 1, . . . , N we have that∫

RN−1

(∫
Ωxi

‖∇f (xi, xi) ‖pdxi

)
dxi <∞

and ∫
RN−1

L1 ({xi ∈ Ωxi : (xi, xi) /∈ E}) dxi = 0,

where Ωxi := {xi ∈ R : (xi, xi) ∈ Ω}, and so we may find a set Ni ⊂ RN−1, with
LN−1 (Ni) = 0, such that for all xi ∈ RN−1 \Ni for which Ωxi is nonempty we
have that ∫

Ωxi

‖∇f (xi, xi) ‖pdxi <∞, (20)

(19) holds for all i = 1, . . . , N and (xi, xi) ∈ E for L1 a.e. xi ∈ Ωxi .
Wednesday, February 2, 2022

Proof. Fix any such xi and let I ⊆ Ωxi be a maximal interval. Fix t0 ∈ I
such that (xi, t0) ∈ E and let t ∈ I. For all n large, the interval of endpoints t
and t0 is contained in (Ωεn)xi and so, since fn ∈ C∞(Ωεn), by the fundamental
theorem of calculus,

fn (xi, t) = fn (xi, t0) +

∫ t

t0

∂fn
∂xi

(xi, s) ds.

Since (xi, t0) ∈ E. Then fn (xi, t0) → f (xi, t0) ∈ R. On the other hand, by
(19)

lim
n→∞

∫ t

t0

∣∣∣∣∂fn∂xi
(xi, s)−

∂fn
∂xi

(xi, s)

∣∣∣∣ ds = 0. (21)

Hencewe have that there exists the limit

lim
n→∞

fn (xi, t) = lim
n→∞

(
fn (xi, t0) +

∫ t

t0

∂fn
∂xi

(xi, s) ds

)
= f (xi, t0) +

∫ t

t0

∂f

∂xi
(xi, s) ds.

Note that by the definition of E and f , this implies, in particular, that

(xi, t) ∈ E (22)
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and that

f (xi, t) = f (xi, t0) +

∫ t

t0

∂f

∂xi
(xi, s) ds (23)

for all t ∈ I. Since f (xi, ·) satisfies the fundamental theorem of calculus, it is

locally absolutely continuous in I and ∂f
∂xN

(xi, t) = ∂f
∂xi

(xi, t) for L1 a.e. t ∈ I.
We can now apply exercise 43 to conclude that f (xi, ·) is absolutely continuous
in I.
Step 2: Assume that f admits a representative f that is absolutely continuous
on LN−1 a.e. line segments of Ω that are parallel to the coordinate axes, and
whose first order (classical) partial derivatives belong to Lp (Ω). Fix i = 1, . . . , N
and let xi ∈ RN−1 be such that f (xi, ·) is absolutely continuous on the open set
Ωxi . Then for every function ϕ ∈ C∞c (Ω), by the integration by parts formula
for absolutely continuous functions, we have∫

Ωxi

f (xi, t)
∂ϕ

∂xi
(xi, t) dt = −

∫
Ωxi

∂f

∂xi
(xi, t)ϕ (xi, t) dt.

Since this holds for LN−1 a.e. xi ∈ RN−1, integrating over RN−1 and using
Fubini’s theorem yields∫

Ω

f (x)
∂ϕ

∂xi
(x) dx = −

∫
Ω

∂f

∂xi
(x)ϕ (x) dx,

which implies that ∂f
∂xi
∈ Lp (Ω) is the weak partial derivative of f with respect

to xi . This shows that f ∈W 1,p (Ω).

Exercise 43 Let I ⊆ R and let f : I → R be locally absolutely continuous with
f ′ ∈ Lp(I), 1 ≤ p ≤ ∞. Prove that f is absolutely continuous.

As a consequence of Theorem 42 and of the properties of absolutely contin-
uous functions we have the following results.

Exercise 44 Let Ω ⊆ RN be an open set and let 1 ≤ p < ∞. Using Theorem
42 prove the following results.

(i) (Chain rule) Let h : R→ R be Lipschitz and let f ∈ W 1,p (Ω). Assume
that h (0) = 0 if Ω has infinite measure. Then h ◦ f ∈ W 1,p (Ω) and for
all i = 1, . . . , N and for LN a.e. x ∈ Ω,

∂ (h ◦ f)

∂xi
(x) = h′

(
f (x)

) ∂f
∂xi

(x) ,

where h′
(
f (x)

) ∂f
∂xi

(x) is interpreted to be zero whenever
∂f

∂xi
(x) = 0.

What can you say about the case p =∞?
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(ii) (Product rule) Let f, g ∈ W 1,p (Ω) ∩ L∞ (Ω). Then fg ∈ W 1,p (Ω) ∩
L∞ (Ω) for all i = 1, . . . , N and for LN a.e. x ∈ Ω,

∂ (fg)

∂xi
(x) = g (x)

∂f

∂xi
(x) + f (x)

∂g

∂xi
(x) .

What can you say about the case p =∞?

(iii) (Reflection) Let Ω = RN+ :=
{

(x′, xN ) ∈ RN−1 × R : xN > 0
}
and let

f ∈W 1,p
(
RN+
)
. Then the function

g (x) :=

{
f (x) if xN > 0,
f (x′,−xN ) if xN < 0

belongs to W 1,p
(
RN
)
and for all i = 1, . . . , N and for LN a.e. x ∈ RN

∂g

∂xi
(x) =


∂f

∂xi
(x) if xN > 0,

(−1)
δiN ∂f

∂xi
(x′,−xN ) if xN < 0.

(iv) Let E ⊂ R be such that L1 (E) = 0, let f ∈ W 1,1
loc (Ω), and let f be its

precise representative given in Theorem 42. Prove that ∇f (x) = 0 for

LN a.e. x ∈
(
f
)−1

(E).

Friday, February 4, 2022

3 Difference Quotients

Let Ω ⊆ RN be an open set and for every i = 1, . . . , N and h > 0, let

Ωh,i := {x ∈ Ω : x+ tei ∈ Ω for all 0 < t ≤ h} .

Theorem 45 Let Ω ⊆ RN be an open set, 1 < p <∞, and f ∈ Lp (Ω) be such
that

lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx <∞ (24)

for every i = 1, . . . , N , then f ∈W 1,p (Ω) and∫
Ω

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx ≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx.

Definition 46 Let E ⊆ RN be a Lebesgue measurable set, 1 ≤ p < ∞, and
fn, f ∈ Lp(E). We say that the sequence {fn}n converges weakly in Lp(E) to
f , and we write fn ⇀ f in Lp(E), if for every g ∈ Lp′(E),

lim
n→∞

∫
E

fn(x)g(x) dx =

∫
E

f(x)g(x) dx.
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The following compactness theorem is crucial.

Theorem 47 Let E ⊆ RN be a Lebesgue measurable set, 1 < p < ∞, and let
{fn}n be a bounded sequence in Lp(E). Then there exist a subsequence {fnk}k
of {fn}n and f ∈ Lp (E) such that fnk ⇀ f in Lp (E).

The previous theorem is a consequence of the fact that when 1 < p < ∞,
the space Lp (E) is reflexive, which means that the bidual of Lp (E) can be
identified with Lp (E).

Theorem 48 (Riesz representation theorem) Let E ⊆ RN be a Lebesgue
measurable set, 1 < p < ∞. For every linear and continuous function T :
Lp (E)→ R, there exists a unique function g ∈ Lp′(E) such that

T (f) =

∫
E

f(x)g(x) dx for every f ∈ Lp(E),

with
‖T‖(Lp(E))′ = ‖g‖Lp′ (E).

Conversely, for every g ∈ Lp′(Ω), the functional

Tg(f) =

∫
E

f(x)g(x) dx for every f ∈ Lp(E)

is linear and continuous.

Hence, by identifying Tg with g, we can identify the dual of Lp (E) with
Lp
′
(E). Since 1 < p′ < ∞, we also have that (Lp

′
(E))′ can be identified with

Lp (E). Thus,

(Lp (E))′′ = ((Lp (E))′)′ ∼= (Lp
′
(E))′ ∼= Lp (E) ,

which shows that Lp(E) is reflexive when 1 < p <∞. This is no longer true for
p = 1 and p =∞.

We begin with a useful compactness result.

Lemma 49 (Compactness) Let Ω ⊆ RN be an open set and let 1 < p < ∞.
Assume that {fn}n is bounded W 1,p (Ω). Then there exist a subsequence {fnk}k
of {un}n and f ∈ W 1,p (Ω) such that fnk ⇀ f in Lp (Ω) and

∂fnk
∂xi

⇀ ∂f
∂xi

in
Lp (Ω)

Proof. Since {fn}n and {∇fn}n are bounded in the reflexive Banach spaces
Lp (Ω) and Lp

(
Ω;RN

)
, respectively, we may select the subsequence {fnk}k such

that fnk ⇀ f in Lp (Ω) and
∂fnk
∂xi

⇀ vi in Lp (Ω) for all i = 1, . . . , N and for
some functions f, v1, . . . , vN ∈ Lp (Ω). It remains to show that f ∈ W 1,p (Ω).
For every φ ∈ C∞c (Ω), i = 1, . . . , N , and k ∈ N we have∫

Ω

fnk
∂φ

∂xi
dx = −

∫
Ω

∂fnk
∂xi

φdx.
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Letting k →∞ in the previous equality yields∫
Ω

f
∂φ

∂xi
dx = −

∫
Ω

viφdx,

which shows that ∂u
∂xi

= vi. Hence, u ∈W 1,p (Ω).

Lemma 50 Let E ⊆ RN be a Lebesgue measurable set, 1 ≤ p < ∞, and
f ∈ Lp(E). Then for every Lebesgue measurable set F ⊆ E,∫

F

|fε(x)|pdx ≤
∫
Fε

|f(x)|pdx

where fε = f ∗ ϕε and Fε = {x ∈ E : dist(x, F ) < ε}.

Proof. For x ∈ F we have

fε(x) =

∫
E

ϕε(x− y)f(y) dy

=

∫
E

(ϕε(x− y))1/p′(ϕε(x− y))1/pf(y) dy.

Hence, by Hölder’s inequality

|fε(x)| ≤
(∫

E

ϕε(x− y) dy

)1/p′ (∫
E

ϕε(x− y)|f(y)|pdy
)1/p

.

In turn,

|fε(x)|p ≤
∫
E

ϕε(x− y)|f(y)|pdy

=

∫
B(x,ε)∩E

ϕε(x− y)|f(y)|pdy

where we used the fact that
∫
E
ϕε(x−y) dy ≤

∫
RN ϕε(x−y) dy = 1. Note that

if y ∈ B(x, ε) ∩ E, then ‖x − y‖ < ε, and so, dist(x, F ) < ε, that is, y ∈ Fε.
Therefore, B(x, ε) ∩ E ⊆ Fε, and so,

|fε(x)|p ≤
∫
Fε

ϕε(x− y)|f(y)|pdy

Integrating over F and using Fubini’s theorem gives∫
F

|fε(x)|pdx ≤
∫
F

∫
Fε

ϕε(x− y)|f(y)|pdydx

=

∫
Fε

|f(y)|p
(∫

F

ϕε(x− y)dx

)
dy

≤
∫
Fε

|f(y)|p
(∫

RN
ϕε(x− y)dx

)
dy =

∫
Fε

|f(y)|pdy.
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We turn to the proof of the theorem.
Proof. Step 1: Assume that f ∈ C∞ (Ω). Let U b Ω. Then U ⊆ Ωh,i for all
h > 0 suffi ciently small. For every x ∈ U ,

∂f

∂xi
(x) = lim

h→0+

f(x+ hei)− f(x)

h
,

and so, by Fatou’s lemma,∫
U

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx =

∫
U

lim
h→0+

|f(x+ hei)− f(x)|p
hp

dx

≤ lim inf
h→0+

∫
U

|f(x+ hei)− f(x)|p
hp

dx

≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx.

Letting U ↗ Ω and using the Lebesgue monotone convergence theorem, we have∫
Ω

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx ≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx.

Step 2: Let p > 1 and f ∈ Lp(Ω) be such that

lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx =: M <∞.

Let U b Ω and for 0 < ε < dist (U, ∂Ω) define fε := ϕε ∗ f , where ϕε is a
standard mollifier. Then for 0 < h < dist (U, ∂Ω)− ε, by Lemma 50,∫

Uh,i

|fε(x+ hei)− fε(x)|p

hp
dx =

∫
Uh,i

|((f (·+ hei)− f) ∗ ϕε)(x)|p

hp
dx

≤
∫

(Uh,i)ε

|f(x+ hei)− f(x)|p

hp
dx

≤
∫

Ωh,i

|f(x+ hei)− f(x)|p
hp

dx.

Letting h→ 0+ and using the previous step applied to fε gives∫
U

∣∣∣∣∂fε∂xi
(x)

∣∣∣∣p dx ≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|
hp

p

dx. (25)

By compactness, there exist εn → 0+ and v ∈ W 1,p(U) such that fεn ⇀ v in
W 1,p(U), but since fεn → f in Lp(U), necessarily, f = v. Thus, f ∈ W 1,p(U).
Since this is true for every U b Ω, we have that f ∈W 1,p

loc (Ω). Since ∂fε
∂xi
→ ∂f

∂xi
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in Lp (U) as ε→ 0+ by Lemma 14, letting ε→ 0+ in the previous inequality,we
obtain ∫

U

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx ≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|
hp

p

dx. (26)

By letting U ↗ Ω and using the Lebesgue monotone convergence theorem, we
obtain ∫

U

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx ≤ lim inf
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|
hp

p

dx. (27)

Exercise 51 Prove that for p = 1 the last part of the statement of the theorem
is false. Hint: It is enough to construct an example for N = 1.

Exercise 52 Let Ω ⊆ RN be an open set and 1 ≤ p <∞. Prove that for every
f ∈W 1,p(Ω),∫

Ω

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣p dx = lim
h→0+

∫
Ωh,i

|f(x+ hei)− f(x)|p
hp

dx.

Monday, February 7, 2022

4 Embeddings: 1 ≤ p < N
Consider a function f ∈ L1

loc

(
RN
)
such that its distributional gradient ∇f

belongs to Lp
(
RN ;RN

)
for some 1 ≤ p < ∞. We are interested in finding an

exponent q such that f ∈ Lq
(
RN
)
, and so we are after an inequality of the

type
‖f‖Lq(RN ) ≤ c ‖∇f‖Lp(RN ;RN ) , (28)

which should hold for all such f .
Assume for simplicity that f ∈ C1

c

(
RN
)
and for r > 0 define the rescaled

function
fr (x) := f (rx) , x ∈ RN .

Applying the previous inequality to fr we get(∫
RN
|f (rx)|q dx

) 1
q

=

(∫
RN
|fr (x)|q dx

) 1
q

≤ c
(∫

RN
‖∇fr (x) ‖pdx

) 1
p

= c

(
rp
∫
RN
‖∇f (rx) ‖pdx

) 1
p

,

or, equivalently, after the change of variables y := rx,(
1

rN

∫
RN
|f (y)|q dy

) 1
q

≤ c
(
rp

rN

∫
RN
‖∇f (y) ‖pdy

) 1
p

,
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that is, (∫
RN
|f (y)|q dy

) 1
q

≤ cr1−Np +N
q

(∫
RN
‖∇f (y) ‖pdy

) 1
p

.

If 1− N
p + N

q > 0, let r → 0+ to conclude that f ≡ 0, while if 1− N
p + N

q < 0,
let r →∞ to conclude again that f ≡ 0. Hence, the only possible case is when

N

q
=
N

p
− 1.

So in order for q to be positive, we need p < N in which case

q = p∗ :=
Np

N − p .

The number p∗ is called Sobolev critical exponent.

Theorem 53 (Sobolev—Gagliardo—Nirenberg Embedding) Let 1 ≤ p <
N . Then for every f ∈W 1,p

(
RN
)
,(∫

RN
|f (x)|p

∗
dx

) 1
p∗

≤ C
(∫

RN
‖∇f (x) ‖pdx

) 1
p

,

where C = C (N, p) > 0. In particular, W 1,p
(
RN
)
is continuously embedded in

Lp
∗ (RN).
The proof makes use of the following result, which follows from Hölder’s

inequality.

Exercise 54 Let 1 ≤ p1, . . . , pn, p ≤ ∞, with 1
p1

+ · · · + 1
pn

= 1
p , and fi ∈

Lpi
(
RN
)
, i = 1, . . . , n. Prove that∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
Lp

≤
n∏
i=1

‖fi‖Lpi .

Exercise 55 Prove that if g : R→ R is measurable with
∫
R |g (t)|p dt <∞ for

some p > 0, then

lim inf
x→−∞

|g (x)| = 0, lim inf
x→∞

|g (x)| = 0

and that in general one cannot replace the limit inferiors with actual limits.

In what follows, we use the notation (18).

Lemma 56 Let N ≥ 2 and let fi ∈ LN−1
(
RN−1

)
, i = 1, . . . , N . Then the

function
f (x) := f1 (x′1) f2 (x′2) · · · fN (x′N ) , x ∈ RN ,

belongs to L1
(
RN
)
and

‖f‖L1(RN ) ≤
N∏
i=1

‖fi‖LN−1(RN−1) .
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Proof. The proof is by induction on N . If N = 2, then

f (x) := f1 (x2) f2 (x1) , x = (x1, x2) ∈ R2.

Integrating both sides with respect to x and using Fubini’s theorem, we get∫
R2
|f (x)| dx =

∫
R
|f1 (x2)| dx2

∫
R
|f2 (x1)| dx1.

Assume next that the result is true for N and let’s prove it for N + 1. Let

f (x) := f1 (x′1) f2 (x′2) · · · fN+1

(
x′N+1

)
, x ∈ RN+1,

where fi ∈ LN
(
RN
)
, i = 1, . . . , N + 1. Fix xN+1 ∈ R. Integrating both sides

with respect to x1, . . . , xN and using Hölder’s inequality we get∫
RN
|f (x)| dx1 · · · dxN

≤ ‖fN+1‖LN (RN )

(∫
RN

N∏
i=1

|fi (x′i)|
N
N−1 dx1 · · · dxN

)N−1
N

.

For every i = 1, . . . , N we denote by x′′i the N − 1 dimensional vector obtained
by removing the last component from x′i and with an abuse of notation we
write x′i = (x′′i , xN+1) ∈ RN−1 × R. Since xN+1 is fixed, by the induction

hypothesis applied to the functions gi (x′′i ) := |fi (x′′i , xN+1)|
N
N−1 , x′′i ∈ RN−1,

i = 1, . . . , N , we obtain that∫
RN

N∏
i=1

|fi (x′i)|
N
N−1 dx1 · · · dxN ≤

N∏
i=1

‖gi‖LN−1(RN−1) ,

and so ∫
RN
|f (x)| dx1 · · · dxN

≤ ‖fN+1‖LN (RN )

N∏
i=1

(∫
RN−1

|fi (x′′i , xN+1)|N dx′′i

) 1
N

.

Integrating both sides with respect to xN+1 and using Fubini’s theorem and the
extended Hölder’s inequality (see the previous exercise), with

1 =
1

N
+ · · ·+ 1

N︸ ︷︷ ︸
N

,

we get ∫
RN
|f (x)| dx ≤

N+1∏
i=1

‖fi‖LN (RN ) ,

22



which concludes the proof.
Wednesday, February 9, 2022

We now turn to the proof of the Sobolev—Gagliardo—Nirenberg embedding
theorem.
Proof. Step 1: Assume first that p = 1. By mollification we can assume that
f ∈ C1

(
RN
)
∩W 1,1(RN ). Fix i = 1, . . . , N . By Fubini’s theorem for LN−1

a.e. x′i ∈ RN−1 we have that the function g (t) := f (x′i, t), t ∈ R, belongs to
Lp (R) ∩ C1 (R) with g′ ∈ L1 (R). By the previous exercise

lim inf
t→−∞

|g (t)| = 0,

and so we may find a sequence tn → −∞ such that g (tn)→ 0. Hence, for every
t ∈ R we have that

g (t) = g (tn) +

∫ t

tn

g′ (s) ds.

Letting n → ∞ and using the fact that g′ ∈ L1 (R), by Lebesgue dominated
convergence theorem we conclude that for each i = 1, . . . , N and x ∈ RN we
have

f (x) =

∫ xi

−∞

∂f

∂xi
(x′i, yi) dyi,

and so

|f (x)| ≤
∫
R

∣∣∣∣ ∂f∂xi (x′i, yi)

∣∣∣∣ dyi
for all x ∈ RN . Multiplying these N inequalities and raising to power 1

N−1 , we
get

|f (x)|
N
N−1 ≤

N∏
i=1

(∫
R

∣∣∣∣ ∂f∂xi (x′i, yi)

∣∣∣∣ dyi) 1
N−1

=:

N∏
i=1

wi (x′i)

for all x ∈ RN . We now apply the previous lemma to the function

w (x) :=

N∏
i=1

wi (x′i) , x ∈ RN ,

to obtain that∫
RN
|f (x)|

N
N−1 dx ≤

∫
RN
|w (x)| dx ≤

N∏
i=1

‖wi‖LN−1(RN−1)

=

N∏
i=1

(∫
RN

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ dx) 1
N−1

≤
(∫

RN
‖∇f (x) ‖ dx

) N
N−1

,

where we have used Fubini’s theorem. This gives the desired inequality for
p = 1.
Note that Step 1 continues to hold if we assume that f ∈ Lq(RN ) for some

q ≥ 1 and ∇f ∈ L1(RN ;RN ).
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Step 2: Assume next that 1 < p < N and that f ∈ Lp
∗ (RN) ∩W 1,p(RN ).

Again by mollification we can assume that f ∈ C1
(
RN
)
. Define

g := |f |q , q :=
p (N − 1)

N − p .

Note that since q > 1, we have that g ∈ C1
(
RN
)
. Moreover, ∇g ∈ Lp

(
RN ;RN

)
(see below), while g ∈ L1∗

(
RN
)
. Applying Step 1 to the function g we get

(∫
RN
|f |

pN
N−p dx

)N−1
N

=

(∫
RN
|g|

N
N−1 dx

)N−1
N

≤
∫
RN
‖∇g‖ dx ≤ q

∫
RN
|f |q−1 ‖∇f‖ dx

≤ q
(∫

RN
|f |(q−1)p′

dx

) 1
p′
(∫

RN
‖∇f‖pdx

) 1
p

,

where in the last inequality we have used Hölder’s inequality. Since

(q − 1) p′ = p∗,

if f 6= 0 we obtain(∫
RN
|f |

pN
N−p dx

)N−1
N − p−1p

=

(∫
RN
|f |

pN
N−p dx

)N−p
Np

≤ q
(∫

RN
‖∇f‖pdx

) 1
p

,

which proves the result. Note that here it was important to know that f ∈

Lp
∗ (RN), since we divided by (∫RN |f |(q−1)p′

dx
) 1
p′
.

Step 3: Assume that f ∈W 1,p
(
RN
)
. For n ∈ N and x ∈ RN define

gn (x) :=

 |f (x)| − 1
n if 1

n ≤ |f (x)| ≤ n,
0 if |f (x)| < 1

n ,
n− 1

n if |f (x)| > 1
n .

By the chain rule (see Exercise 44 (i) and (vi)) for LN a.e. x ∈ RN

‖∇gn (x) ‖ =

{
‖∇f (x) ‖ if 1

n < |f (x)| < n,
0 otherwise,

and so ∇gn ∈ Lp
(
RN ;RN

)
, while for every s ≥ 1,∫

RN
|gn|s dx =

∫
{|f |> 1

n}
|gn|s dx

≤
(
n− 1

n

)s
LN

({
x ∈ RN : |f (x)| > 1

n

})
<∞,
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since f ∈ Lp (R). Hence, gn ∈ Lp
∗ (RN) ∩W 1,p

(
RN
)
and so by the previous

step(∫
{ 1n≤|f |≤n}

(
|f (x)| − 1

n

) pN
N−p

dx

)N−p
Np

≤
(∫

RN
|gn|

pN
N−p dx

)N−p
Np

≤ q
(∫

RN
‖∇gn‖pdx

) 1
p

= q

(∫
{ 1n≤|f |≤n}

‖∇f‖pdx
) 1
p

≤ q
(∫

RN
‖∇f‖pdx

) 1
p

.

Letting first n→∞ and using Fatou’s lemma we obtain the desired result.

Exercise 57 Let k ∈ N and 1 ≤ p <∞ be such that k ≥ 2 and kp < N . Prove
that

(i) W k+j,p
(
RN
)
is continuously embedded in W j,q

(
RN
)
for all j ∈ N and for

all p ≤ q ≤ Np
N−kp ,

(ii) W k,p
(
RN
)
is continuously embedded in Lq

(
RN
)
for all p ≤ q ≤ Np

N−kp .

Remark 58 Note that in the last step of the proof of the previous theorem
we only used the fact that f vanishes at infinity and its distributional gradient
∇f ∈ Lp

(
RN ;RN

)
. In particular, it holds if we assume that f ∈ Lq(RN ) for

some 1 ≤ q <∞ and the distributional gradiend ∇f ∈ Lp
(
RN ;RN

)
.

Remark 59 In view of Theorem 30 in Step 1 and 2 we could have assumed
that f ∈ C1

c (RN ) and so avoid Step 3. However, see the previous remark.

Remark 60 The previous theorem continues to hold in BV . To be precise, one
can show that if N ≥ 2 and f ∈ BV

(
RN
)
, then(∫

RN
|f (x)|1

∗
dx

) 1
1∗

≤ C‖Df‖(RN ),

where C = C (N) > 0.

Friday, February 11, 2022
Next we discuss the validity of the Sobolev—Gagliardo—Nirenberg embedding

theorem for arbitrary domains.

Exercise 61 (Room and Passages) Let {hn} and {δ2n} be two sequences of
positive numbers such that

∞∑
n=1

hn = ` <∞, 0 < const. ≤ hn+1

hn
≤ 1, 0 < δ2n ≤ h2n+1,

and for n ∈ N let

cn :=

n∑
i=1

hi.
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Define Ω ⊂ R2 to be the union of all sets of the form

Rj := (cj − hj , cj)×
(
−1

2
hj ,

1

2
hj

)
,

Pj+1 := [cj , cj + hj+1]×
(
−1

2
δj+1,

1

2
δj+1

)
,

for j = 1, 3, 5, . . .,

(i) Prove that ∂Ω is a rectifiable curve but Ω is not of class C.

(ii) Let

hn :=
1

n
3
2

, δ2n :=
1

n
5
2

,

and for j = 1, 3, 5, . . .,

f (x, y) :=


j

log 2j
=: Kj in Rj ,

Kj + (Kj+2 −Kj)
x− cj
hj+1

in Pj+1.

Prove that f ∈W 1,2 (Ω) but f /∈ Lq (Ω) for any q > 2.

(iii) Let p > 1, q ≥ 1
2 (2p− 1),

h2n−1 = h2n :=
1

np
, δ2n :=

1

3pn2q+p
,

and for n ∈ N,
f (x, y) :=

1

np
in R2n−1,

and

∇f (x, y) :=

(
(n+ 1)

q − nq
1
np

, 0

)
in P2n.

Prove that ∇f ∈ L2
(
Ω;R2×2

)
but f /∈ L2 (Ω).

Theorem 62 (Rellich-Kondrachov) Let 1 ≤ p < N and let {fn}n be a
bounded sequence inW 1,p

(
RN
)
. Then there exist a subsequence {fnk}k of {fn}n

and a function f ∈ Lp∗
(
RN
)
such that fnk → f in Lqloc

(
RN
)
for all 1 ≤ q < p∗.

Moreover, f ∈W 1,p(RN ) if p > 1.

The proof makes use of the following auxiliary results.

Lemma 63 Let 1 ≤ p <∞ and let f ∈W 1,p
(
RN
)
. Then for all h ∈ RN \{0},∫

RN
|f (x+ h)− f (x)|p dx ≤ ‖h‖p

∫
RN
‖∇f (x) ‖pdx.

Proof. Exercise.
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Lemma 64 Let 1 ≤ p < ∞ and let f ∈ W 1,p
(
RN
)
. For ε > 0 consider

standard mollifiers ϕε. Then∫
RN
|(f ∗ ϕε) (x)− f (x)|p dx ≤ Cεp

∫
RN
‖∇f (x) ‖p dx.

Proof. By Hölder’s inequality and (5) we have

|(f ∗ ϕε) (x)− f (x)|p ≤
∫
RN

ϕε (x− y) |f (y)− f (x)|p dy

≤ C

εN

∫
B(0,ε)

|f (x+ h)− f (x)|p dh.

Hence, by Fubini’s Theorem,∫
RN
|(f ∗ ϕε) (x)− f (x)|p dx ≤ C

εN

∫
B(0,ε)

∫
RN
|f (x+ h)− f (x)|p dxdh.

(29)
In turn, by the previous lemma we get∫

RN
|(f ∗ ϕε) (x)− f (x)|p dx ≤ C

εN

∫
RN
‖∇f (x) ‖p dx

∫
B(0,ε)

‖h‖p dh

= Cεp
∫
RN
‖∇f (x) ‖p dx.

We now turn to the proof of the Rellich-Kondrachov Theorem.
Proof of Theorem 62. Since the sequence {fn}n is bounded in W 1,p

(
RN
)
,

by the Sobolev—Gagliardo—Nirenberg embedding theorem, {fn}n is bounded in
Lp
∗ (RN). Since p∗ > 1, by the reflexivity of Lp

∗ (RN) we may find a subse-
quence {fnk}k such that

fnk ⇀ f in Lp
∗ (
RN
)
.

We claim that fnk → f in Lp (Ω) for every open set Ω ⊂ RN with finite measure.
By the previous lemma and the fact that {fnk}k is bounded in W 1,p

(
RN
)
,

we get

sup
k∈N

∫
RN
|fnk ∗ ϕε − fnk |

p
dx ≤ Cεp sup

k∈N

∫
RN
‖∇fnk‖p dx ≤Mεp,

and so,

lim
ε→0+

sup
k∈N

∫
RN
|fnk ∗ ϕε − fnk |

p
dx = 0. (30)

By Minkowski’s inequality

‖fnk − f‖Lp(Ω) ≤ ‖fnk ∗ ϕε − fnk‖Lp(Ω)+‖fnk ∗ ϕε − f ∗ ϕε‖Lp(Ω)+‖f ∗ ϕε − f‖Lp(Ω) .
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Fix ε > 0. By (30) and Theorem 13(iii) there exists ε̄ depending only on ε such
that for all 0 < ε ≤ ε̄ and all k ∈ N the first and last term in the previous
inequality are both bounded by ε, and so

‖fnk − f‖Lp(Ω) ≤ ‖fnk ∗ ϕε − f ∗ ϕε‖Lp(Ω) + 2ε (31)

for all 0 < ε ≤ ε̄ and all k ∈ N. Hence, to complete the proof it suffi ces to show
that

lim
k→∞

‖fnk ∗ ϕε̄ − f ∗ ϕε̄‖Lp(Ω) = 0. (32)

Since fnk ⇀ f in Lp
(
RN
)
it follows that for all x ∈ RN

(fnk ∗ ϕε̄) (x) =

∫
RN

ϕε̄ (x− y) fn (y) dy

→
∫
RN

ϕε̄ (x− y) f (y) dy = (f ∗ ϕε̄) (x)

as k → ∞. Moreover, reasoning as in (29) and since {fn}k is bounded in
Lp
(
RN
)
, we get

|(fnk ∗ ϕε̄) (x)− (f ∗ ϕε̄) (x)|p ≤ c

ε̄N

∫
B(0,ε)

|fnk (x+ h)− f (x+ h)|p dh

≤ c

ε̄N

for all x ∈ RN and all k ∈ N. Since Ω has finite measure, we are in a position
to apply the Lebesgue dominated convergence theorem to conclude that (32)
holds.
Hence, we have shown that fnk → f in Lp (Ω). Since {fnk}k is bounded in

Lp
∗ (RN), by Vitali’s convergence theorem this implies that fnk → f in Lq (Ω)

for all 1 ≤ q < p∗.

Remark 65 Note that in the case p > 1 we do not need to use the Sobolev—
Gagliardo—Nirenberg embedding theorem since Lp

(
RN
)
is reflexive.

Remark 66 If p = 1, one can show that the function f in the previous theorem
belongs to BV (RN ).

The following exercises show that compactness fails for q = p∗ even for nice
domains and that for general domains even the embedding

W 1,p (Ω)→ Lq (Ω)

f 7→ f

may fail to be compact.

28



Exercise 67 Let 1 ≤ p < N and consider the sequence of functions

fn (x) :=

{
n
N−p
p (1− n‖x‖) if ‖x‖ < 1

n ,
0 if ‖x‖ ≥ 1

n .

Prove that the sequence {fn}n is bounded in W 1,p (B (0, 1)), but does not admit
any subsequence strongly convergent in Lp

∗
(Ω).

Remark 68 In the proof of the Rellich—Kondrachov compactness theorem, we
used the fact that if 1 ≤ p < q < ∞ and {fn}n is bounded in Lp(RN ) and
fn ⇀ f in Lq(RN ), then f ∈ Lp(RN ). To see this, consider a ball B and a
function g ∈ Lp′(B). Since p′ > q′, we have that g ∈ Lq′(B). Therefore,∫

B

fng dx→
∫
B

fg dx

as n → ∞. This shows that fn ⇀ f in Lp(B). By the lower semicontinuity of
the norm with respect to weak convergence,

‖f‖Lp(B) ≤ lim inf
n→∞

‖fn‖Lp(B) ≤ lim inf
n→∞

‖fn‖Lp(RN ) ≤M.

Taking B = B(0, j) and letting j →∞, it follows from the Lebesgue monotone
convergence theorem that

‖f‖Lp(RN ) ≤ lim inf
n→∞

‖fn‖Lp(RN ) ≤M.

Monday, February 14, 2022

5 Embeddings: p = N

The argument at the beginning of the previous section shows that when p ≥ N
we cannot expect an inequality of the form

‖f‖Lq(RN ) ≤ c ‖∇f‖Lp(RN ;RN ) .

However, we could still have embeddings of the type

W 1,p
(
RN
)
→ Lq

(
RN
)

f 7→ f

that is, inequalities of the type

‖f‖Lq(RN ) ≤ c ‖f‖W 1,p(RN ) .

We now show that this is the case when p = N . We begin by observing that
when p ↗ N , then p∗ ↗ ∞, and so one would be tempted to say that if f ∈
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W 1,N
(
RN
)
, then f ∈ L∞

(
RN
)
. For N = 1 this is true since if f ∈ W 1,1 (R),

then a representative f is absolutely continuous in R so that

f (x) = f (0) +

∫ x

0

f
′
(s) ds

and since f
′

= f ′ ∈ L1 (R), we have that f is bounded and continuous. For
N > 1 this is not the case, as the next exercise shows.

Exercise 69 Let Ω = B (0, 1) ⊂ RN , N > 1, and show that the function

f (x) := log

(
log

(
1 +

1

‖x‖

))
, x ∈ B (0, 1) \ {0} ,

belongs to W 1,N (B (0, 1)) but not to L∞ (B (0, 1)).

However, we have the following result.

Theorem 70 The space W 1,N
(
RN
)
is continuously embedded in the space

Lq
(
RN
)
for all N ≤ q <∞.

Proof. Let f ∈W 1,N
(
RN
)
. Define g := |f |t, where t > 1 will be determined so

that g ∈ Lr
(
RN
)
and ∇g ∈ L1(RN ;RN ). By the Sobolev—Gagliardo—Nirenberg

embedding theorem with p = 1 and Remark 58,(∫
RN
|f |

tN
N−1 dx

)N−1
N

=

(∫
RN
|g|

N
N−1 dx

)N−1
N

≤
∫
RN
‖∇g‖ dx ≤ t

∫
RN
|f |t−1 ‖∇f‖ dx

≤ t
(∫

RN
|f |(t−1)N ′

dx

) 1
N′
(∫

RN
‖∇f‖N dx

) 1
N

,

where in the last inequality we have used Hölder’s inequality. Hence,(∫
RN
|f |

tN
N−1 dx

)N−1
Nt

≤ C
(∫

RN
|f |(t−1) N

N−1 dx

)N−1
tN
(∫

RN
‖∇f‖N dx

) 1
Nt

≤ C
[(∫

RN
|f |(t−1) N

N−1 dx

)N−1
N

1
t−1

+

(∫
RN
‖∇f‖N dx

) 1
N

]
,

(33)

where we have used Young’s inequality ab ≤ at + bt
′
for a, b ≥ 0. Taking t = N

yields(∫
RN
|f |

N2

N−1 dx

)N−1
N2

≤ C
[(∫

RN
|f |N dx

) 1
N

+

(∫
RN
‖∇f‖N dx

) 1
N

]
,
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so that f ∈ L N2

N−1
(
RN
)
with continuous embedding. In turn by Theorem ??,

we conclude that
‖f‖Lq(RN ) ≤ C ‖f‖W 1,N (RN )

for all N ≤ q ≤ N2

N−1 .

Taking t = N + 1 ≤ N2

N−1 in (33) and using what we just proved gives(∫
RN
|f |

N(N+1)
N−1 dx

)
N−1

N(N+1)

≤ C
[(∫

RN
|f |

N2

N−1 dx

)N−1
N2

+

(∫
RN
‖∇f‖N dx

) 1
N

]
≤ C ‖f‖W 1,N (RN ) ,

and so the embedding

W 1,p
(
RN
)
→ Lq

(
RN
)

f 7→ f

is continuous for all N ≤ q ≤ N(N+1)
N−1 . We proceed in this fashion taking

t = N + 2, N + 3, etc.

Exercise 71 Let k ∈ N and 1 ≤ p <∞ be such that k ≥ 2 and kp = N . Prove
that

(i) W k+j,p
(
RN
)
is continuously embedded in W j,q

(
RN
)
for all j ∈ N and for

all p ≤ q <∞,

(ii) W k,p
(
RN
)
is continuously embedded in Lq

(
RN
)
for all p ≤ q <∞.

Exercise 72 Prove that for every function f ∈WN,1
(
RN
)
,

‖f‖L∞(RN ) ≤
∥∥∥∥ ∂Nf

∂x1 · · · ∂xN

∥∥∥∥
LN (RN )

.

Theorem 73 (Rellich-Kondrachov) Let N ≥ 2 and let {fn}n be a bounded
sequence in W 1,N

(
RN
)
. Then there exist a subsequence {fnk}k of {fn}n and a

function f ∈W 1,N
(
RN
)
such that fnk → f in Lqloc

(
RN
)
for all 1 ≤ q <∞.

Proof. The proof is similar to the case p < N with the only difference that in
place of p∗ we can consider any exponent q > 1.

Wednesday, February 16, 2022
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6 Embeddings: p > N

We recall that, given an open set Ω ⊆ RN , a function f : Ω → R is Hölder
continuous with exponent α > 0 if there exists a constant C > 0 such that

|f (x)− f (y)| ≤ C‖x− y‖α

for all x,y ∈ Ω. We define the space C0,α
(
Ω
)
as the space of all bounded

functions that are Hölder continuous with exponent α.

Exercise 74 Let Ω ⊆ RN be an open set and let α > 0.

(i) Prove that if α > 1 and Ω is connected, then any function that is Hölder
continuous with exponent α is constant.

(ii) Prove that the space C0,α
(
Ω
)
, 0 < α ≤ 1, is a Banach space with the

norm

‖f‖C0,α(Ω) := sup
x∈Ω
|f (x)|+ sup

x,y∈Ω,x6=y

|f (x)− f (y)|
‖x− y‖α .

Note that if Ω is bounded, then every function f : Ω→ R that is Hölder con-
tinuous with exponent α > 0 is uniformly continuous and thus it can be uniquely
extended to a bounded continuous function on RN . Thus, in the definition of
C0,α

(
Ω
)
one can drop the requirement that the functions are bounded.

The next theorem shows that if p > N a function f ∈ W 1,p
(
RN
)
has a

representative in the space C0,1−Np
(
RN
)
.

Theorem 75 (Morrey) Let N < p < ∞. Then the space W 1,p
(
RN
)
is con-

tinuously embedded in C0,1−Np
(
RN
)
. Moreover, if f ∈ W 1,p

(
RN
)
and f̄ is its

representative in C0,1−Np
(
RN
)
, then

lim
‖x‖→∞

f̄ (x) = 0.

Proof. Let f ∈ W 1,p
(
RN
)
∩ C∞

(
RN
)
and let Qr be any cube with sides of

length r parallel to the axes. Fix x,y ∈ Qr and let

g (t) := f (tx+ (1− t)y) , 0 ≤ t ≤ 1.

By the fundamental theorem of calculus

f (x)− f (y) = g (1)− g (0) =

∫ 1

0

g′ (t) dt

=

∫ 1

0

∇f (tx+ (1− t)y) · (x− y) dt.
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Averaging in the x variable over Qr yields

fQr − f (y) =
1

rN

∫
Qr

∫ 1

0

∇f (tx+ (1− t)y) · (x− y) dt dx,

where fQr is the integral average of f over Qr, that is,

fQr :=
1

rN

∫
Qr

f (x) dx.

Hence,

|fQr − f (y)| ≤
N∑
i=1

1

rN

∫
Qr

∫ 1

0

∣∣∣∣ ∂f∂xi (tx+ (1− t)y)

∣∣∣∣ |xi − yi| dt dx
≤

N∑
i=1

1

rN−1

∫ 1

0

∫
Qr

∣∣∣∣ ∂f∂xi (tx+ (1− t)y)

∣∣∣∣ dx dt
=

N∑
i=1

1

rN−1

∫ 1

0

1

tN

∫
(1−t)y+Qrt

∣∣∣∣ ∂f∂xi (z)

∣∣∣∣ dz dt,
where we have used the fact that |xi − yi| ≤ r in Qr, Tonelli’s theorem, and
the change of variables z = tx + (1− t)y (so that dz = tNdx). By Hölder’s
inequality and the fact that (1− t)y +Qrt ⊂ Qr, we now have

|fQr − f (y)| ≤
N∑
i=1

1

rN−1

∫ 1

0

(rt)
N
p′

tN

(∫
(1−t)y+Qrt

∣∣∣∣ ∂f∂xi (z)

∣∣∣∣p dz
) 1
p

dt

≤ N ‖∇f‖Lp(Qr;RN )

rN−
N
p

rN−1

∫ 1

0

tN−
N
p

tN
dt (34)

=
Np

p−N r1−Np ‖∇f‖Lp(Qr;RN ) .

Since this is true for all y ∈ Qr, if x,y ∈ Qr, then

|f (x)− f (y)| ≤ |f (x)− fQr |+ |f (y)− fQr |

≤ 2Np

p−N r1−Np ‖∇f‖Lp(Qr;RN ) .

Now if x,y ∈ RN , consider a cube Qr containing x and y and of side length
r := 2‖x− y‖. Then the previous inequality yields

|f (x)− f (y)| ≤ C‖x− y‖1−
N
p ‖∇f‖Lp(Qr;RN ) (35)

≤ C‖x− y‖1−
N
p ‖∇f‖Lp(RN ;RN ) .
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Hence, f is Hölder continuous of exponent 1−Np . To prove that f ∈ C
0,1−Np

(
RN
)
,

it remains to show that f is bounded. Let x ∈ RN and consider a cube Q1 con-
taining x and of side length one. By (34) we get

|f (x)| ≤ |fQ1
|+ |f (x)− fQ1

| ≤
∣∣∣∣∫
Q1

f (x) dx

∣∣∣∣+ C ‖∇f‖Lp(Q1;RN ) (36)

≤ ‖f‖Lp(Q1) + C ‖∇f‖Lp(RN ;RN ) ≤ C ‖f‖W 1,p(RN ) ,

where we have used Hölder’s inequality.
Next we remove the extra hypothesis that f ∈ C∞

(
RN
)
. Given any f ∈

W 1,p
(
RN
)
, let f̄ be a representative of f and let x,y ∈ RN be two Lebesgue

points of f̄ and let fε := f ∗ ϕε, where ϕε is a standard mollifier. By (35) we
have that

|fε (x)− fε (y)| ≤ C‖x− y‖1−
N
p ‖∇fε‖Lp(RN ;RN ) .

Since {fε} converge at every Lebesgue point by Theorem 13 and∇fε = (∇f)ε →
∇f in Lp

(
RN ;RN

)
by Theorems 13, letting ε→ 0+, we get∣∣f̄ (x)− f̄ (y)

∣∣ ≤ C‖x− y‖1−Np ‖∇f‖Lp(RN ;RN ) (37)

for all Lebesgue points x,y ∈ RN of f̄ . This implies that

f̄ : {Lebesgue points of f} → R

can be uniquely extended to RN as a Hölder continuous function f̄ of exponent
1− N

p in such a way that (37) holds for all x,y ∈ R
N .

With a similar argument from (36) we conclude that∣∣f̄ (x)
∣∣ ≤ C ‖f‖W 1,p(RN ) (38)

for all x ∈ RN . Hence,∥∥f̄∥∥
C
0,1−N

p (RN )
= sup
x∈RN

∣∣f̄ (x)
∣∣+ sup

x,y∈RN ,x6=y

∣∣f̄ (x)− f̄ (y)
∣∣

‖x− y‖1−
N
p

≤ C ‖f‖W 1,p(RN ) .

Finally, we prove that f̄ (x) → 0 as ‖x‖ → ∞. Let {fn} ⊂ C∞c
(
RN
)
be any

sequence that converges to f in W 1,p
(
RN
)
. The inequality (38) implies, in

particular, that f ∈ L∞
(
RN
)
, with

‖f‖L∞(RN ) ≤ C ‖f‖W 1,p(RN ) .

Replacing f with f − fn gives

‖f − fn‖L∞(RN ) ≤ C ‖f − fn‖W 1,p(RN ) ,

and so ‖f − fn‖L∞(RN ) → 0 as n→∞. Fix ε > 0 and find n̄ ∈ N such that

‖f − fn‖L∞(RN ) ≤ ε
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for all n ≥ n̄. Since fn̄ ∈ C∞c
(
RN
)
, there exists Rn̄ > 0 such that fn̄ (x) = 0

for all ‖x‖ ≥ Rn̄. Hence, for LN -a.e. x ∈ RN with ‖x‖ ≥ Rn̄ we get∣∣f̄ (x)
∣∣ =

∣∣f̄ (x)− fn̄ (x)
∣∣ ≤ ‖f − fn‖L∞(RN ) ≤ ε,

and, since f̄ is continuous, we get that the previous inequality actually holds
for all x ∈ RN with ‖x‖ ≥ Rn̄.

Theorem 76 (Rellich-Kondrachov) Let p > N and let {fn}n be a bounded
sequence in W 1,p

(
RN
)
. Then (up tp precise representatives) there exist a sub-

sequence {fnk}k of {fn}k and a function f ∈ W 1,p
(
RN
)
such that fnk → f in

C0,α
(
Ω
)
for all 0 < α < 1− N

p and for every bounded open set Ω ⊂ RN .

Proof. Exercise.
Friday, February 18, 2022

7 Extension Domains

We begin with the case in which Ω is the half space RN+ .

Theorem 77 For all 1 ≤ p ≤ ∞ there exists a continuous linear operator
E : W 1,p(RN+ ) → W 1,p(RN ) such that for all f ∈ W 1,p(RN+ ), E(f)(x) = f(x)
for LN -a.e. x ∈ RN+ and

‖E(f)‖Lp(RN ) ≤ 2‖f‖Lp(RN+ ),

∥∥∥∥∂E(f)

∂xi

∥∥∥∥
Lp(RN )

≤ 2

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(RN+ )

,

for all i = 1, . . . , N .

Proof. We only do the case p <∞. Let f ∈ C1(RN−1 × [0,∞)) and define

g(x) :=

{
f(x′,−xN ) if xN < 0,
f(x) if xN ≥ 0,

The g ∈ C(RN ) and absolutely continuous on every line parallel to the axes
with

∂g

∂xi
(x) =

{
∂f
∂xi

(x′,−xN ) if xN < 0,
∂f
∂xi

(x) if xN > 0,

if i = 1, . . . , N − 1, while

∂g

∂xN
(x) =

{
− ∂f
∂xN

(x′,−xN ) if xN < 0,
∂f
∂xN

(x) if xN > 0.

It follows by the theorem on absolute continuity that g ∈ W 1,p(RN ). By a

change of variables we have that ‖g‖Lp(RN ) = 2‖f‖Lp(RN+ ),
∥∥∥ ∂g∂xi ∥∥∥Lp(RN )

=
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2
∥∥∥ ∂f∂xi ∥∥∥Lp(RN+ )

. Hence, the mapping f 7→ g is linear and continuous from

W 1,p(RN+ )∩C1(RN−1× [0,∞)) to W 1,p(RN ). By Theorem 30 we can extend it
uniquely to a bounded linear map E : W 1,p(RN+ )→W 1,p(RN ).
Note that ∂g

∂xN
is discontinuous at xN = 0 and so we cannot use this extension

for function f ∈Wm,p(RN+ ) for m ≥ 2.

Exercise 78 Given m ∈ N, and 1 ≤ p ≤ ∞, let f ∈ Wm,p(RN+ ). Prove that
there exist c1, . . . , cm+1 ∈ R such that the function

g(x) :=

{ ∑m+1
n=1 cnf(x′,−nxN ) if xN < 0,

f(x) if xN > 0,

is well-defined and belongs to Wm,p(RN ). Prove also that for every 0 ≤ k ≤ m,
‖∇kg‖Lp(RN ) ≤ c‖∇kf‖Lp(RN+ ) for some constant c = c(m,N, p) > 0.

Next we consider the important special case in which Ω lies above the graph
of a Lipschitz continuous function.

Theorem 79 Let h : RN−1 → R be a Lipschitz continuous function and let

Ω := {(x′, xN ) ∈ RN−1 × R : xN > h(x′)}. (39)

Then for all 1 ≤ p ≤ ∞ there exists a continuous linear operator E : W 1,p(Ω)→
W 1,p(RN ) such that for all f ∈ W 1,p(Ω), E(f)(x) = f(x) for LN -a.e. x ∈ Ω
and

‖E(f)‖Lp(RN ) ≤ 2‖f‖Lp(Ω), ‖∂NE(f)‖Lp(RN ) ≤ 2‖∂Nf‖Lp(Ω), (40)

‖∂iE(f)‖Lp(RN ) ≤ 2‖∂if‖Lp(Ω) + Liph‖∂Nf‖Lp(Ω) (41)

for all i = 1, . . . , N .

Proof. The idea of the proof is to first flatten the boundary to reduce to the
case in which Ω = RN+ and then use the previous theorem. We only prove the
case 1 ≤ p < ∞ and leave the easier case p = ∞ as an exercise. Consider the
transformation Ψ : RN → RN given by Ψ(y) := (y′, yN + h(y′)). Note that Ψ
is invertible, with inverse given by Ψ−1(x) = (x′, xN −h(x′)). Moreover, for all
y, z ∈ RN ,

‖Ψ(y)−Ψ(z)‖ = ‖(y′ − z′, h(y′)− h(z′) + yN − zN )‖
≤
√
‖y′ − z′‖2 + (Liph ‖y′ − z′‖+ |yN − zN |)2

≤ Liph‖y − z‖,

which shows that Ψ (and similarly Ψ−1) is Lipschitz continuous. Since h is
Lipschitz continuous, by Rademacher’s theorem it is differentiable for LN−1-
a.e. y′ ∈ RN−1, and so for any such y′ ∈ RN−1 and for all yN ∈ R we have

JΨ(y) =

(
IN−1 0
∇y′h(y′) 1

)
,
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which implies that det JΨ(y) = 1. Note that Ψ(RN+ ) = Ω.
Given a function f ∈W 1,p(Ω), 1 ≤ p <∞, define the function

w(y) := f(Ψ(y)) = f(y′, yN + h(y′)), y ∈ RN+ .

By Exercise 36 the function w belongs to W 1,p(RN+ ) and the usual chain rule
formula for the partial derivatives holds. By the previous theorem the function
ŵ : RN → R, defined by

ŵ(y) :=

{
w(y) if yN > 0,
w(y′,−yN ) if yN < 0,

belongs toW 1,p(RN ) and the usual chain rule formula for the partial derivatives
holds.
Define the function v : RN → R by

v(x) := (ŵ ◦Ψ−1)(x) =

{
f(x) if xN > h(x′),
f(x′, 2h(x′)− xN ) if xN < h(x′).

(42)

Again by Exercise 36, we have that v ∈ W 1,p(RN ) and the usual chain rule
formula for the partial derivatives holds.
By a change variables and the fact that det∇Ψ = det∇Ψ−1 = 1, we have

that ∫
RN\Ω

|v(x)|pdx =

∫
RN\Ω

|f(x′, 2h(x′)− xN )|pdx =

∫
Ω

|f(y)|pdy.

Since for all i = 1, . . . , N − 1 and for LN -a.e. x ∈ RN \ Ω,

∂iv(x) = ∂if(x′, 2h(x′)− xN ) + ∂Nf(x′, 2h(x′)− xN )∂ih(x′), (43)

again by a change variables we have that(∫
RN\Ω

|∂iv(x)|pdx
)1/p

≤
(∫

RN\Ω
|∂if(x′, 2h(x′)− xN )|pdx

)1/p

+ Liph

(∫
RN\Ω

|∂Nf(x′, 2h(x′)− xN )|pdx
)1/p

≤
(∫

Ω

|∂if(y)|pdy
)1/p

+ Liph

(∫
Ω

|∂Nf(y)|pdy
)1/p

.

Similarly, using the fact that ∂Nv(x) = −∂Nf(x′, 2h(x′) − xN ) for LN -a.e.
x ∈ RN \ Ω, we obtain∫

RN\Ω
|∂Nv(x)|pdx =

∫
RN\Ω

|∂Nf(x′, 2h(x′)− xN )|pdx

=

∫
Ω

|∂Nf(y)|pdy.

Hence, the linear extension operator f ∈ W 1,p(Ω) 7→ E(f) := v ∈ W 1,p(RN ) is
continuous and satisfies (40) and (41).
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Remark 80 Note that the operator E defined in the previous theorem does not
depend on p. However, it has the disadvantage that it cannot be used for higher-
order Sobolev spaces since in (43) the derivatives of h appear, unless one assumes
that h is more regular.

Theorem 81 Let Ω ⊂ RN be an open bounded open set with ∂Ω Lipschitz
continuous. Then for all 1 ≤ p ≤ ∞ there exists a continuous linear operator
E : W 1,p(Ω) → W 1,p(RN ) such that for all f ∈ W 1,p(Ω), E(f)(x) = f(x) for
LN -a.e. x ∈ Ω and

‖E(f)‖Lp(RN ) ≤ C‖f‖Lp(Ω),

‖∇E(f)‖Lp(RN ) ≤ C‖f‖W 1,p(Ω)

for some constant C = C(N, p,Ω) > 0.

Proof. This follows by using partition of unity. The details are in the book.

Corollary 82 Let Ω ⊂ RN be an open bounded set with Lipschitz continuous
boundary and let 1 ≤ p <∞. Then

(i) If 1 ≤ p < N , then W 1,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q ≤ p∗,

(ii) If p = N ≥ 2, then W 1,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q <∞,

(iii) If p > N , then W 1,p(Ω) ↪→ C0,α
(
Ω
)
for all 0 < α ≤ 1− N

p .

Proof. We only prove item (i). Given f ∈ W 1,p(Ω), by the previous theorem
E(f) ∈ W 1,p(RN ). Hence, by the Sobolev—Gagliardo—Nirenberg embedding
theorem,

‖E(f)‖Lp∗ (RN ) ≤ C‖E(f)‖W 1,p(RN ) ≤ C‖f‖W 1,p(Ω).

Since E(f)(x) = f(x) for LN -a.e. x ∈ Ω, it follows that

‖f‖Lp∗ (Ω) = ‖E(f)‖Lp∗ (Ω) ≤ ‖E(f)‖Lp∗ (RN ) ≤ C‖f‖W 1,p(Ω).

Monday, February 21, 2022

8 Poincaré Inequalities

Let Ω ⊆ RN be an open set and let 1 ≤ p ≤ ∞. Poincaré’s inequality is the
following ∫

Ω

|f (x)− fE |p dx ≤ C
∫

Ω

‖∇f‖p dx,

where E ⊆ Ω is a measurable set of finite positive measure and

fE :=
1

|E|

∫
E

f (x) dx. (44)
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Theorem 83 (Poincaré Inequality) Let 1 ≤ p < ∞, Ω ⊂ RN be an open
bounded connected set with Lipschitz continuous boundary, and E ⊆ Ω be a mea-
surable set with positive measure. Then there exists a constant C = C (p,Ω, E) >
0 such that for all f ∈W 1,p (Ω),∫

Ω

|f (x)− fE |p dx ≤ C
∫

Ω

‖∇f(x)‖p dx.

Proof. Assume by contradiction that the result is false. Then we may find a
sequence {fn}n in W 1,p (Ω) such that∫

Ω

|fn (x)− (fn)E |
p
dx ≥ n

∫
Ω

‖∇fn (x) ‖pdx.

Define

gn :=
fn − (fn)E

‖fn − (fn)E‖Lp(Ω)

.

Then gn ∈W 1,p (Ω) with

‖gn‖Lp(Ω) = 1, (gn)E = 0,

∫
Ω

‖∇gn‖p dx ≤
1

n
.

Extend gn by reflection to a function Gn ∈ W 1,p(RN ) with ‖Gn‖W 1,p(RN ) ≤
C‖gn‖W 1,p(Ω). Then {Gn}n is bounded inW 1,p(RN ). By the Rellich-Kondrachov
theorems (p < N , p = N and p > N) there exist a subsequence {Gnk}k and a
function G ∈ Lp(RN ) such that Gnk → G in Lploc(RN ). Let g be the restriction
of G to Ω. Since Ω is bounded, we have that gnk → g in Lp (Ω). It follows that

‖g‖Lp(Ω) = 1, gE = 0.

Moreover, for every ψ ∈ C1
c (Ω) and i = 1, . . . , N , by Hölder’s inequality∣∣∣∣∫

Ω

g
∂ψ

∂xi
dx

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
Ω

gnk
∂ψ

∂xi
dx

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
Ω

ψ
∂gnk
∂xi

dx

∣∣∣∣
≤ lim
k→∞

(∫
Ω

‖∇gnk‖p dx
) 1
p
(∫

Ω

|ψ|p
′
dx

) 1
p′

= 0

and so g ∈ W 1,p (Ω) with ∇g = 0. Since Ω is connected, this implies that g is
constant (exercise), but since gE = 0, then, necessarily, g = 0. This contradicts
the fact that ‖g‖Lp(Ω) = 1 and completes the proof.
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9 The Trace Operator

Since Sobolev functions are Lp functions, they are equivalence classes of func-
tions, and thus talking about their pointwise value does not make sense in
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general. One possibility would be to find a good representative. Indeed, in
the supercritical case p > N and if Ω is an open bounded set with Lipschitz
continuous boundary, we can extend f to W 1,p(RN ) and then apply Morrey’s
theorem to conclude that f has a Hölder continuous representative f̄ . Thus,
the value of f on the boundary of Ω is well-defined.

The situation is quite different in the subcritical and critical cases p ≤ N
(unless N = 1). In this case we will prove that if ∂Ω is suffi ciently regular, say,
Lipschitz continuous, we can introduce a linear operator

Tr : W 1,p(Ω)→ Lploc(∂Ω,HN−1)

such that Tr(f) = f on ∂Ω for all f ∈W 1,p(Ω)∩C(Ω) and for which integration
by parts holds, that is,∫

Ω

f∂iψ dx = −
∫

Ω

ψ∂if dx+

∫
∂Ω

ψTr(f)νi dHN−1 (45)

for all f ∈ W 1,p(Ω), ψ ∈ C1
c (RN ), and i = 1, . . . , N , where ν is the outward

unit normal to ∂Ω. We will study the continuity properties of this operator.
In what follows, we will use the abbreviations

Lp(∂Ω) := Lp(∂Ω,HN−1), Lploc(∂Ω) := Lploc(∂Ω,HN−1), (46)

‖ · ‖Lp(∂Ω) := ‖ · ‖Lp(∂Ω,HN−1).

In this section we establish the existence of a trace operator. As usual, we
begin with the case Ω = RN+ .

Theorem 84 Let 1 ≤ p <∞. There exists a unique linear operator

Tr : W 1,p(RN+ )→ Lp(RN−1)

such that

(i) Tr(f)(x′) = f(x′, 0) for all x′ ∈ RN−1 and for all f ∈ W 1,p(RN+ ) ∩
C(RN−1 × [0,∞)),

(ii) the integration by parts formula∫
RN+

f(x)∂iψ(x) dx = −
∫
RN+

ψ(x)∂if(x) dx+

∫
RN−1

ψ(x′, 0) Tr(f)(x′)δi,N dx
′

holds for all f ∈W 1,p(RN+ ), all ψ ∈ C1
c (RN ), and all i = 1, . . . , N ,

(iii) for every 0 < ε < 1,∫
RN−1

|f(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
RN+
|f(x)|pdx+2p−1εp−1

∫
RN+
|∂Nf(x)|pdx.

(47)
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The function Tr(f) is called the trace of f on ∂Ω.
Proof. Step 1: Assume that f ∈ W 1,p(RN+ ) ∩ C1(RN−1 × [0,∞)). By the
fundamental theorem of calculus, for x′ ∈ RN−1 and xN > 0, we can write

f(x′, 0) = f(x′, xN )−
∫ xN

0

∂Nf(x′, s) ds.

Hence

|f(x′, 0)| ≤ |f(x′, xN )|+
∫ xN

0

|∂Nf(x′, s)| ds.

Raising both sides to the power p and using the inequality (a+ b)p ≤ 2p−1ap +
2p−1bp and and Hölder’s inequalities (if p > 1) gives

|f(x′, 0)|p ≤ 2p−1|f(x′, xN )|p + 2p−1xp−1
N

∫ xN

0

|∂Nf(x′, s)|pds (48)

≤ 2p−1|f(x′, xN )|p + 2p−1εp−1
N

∫ ε

0

|∂Nf(x′, s)|pds

for x′ ∈ RN−1 and 0 < xN < ε ≤ 1. Integrating in x′ over RN−1 and in xN
over (0, ε) gives∫

RN−1
|f(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
RN−1

∫ ε

0

|f(x′, xN )|pdxNdx′

+ 2p−1εp−1

∫
RN−1

∫ ε

0

|∂Nf(x′, s)|pdsdx′.

This shows that (iii) holds for every f ∈W 1,p(RN+ ) ∩ C1(RN−1 × [0,∞)).
Step 2: If now f ∈ W 1,p(RN+ ), reflect f to find a function F ∈ W 1,p(RN )

and consider a sequence Fε = ϕε ∗ F ∈W 1,p(RN ) ∩C∞(RN ). Then Fε → F in
W 1,p(RN ) as ε→ 0+. Let εn → 0+ and let fn be the restriction of Fεn to RN+ .
Then fn → f in W 1,p(RN+ ). Applying (47) to fn − fm, we get∫
RN−1

|(fn − fm)(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
RN+
|(fn − fm)(x)|pdx+ 2p−1εp−1

∫
RN+
|∂N (fn − fm)(x)|pdx

→ 0 as n,m→∞.

Thus, {fn(·, 0)}n is a Cauchy sequence in Lp(RN−1) and thus it converges to
a function g ∈ Lp(RN−1). Note that if we consider another sequence {gn}n of
functions in W 1,p(RN+ ) ∩ C1(RN−1 × [0,∞)) such that gn → f in W 1,p(RN+ ),
then by applying (47) to fn − gn, we get∫
RN−1

|(fn − gn)(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
RN+
|(fn − gn)(x)|pdx+ 2p−1εp−1

∫
RN+
|∂N (fn − gn)(x)|pdx

→ 0 as n→∞.

Since fn(·, 0)→ g in Lp(RN−1), it follows that gn(·, 0)→ g in Lp(RN−1). This
argument proves that the function g does not depend on the particular sequence
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of smooth functions that converges to f . We define Tr(f) := g. Applying (47)
to fn, we get∫
RN−1

|fn(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
RN+
|fn(x)|pdx+ 2p−1εp−1

∫
RN+
|∂Nfn(x)|pdx.

Letting n→∞, we obtain (47).
Since (45) holds for each fn and ψ ∈ C∞c (RN ), we have∫

RN+
fn(x)∂iψ(x) dx = −

∫
RN+

ψ(x)∂ifn(x) dx+

∫
RN−1

ψ(x′, 0)fn(x′, 0)δi,N dx
′.

Letting n → ∞ and using the fact that fn → f in W 1,p(RN+ ) and fn(·, 0) → g
in Lp(RN−1), we obtain∫

RN+
f(x)∂iψ(x) dx = −

∫
RN+

ψ(x)∂if(x) dx+

∫
RN−1

ψ(x′, 0)g(x′)δi,N dx
′.

Remark 85 If we integrate (48) in x′ over a cube Q′ and in xN over (0, ε) we
obtain ∫

Q′
|f(x′, 0)|pdx′ ≤ 2p−1ε−1

∫
Q′

∫ ε

0

|f(x′, xN )|pdxNdx′

+ 2p−1εp−1

∫
Q′

∫ ε

0

|∂Nf(x′, s)|pdsdx′

for every f ∈W 1,p(RN+ )∩C1(RN−1× [0,∞)). Reasoning as in Step 2, we obtain∫
Q′
|Tr(f)(x′)|pdx′ ≤ 2p−1ε−1

∫
Q′×(0,ε)

|f(x)|pdx

+ 2p−1εp−1

∫
Q′×(0,ε)

|∂Nf(x)|pdx

for every f ∈W 1,p(RN+ ).

An important corollary of the previous theorem is compactness of the trace
operator for p > 1.

Corollary 86 (Compactness of Traces) Let 1 < p <∞, and let {fn}n be a
bounded sequence in W 1,p(RN+ ). Then there exist a subsequence {fnk}k of {fn}n
and a function f ∈ W 1,p(RN+ ) such that fnk → f in Lploc(RN+ ) and Tr(fnk) →
Tr(f) in Lploc(RN−1).
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Proof. Let M > 0 be such that ‖fn‖W 1,p(RN+ ) ≤ M for every n. Extend fn by

reflection to a function Fn ∈ W 1,p(RN ) with ‖Fn‖W 1,p(RN ) ≤ C‖fn‖W 1,p(RN+ ).

Then {Fn}n is bounded in W 1,p(RN ). By the Rellich-Kondrachov theorems
(p < N , p = N and p > N) there exist a subsequence {Fnk}k and a function
F ∈ W 1,p(RN ) such that Fnk → F in Lploc(RN ). Let f be the restriction of G
to RN+ .

By the previous remark,∫
Q′
|Tr(f − fnk)(x′)|pdx′ ≤ 2p−1ε−1

∫
Q′×(0,ε)

|(f − fnk)(x)|pdx

+ 2p−1εp−1

∫
Q′×(0,ε)

|∂N (f − fnk)(x)|pdx

≤ 2p−1ε−1

∫
Q′×(0,ε)

|(f − fnk)(x)|pdx+ 2pεp−1M,

where in the last inequality we used the fact that ‖fn‖W 1,p(RN+ ) ≤ M . Letting
k →∞ and using the fact that Fnk → F in Lp(Q′ × (0, ε)) gives

lim sup
k→∞

∫
Q′
|Tr(f − fnk)(x′)|pdx′ ≤ 2pεp−1M.

Letting ε→ 0+ we have

lim sup
k→∞

∫
Q′
|Tr(f − fnk)(x′)|pdx′ = 0.

Since Q′ is an arbitrary cube in RN−1, we have shown that Tr(fnk)→ Tr(f) in
Lploc(RN−1).

Example 87 The previous corollary fails for p = 1. Indeed, taking fn(x) =
(1−nx)+ for x ∈ (0, 1), we have that Tr(fn)(0) = fn(0) = 1. The sequence {fn}
is bounded in W 1,1((0, 1)) and converges to f = 0 in L1((0, 1)) but Tr(fn)(0) =
1 9 Tr(f)(0) = 0.

Exercise 88 Let Ω ⊆ RN , N ≥ 2, be an open bounded set whose boundary ∂Ω
is Lipschitz continuous. Prove that if fn ⇀ f in W 1,1(Ω), then Tr(fn) converges
to Tr(f) in L1(∂Ω). Hint: Use equi-integrability.

Exercise 89 Let N ≥ 2. Prove that for all functions f ∈W 1,1(RN+ ),

‖Tr(f)(·, 0)‖L1(RN−1) ≤ ‖∂Nf‖L1(RN+ ).

Friday, February 25, 2022
Next we prove that the operator Tr is onto. The following theorem is due

to Gagliardo. The proof we present here is due to Mironescu.
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Theorem 90 (Gagliardo) Let g ∈ L1(RN−1), N ≥ 2. Then for every 0 <
ε < 1 there exists a function f ∈W 1,1(RN+ ) such that Tr(f) = g and

‖f‖L1(RN+ ) ≤ ε‖g‖L1(RN−1), ‖∇f‖L1(RN+ ) ≤ (1 + ε)‖g‖L1(RN−1).

Proof. Step 1: Assume that g ∈ C∞c (RN−1), with g 6= 0. Fix ε > 0 and let
ϕ ∈ C∞c ([0,∞)) be such that ϕ(0) = 1 and

∫
R+ |ϕ

′(t)| dt < 1 + ε. Note that the
Lipschitz continuous function ϕ0(t) = (1−t)+, t ≥ 0, satisfies

∫
R+ |ϕ

′
0(t)| dt = 1.

Hence, to obtain ϕ it suffi ces to regularize ϕ0. For n ∈ N and x = (x′, xN ) ∈
RN−1 × [0,∞) define fn(x) := g(x′)ϕ(nxN ). Then fn ∈ C∞(RN−1 × [0,∞)),
fn(x′, 0) = g(x′) for every x′ ∈ RN−1, while

∂ifn(x) = ∂ig(x′)ϕ(nxN ), ∂Nfn(x) = ng(x′)ϕ′(nxN )

for x ∈ RN+ , i = 1, . . . , N − 1. Moreover by Fubini’s theorem and the change of
variables t = nxN ,∫

RN+
|fn(x)| dx =

1

n

∫
RN−1

|g(x′)| dx′
∫
R+
|ϕ(t)| dt→ 0

as n→∞. Similarly, for i = 1, . . . , N − 1,∫
RN+
|∂ifn(x)| dx =

1

n

∫
RN−1

|∂ig(x′)| dx′
∫
R+
|ϕ′(t)| dt→ 0

as n→∞, while∫
RN+
|∂Nfn(x)| dx =

∫
RN−1

|g(x′)| dx′
∫
R+
|ϕ′(t)| dt ≤ (1 + ε)

∫
RN−1

|g(x′)| dx′.

Since g 6= 0, by taking n large enough we obtain that∫
RN+
|fn(x)| dx ≤ ε

∫
RN−1

|g(x′)| dx′,
∫
RN+
|∂ifn(x)| dx ≤ ε

∫
RN−1

|g(x′)| dx′

i = 1, . . . , N − 1, which gives the desired result in the case g ∈ C∞c (RN−1).
Step 2: Let g ∈ L1(RN−1). Find a sequence gn ∈ C∞c (RN−1) such that
g =

∑∞
n=1 gn and

∞∑
n=1

‖gn‖L1(RN−1) ≤ (1 + ε)‖g‖L1(RN−1).

By Step 1 there exists fn ∈W 1,1(RN+ ) such that Tr(fn) = gn and

‖fn‖L1(RN+ ) ≤ ε‖gn‖L1(RN−1), ‖∇fn‖L1(RN+ ) ≤ (1 + ε)‖gn‖L1(RN−1).

Then
∞∑
n=1

‖fn‖L1(RN+ ) ≤ ε(1+ε)‖g‖L1(RN−1),

∞∑
n=1

‖∇fn‖L1(RN+ ) ≤ (1+ε)2‖g‖L1(RN−1)
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Define

f :=

∞∑
n=1

fn.

Then f ∈W 1,1(RN+ ) (as in your homework). Moreover, since Tr is linear,

Tr

(∑̀
n=1

fn

)
=
∑̀
n=1

Tr (fn) =
∑̀
n=1

gn → g

in L1(RN−1) as ` → ∞. Since
∑`
n=1 fn → f in W 1,1(RN+ ), it follows by the

continuity of the trace operator, Tr(f) = g.

Exercise 91 Let X be a Banach space and let Y be a dense subspace. Prove
that for every x ∈ X and every ε > 0 there exists a sequence {yn}n in Y such
that

x =

∞∑
n=1

yn

and
∞∑
n=1

‖yn‖X ≤ (1 + ε)‖x‖X .

Remark 92 Peetre has proved that there does not exist a bounded linear oper-
ator

L :L1(RN−1)→W 1,1(RN+ )

g 7→ L(g)

with the property that Tr(L(g)) = g.

In the the case 1 < p < ∞ the operator Tr : W 1,p(RN+ ) → Lp(RN−1) is not
onto. We will show that

Tr(W 1,p(RN+ )) = W 1−1/p,p(RN−1).

We begin by showing that

Tr(W 1,p(RN+ )) kW 1−1/p,p(RN−1).

Theorem 93 (Gagliardo) Let N ≥ 2, 1 < p <∞, and g ∈W 1−1/p,p(RN−1).
Then there exists a function f ∈W 1,p(RN+ ) such that Tr(f) = g and ‖f‖W 1,p(RN+ ) ≤
C‖g‖W 1−1/p,p(RN−1) for some constant C = C(N, p) > 0.

Proof. Let ϕ ∈ C∞c (RN−1) be such that suppϕ ⊆ BN−1(0, 1) and
∫
RN−1 ϕ(x′) dx′ =

1. For x′ ∈ RN−1 and xN > 0 define

v(x) := (ϕxN ∗ g)(x′) =
1

xN−1
N

∫
RN−1

ϕ((x′ − y′)/xN )g(y′) dy′. (49)
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By standard properties of mollifiers, where xN plays the role of ε, for any i =
1, . . . , N − 1 we have that

∂v

∂xi
(x) =

1

xNN

∫
RN−1

∂ϕ

∂xi
((x′ − y′)/xN )g(y′) dy′

=
1

xNN

∫
RN−1

∂ϕ

∂xi
((x′ − y′)/xN )[g(y′)− g(x′)] dy′,

where in the second equality we used the fact that

0 =
∂

∂xi
(1) =

∂

∂xi

( 1

xN−1
N

∫
RN−1

ϕ((x′ − y′)/xN ) dy′
)

=
1

xNN

∫
RN−1

∂ϕ

∂xi
((x′ − y′)/xN ) dy′.

Since suppϕ ⊆ BN−1(0, 1), we have that

|∂iv(x)| ≤ C 1

xNN

∫
BN−1(x′,xN )

|g(y′)− g(x′)| dy′. (50)

Monday, February 28, 2022
Proof. Raising both sides to the power p, integrating in x over RN+ , and using
Hölder’s inequality, we get∫

RN+
|∂iv(x)|pdx

≤ C
∫
RN+

1

xNpN

(∫
BN−1(x′,xN )

|g(y′)− g(x′)| dy′
)p
dx

≤ C
∫
RN+

x
(N−1)(p−1)
N

xNpN

∫
BN−1(x′,xN )

|g(y′)− g(x′)|p dy′dx =: CA.

By Tonelli’s theorem, we get that

A =

∫ ∞
0

∫
RN−1

∫
BN−1(x′,xN )

1

xp+N−1
N

|g(y′)− g(x′)|p dy′dx′dxN

=

∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p
∫ ∞
‖x′−y′‖N−1

1

xp+N−1
N

dxN dy
′dx′

≤ C
∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p

‖x′ − y′‖p+N−2
N−1

dy′dx′.

Note that N − 1 + sp = N − 1 +
(

1− 1
p

)
p = N + p− 2

Hence, we have shown that∫
RN+
|∂iv(x)|pdx ≤ C

∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p

‖x′ − y′‖p+N−2
N−1

dy′dx′ (51)
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for all i = 1, . . . , N − 1.
Similarly, by differentiating under the integral sign (see [?]), we obtain that

∂Nv(x) =

∫
RN−1

∂

∂xN

( 1

xN−1
N

ϕ((x′ − y′)/xN )
)
g(y′) dy′

=

∫
RN−1

∂

∂xN

( 1

xN−1
N

ϕ((x′ − y′)/xN )
)

[g(y′)− g(x′)] dy′,

where in the second equality we used the fact that

0 =
∂

∂xN
(1) =

∂

∂xN

(∫
RN−1

1

xN−1
N

ϕ((x′ − y′)/xN ) dy′
)

=

∫
RN−1

∂

∂xN

( 1

xN−1
N

ϕ((x′ − y′)/xN )
)
dy′.

Since suppϕ ⊆ BN−1(0, 1), we have that

∂Nv(x) =

∫
BN−1(x′,xN )

∂

∂xN

( 1

xN−1
N

ϕ((x′ − y′)/xN )
)

[g(y′)− g(x′)] dy′.

Now for y′ ∈ BN−1(x′, xN ),

|∂N (x1−N
N ϕ((x′ − y′)/xN ))| =

∣∣∣−(N − 1)x−NN ϕ((x′ − y′)/xN )

− x1−N
N

N−1∑
i=1

∂iϕ((x′ − y′)/xN )(xi − yi)x−2
N

∣∣∣
≤ C(x−NN + ‖x′ − y′‖N−1x

−1−N
N ) ≤ Cx−NN .

In turn,

|∂Nv(x)| ≤ C 1

xNN

∫
BN−1(x′,xN )

|g(y′)− g(x′)| dy′.

We can now continue as before (see (50)) to conclude that∫
RN+
|∂Nv(x)|pdx ≤ C

∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p

‖x′ − y′‖p+N−2
N−1

dy′dx′. (52)

Step 2: Since v(·, xN ) = (ϕxN ∗ g)(·), by standard properties of mollifiers
(see [?]), we have that for all xN > 0,∫

RN−1
|v(x′, xN )|pdx′ ≤

∫
RN−1

|g(x′)|pdx′. (53)

Integrating in xN in (0, ε) gives∫ ε

0

∫
RN−1

|v(x′, xN )|pdx′dxN ≤ Cε
∫
RN−1

|g(x′)|pdx′. (54)
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Let ψ ∈ C∞([0,∞)) be a decreasing function such that ψ = 1 in [0, ε/2],
ψ(xN ) = 0 for xN ≥ ε and ‖ψ′‖∞ ≤ Cε−1. For x = (x′, xN ) ∈ RN+ we de-
fine f(x) := ψ(xN )v(x).
By (54), Tonelli’s theorem, and the fact that ψ(xN ) = 0 for xN ≥ ε we have∫

RN+
|f(x)|pdx =

∫ ε

0

(ψ(xN ))p
∫
RN−1

|v(x)|pdx′dxN (55)

≤
∫ ε

0

∫
RN−1

|v(x)|pdx′dxN

≤ Cε
∫
RN−1

|g(x′)|pdx′,

while for i = 1, . . . , N − 1,

|∂if(x)| = |ψ(xN )∂iv(x)| ≤ C|∂iv(x)|.

In turn, by (51), we obtain that∫
RN+
|∂if(x)|pdx ≤ Cε−p

∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p

‖x′ − y′‖p+N−2
N−1

dy′dx′

for all i = 1, . . . , N − 1. On the other hand,

∂Nf(x) = −ψ′(xN )v(x) + ψ(xN )∂Nv(x),

and so, by (52), (54), and the facts that ψ′(xN ) = 0 for xN ≥ ε, and ‖ψ′‖∞ ≤
Cε−1,∫

RN+
|∂Nf |pdx

≤ Cε−p
∫ ε

0

∫
RN−1

|v|pdx′dxN +

∫
RN+
|∂Nv|pdx

≤ Cε−σp
∫
RN−1

|g|pdx′ +
∫
RN−1

∫
RN−1

|g(y′)− g(x′)|p

‖x′ − y′‖p+N−2
N−1

dy′dx′.

Step 3: Since v ∈ C1(RN+ ), we have shown that v ∈ Ẇ 1,p(RN+ ). To conclude
the proof, it remains to prove that Tr(v) = g. Using standard mollifiers (ex-
ercise), we may find a sequence {gn}n in C∞(RN−1) with |gn|Wσ,p(RN−1) < ∞
such that |g − gn|Wσ,p(RN−1) → 0. Let vn be defined as in (49) with g replaced
by gn. Then vn ∈ C(RN−1 × [0,∞)), with vn(x′, 0) = gn(x′). By (52) applied
to vn − v and gn − g, we have that ∂ivn → ∂iv in Lp(RN+ ) for every i = 1, . . . ,
N . In turn, by (??), we obtain that Tr(f) = g.Reasoning as in the last part of
the previous theorem we can show that Tr(f) = g.

Wednesday, March 2, 2022
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Theorem 94 (Minkowski’s inequality for integrals) Let (X,M, µ) and (Y,N, ν)
be two measure spaces. Assume that µ and ν are complete and σ-finite. Let
f : X × Y → [0,∞] be an (M×N)-measurable function and let 1 ≤ p ≤ ∞.
Then ∥∥∥∥∫

X

|f (x, ·)| dµ (x)

∥∥∥∥
Lp(Y,N,ν)

≤
∫
X

‖f (x, ·)‖Lp(Y,N,ν) dµ (x) .

Theorem 95 (Gagliardo) Let N ≥ 2 and 1 < p < ∞. Then for all f ∈
W 1,p(RN+ ),

|Tr(f)|W 1−1/p,p(RN−1) ≤ C‖∇f‖Lp(RN+ ) (56)

for some constant C = C(N, p) > 0.

Proof. Let f ∈ W 1,p(RN+ ). By Theorem 42, f has a representative f that is
absolutely continuous on LN−1-a.e. line segments of RN+ that are parallel to
the coordinate axes. Moreover the first-order (classical) partial derivatives of
f̄ agree LN -a.e. with the weak derivatives of f . Also, Tr(f)(x′) = f̄(x′, 0) for
LN−1-a.e. x′ ∈ RN−1 (exercise). For x′, h′ ∈ RN−1, set r := ‖h′‖N−1. Then

|f̄(x′ + h′, 0)− f̄(x′, 0)| ≤
∣∣∣∣f̄(x′, 0)− 1

r

∫ r

0

f̄(x′, t) dt

∣∣∣∣
+

∣∣∣∣f̄(x′ + h′, 0)− 1

r

∫ r

0

f̄(x′, t) dt

∣∣∣∣
≤ 1

r

∫ r

0

|f̄(x′, 0)− f̄(x′, t)| dt+
1

r

∫ r

0

|f̄(x′ + h′, t)− f̄(x′, t)| dt

+
1

r

∫ r

0

|f̄(x′ + h′, 0)− f̄(x′ + h′, t)| dt.

Hence, by the inequality (a+ b+c)p ≤ 3p−1ap+3p−1bp+3p−1cp and the change
of variables x′ + h′ = z′,∫
RN−1

∫
RN−1

|f̄(x′ + h′, 0)− f̄(x′, 0)|p

‖h′‖p+N−2
N−1

dx′dh′

≤ 3p−1

∫
RN−1

∫
RN−1

(
1
r

∫ r
0
|f̄(x′, 0)− f̄(x′, t)| dt

)p
‖h′‖p+N−2

N−1

dx′dh′ (57)

+ 3p−1

∫
RN−1

∫
RN−1

(
1
r

∫ r
0
|f̄(x′ + h′, t)− f̄(x′, t)| dt

)p
‖h′‖p+N−2

N−1

dx′dh′

+ 3p−1

∫
RN−1

∫
RN−1

(
1
r

∫ r
0
|f̄(x′ + h′, 0)− f̄(x′ + h′, t)| dt

)p
‖h′‖p+N−2

N−1

dx′dh′

= 3p−12

∫
RN−1

∫
RN−1

(
1
r

∫ r
0
|f̄(x′, 0)− f̄(x′, t)| dt

)p
‖h′‖p+N−2

N−1

dx′dh′

+ rp−1

∫
RN−1

∫
RN−1

(
1
r

∫ r
0
|f̄(x′ + h′, t)− f̄(x′, t)| dt

)p
‖h′‖p+N−2

N−1

dx′dh′ =: 3p−12A+ 3p−1B.
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Let x′ ∈ RN−1 be such that f̄(x′, ·) is absolutely continuous in (0, r). By the
fundamental theorem of calculus

1

r

∫ r

0

|f̄(x′, 0)− f̄(x′, t)| dt ≤ 1

r

∫ r

0

∣∣∣∣∫ t

0

∂Nf(x′, ρ) dρ

∣∣∣∣ dt ≤ ∫ r

0

‖∇f(x′, ρ)‖ dρ.

Using Minkowski’s inequality for integrals,∫
RN−1

(
1

r

∫ r

0

|f̄(x′, 0)− f̄(x′, t)| dt
)p

dx′ ≤
∫
RN−1

(∫ r

0

‖∇f(x′, ρ)‖ dρ
)p

dx′

(58)

≤
(∫ r

0

‖∇f(·, ρ)‖Lp(RN−1) dρ

)p
.

Fix 0 < ε < 1/p′. By Hölder’s inequality and the identity 1 = ρ−ερε, the
right-hand side of the previous inequality is bounded from above by

≤
(∫ r

0

ρ−εp
′
dρ

)p/p′ ∫ r

0

ρεp ‖∇f(·, ρ)‖pLp(RN−1) dρ

=
rp/p

′−εp

(1− εp′)p−1

∫ r

0

ρεp ‖∇f(·, ρ)‖pLp(RN−1) dρ.

Recalling that r = ‖h′‖N−1, by Tonelli’s theorem we have

A ≤ C
∫
RN−1

1

‖h′‖p+N−2−p+1+εp
N−1

∫ ‖h′‖N−1
0

ρεp
∫
RN−1

‖∇f(x′, ρ)‖pdx′dρdh′

≤ C
∫
RN−1

∫ ∞
0

ρεp‖∇f(x′, ρ)‖p
(∫

RN−1\BN−1(0,ρ)

1

‖h′‖N−1+εp
N−1

dh′

)
dρdx′

(59)

≤ C
∫
RN−1

∫ ∞
0

‖∇f(x′, ρ)‖pdρdx′,

where we used the facts that 0 < ε and∫
RN−1\BN−1(0,ρ)

1

‖h′‖N−1+εp
N−1

dh′ =
αN−1

εp

1

ρεp
.

To estimate B, define

X ′0 := x′, X ′n := X ′n−1 + hnen, n = 1, . . . , N − 1.

Then

f̄(x′ + h′, t)− f̄(x′, t) =

N−1∑
n=1

f̄(X ′n, t)− f(X ′n−1, t).
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By fixing x′, h′, and t in such a way that f̄ is absolutely continuous along the
segments (ηX ′n−1 + (1 − η)X ′n−1, t), η ∈ [0, 1] for every n = 1, . . . , N − 1, by
the fundamental theorem of calculus we have

f̄(x′ + h′, t)− f̄(x′, t) =

N−1∑
n=1

∫ 1

0

∂nf(ηX ′n−1 + (1− η)X ′n−1, t)hn dη.

Hence,

1

r

∫ r

0

|f̄(x′+h′, t)−f̄(x′, t)| dt ≤
N−1∑
n=1

∫ r

0

∫ 1

0

|∂nf(ηX ′n−1+(1−η)X ′n−1, t)| dηdt.

Using Minkowski’s inequality for integrals and the change of variables ηX ′n−1 +
(1− η)X ′n−1 = z′, we get∫
RN−1

(
1

r

∫ r

0

|f̄(x′ + h′, t)− f̄(x′, t)| dt
)p

dx′

≤ C
N−1∑
n=1

∫
RN−1

(∫ r

0

∫ 1

0

|∂nf(ηX ′n−1 + (1− η)X ′n−1, t)| dηdt
)p

dx′

≤ C
N−1∑
n=1

(∫ r

0

∫ 1

0

(∫
RN−1

|∂nf(ηX ′n−1 + (1− η)X ′n−1, t)|pdx′
)1/p

dηdt

)p

≤ C
(∫ r

0

‖∇f(·, t)‖Lp(RN−1) dt

)p
.

Since the right-hand side is the same as the right-hand side in (58) we can now
continue as in the estimate (59) of A to obtain

B ≤ C
∫
RN−1

∫ ∞
0

‖∇f(x′, ρ)‖pdρdx′.

Combining this inequality with (57) and (59) and using the fact that Tr(f)(x′) =
f̄(x′, 0) for LN−1-a.e. x′ ∈ RN−1, we have∫

RN−1

∫
RN−1

|Tr(f)(x′ + h′)− Tr(f)(x′)|p

‖h′‖p+N−2
N−1

dx′dh′ ≤ C
∫
RN+
‖∇f(x)‖pdx.

Monday, March 14, 2022

10 Interpolation Spaces

Definition 96 A vector space over R is a nonempty set X, whose elements
are called vectors, together with two operations, addition and multiplication by
scalars,

X ×X → X
(x, y) 7→ x+ y

and
R×X → X
(t, x) 7→ tx

with the properties that
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(i) (X,+) is a commutative group, that is,

(a) x+ y = y + x for all x, y ∈ X (commutative property),

(b) x+ (y + z) = (x+ y) + z for all x, y, z ∈ X (associative property),

(c) there is a vector 0 ∈ X, called zero, such that x + 0 = 0 + x for all
x ∈ X,

(d) for every x ∈ X there exists a vector in X, called the opposite of x
and denoted −x, such that x+ (−x) = 0,

(ii) for all x, y ∈ X and s, t ∈ R,

(a) s (tx) = (st)x,

(b) 1x = x,

(c) s (x+ y) = (sx) + (sy),

(d) (s+ t)x = (sx) + (tx).

A topological space (X, τ) is a Hausdorff space if for any x, y ∈ X with x 6= y
we may find two disjoint open sets U and V containing x and y, respectively.

Definition 97 Given a topological space (X, τ), we say that a sequence {xn}n
in X converges to some x ∈ X if for every open set U ∈ τ with x ∈ U there
exists nU ∈ N such that xn ∈ U for all n ∈ N with n ≥ nU . We write xn → x
or

lim
n→∞

xn = x.

Remark 98 If (X, τ) is a Hausdorff space and xn → x and xn → y, then
x = y.

Definition 99 Given two topological vector spaces (X, τX) and (Y, τY ), we say
that X is embedded in Y and we write

X ↪→ Y

if X is a subspace of Y and the immersion

i : (X, τX)→ (Y, τY )

x 7→ x

is continuous, that is, if i−1(V ) ∈ τX for every V ∈ τY in Y .

Remark 100 In particular, if X ↪→ Y and if xn → x in X, then xn → x in Y .
Indeed, for every open set V in Y containing i(x) = x we have that U := i−1(V )
is open in X and contains x. Since xn → x, there exists nU such that xn ∈ U
for all n ≥ nU and so i(xn) = xn ∈ V for all n ≥ nU .
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We are given two normed spaces, X0 and X1, with X0 ⊇ X1, (for example
C([0, 1]) and C1([0, 1]) or L1([0, 1]) and L∞([0, 1])) we want to construct a family
of intermediate spaces X0 ⊇ Xs ⊇ X1, 0 < s < 1, with the property that

‖x‖Xs ≤ C‖x‖θX0
‖x‖1−θX1

for all x ∈ X0 ∩X1, where the constants C > 0 and θ ∈ (0, 1) depends on s.

Definition 101 We say that two normed spaces (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) are
an admissible pair if they are embedded into a common Hausdorff topological
vector space X.

Theorem 102 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be an admissible pair. Then the
vector space X0 ∩X1 endowed with the norm

‖x‖X0∩X1
:= max{‖x‖X0

, ‖x‖X1
} (60)

is a normed space. Moreover, if X0 and X1 are Banach spaces, then so is
X0 ∩X1.

Proof. Exercise.

Theorem 103 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be an admissible pair. Then the
vector space

X0 +X1 := {x ∈ X : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}

is also a normed space when endowed with the norm

‖x‖X0+X1
:= inf{‖x0‖X0

+ ‖x1‖X1
}, (61)

where the infimum is taken over all possible decompositions x = x0 + x1, x0 ∈
X0, x1 ∈ X1. Moreover, if X0 and X1 are Banach spaces, then so is X0 +X1.

Proof. Step 1: If ‖x‖X0+X1
= 0, then for every n there exist xn0 ∈ X0 and

xn1 ∈ X1 such that x = xn0 + xn1 and

‖xn0‖X0
+ ‖xn1‖X1

≤ ‖x‖X0+X1
+

1

n
= 0 +

1

n
.

It follows that xn0 → 0 in X0 and xn1 → 0 in X1. In turn, xn0 → 0 in X and
xn1 → 0 in X by Remark, and so xn0 +xn1 → 0 in X, but since x = xn0 +xn1 , then
x = 0. Conversely, if x = 0, then ‖0‖X0+X1 = 0.
If x ∈ X0 +X1 and t ∈ R, let x0 ∈ X0, x1 ∈ X1 be such that tx = x0 + x1.

Assuming t 6= 0, we have that x = 1
tx0 + 1

tx1, and 1
tx0 ∈ X0, 1

tx1 ∈ X2. Hence,

‖x‖X0+X1
≤ ‖t−1x0‖X0

+ ‖t−1x1‖X1

= |t−1|(‖x0‖X0 + ‖x1‖X1).
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Taking the infimum over all such decompositions gives

‖x‖X0+X1
≤ |t−1|‖tx‖X0+X1

,

or, equivalently, |t|‖x‖X0+X1
≤ ‖tx‖X0+X1

. Since this inequality holds for all
x ∈ X0 + X1 and all t ∈ R, by applying it to tx and with t−1 in place of t
we get |t−1|‖tx‖X0+X1 ≤ ‖t−1(tx)‖X0+X1 = ‖x‖X0+X1 , that is, ‖tx‖X0+X1 ≤
|t|‖x‖X0+X1

.
Finally, given x, y ∈ X0+X1, if x = x0+x1 and y = y0+y1, with x0, y0 ∈ X0

and x1, y1 ∈ X1, then x + y = (x0 + y0) + (x1 + y1) with x0 + y0 ∈ X0 and
x1 + y1 ∈ X1. Hence,

‖x+ y‖X0+X1 ≤ ‖x0 + y0‖X0 + ‖x1 + y1‖X1

≤ ‖x0‖X0 + ‖x1‖X1 + ‖y0‖X0 + ‖y1‖X1 .

Taking the infimum over all decompositions of x gives

‖x+ y‖X0+X1
≤ ‖x‖X0+X1

+ ‖y0‖X0
+ ‖y1‖X1

for all decompositions of y. Taking the infimum over all decompositions of y
gives

‖x+ y‖X0+X1
≤ ‖x‖X0+X1

+ ‖y‖X0+X1
.

This shows that ‖ · ‖X0+X1
is a norm.

Step 2: Assume that X0 and X1 are Banach spaces. To prove that X0 +X1 is
a Banach space we use Theorem ??. Let {xn}n be a sequence in X0 +X1 such
that

∑∞
n=1 ‖xn‖X0+X1

converges in R. For each n find xn0 ∈ X0 and xn1 ∈ X1

such that xn = xn0 + xn1 and

‖xn0‖X0 + ‖xn1‖X1 ≤ ‖xn‖X0+X1 +
1

2n
.

Then
∞∑
n=1

∥∥x0
n

∥∥
X0
≤
∞∑
n=1

‖xn‖X0+X1
+

∞∑
n=1

1

2n
<∞,

∞∑
n=1

∥∥x1
n

∥∥
X1
≤
∞∑
n=1

‖xn‖X0+X1
+

∞∑
n=1

1

2n
<∞.

Since X0 and X1 are Banach spaces, by Theorem ?? there exist y0 ∈ X0 and
y1 ∈ X1 such that

∑n
i=1 x

i
0 → y0 in X0 and

∑n
i=1 x

i
1 → y1 in X1. Since

y := y0 + y1 ∈ X0 +X1, we have∥∥∥∥∥y −
n∑
i=1

xi

∥∥∥∥∥
X0+X1

≤
∥∥∥∥∥y0 −

n∑
i=1

xi0

∥∥∥∥∥
X0

+

∥∥∥∥∥y1 −
n∑
i=1

xi1

∥∥∥∥∥
X1

→ 0

as n→∞. It follows that
∑n
i=1 xi → y in X0 +X1, and so the series

∑∞
n=1 xn

converges in X0 + X1. By Theorem ?? this implies that X0 + X1 is a Banach
space.
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Given t > 0, in X0 +X1 we can also consider the equivalent norm

x ∈ X0 +X1 7→ K(x, t) := inf{‖x0‖X0 + t‖x1‖X1}, (62)

where as before the infimum is taken over all possible decompositions x =
x0 + x1, x0 ∈ X0, x1 ∈ X1. To highlight the dependence of K on X0 and
X1, when needed, we write

K(x, t;X0, X1) := K(x, t). (63)

Remark 104 The function K(·, t) can be extended to X \ (X0 +X1) by setting
K(x, t) :=∞ if x ∈ X \ (X0 +X1), where X is the Hausdorff topological vector
space X in Definition 101.

Proposition 105 Let (X0, ‖·‖X0), (X1, ‖·‖X1) be an admissible pair. Then for
every x ∈ X0 +X1, the function t 7→ K(x, t) is an increasing, concave function
and such that t−1K(x, t;X0, X1) = K(x, t−1;X1, X0) and

K(x, t) ≤ max{1, t/τ}K(x, τ)

for every t > 0 and τ > 0.

Proof. Exercise.
For 0 < s < 1 and 1 ≤ q ≤ ∞ we can define the real interpolation space

(X0, X1)s,q := {x ∈ X0 +X1 : ‖x‖s,q <∞},

where if 1 ≤ q <∞,

‖x‖s,q :=
(∫ ∞

0

(K(x, t))q
dt

t1+sq

)1/q

, (64)

while if q =∞,
‖x‖s,∞ := sup

t>0
t−sK(x, t). (65)

Theorem 106 Let (X0, ‖ · ‖X0), (X1, ‖ · ‖X1) be an admissible pair and let
1 ≤ q ≤ ∞ and 0 < s < 1. Then ‖ · ‖s,q is a norm and the following embeddings
hold

X0 ∩X1 ↪→ (X0, X1)s,q ↪→ X0 +X1.

Moreover, if X0 and X1 are Banach spaces, then so is (X0, X1)s,q.

Proof. Step 1: If ‖x‖s,q = 0, then K(x, t) = 0 for L1-a.e. t ∈ (0,∞), but since
K(·, t) is a norm, necessarily, x = 0. On the other hand, since K(0, t) = 0 we
get ‖0‖s,q = 0.
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Next if r ∈ R, since K(·, t) is a norm, we have K(rx, t) = |r|K(x, t) and so

‖rx‖s,q =
(∫ ∞

0

(K(rx, t))q
dt

t1+sq

)1/q

=
(∫ ∞

0

(|r|K(x, t))q
dt

t1+sq

)1/q

= |r|
(∫ ∞

0

(K(x, t))q
dt

t1+sq

)1/q

= |r|‖x‖s,q.

Finally, if x, y ∈ (X0, X1)s,q, since K(·, t) is a norm, K(x + y, t) ≤ K(x, t) +
K(y, t). Hence,

‖x+ y‖s,q =
(∫ ∞

0

(K(x+ y, t))q
dt

t1+sq

)1/q

≤
(∫ ∞

0

(K(x, t) +K(y, t))q
dt

t1+sq

)1/q

≤
(∫ ∞

0

(K(x, t))q
dt

t1+sq

)1/q

+
(∫ ∞

0

(K(y, t))q
dt

t1+sq

)1/q

,

where we used the fact that ‖x‖s,q is the Lq((0,∞);µ) norm of the function
t 7→ K(x, t) with respect to the measure µ = dt

t1+sq .
Friday, March 18, 2022

Proof. Step 2: In view of (60) and (62) for every x ∈ X0 ∩X1,

K(x, t) ≤ ‖x‖X0 ≤ ‖x‖X0∩X1 , K(x, t) ≤ t‖x‖X1 ≤ t‖x‖X0∩X1 ,

and so K(x, t) ≤ min{1, t}‖x‖X0∩X1 . In turn, if 1 ≤ q <∞, by (64),

‖x‖s,q ≤ ‖x‖X0∩X1

(∫ ∞
0

min{1, tq} dt

t1+sq

)1/q

= cq‖x‖X0∩X1
,

where cq = 1/(q(1− s))1/q + 1/(sq)1/q. If q =∞, then

t−sK(x, t) ≤ min{t−s, t1−s}‖x‖X0∩X1
≤ ‖x‖X0∩X1

,

where we used the fact that supt>0 min{t−s, t1−s} = 1, and so by (65), ‖x‖s,∞ ≤
‖x‖X0∩X1 . Thus, in both cases, we have shown that X0 ∩X1 ↪→ (X0, X1)s,q.
On the other hand, by (61) and (62), for every x ∈ (X0, X1)s,q,

min{1, t}‖x‖X0+X1 ≤ K(x, t) ≤ max{1, t}‖x‖X0+X1 (66)

and thus as before, for 1 ≤ q ≤ ∞,

cq‖x‖X0+X1
≤ ‖x‖s,q, (67)

where c∞ := 1, which proves that (X0, X1)s,q ↪→ X0 +X1.
Step 3: Next we claim that (X0, X1)s,q is a Banach space. Let {xn}n be

a Cauchy sequence in (X0, X1)s,q. In view of (67), {xn}n is a Cauchy sequence
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in X0 + X1, and so, since X0 + X1 is a Banach space, xn → x in X0 + X1 for
some x ∈ X0 +X1.
Given ε > 0 we can find nε ∈ N such that ‖xm−xn‖s,q ≤ ε for all m, n ≥ nε.

Since K(·, t) is a norm in X0 +X1, by the triangle inequality and (66)2,

t−sK(x− xn, t) ≤ t−sK(xm − xn, t) + max{t−s, t1−s}‖x− xm‖X0+X1
. (68)

In turn, if 1 ≤ q <∞, for every ` ∈ N,(∫ `

1/`

(K(x− xn, t))q
dt

t1+sq

)1/q

≤ ‖xm − xn‖s,q + c`,q,s‖x− xm‖X0+X1

≤ ε+ c`,q,s‖x− xm‖X0+X1
,

where

c`,q,s :=
(∫ `

1/`

(max{t−s, t1−s})q dt

t1+sq

)1/q

<∞.

Letting first m → ∞ and then ` → ∞ in the previous inequality gives ‖x −
xn‖s,q ≤ ε for all n ≥ nε, which shows that (X0, X1)s,q is a Banach space.
If q =∞, then by (65) and (68),

t−sK(x− xn, t) ≤ ε+ max{t−s, t1−s}‖x− xm‖X0+X1 .

Letting m→∞ shows that t−sK(x− xn, t) ≤ ε for all t > 0 and for all n ≥ nε.
Hence, ‖x− xn‖s,∞ ≤ ε for all n ≥ nε, and the proof is complete.

Remark 107 If X0 = X1, then it follows from the previous theorem that X0 =
X0 ∩X1 = (X0, X1)s,q = X0 +X1 = X0.
On the other hand, if X0 ∩ X1 = {0}, then for every x ∈ X0 + X1 there

exist unique x0 ∈ X0 and x1 ∈ X1 such that x = x0 + x1. In turn, by (62),
K(x, t) = ‖x0‖X0 + t‖x1‖X1 and so for 1 ≤ q <∞,

‖x‖s,q =
(∫ ∞

0

(‖x0‖X0
+ t‖x1‖X1

)q
dt

t1+sq

)1/q

=∞

unless x0 = x1 = 0. Similarly, ‖x‖s,∞ = supt>0 t
−s(‖x0‖X0

+ t‖x1‖X1
) = ∞

unless x0 = x1 = 0. Thus, (X0, X1)s,q = {0} for every 1 ≤ q ≤ ∞.

Exercise 108 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be an admissible pair, with X1 ↪→
X0, and let 1 ≤ q ≤ ∞ and 0 < s < 1.

(i) Prove that ‖ · ‖X0 is an equivalent norm in X0 +X1.

(ii) Prove that for every T > 0,

x 7→ ‖x‖X0 +
(∫ T

0

(K(x, t))q
dt

t1+sq

)1/q

is an equivalent norm in (X0, X1)s,q for 1 ≤ q <∞, while

x 7→ ‖x‖X0
+ sup

0<t<T
t−sK(x, t)

is an equivalent norm in (X0, X1)s,∞.
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Exercise 109 Let (X0, ‖ · ‖X0), (X1, ‖ · ‖X1) be an admissible pair, let 1 ≤ q ≤
∞, and let 0 < s < 1. Prove that x ∈ X0 + X1 belongs to (X0, X1)s,q if and
only if the sequence {2−ksK(x, 2k)}k∈Z belongs to Lq(Z,H0), where H0 is the
counting measure. Prove also that

x ∈ (X0, X1)s,q 7→ ‖{2−ksK(x, 2k)}k∈Z‖Lq(Z,H0)

is an equivalent norm in (X0, X1)s,q.

Exercise 110 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be an admissible pair, let 1 ≤ q ≤
∞, and let 0 < s < 1. Prove that (X0, X1)s,q = (X1, X0)1−s,q.

Next we study the inclusions of different interpolation spaces.

Theorem 111 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be an admissible pair and let
1 ≤ q1 < q2 ≤ ∞ and 0 < s < 1. Then the following embeddings hold

(X0, X1)s,q1 ↪→ (X0, X1)s,q2 ↪→ (X0, X1)s,∞.

Proof. Step 1: We claim that for x ∈ (X0, X1)s,q, 1 ≤ q <∞, and t > 0,

t−sK(x, τ) ≤ (sq)1/q‖x‖s,q.

To see this note that since K(x, ·) is increasing, K(x, t) ≤ K(x, r) for all r > t,
and so

‖x‖s,q =
(∫ ∞

0

(K(x, r))q
dr

r1+sq

)1/q

≥
(∫ ∞

t

(K(x, r))q
dr

r1+sq

)1/q

≥ K(x, t)
(∫ ∞

t

dr

r1+sq

)1/q

= K(x, t)
1

sq

1

tq
.

Taking the supremum over all τ > 0 gives

‖x‖s,∞ ≤ (sq)1/q‖x‖s,q. (69)

This proves the embedding (X0, X1)s,q ↪→ (X0, X1)s,∞.
Step 2: If now 1 ≤ q1 < q2 ≤ ∞, then for x ∈ (X0, X1)s,q1 ,(∫ ∞

0

(K(x, t))q2
dt

t1+sq2

)1/q2

≤ (sup
τ>0

τ−sK(x, τ))(q2−q1)/q2
(∫ ∞

0

(K(x, t))q1
dt

t1+sq1

)1/q2

≤ (sq1)(q2−q1)/(q1q2)‖x‖(q2−q1)/q2+q1/q2
s,q1 = c‖x‖s,q1 ,

where in the last inequality we used (69) with q1 in place of q.
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An important property of interpolation spaces is given by the following the-
orem.
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Theorem 112 Let (X0, ‖ · ‖X0), (X1, ‖ · ‖X1) and (Y0, ‖ · ‖Y0), (Y1, ‖ · ‖Y1) be
two admissible pairs and let T : X0 + X1 → Y0 + Y1 be a linear operator such
that T : X0 → Y0 and T : X1 → Y1 are continuous. Then for every 1 ≤ q ≤ ∞
and 0 < σ < 1, T : (X0, X1)σ,q → (Y0, Y1)σ,q with

‖T‖L((X0,X1)σ,q ;(Y0,Y1)σ,q) ≤ ‖T‖
1−σ
L(X0;Y0)‖T‖

σ
L(X1;Y1).

Proof. Let c0, c1 > 0 be such that

‖T (x0)‖Y0 ≤ c0‖x0‖X0 , ‖T (x1)‖Y1 ≤ c1‖x1‖X1

for all x0 ∈ X0 and x1 ∈ X1. If x ∈ (X0, X1)σ,q and x = x0 + x1, with x0 ∈ X0

and x1 ∈ X1, it follows by the linearity of T that T (x) = T (x0) + T (x1), with
T (x0) ∈ Y0 and T (x1) ∈ Y1. Hence, by (62) and (63),

K(T (x), t;Y0, Y1) ≤ ‖T (x0)‖Y0 + t‖T (x1)‖Y1
≤ c0‖x0‖X0

+ tc1‖x1‖X1
= c0(‖x0‖X0

+ tc1c
−1
0 ‖x1‖X1

).

It follows thatK(T (x), t;Y0, Y1) ≤ c0K(x, tc1c
−1
0 ;X0, X1), and so, if 1 ≤ q <∞,

by (64) and the change of variables τ = tc1c
−1
0 ,

‖T (x)‖σ,q ≤ c0
(∫ ∞

0

(K(x, tc1c
−1
0 ;X0, X1))q

dt

t1+σq

)1/q

= c0(c1c
−1
0 )σ

(∫ ∞
0

(K(x, τ ;X0, X1))q
dτ

τ1+σq

)1/q

= c1−σ0 cσ1‖x‖σ,q.

Similarly, if q = ∞, ‖T (x)‖σ,∞ ≤ c1−σ0 cσ1‖x‖σ,∞. It remains to let c0 ↘
‖T‖L(X0;Y0) and c1 ↘ ‖T‖L(X1;Y1).

Theorem 113 Let (X0, ‖ · ‖X0), (X1, ‖ · ‖X1) be an admissible pair, let 1 ≤ q ≤
∞ and 0 < σ < 1. Then ‖x‖σ,q ≤ c‖x‖1−σX0

‖x‖σX1
for every x ∈ X0 ∩X1 and for

some constant c = c(q, σ) > 0.

Proof. Let x ∈ X0∩X1\{0} and define T (s) = sx for s ∈ R. Then ‖T‖L(R;X0) =
‖x‖X0

, ‖T‖L(R;X1) = ‖x‖X1
, and ‖T‖

L(R;(Y0,Y1)σ,q)
= ‖x‖(X0,X1)σ,q .

Exercise 114 Let (X0, ‖ · ‖X0
), (X1, ‖ · ‖X1

) be a admissible pairs of Banach
spaces, let (Y, ‖ · ‖Y ) be a Banach space and let T : X0 + X1 → Y be a linear
operator such that T : X0 → Y is compact and T : X1 → Y is continuous.
Given 1 ≤ q ≤ ∞ and 0 < σ < 1, prove that T : (X0, X1)σ,q → Y is compact.
Hint: Given ε > 0 take t > 0 so large that tσ ≤ εt and use Exercise ??.

The following theorem tells us that the interpolation of two interpolation
spaces may be realized as an interpolation between the original spaces. This is
one of the key results in interpolation theory.
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Theorem 115 (Reiteration) Let (X0, ‖ · ‖X0), (X1, ‖ · ‖X1) be an admissible
pair, let 1 ≤ q ≤ ∞, and let 0 ≤ σ0 < σ1 ≤ 1. Then for every 0 < σ < 1,

(Xσ0 , Xσ1)σ,q = (X0, X1)θ,q,

where θ := (1−σ)σ0+σσ1, Xσ0 := (X0, X1)σ0,q0 if σ0 > 0 for some 1 ≤ q0 ≤ ∞,
Xσ1 := (X0, X1)σ1,q1 if σ1 < 1 for some 1 ≤ q1 ≤ ∞.

We now show that W s,p(RN ) can be obtained as an interpolation space
between Lp(RN ) and W 1,p(RN ). We begin with a preliminary result.

Proposition 116 For every f ∈W 1,p(RN ) and every h ∈ RN ,∫
RN
|f(x+ h)− f(x)|pdx ≤ ‖h‖p

∫
RN
‖∇f(x)‖pdx.

Proof. Assume first that f ∈W 1,p(RN )∩C∞(RN ). Then by the fundamental
theorem of calculus,

f(x+ h)− f(x) =

∫ 1

0

∇f(x+ th) · h dt.

In turn, by Hölder’s inequality

|f(x+ h)− f(x)|p ≤ ‖h‖p
∫ 1

0

‖∇f(x+ th)‖pdt.

Integrating both sides in x over RN and using Tonelli’s theorem and the change
of variables y = x+ th, so that dy = dx, we obtain∫

RN
|f(x+ h)− f(x)|pdx ≤ ‖h‖p

∫
RN

∫ 1

0

‖∇f(x+ th)‖pdtdx

= ‖h‖p
∫ 1

0

∫
RN
‖∇f(x+ th)‖pdxdt = ‖h‖p

∫
RN
‖∇f(y)‖pdy.

In the general case when f ∈ W 1,p(RN ), we apply the previous inequality to
fε = ϕε ∗ f , where ϕε is a standard mollifier, to obtain∫

RN
|fε(x+ h)− fε(x)|pdx ≤ ‖h‖p

∫
RN
‖∇fε(x)‖pdx.

Using the fact that fε → f pointwise LN -a.e. in RN and ∇fε = ϕε ∗∇f → ∇f
in Lp(RN ;RN ) (see [?]), it suffi ces to let ε→ 0+ in the previous inequality and
use Fatou’s lemma on the left.
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Midterm Solutions.
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We recall that

‖f‖W s,p(Ω) := ‖f‖W s,p(Ω) + ‖f‖W s,p(Ω),

where

|f |W s,p(Ω) =

(∫
Ω

∫
Ω

|f(y)− f(x)|p
‖x− y‖N+sp

dxdy

)1/p

.

Theorem 117 Let 1 ≤ p <∞, and 0 < s < 1. Then

(Lp(RN ),W 1,p(RN ))s,p = W s,p(RN ).

Proof. Step 1: In this step we will show that

(Lp(RN ),W 1,p(RN ))s,p ↪→W s,p(RN ).

Let f ∈ (Lp(RN ),W 1,p(RN ))s,p and v ∈ Lp(RN ) and w ∈ W 1,p(RN ) be such
that f = v + w. By the change of variables x + h = y, and the previous
proposition,∫

RN

|f(x+ h)− f(x)|p
‖h‖N+sp

dx

≤ C
∫
RN

|v(x+ h)− v(x)|p
‖h‖N+sp

dx+

∫
RN

|w(x+ h)− w(x)|p
‖h‖N+sp

dx

≤ C 1

‖h‖N+sp

∫
RN
|v(x)|pdx+

‖h‖p
‖h‖N+sp

∫
RN
‖∇w(y)‖pdy (70)

≤ C 1

‖h‖N+sp

(
‖v‖Lp(RN ) + ‖h‖‖∇w‖Lp(RN )

)p
.

Taking the infimum over all v and w and using the fact that

K(f, t) := inf{‖v‖Lp(RN ) + t‖w‖W 1,p(RN ) : f = v + w, (71)

v ∈ Lp(RN ), w ∈W 1,p(RN )},

we get ∫
RN

|f(x+ h)− f(x)|p
‖h‖N+sp

dx ≤ C 1

‖h‖N+sp
(K(f, ‖h‖))p.

Integrating both sides in h over RN and using spherical coordinates gives∫
RN

∫
RN

|f(x+ h)− f(x)|p
‖h‖N+sp

dxdh ≤ C
∫
RN

1

‖h‖N+sp
(K(f, ‖h‖))pdh

≤ C
∫ ∞

0

(K(f, t))p
dt

t1+sp
.

Since W 1,p(RN ) ⊂ Lp(RN ), by Theorem 106 we have that

(Lp(RN ),W 1,p(RN ))s,p ↪→ Lp(RN ) +W 1,p(RN ) = Lp(RN ).
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Hence,
‖f‖Lp(RN ) ≤ C‖f‖(Lp(RN ),W 1,p(RN ))s,p .

Combining the last two inequalities proves

‖f‖W s,p(RN ) ≤ C‖f‖(Lp(RN ),W 1,p(RN ))s,p .

Monday, March 21, 2022
Proof. Step 2: In this step we will show the other embedding, namely, that

W s,p(RN ) ↪→ (Lp(RN ),W 1,p(RN ))s,p.

Given f ∈W s,p(RN ) and t > 0, for x ∈ RN write

f(x) = (f(x)− ft(x)) + ft(x) =: vt(x) + ft(x),

where ft = ϕt ∗ t and ϕt is a standard mollifier. Since
∫
RN ϕt (y) dy = 1,

vt(x) =

∫
Rn

(f(y)− f(x))ϕt(x− y) dy.

Writing ϕt = ϕ
1/p
t ϕ

1/p′

t , it follows by Hölder’s inequality that

|vt(x)|p ≤
∫
RN
|f(y)− f(x)|pϕt(x− y) dy ≤ ‖ϕ‖∞

tN

∫
B(x,t)

|f(y)− f(x)|pdy,

where in the last inequality we used the fact that suppϕt(x − ·) ⊆ B(x, t).
Integrating in x over RN gives∫

RN
|vt(x)|pdx ≤ ‖ϕ‖∞

tN

∫
RN

∫
B(x,t)

|f(y)− f(x)|pdydx.

In turn, by Tonelli’s theorem∫ ∞
0

‖vt‖pLp(RN )

dt

t1+sp
≤ ‖ϕ‖∞

∫ ∞
0

1

tN+1+sp

∫
RN

∫
B(x,t)

|f(y)− f(x)|pdydxdt

= ‖ϕ‖∞
∫
RN

∫
RN
|f(y)− f(x)|p

∫ ∞
‖x−y‖

1

tN+1+sp
dtdxdy

(72)

=
‖ϕ‖∞
N + sp

∫
RN

∫
RN

|f(y)− f(x)|p
‖x− y‖N+sp

dxdy.

Next we estimate ft. By standard properties of mollifiers, ft ∈ C∞(RN ), with

∇ft(x) =
1

tN+1

∫
RN

f(y)∇ϕ
(
x− y
t

)
dy

=
1

tN+1

∫
RN

[f(y)− f(x)]∇ϕ
(
x− y
t

)
dy,
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where we used the fact that
∫
RN ∇ϕ

(
x−y
t

)
dy = 0 since

∫
RN ϕt (x− y) dy = 1.

By the change of variables z = x−y
t ,∫

RN

∥∥∥∥∇ϕ(x− yt
)∥∥∥∥p′ dy = tN

∫
RN
‖∇ϕ(z)‖p

′
dz.

Hence, writing 1
tN
‖∇ϕ‖ = 1

tN/p
‖∇ϕ‖1/p 1

tN/p′
‖∇ϕ‖1/p

′
, it follows by Hölder’s

inequality that

‖∇ft(x)‖p ≤ C 1

tN+p

∫
RN
|f(y)− f(x)|p

∥∥∥∥∇ϕ(x− yt
)∥∥∥∥ dy

≤ C 1

tN+p

∫
B(x,t)

|f(y)− f(x)|pdy,

where in the last inequality we used the fact that supp∇ϕ((x− ·)/t) ⊆ B(x, t).
Integrating in x over RN gives∫

RN
‖∇ft(x)‖pdx ≤ C 1

tN+p

∫
RN

∫
B(x,t)

|f(y)− f(x)|pdydx.

In turn, by Tonelli’s theorem∫ ∞
0

tp‖∇ft‖pLp(RN )

dt

t1+sp
≤ C

∫ ∞
0

1

tN+1+sp

∫
RN

∫
B(x,t)

|f(y)− f(x)|pdydxdt

(73)

≤ C
∫
RN

∫
RN
|f(y)− f(x)|p

∫ ∞
‖x−y‖

1

tN+1+sp
dtdxdy

≤ C
∫
RN

∫
RN

|f(y)− f(x)|p
‖x− y‖N+sp

dxdy.

Since ‖ft‖Lp(RN ) ≤ ‖f‖Lp(RN ), we have that∫ 1

0

tp‖ft‖pLp(RN )

dt

t1+sp
≤ ‖f‖p

Lp(RN )

∫ 1

0

tp
dt

t1+sp
=

1

p(1− s)‖f‖
p
Lp(RN )

.

Combining this inequality with (72) and (73) and using (71) gives∫ 1

0

(K(f, t))p
dt

t1+sp
≤
∫ 1

0

(‖vt‖pLp(RN )
+ tp‖ft‖pW 1,p(RN )

)
dt

t1+sp

≤ C‖f‖p
Lp(RN )

+

∫
RN

∫
RN

|f(y)− f(x)|p
‖x− y‖N+sp

dxdy.

SinceW 1,p(RN ) ↪→ Lp(RN ), by Exercise 108 we can endow the space (Lp(RN ),W 1,p(RN ))s,p
with the equivalent norm

f 7→ ‖f‖Lp(RN ) +

(∫ 1

0

(K(f, t))p
dt

t1+sp

)1/p

.

Thus the previous inequality completes the proof.
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11 Decreasing Rearrangement

Given a measure space (E,M, µ), for every measurable set F ⊆ E, we define

F ∗ := [0, µ(F )) (74)

if µ(F ) > 0 and F ∗ := ∅ if µ(F ) = 0. If we now consider the functions χF and
χF∗ , we see that χF∗ is decreasing in [0,∞) since χF∗(x) = 1 if 0 ≤ x < µ(F ),
and

µ({x ∈ E : χF (x) > t)} = L1({y ∈ [0,∞) : χF∗(y) > t)}
for every t ≥ 0. We will see that we can extend this procedure to the case when
χE is replaced by a qa1 measurable function f , that is, we can construct a
function f∗, which is decreasing in [0,∞), and µ({|f | > t)} = L1({f∗ > t)} for
every t ≥ 0.

Definition 118 Given a measure space (E,M, µ) and a measurable function
f : E → R, the decreasing rearrangement of f is the function f∗ : [0,∞) →
[0,∞], defined by

f∗(y) :=

∫ ∞
0

χE∗t (y) dt, y ≥ 0, (75)

where Et := {x ∈ E : |f(x)| > t} and

E∗t := (Et)
∗ = [0, µ(Et)). (76)

If µ(Et) = 0, we set E∗t := ∅.

Remark 119 Let F ⊆ E be a measurable set. Consider the function χF : E →
{0, 1}. Then Et = {x ∈ E : χF (x) > t} = F if 0 ≤ t < 1 and Et = ∅ if t ≥ 1.
In turn,

(χF )∗(y) =

∫ ∞
0

χE∗t (y) dt =

∫ 1

0

χF∗(y) dt = χF∗(y).

Theorem 120 Let (E,M, µ) be a measurable space, f : E → R be a measurable
function, and f∗ : [0,∞)→ [0,∞] be its decreasing rearrangement. Then

(i) if 0 ≤ y1 < y2, then f∗(y1) ≥ f∗(y2),

(ii) for every t ≥ 0,

{x ∈ E : |f(x)| > t}∗ = {y ∈ [0,∞) : f∗(y) > t}

and
µ({x ∈ E : |f(x)| > t}) = L1({y ∈ [0,∞) : f∗(y) > t)}. (77)

Proof. To prove item (i), observe that if y2 ∈ E∗t = [0, µ(Et)), then, since
0 ≤ y1 < y2, we have that 0 ≤ y1 < y2 < µ(Et), and so, y1 ∈ E∗t . Thus,
if χE∗t (y2) = 1, then χE∗t (y1) = 1, which implies that χE∗t (y2) ≤ χE∗t (y1).
Integrating in t and using (75) gives f∗(y2) ≤ f∗(y1).
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To prove item (iii), consider 0 ≤ t1 < t2. Then

Et2 = {x ∈ E : |f(x)| > t2} ⊆ {x ∈ E : |f(x)| > t1} = Et1 . (78)

This proves that the function g(t) := µ(Et), t ≥ 0, is decreasing. We claim that
g is right-continuous. Fix t0 ≥ 0. Since g is decreasing, there exists

lim
t→t+0

g(t) ≥ g(t0).

To prove equality, consider a decreasing sequence tn → t+0 . Then Etn ⊆ Etn+1
and

⋃∞
n=1Etn = Et0 , and so, we have that

lim
n→∞

g(tn) = lim
n→∞

L1(Etn) = L1
( ∞⋃
n=1

Etn

)
= g(t0).

This proves the claim.
Let t ≥ 0 and y ∈ E∗t = [0, µ(Et)). Then y < µ(Et) = g(t). Since g is

right-continuous, there exists δ > 0 such that g(r) > y for all r ∈ [t, t + δ).
Thus, we have shown that y ∈ [0, µ(Er)) = E∗r for all r ∈ [t, t+δ). On the other
hand, by (78), we have that y ∈ E∗r for all 0 ≤ r ≤ t. Hence,

f∗(y) =

∫ ∞
0

χE∗r (y) dr =

∫ t+δ

0

1 dr +

∫ ∞
t+δ

χE∗r (y) dr ≥ t+ δ > t.

This shows that
E∗t ⊆ {y ∈ [0,∞) : f∗(y) > t}. (79)

To prove the other inclusion, assume that y /∈ E∗t = [0, µ(Et)). Assume y ≥
µ(Et). Since µ(Er) ≤ µ(Et) for all r ≥ t by (78), it follows that y /∈ E∗r =
[0, µ(Er)), and so,

f∗(y) =

∫ ∞
0

χE∗r (y) dr =

∫ t

0

χE∗r (y) dr ≤ t,

which implies that y /∈ {z ∈ [0,∞) : f∗(z) > t}. Together with (79), this proves
that

E∗t = {y ∈ [0,∞) : f∗(y) > t}.

Since µ(Et) = L1(E∗t ) by (76), it follows that

µ({x ∈ E : |f(x)| > t)} = L1(E∗t ) = L1({y ∈ [0,∞) : f∗(y) > t}),

and so item (ii) holds.
Wednesday, March 23, 2022

Next we show that the decreasing rearrangement preserves Lp norms. We
begin by proving the so-called layer-cake representation.
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Theorem 121 Let (E,M, µ) be a measure space, let 0 < p < ∞ and let f :
E → R be a measurable function. Then∫

E

|f(x)|pdµ(x) = p

∫ ∞
0

tp−1µ ({x ∈ E : |f(x)| > t}) dt.

Proof. If µ ({x ∈ E : |f(x)| > t0}) =∞ for some t0 > 0, then µ ({x ∈ E : |f(x)| > t}) =
∞ for all 0 ≤ t < t0, and thus both sides of the previous equality are infinite.
Thus, assume that µ ({x ∈ E : |f(x)| > t}) < ∞ for all t > 0. Restrict the
measure µ to the set of σ-finite measure

E0 := {x ∈ E : |f(x)| > 0} .

By Tonelli’s theorem, which holds since L1 and µ restricted to E0 are both
σ-finite,

p

∫ ∞
0

tp−1µ ({x ∈ E0 : |f(x)| > t}) dt = p

∫ ∞
0

tp−1

∫
E0

χ{|f |>t}(x) dµ(x)dt

=

∫
E0

∫ |f(x)|

0

ptp−1dtdµ(x)

=

∫
E0

|f(x)|pdµ(x) =

∫
E

|f(x)|pdµ(x).

Using this result and Theorem 120, we have the following important result.

Theorem 122 Let (E,M, µ) be a measure space and let f : E → R be a mea-
surable function. Then for all 0 < p <∞,∫

E

|f(x)|pdµ(x) =

∫ ∞
0

(f∗ (y))pdy, (80)

while
esssup
E
|f | = sup f∗ = f∗ (0) . (81)

Proof. It follows from Theorem 121 and Theorem 120 that∫
E

|f(x)|pdµ(x) = p

∫ ∞
0

tp−1µ ({x ∈ E : |f(x)| > t}) dt

= p

∫ ∞
0

tp−1L1 ({y ≥ 0 : f∗ (y) > t}) dt

=

∫ ∞
0

(f∗ (y))pdy.

Next we claim that

f∗ (0) = esssup
E
|f | := inf {t ∈ [0,∞) : |f(x)| ≤ t for µ a.e. x ∈ E} . (82)
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Let M := esssupE |f |. Let’s prove that f∗ (0) ≤ M . Assume that M < ∞,
otherwise there is nothing to prove. If t > M , then Et = {x ∈ E : |f(x)| > t}
has measure zero. Thus, E∗t = ∅, and by (75),

f∗(0) =

∫ M

0

χE∗t (0) dt ≤M.

On the other hand, if t < M , then there exists a measurable set F ⊆ E with
µ(F ) > 0 such that |f(x)| > t for all x ∈ F . In turn, Et ⊇ F , so E∗t =
[0, µ(Et)) ⊇ [0, µ(F )). In particular, 0 ∈ E∗t , so that

f∗(0) =

∫ M

0

χE∗t (0) dt =

∫ M

0

1 dt = M.

Corollary 123 Let (E,M, µ) be a measure space and let f : E → R be a
measurable function. Given t0 > 0, let Et0 := {x ∈ E : |f(x)| > t0}. Then∫

Et0

|f(x)| dµ(x) =

∫ µ(Et0 )

0

f∗(y) dy.

Proof. Exercise.

Exercise 124 Let (E,M, µ) be a measure space and let f : E → R be a mea-
surable function. Given t > 0, let Et := {x ∈ E : |f(x)| > f∗(t)}. Prove that
µ(Et) ≤ t and that f∗ is constant on [µ(Et), t].

As an application of the interpolation theory, we prove that the interpolation
space between L1(E) and L∞(E) is the Lorentz space Lp,q(E),

Theorem 125 Let (E,M, µ) be a measure space, 1 < p <∞, and 1 ≤ q ≤ ∞.
Then

(L1(E), L∞(E))s,q = Lp,q(E),

where s := 1− 1/p. Moreover a norm in Lp,q(E) is given by

‖f‖Lp,q :=
(∫ ∞

0

(∫ t

0

f∗(τ) dτ
)q dt

t1+sq

)1/q

if 1 ≤ q <∞ and

‖f‖Lp,∞ := sup
t>0

t−s
∫ t

0

f∗(τ) dτ

if q =∞, where f∗ is the decreasing rearrangement of f .

Proof. The fact that L1(E) and L∞(E) are an admissible pair follows from
your homework. Given a Lebesgue measurable function f : E → R and t > 0,
we claim that

K(f, t) =

∫ t

0

f∗(τ) dτ. (83)

67



We begin by proving
∫ t

0
f∗dτ ≤ K(f, t). Without loss of generality we may

assume that K(f, t) <∞ (see Remark 104), so that f ∈ L1(E)+L∞(E). Write
f = g + h, where g ∈ L1(E) and h ∈ L∞(E). Then by Exercise ??, a change of
variables and the fact that h∗ is decreasing∫ t

0

f∗(τ) dτ ≤
∫ t

0

g∗((1− ε)τ) dτ +

∫ t

0

h∗(ετ) dτ

≤ (1− ε)−1

∫ ∞
0

g∗(r) dr + th∗(0)

= (1− ε)−1‖g‖L1(E) + t‖h‖L∞(E),

where the last equality follows from Theorem 122. Letting ε → 0+ shows that∫ t
0
f∗dτ ≤ ‖g‖L1(E) + t‖h‖L∞(E). Since this holds for every decomposition of f ,

it follows that
∫ t

0
f∗dτ ≤ K(f, t).
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Proof. To prove the converse inequality, assume that

∫ t
0
f∗dτ <∞ and define

g(x) := max{|f(x)| − f∗(t), 0} sgn f(x), h(x) := f(x)− g(x).

Let Et := {x ∈ E : |f(x)| > f∗(t)}. By Exercise 124, µ(Et) ≤ t and f∗ is
constant on [µ(Et), t]. Hence,

‖g‖L1(E) =

∫
Et

(|f(x)| − f∗(t)) dµ =

∫ µ(Et)

0

(f∗(τ)− f∗(t)) dτ

≤
∫ t

0

(f∗(τ)− f∗(t)) dτ,

where in the second equality we used Corollary 123. On the other hand, |h(x)| =
f∗(t) in Et and |h(x)| ≤ f∗(t) outside Et. It follows that

‖g‖L1(E) + t‖h‖L∞(E) ≤
∫ t

0

(f∗(τ)− f∗(t)) dτ + tf∗(t)

=

∫ t

0

f∗(τ) dτ,

which shows that K(f, t) ≤
∫ t

0
f∗dτ . This proves (83).

Exercise 126 Let (E,M, µ) be a measure space, 1 < p < ∞, and 1 ≤ q ≤ ∞.
Prove that f ∈ L1(E) + L∞(E) belongs to Lp,q(E) if and only if(∫ ∞

0

(t1/pf∗(t))q
dt

t

)1/q

<∞

if q <∞ and
sup
t>0

t1/pf∗(t) <∞

if q =∞. Deduce that Lp,p(E) = Lp(E).
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Corollary 127 Let (E,M, µ) be a measure space, let 1 < p < ∞, and let
1 < p <∞ and let 1 ≤ q1 < q2 <∞. Then Lp,q1(E) ↪→ Lp,q2(E).

Proof. This follows by applying Theorems 111 and 125.

Corollary 128 Let (E,M, µ) be a measure space, let 1 < p < ∞, and let
1 ≤ q ≤ ∞. Then

‖f‖Lp,q ≤ c‖f‖1−sL1 ‖f‖
s
L∞

for all f ∈ L1(E) ∩ L∞(E), where s := 1− 1/p.

Proof. This follows by applying Theorems 113 and 125.

Theorem 129 (Marcinkiewicz) Let (E,M, µ) and (F,N, ρ) be measure spaces,
let

T : L1(E) + L∞(E)→ L1(F ) + L∞(F )

be a linear operator such that T : L1(E)→ L1(F ) with

‖T (f)‖L1(F ) ≤ c1 ‖f‖L1(E)

for all f ∈ L1 (E) and T : L∞(E)→ L∞(F ) with

‖T (f)‖L∞(F ) ≤ c2 ‖f‖L∞(E)

for all f ∈ L∞ (E). Then for every 1 < p <∞ and 1 ≤ q ≤ ∞,

T : Lp,q(E)→ Lp,q(F )

and
‖T‖L(Lp,q(E);Lp,q(F )) ≤ ‖T‖1−sL(L1(E);L1(F ))‖T‖

s
L(L∞(E);L∞(F )).

Proof. This follows by applying Theorems 112 and 125.

Theorem 130 Let (E,M, µ) be a measure space, let 1 ≤ q, q0, q1 ≤ ∞, let
1 ≤ p0, p1 ≤ ∞, with p0 6= p1, and let 0 < s < 1. Then

(Lp0,q0(E), Lp1,q1(E))s,q = Lp,q(E), (84)

where 1
p = 1−s

p0
+ s

p1
. In particular,

(Lp0(E), Lp1(E))s,q = Lp,q(E). (85)

Proof. We will only do the case 1 < p0, p1 < ∞ and leave the other cases as
an exercise. By Theorem 125,

(L1(E), L∞(E))1−1/p,q = Lp,q(E),

(L1(E), L∞(E))1−1/p0,q0 = Lp0,q0(E),

(L1(E), L∞(E))1−1/p1,q1 = Lp1,q1(E).
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Taking θ = 1− 1
p , s0 = 1− 1

p0
, and s1 = 1− 1

p1
we get

θ = 1− 1

p
= 1− 1− s

p0
− s

p1

= (1− s) + s− 1− s
p0
− s

p1
= (1− s)s0 + ss1,

and so we are in a position to apply the reiteration theorem (see Theorem 115)
to obtain (84). To obtain (85) it suffi ces to observe that Lp0,p0(E) = Lp0(E)
and Lp1,p1(E) = Lp1(E) by your homework.

Exercise 131 Let E ⊆ RN be a Lebesgue measurable set, let 1 < p < r < s <
∞ and let 1 ≤ q ≤ ∞. Prove that if f ∈ Lp,∞(E) ∩ Ls,∞(E), then f ∈ Lr,q(E)
and estimate its Lr,q(E) norm.

Exercise 132 Let E ⊆ RN be a Lebesgue measurable set, let 1 < p < ∞ and
let 1 ≤ q < ∞. Prove that L1(E) ∩ L∞(E) is dense in Lp,q(E). Deduce that
simple functions are dense in Lp,q(E).

Theorem 133 (Marcinkiewicz in Lorentz spaces) Let (E,M, µ) and (F,N, ρ)
be measure spaces, let 1 < p0, p1, r0, r1 < ∞ with p0 6= p1 and r0 6= r1, let
1 ≤ q0, q1, s0, s1 ≤ ∞, and let

T : Lp0,q0(E) + Lp1,q1(E)→ Lp0,q0(F ) + Lp1,q1(F )

be a linear operator such that T : Lp0,q0(E) → Lr0,s0(F ) and T : Lp1,q1(E) →
Lr1,s1(F ) with

‖T (f)‖Lri,si (F ) ≤ ci ‖f‖Lpi,qi (E) , i = 0, 1, (86)

for all f ∈ Lpi,qi(E) and for some positive constants c0 and c1 > 0. Then for
every θ ∈ (0, 1), there exists a constant cθ > 0 such that

‖T (f)‖Lr,s(F ) ≤ cθ ‖f‖Lp,q(E)

for all f ∈ Lp,q(E), where 1 ≤ q ≤ s ≤ ∞ and

1

p
=

1− θ
p0

+
θ

p1
,

1

r
=

1− θ
r0

+
θ

r1
. (87)

Proof. This follows by applying Theorems 112 and 130 and Corollary 127.
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12 Rapidly Decreasing Functions and Tempered
Distributions

Definition 134 The space of rapidly decreasing functions S
(
RN
)
is the space

of all functions f : RN → C of class C∞ such that for all multi-indeces α,β ∈
N+

0 ,
‖f‖α,β := sup

x∈RN
|xα∂βf(x)| <∞.
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Thus S
(
RN
)
consists of all functions that, together with all their derivatives,

decay to zero faster than any polynomial. Note that ‖f‖0,0 := supx∈RN |f(x)|.

Remark 135 The space C∞c (RN ) of all C∞ functions f : RN → C with com-
pact support is contained in S

(
RN
)
. The function f(x) := e−‖x‖

2

is an example
of a function in S

(
RN
)
without compact support.

Note that for all multi-indeces α,β ∈ N+
0 , ‖·‖α,β is a seminorm. In S

(
RN
)

we consider the topology τ generated by the family of seminorms ‖·‖α,β, where
α,β ∈ N+

0 . We recall the following definitions.

Definition 136 Given a vector space X, a function p : X → [0,∞) is a semi-
norm if p(x + y) ≤ p(x) + p(y) for every x, y ∈ X and p(tx) = |t|p(x) for all
t ∈ R and x ∈ X. Given a seminorm, for every x ∈ X and r > 0 we define
Bp(x, r) := {y ∈ X : p(x− y) < r}.

Definition 137 If X is a vector space and P is a family of seminorms, the
topology τ generated by P is the smallest topology that contains all "balls"
Bp(x, r) for all x ∈ X, r > 0, and p ∈ P.

Theorem 138 Let P be a countable family of seminorms on a vector space X
with the property that for every x 6= 0 there exists p ∈ P such that p (x) > 0 and
let τ be the topology generated by P. Then there exists a translation-invariant
metric d that generates τ .

Proof. Let P = {pn}n and for x, y ∈ X define

d (x, y) := sup
n

1

n
min {1, pn (x− y)} . (88)

We leave as an exercise to prove that d is a metric. Note that d (x, y) =
d (x− y, 0), and so d is translation-invariant. Similarly, since every ball

Bpn(x, r) = {y ∈ X : pn(x− y) < r} = x+Bpn(0, r),

we have that U ∈ τ if and only if x + U ∈ τ for any x ∈ X. Thus, τ is
translation-invariant.
Step 1: We claim that

Bd (0, r) := {x ∈ X : d (x, 0) < r}

is open with respect to τ . If r > 1, then Bd (0, r) = X. To see this, note that
d (x, 0) ≤ 1 < r for every x ∈ X, which implies that Bd (0, r) = X ∈ τ .
Next, fix 0 < r ≤ 1. Let n1 ∈ N be so large that 1

n < r for all n > n1 and
1
n ≥ r for n ≤ n1. If d (x, 0) < r, then

sup
n

1

n
min {1, pn (x)} < r if and only if max

1≤n≤n1

1

n
min {1, pn (x)} < r.
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For 1 ≤ n ≤ n1, since 1
n ≥ r, we have that 1

n min {1, pn (x)} < r if and only if
1
npn (x) < r. Hence,

Bd (0, r) =

n1⋂
n=1

Bpn (0, rn) ∈ τ.

By the translation invariance of d and the seminorms,

Bd (x, r) = x+Bd(0, r) = x+

n1⋂
n=1

Bpn (0, rn) =

n1⋂
n=1

Bpn (x, rn) ∈ τ.

Step 2: Let k ∈ N and r > 0. We claim that Bpk (0, r) is open with respect to
the topology τd generated by the metric d. If x ∈ Bpk (0, r), take

R =
min{1, r − pk(x)}

k
.

We claim that Bd(x,R) ⊆ Bpk(0, r). To see this, let y ∈ Bd(x,R). Then

d(x, y) = sup
n

1

n
min {1, pn (x− y)} < R.

In particular, 1
k min {1, pk (x− y)} < min{1,r−pk(x)}

k , which implies that

min {1, pk (x− y)} < min{1, r − pk(x)} ≤ 1.

In turn, pk (x− y) < min{1, r − pk(x)} ≤ r − pk(x), so that

pk(y) ≤ pk(x− y) + pk(x) < r.

Thus, y ∈ Bpk(0, r). We have shown that every x ∈ Bpk(0, r) is an interior point
with respect to the metric d. Thus, Bpk(0, r) is open with respect to the metric
d. By translation-invariance the same is true for Bpk(x, r) = x + Bpk(0, r). It
follows that every open set in τ is open with respect to the metric.
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In view of the previous theorem, the space S

(
RN
)
is metrizable. We now

show that S
(
RN
)
is complete.

Theorem 139 The space S
(
RN
)
endowed with the metric

d(f, g) := sup
n

1

n
min

{
1, ‖f − g‖αn,βn

}
is complete. Moreover, fn → f in S

(
RN
)
if and only if ‖fn − f‖α,β → 0 for

every α,β ∈ NN0 .

Proof. Let {fk}k be a Cauchy sequence in S
(
RN
)
. Then

d(fk, fl) = sup
n

1

n
min

{
1, ‖fk − fl‖αn,βn

}
→ 0
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as k, l → ∞, which implies that 1
n min

{
1, ‖fk − fl‖αn,βn

}
→ 0 as k, l → ∞

for every n. In turn, ‖fk − fl‖αn,βn → 0 as k, l → ∞ for every n. Thus,{
xα∂βfk

}
k
is a Cauchy sequence in Cb

(
RN
)
for every α,β ∈ N+

0 and thus it
converges uniformly to a function gα,β. Let f := g0,0. By the fundamental
theorem of calculus

fk(x+ tei) = fk(x) +

∫ t

0

∂fk
∂xi

(x+ sei) ds.

Letting k →∞ it follows by uniform convergence that

f(x+ tei) = f(x) +

∫ t

0

g0,ei(x+ sei) ds.

Hence, there exists ∂f
∂xi

= g0,ei . This proves that f is of class C
1. In a similar

way we can show that f is of class C∞ with gα,β = xα∂βf . Thus f ∈ S
(
RN
)
.

Fix ε and let nε be so large that 1
n < ε for all n > nε. Since ‖fk − f‖α,β → 0

for all α,β ∈ N+
0 we can find kε so large that ‖fk − f‖αn,βn < ε for all k ≥ kε

and all n = 1, . . . , nε. Then

d(fk, f) ≤ sup
1≤n≤nε

1

n
min

{
1, ‖fk − fl‖αn,βn

}
+ sup
n>nε

1

n
≤ 2ε

for all k ≥ kε. It follows that S
(
RN
)
is complete. The last part of the statement

is a consequence of the previous theorem.
The following theorem is important for applications. For f ∈ S

(
RN
)
and

m,n ∈ N0 we define
‖f‖m,n :=

∑
|α|≤n

∑
|β|≤n

‖f‖α,β .

Theorem 140 A linear functional T : S
(
RN
)
→ C is continuous if and only

if there exist a constant C > 0 and some m,n ∈ N0 such that

|T (f)| ≤ C ‖f‖m,n . (89)

for every f ∈ S
(
RN
)
.

Proof. Assume that T : S
(
RN
)
→ C is continuous. Then T−1(B(0, 1)) is

open. Since 0 ∈ T−1(B(0, 1)), we can find 0 < r < 1 such that Bd(0, r) ⊆
T−1(B(0, 1)). We have seen that if r < 1, there exist multi-indeces α1,β1, . . . ,
α`,β` and r1 > 0, . . . , r` > 0 such that

Bα1,β1 (0, r1) ∩ · · · ∩Bα`,β` (0, r`) = Bd(0, r) ⊆ T−1(B(0, 1)).

This means that if g ∈ S
(
RN
)
is such that ‖g‖αi,βi < ri for all i = 1, . . . , `,

then |T (g)| < 1. Let 0 < ρ < min ri, m = max |αi|, n = max |βi|. Given
f ∈ S

(
RN
)
\ {0}, we have that

g := ρ
f

‖f‖m,n
∈ Bα1,β1 (0, r1) ∩ · · · ∩Bα`,β` (0, r`) ,
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and so, by the linearity of T ,
ρ

‖f‖m,n
|T (f)| = |T (g)| < 1,

that is,

|T (f)| < 1

ρ
‖f‖m,n .

Conversely, assume that there exist a constant C > 0 and some m,n ∈ N0 such
that |T (f)| ≤ C ‖f‖m,n for every f ∈ S

(
RN
)
. Let’s prove that T is continuous

at 0. Consider an open set V ⊆ C with T (0) = 0 ∈ V . Then we can find ε > 0
such that B(0, ε) ⊆ V . Let Bm,n(0, δ) = {f ∈ S

(
RN
)

: ‖f‖m,n < δ}. This set
is open with respect to τ . If f ∈ Bm,n(0, δ), then

|T (f)| ≤ C ‖f‖m,n < Cδ = ε,

provided δ = ε/C. Hence, T is continuous at 0. Since the topology is translation
invariant, we have continuity at every point.

Definition 141 The dual of S
(
RN
)
is called the space of tempered distribu-

tions and is denoted S ′
(
RN
)
.

In S ′
(
RN
)
we consider as a topology the topology generated by the basis of

neighborhoods of 0 given by

B(0, ε, F ) := {T ∈ S ′
(
RN
)

: |T (f)| < ε for all f ∈ F},

where ε > 0 and F ⊂ S
(
RN
)
is a finite set. With this topology a sequence

{Tn}n of tempered distributions converges to T if and only if Tn(f)→ T (f) for
every f ∈ S

(
RN
)
.
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Example 142 Given a measure µ : B(RN )→ [0,∞] with the property that

µ(B(0, r)) ≤ C0(1 + r)k

for some C0 > 0, some k ∈ N, and for all r > 0, the linear functional Tµ :
S
(
RN
)
→ C defined by

Tµ(f) :=

∫
RN

f dµ

is well-defined and continuous. Indeed, write∫
RN
|f | dµ =

∫
B(0,1)

|f | dµ+

∞∑
n=2

∫
B(0,n)\B(0,n−1)

|f | dµ

≤ ‖f‖∞ 2C0 +

∞∑
n=2

∫
B(0,n)\B(0,n−1)

(1 + ‖x‖)3k

(1 + ‖x‖)3k
|f | dµ

≤ ‖f‖∞ 2C0 + CC0 ‖f‖3k,0
∞∑
n=1

(1 + n)k

n3k
<∞.

Hence by (89), Tµ ∈ S ′
(
RN
)
.
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Example 143 (Principal value of 1/x) Let’s prove that the linear mapping

T (f) := lim
ε→0+

∫
R\[−ε,ε]

f(x)

x
dx, f ∈ S (R) ,

is well-defined and belongs to S ′ (R). The functional T is called the principal
value of 1

x and is denoted pv 1
x . Write∫

R\[−ε,ε]

f(x)

x
dx =

∫
[−1,1]\[−ε,ε]

f(x)

x
dx+

∫
R\[−1,1]

f(x)

x
dx

=: I1 + I2.

The term I2 does not give any troubles, since∫
R\[−1,1]

∣∣∣∣f(x)

x

∣∣∣∣ dx ≤ ∫
R\[−1,1]

|f(x)| dx

≤ 2 ‖f‖1,0
∫ ∞

1

1

x2
dx = 2 ‖f‖0,1 .

Let’s study I1. Since 1/x is an odd function,∫
[−1,1]\[−ε,ε]

1

x
dx = 0, (90)

we can write

I1 =

∫
[−1,1]\[−ε,ε]

f(x)− f(0)

x− 0
dx.

Since f ∈ S (R), by the mean value theorem∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ = |f ′(θ)| ≤ ‖f‖0,1

for all x ∈ [−1, 1], with x 6= 0, and so by the Lebesgue dominated convergence
theorem, there exists

lim
ε→0+

I1 =

∫ 1

−1

f(x)− f(0)

x− 0
dx.

Moreover, since |I1| ≤ 2 ‖f‖0,1, it follows that | limε→0+ I1| ≤ 2 ‖f‖0,1. Thus,
we have shown that T (f) is well-defined and

|T (f)| ≤ 2 ‖f‖0,1 + 2 ‖f‖1,0 ,

which, by Theorem 140, implies that pv 1
x ∈ S

′ (R).
Similarly, for x0 ∈ R we can define the tempered distribution(

pv
1

x− x0

)
(f) := lim

ε→0+

∫
R\[x0−ε,x0+ε]

f(x)

x− x0
dx, f ∈ S (R) .

Note that pv 1
x is not of the form 142.
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Remark 144 The cancellation property (90) will turn out to play a crucial role
in the theory of singular operators.

Next we show that S
(
RN
)
is embedded in Lp for every p.

Theorem 145 The space S
(
RN
)
is embedded in Lp

(
RN
)
for all 1 ≤ p ≤ ∞,

while Lp(RN ) is embedded in S ′
(
RN
)
for all 1 ≤ p ≤ ∞.

Proof. We only need to consider the case 1 ≤ p <∞. Write∫
RN
|f | dx =

∫
RN

1 + ‖x‖N+1

1 + ‖x‖N+1
|f | dx

≤ C ‖f‖N+1,0

∫
RN

1

1 + ‖x‖N+1
dx.

For 1 < p <∞ it is enough to observe that∫
RN
|f |p dx ≤ ‖f‖p−1

∞

∫
RN
|f | dx ≤ C ‖f‖pN+1,0 .

This shows that S
(
RN
)
is embedded in Lp

(
RN
)
. Given g ∈ Lp(RN ), consider

the linear functional T : S
(
RN
)
→ C defined by

Tg(f) :=

∫
RN

fg dx. (91)

Then by Hölder’s inequality

|Tg(f)| ≤ ‖f‖Lp′ ‖g‖Lp ≤ C ‖f‖N+1,0 ‖g‖Lp .

Hence, by (89) the functional Tg belongs to S ′
(
RN
)
and the linear mapping

g ∈ Lp(RN ) 7→ Tg is a continuous embedding. Indeed, given ε > 0 and a finite
set F ⊂ S(RN ),

|Tg(f)− Th(f)| ≤ C ‖f‖N+1,0 ‖g − h‖Lp < ε

for all h ∈ Lp(RN ) with ‖g − h‖Lp < ε
1+Cmaxf∈F ‖f‖N+1,0

.

Remark 146 In what follows we identify g with Tg. Hence, Lp(RN ), and in
particular S

(
RN
)
, can be thought as contained in S ′

(
RN
)
.

We now define the notion of a derivative of a tempered distribution. Let
g ∈ S(RN ) and consider the tempered distribution associated to g, that is,

Tg(f) :=

∫
RN

f(x)g(x) dx, f ∈ S(RN ).

Given a multi-index α, it is natural to ask that the α-th derivative of Tg should
be T∂αg. Using integration by parts it follows that

T∂αg(f) :=

∫
RN

f(x)∂αg(x) dx = (−1)|α|
∫
RN

∂αf(x)g(x) dx = (−1)|α|Tg(∂
αf).

This motivates the following definition:
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Definition 147 Given T ∈ S ′
(
RN
)
and a multi-index α, we define the α-th

derivative of T as the linear functional ∂αT : S
(
RN
)
→ C defined by

(∂αT ) (f) := (−1)|α|T (∂αf) , f ∈ S
(
RN
)
.

Theorem 148 For every T ∈ S ′
(
RN
)
and every multi-index α, the functional

∂αT belongs to S ′
(
RN
)
.

Proof. Since T ∈ S ′
(
RN
)
, by Theorem 140 there exist a constant C > 0 and

some m,n ∈ N0 such that

|T (f)| ≤ C ‖f‖m,n .

for every f ∈ S
(
RN
)
. In turn, since for f ∈ S

(
RN
)
, ∂αf still belongs to

S
(
RN
)
,

|(∂αT ) (f) | = |T (∂αf) | ≤ C ‖∂αf‖m,n ≤ C ‖f‖m,n+|α| ,

and so, again by Theorem 140 it follows that ∂αT belongs to S ′
(
RN
)
.

Exercise 149 The derivative of log |x| is the principal value.

Exercise 150 Prove that if P is a polynomial, f ∈ S
(
RN
)
, and T ∈ S ′

(
RN
)
,

then PT and fT ∈ S ′
(
RN
)
.

Exercise 151 Let g : RN → C be a function of class C∞ such that for every
multi-index a there exist Ca and na ∈ N such that

|∂αg(x)| ≤ Ca(1 + ‖x‖2
)na (92)

for all x ∈ RN .

(i) Prove that if f ∈ S
(
RN
)
then fg ∈ S

(
RN
)
.

(ii) Prove that if h : RN → C is a measurable function such that hf ∈ S
(
RN
)

for all f ∈ S
(
RN
)
and the mapping f ∈ S

(
RN
)
7→ hf is continuous, then

h must be of class C∞ and satisfy (92).

(iii) Given T ∈ S ′
(
RN
)
prove that the linear functional gT : S

(
RN
)
→ C

defined by
(gT )(f) := T (fg), f ∈ S

(
RN
)
,

belongs to S ′
(
RN
)
.
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13 Fourier Transforms

Given f ∈ S
(
RN
)
, the Fourier transform of f is the function

f̂(x) = F(f)(x) :=

∫
RN

e−2πix·yf(y) dy (93)

while the inverse Fourier transform of f is the function

f∨(x) := f̂(−x) =

∫
RN

e2πix·yf(y) dy. (94)

Since S
(
RN
)
⊂ L1

(
RN
)
, the functions f̂ and f∨ are well-defined.

Wednesday, April 13, 2022

Theorem 152 The Fourier transform F maps S
(
RN
)
into S

(
RN
)
. Moreover,

for every f ∈ S
(
RN
)
and for every α,β ∈ N+

0 ,

∂̂αf(x) = (2πix)αf̂(x), ∂βf̂(x) = ĝβ(x) (95)

where gα(x) := (−2πix)βf(x).

Proof. By (93),

∂̂αf(x) =

∫
RN

e−2πix·y ∂
αf

∂yα
(y) dy.

By integrating by parts and using the fact that f and its derivatives decay to
zero at infinity we get

∂̂αf(x) = (−1)|α|
∫
RN

(−2πix)αe−2πix·yf(y) dy = (2πix)αf̂(x).

This proves the first formula in (95).
To prove the second we differentiate under the integral sign to get

∂βf̂

∂xβ
(x) =

∫
RN

∂β

∂xβ
(e−2πix·y)f(y) dy

=

∫
RN

(−2πiy)βe−2πix·yf(y) dy = ĝβ(x).

Next we estimate ‖f̂‖α,β. By (95) we have

xα
∂βf̂

∂xβ
(x) =

1

(−2πi)α

∫
RN

(−2πiy)β(−2πix)αe−2πix·yf(y) dy

=
1

(−2πi)α

∫
RN

(−2πiy)βf(y)
∂α

∂yα
(e−2πix·y) dy.
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By integrating by parts and using the fact that f and its derivatives decay to
zero at infinity we get

xα
∂βf̂

∂xβ
(x) =

1

(2πi)α

∫
RN

e−2πix·y ∂α

∂yα
(
(−2πiy)βf(y)

)
dy.

It follows from Leibnitz rule that

‖f̂‖α,β ≤ C
∫
RN

∣∣∣∣ ∂α∂yα ((−y)βf(y)
)∣∣∣∣ dy

= C

∫
RN

1 + ‖y‖N+1

1 + ‖y‖N+1

∣∣∣∣ ∂α∂yα ((−y)βf(y)
)∣∣∣∣ dy

≤ C ‖f‖N+1+|β|,|α| ,

which shows that f̂ ∈ S
(
RN
)
and that the linear operator F : S

(
RN
)
→

S
(
RN
)
is continuous.

Example 153 We compute the Fourier transform of the function f(x) = e−π‖x‖
2

.
By Fubini’s theorem and by completing the square we have

f̂(x) =

N∏
k=1

∫
R
e−2πixkyk−πy2kdyk

=

N∏
k=1

eπ(ixk)2
∫
R
e−π(ixk+yk)2dyk.

Next observe that the function

g(x) :=

∫
R
e−π(ix+y)2dy

is constant since

g′(x) =

∫
R
−2πi(ix+ y)e−π(ix+y)2dy

=

∫
R
i
d

dy
(e−π(ix+y)2) dy = 0.

Hence,

g(x) = g(0) =

∫
R
e−πy

2

dy = 1.

If follows that f̂(x) =
∏N
k=1 e

π(ixk)2 = f(x).

Friday, April 15, 2022
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Example 154 Similarly, by taking

fε(x) = e2πix·x0e−πε
2‖x‖2 ,

where ε > 0 and x0 ∈ RN we get

f̂ε(x) =

∫
RN

e−2πix·ye2πiy·x0e−πε
2‖y‖2 dy

=

∫
RN

e−2πi(x−x0)·ye−πε
2‖y‖2 dy

=
1

εN

∫
RN

e−2πiε−1(x−x0)·ze−π‖z‖
2

dz

=
1

εN
f̂((x− x0)/ε) =

1

εN
e−π‖(x−x0)/ε‖2

where we have made the change of variables z := εy.

Next we prove that F is invertible with inverse given by F−1(f) = f∨.

Proposition 155 For every f , g ∈ S
(
RN
)
, we have∫

RN
f(x)ĝ(x) dx =

∫
RN

f̂(x)g(x) dx. (96)

Proof. By Fubini’s theorem∫
RN

f(x)ĝ(x) dx =

∫
RN

f(x)

∫
RN

e−2πix·yg(y) dydx

=

∫
RN

g(y)

∫
RN

e−2πix·yf(x) dxdy

=

∫
RN

g(y)f̂(y) dy,

which shows (96).

Theorem 156 (Fourier inversion theorem) For every f ∈ S
(
RN
)
,

(f̂)∨ = (̂f∨) = f.

In particular, the Fourier transform F is an isomorphism from S
(
RN
)
to

S
(
RN
)
with inverse F−1 given by F−1(f) = f∨ for every f ∈ S

(
RN
)
.

Proof. Fix x0 ∈ RN and ε > 0 and define gε(x) := e2πix·x0e−πε
2‖x‖2 . By

Example 153 we have that ĝε(x) = 1
εN
e−π‖(x−x0)/ε‖2 and so, taking g = gε in

(96), we get∫
RN

f(x)
1

εN
e−π‖(x−x0)/ε‖2 dx =

∫
RN

e2πiy·x0e−πε
2‖y‖2 f̂(y) dy.
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Note that ĝε is a mollifier. Hence, the left-hand side converges to f(x0). On
the other hand, by the Lebesgue dominated convergence theorem the right-hand
side converges to (f̂)∨(x0). Hence,

f(x0) = (f̂)∨(x0)

which shows that (f̂)∨ = f . Similarly we can show that, (̂f∨) = f .
Next observe that if f̂ = 0, then f = (f̂)∨ = 0∨ = 0, and so F is one-to-

one. Since (̂f∨) = f , it follows that F is onto and that the inverse of F is
F−1(f) = f∨.
We recall that for a complex number z = Re z+i Im z, the complex conjugate

of z is the number z := Re z − i Im z.

Corollary 157 For every f , h ∈ S
(
RN
)
,∫

RN
f(x)h(x) dx =

∫
RN

f̂(x)ĥ(x) dx Parseval identity

and ∫
RN
|f(x)|2dx =

∫
RN
|f̂(x)|2dx =

∫
RN
|f∨(x)|2dx. Plancherel identity

In particular, F extends uniquely to an isomorphism of L2
(
RN
)
onto itself.

Proof. Let g := ĥ. Then, using the facts that cos is even and sin is odd, we
have

ĝ(x) =

∫
RN

e−2πiy·xĥ(y) dy =

∫
RN

e2πiz·xĥ(y) dy

=

∫
RN

e2πiz·xĥ(y) dy

=

∫
RN

e2πiz·xĥ(y) dy = (ĥ)∨(x) = h(x),

where in the last equality we have used the inversion theorem. Hence, Parseval’s
identity follows by (96). Taking h = f and using the fact that f(x)f(x) =
|f(x)|2 gives the first equality Plancherel’s identity. The second equality follows
by replacing f with f∨ and using the inversion theorem.
Since S

(
RN
)
is dense in L2

(
RN
)
, if {fn} ⊂ S

(
RN
)
converges to f in

L2
(
RN
)
, then by Plancherel’s identity the sequence {f̂n} is a Cauchy sequence

in L2
(
RN
)
and so it converges to a function g ∈ L2

(
RN
)
. Again by Plancherel’s

identity, the function g does not depend on the particular sequence {fn}. We
define f̂ := g. Similar we can extend uniquely the inverse Fourier transform to
L2
(
RN
)
and reasoning as in the last part of the proof of the inversion theorem

we have that the Fourier transform F : L2
(
RN
)
→ L2

(
RN
)
is an isomorphism

with inverse given by the extension of F−1 to L2
(
RN
)
.
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Remark 158 (Important) Note that the Fourier transform of a function f
in L2

(
RN
)
is obtained as a limit in L2

(
RN
)
of functions of the type (93), but

in general we cannot say that f̂ has the form (93), since the integral in (93)
is well-defined for functions in L1

(
RN
)
but not for functions in L2

(
RN
)
. On

the other hand, if f ∈ L1(RN ), then (93) is well-defined. Hence, the Fourier
transform of a function in L1(RN ) is defined pointwise by (93), while the Fourier
transform of a function in L2(RN ) is defined as a limit in L2(RN ).

Another consequence of the L2 theory is that it allows us to define the
Fourier transform for functions in Lp(RN ) for 1 < p < 2. More generally,
given f ∈ L1(RN ) + L2(RN ), we can write f = g + h, where g ∈ L1(RN ) and
h ∈ L2(RN ). We define the Fourier transform of f as f̂ := ĝ + ĥ. To see that
this is a good definition, let f = g1 + h1 = g2 + h2, where gi ∈ L1(RN ) and
hi ∈ L2(RN ), i = 1, 2. Then g1 − g2 = h1 − h2 ∈ L1(RN ) ∩ L2(RN ). Since the
two definitions of Fourier tranforms coincide for functions in L1(RN )∩L2(RN ),
we have that ĝ1 − ĝ2 = ĥ1 − ĥ2, that is, ĝ1 + ĥ1 = ĝ2 + ĥ2, which shows that
the definition of f̂ is independent of the decomposition of f . In particular, since
Lp(RN ) ⊆ L1(RN ) ∩ L2(RN ) for all 1 < p < 2, we have defined the Fourier
transform of every function f ∈ Lp(RN ) for 1 ≤ p ≤ 2. Next we will show that
f̂ ∈ Lp′(RN ).

Monday, April 18, 2022

Theorem 159 Let f ∈ L1(RN ) ∩ L2(RN ). Then the L2 Fourier transform f̂
of f satisfies

f̂(x) =

∫
RN

e−2πix·yf(y) dy

for LN -a.e. x ∈ RN .

Proof. Define fn := fχB(0,n). Since |fn| ≤ |f |, by the Lebesgue dominated
convergence theorem, fn → f in L1(RN ) and fn → f in L2(RN ). Consider
fn ∗ϕε ∈ C∞c (RN ). By the properties of mollifiers, fn ∗ϕε → fn in L1(RN ) and
fn ∗ ϕε → fn in L2(RN ) as ε→ 0+. Hence,

lim
n→∞

lim
ε→0+

(
‖fn ∗ ϕε − f‖L1(RN ) + ‖fn ∗ ϕε − f‖L2(RN )

)
= 0.

Hence, by a diagonal argument, we can construct gk ∈ C∞c (RN ) such that

lim
k→∞

(
‖gk − f‖L1(RN ) + ‖gk − f‖L2(RN )

)
= 0.

By selecting a further subsequence, we can assume that gk → f pointwise LN -
a.e. in RN and that |gk(x)| ≤ h(x) for all k and for LN -a.e. x ∈ RN , where h
is a Lebesgue integrable function. Since

ĝk(x) =

∫
RN

e−2πix·ygk(y) dy
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and |e−2πix·ygk(y)| ≤ |gk(y)| ≤ h(y) for all k and for LN -a.e. y ∈ RN , it
follows by the Lebesgue dominated convergence theorem that∫

RN
e−2πix·ygk(y) dy →

∫
RN

e−2πix·yf(y) dy.

On the other hand, since gk → f in L2(RN ), we have that ĝk → f̂ in L2(RN ).
By selecting another subsequence, we have that ĝk → f̂ pointwise LN -a.e. in
RN .
Given an open set Ω ⊆ RN , the space C0(Ω) is defined as the space of all

continuous functions f such that for every ε > 0 there exists a compact set
K ⊂ Ω such that |f(x)| < ε for all x ∈ Ω \K.

Theorem 160 (Riemann—Lebesgue lemma) F : L1(RN )→ C0(RN ), with

sup
x∈RN

|f̂(x)| ≤ ‖f‖L1(RN ) (97)

In particular,
lim
|x|→∞

|f̂(x)| = 0.

Proof. By (93), for every f ∈ L1(RN ),

|f̂(x)| ≤ ‖f‖L1(RN )

for every x ∈ RN . Since S
(
RN
)
is dense in L1

(
RN
)
, let {fn}n in S

(
RN
)

converge to f in L1
(
RN
)
. By the previous inequality

sup
x∈RN

|f̂n(x)− f̂(x)| ≤ ‖fn − f‖L1(RN ) .

Hence, the sequence {f̂n}n converges uniformly to f̂ . On the other hand, by
Theorem 152 we have that f̂n ∈ S

(
RN
)
⊂ C0(RN ) and hence, since C0(RN ) is

a closed under uniform convergence, it follows that f̂ ∈ C0(RN ).
Using the previous theorems we can show that Fourier transform maps

Lp(RN ) for 1 < p < 2 into Lp
′
(RN ).

Exercise 161 Let 1 ≤ p ≤ ∞ and 1 ≤ r < q ≤ ∞. Prove that

‖f‖Lp,q(RN ) ≤ C ‖f‖Lp,r(RN )

for all f ∈ Lp,r(RN ).

Corollary 162 (Hausdorff—Young inequality) Let 1 < p < 2. Then

‖f̂‖Lp′ (RN ) ≤ C ‖f‖Lp(RN ) (98)

for every f ∈ Lp
(
RN
)
.
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Proof. By (97), we have that F : L1(RN )→ L∞(RN ), with

‖F(f)‖L∞(RN ) ≤ ‖f‖L1(RN ) ,

while by the Plancherel identity F : L2(RN )→ L2(RN ),

‖F(f)‖L2(RN ) = ‖f‖L2(RN ) .

Moreover, we have defined the Fourier transform for functions in L1(RN ) +

L2(RN ), by f̂ := ĝ + ĥ. Hence,

F : L1(RN ) + L2(RN )→ L∞(RN ) + L2(RN ).

Hence, by Theorem 112, for every σ ∈ (0, 1) and 1 ≤ q ≤ ∞,

F : (L1(RN ), L2(RN ))σ,q → (L∞(RN ), L2(RN ))σ,q,

with

‖F‖L((L1(RN ),L2(RN ))σ,p;(L∞(RN ),L2(RN ))σ,p) ≤ ‖F‖1−σL(L1(RN );L∞(RN ))
‖F‖σL(L2(RN );L2(RN )) ≤ 1.

By Theorem 130,

(L1(RN ), L2(RN ))σ,p = Lp,p(RN ) = Lp(RN ),

where 1
p = 1−σ

1 + σ
2 and

(L∞(RN ), L2(RN ))σ,p = Lr,p(RN ),

where 1
r = 1−σ

∞ + σ
2 . Note that p = 2

2−θ ∈ (0, 1) and r = p′ = 2
2−θ/(

2
2−θ − 1) =

2/θ. Thus,
‖F(f)‖

Lp
′,p(RN )

≤ C‖f‖
Lp(RN )

for every f ∈ Lp(RN ).
Since p < p′, by the previous exercise,

‖F(f)‖Lp′,p′ (RN ) ≤ C ‖F(f)‖Lp′,p(RN ) ≤ C‖f‖Lp(RN )
.

We can also define the Fourier transform of tempered distributions. Given
g ∈ S

(
RN
)
, consider the linear functional T : S

(
RN
)
→ C defined by

Tg(f) :=

∫
RN

fg dx. (99)

By (96), for every f ∈ S
(
RN
)
, we have

Tĝ(f) =

∫
RN

f(x)ĝ(x) dx =

∫
RN

f̂(x)g(x) dx = Tg(f̂) = T̂g(f).
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This motivates the following definition.
Given T ∈ S ′(RN ), the Fourier transform T̂ of T is the tempered distribu-

tion given by
T̂ (f) := T (f̂), f ∈ S(RN ). (100)

Similarly, given T ∈ S ′(RN ), the inverse Fourier transform of T is the
tempered distribution given by

T∨(f) := T (f∨), f ∈ S(RN ). (101)

Since we are identifying g with Tg in S ′
(
RN
)
, this shows that the Fourier

transform defined on S ′
(
RN
)
extends the Fourier transform defined in S

(
RN
)
.

In view of Theorem 145, for every function g ∈ Lp(RN ) with p > 2, the Fourier
transform ĝ of g is the Fourier transform T̂g of the tempered distribution Tg.
Hence, ĝ belongs to S ′(RN ) but in general ĝ cannot be identified with a function.
A simple example is given by g = 1 ∈ L∞(RN ). In this case

T1(f) =

∫
RN

f1 dx, f ∈ S(RN ), (102)

and so by inverse Fourier theorem,

1̂(f) = T̂1(f) =

∫
RN

f̂(x) dx =

∫
RN

e2πi0·y f̂(x) dx = (f̂)∨(0) = f(0),

which shows that 1̂ is δ0.

Exercise 163 Let T ∈ S ′
(
RN
)
.

(i) Prove that T̂ ∈ S ′
(
RN
)
.

(ii) Prove that if {Tn} ⊂ S ′
(
RN
)
is such that Tn

∗
⇀ T in S ′

(
RN
)
, then

T̂n
∗
⇀ T̂ .

(iii) Prove that F : S ′
(
RN
)
→ S ′

(
RN
)
is a bijection.

As another application of Corollary 157, we can give a characterization of
H1(RN ) in terms of Fourier transforms.

Theorem 164 A function f ∈ L2(RN ) belongs to the space H1(RN ) := W 1,2(RN )
if and only if ∫

RN
‖x‖2|f̂(x)|2dx <∞.

Moreover, for every f ∈ H1(RN ),∫
RN
|f(x)|2dx =

∫
RN
|f̂(x)|2dx,

N∑
i=1

∫
RN
|∂if(x)|2dx = 4π2

∫
RN
‖x‖2|f̂(x)|2dx.
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In particular,

f 7→
(∫

RN
(1 + ‖x‖2)|f̂(x)|2dx

)1/2

is an equivalent norm in H1(RN ).

We begin with a preliminary lemma.

Lemma 165 Let s > 0 and g ∈ L2(RN ) be such that∫
RN

(1 + ‖x‖)2s|g(x)|2dx <∞.

Then there exists gn ∈ C∞c (RN ) such that

lim
n→∞

∫
RN

(1 + ‖x‖)2s|(g − gn)(x)|2dx = 0.

Proof. Step 1: Let g ∈ L2(RN ) be such that g = 0 for ‖x‖ > R for some
R > 0. Consider g ∗ ϕε, where ϕ is a standard mollifier. Then g ∗ ϕε → g in
L2(RN ). Moreover, if 0 < ε < 1 and ‖x‖ > R+ 1, then

(g ∗ ϕε)(x) =

∫
RN

ϕε(x− y)g(y) dy =

∫
B(x,ε)∩B(0,R)

ϕε(x− y)g(y) dy = 0.

Thus,∫
RN

(1 + ‖x‖)2s|(g − g ∗ ϕε)(x)|2dx =

∫
B(0,R+1)

(1 + ‖x‖2s)|(g − g ∗ ϕε)(x)|2dx

≤ (1 + (R+ 1)2s)

∫
B(0,R+1)

|(g − g ∗ ϕε)(x)|2dx→ 0

as ε→ 0+.
Step 2: Let g be as in the statement. Given n ∈ N consider the function

hn := gχB(0,n). Since |g − hn| ≤ 2|g|, by the Lebesgue dominated convergence
theorem,

lim
n→∞

∫
RN

(1 + ‖x‖)2s|(g − hn)(x)|2dx = 0.

Each function gk satisfies the hypotheses of Step 1. Hence, we can find gn ∈
C∞c (RN ) such that ∫

RN
(1 + ‖x‖)2s|(gn − hn)(x)|2dx ≤ 1

n
.

In turn,∫
RN

(1 + ‖x‖)2s|(g − gn)(x)|2dx ≤ 2

∫
RN

(1 + ‖x‖)2s|(g − hn)(x)|2dx

+ 2

∫
RN

(1 + ‖x‖)2s|(gn − hn)(x)|2dx→ 0

as n→∞.
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Remark 166 If in the lemma we require∫
RN

(1 + ‖x‖2)s|g(x)|2dx <∞,

then there is a simpler proof (suggested by Spencer). Since the function h(x) =
(1 + ‖x‖2)s/2g(x), x ∈ RN , belongs to L2(RN ), there exists a sequence hn ∈
C∞c (RN ) such that hn → h in L2(RN ). Define gn(x) := (1 + ‖x‖2)−s/2hn(x).
Then gn ∈ C∞c (RN ) and satisfy the thesis of the lemma.

We turn to the proof of Theorem 164.
Proof. Step 1: Given f ∈ S

(
RN
)
, by Theorem 152, for every i = 1, . . . , N

and every x ∈ RN ,
∂̂if(x) = 2πixif̂(x).

Hence, by the previous corollary∫
RN
|f(x)|2dx =

∫
RN
|f̂(x)|2dx

and

N∑
i=1

∫
RN
|∂if(x)|2dx =

N∑
i=1

∫
RN
|2πixif̂(x)|2dx = 4π2

∫
RN

N∑
i=1

x2
i |f̂(x)|2dx

= 4π2

∫
RN
‖x‖2|f̂(x)|2dx.

Step 2: Let f ∈ L2(RN ) be such that∫
RN
‖x‖2|f̂(x)|2dx <∞.

Then by the previous lemma there exists gn ∈ C∞c (RN ) such that

lim
n→∞

∫
RN

(1 + ‖x‖2s)|(f̂ − gn)(x)|2dx = 0.

Define fn := g∨n . By Theorem 152, fn ∈ S
(
RN
)
, so that, using the previous

step and the Fourier inversion theorem∫
RN
|(fn − fk)(x)|2dx =

∫
RN
|(gn − gk)(x)|2dx→ 0

and

N∑
i=1

∫
RN
|∂i(fn − fk)(x)|2dx = 4π2

∫
RN
‖x‖2|(gn − gk)(x)|2dx→ 0

as n, k → ∞. Thus, {fn}n is a Cauchy sequence in H1(RN ), so fn → h in in
H1(RN ) for some function h ∈ H1(RN ). But since gn → f̂ in L2(RN ), we have
that fn = g∨n → f in in L2(RN ). Hence, f = h ∈ H1(RN ).
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Step 3: Let f ∈ H1(RN ). Then by the density of smooth functions we
can find fn ∈ C∞c (RN ) such that fn → f in H1(RN ). In turn, f̂n → f̂ in
L2(RN ). By extracting a subsequence, not relabeled, we can assume that f̂n →
f̂ pointwise LN -a.e. in RN . By Step 1,

4π2

∫
RN
‖x‖2|(f̂n − f̂k)(x)|2dx =

N∑
i=1

∫
RN
|∂i(fn − fk)(x)|2dx.

Letting k →∞, it follows by Fatou’s lemma that

4π2

∫
RN
‖x‖2|(f̂n − f̂)(x)|2dx ≤ lim inf

k→∞
4π2

∫
RN
‖x‖2|(f̂n − f̂k)(x)|2dx

= lim inf
k→∞

N∑
i=1

∫
RN
|∂i(fn − fk)(x)|2dx

=

N∑
i=1

∫
RN
|∂i(fn − f)(x)|2dx.

Letting n→∞ shows that

lim
n→∞

4π2

∫
RN
‖x‖2|(f̂n − f̂)(x)|2dx = lim

n→∞

N∑
i=1

∫
RN
|∂i(fn − f)(x)|2dx = 0.

In particular,

4π2

∫
RN
‖x‖2|f̂(x)|2dx = lim

n→∞
4π2

∫
RN
‖x‖2|f̂n(x)|2dx

= lim
n→∞

N∑
i=1

∫
RN
|∂ifn(x)|2dx =

N∑
i=1

∫
RN
|∂if(x)|2dx.

Friday, April 22, 2022
In your homework you will show the following result.

Theorem 167 Let 0 < s < 1 and let f ∈ L2(RN ). Then f ∈ W s,2(RN ) if and
only ∫

RN
‖x‖2s|f̂(x)|2dx <∞.

Moreover, there exists a constant C = C(N, s) > 0 such that∫
RN

∫
RN

|f(x+ h)− f(x)|2
‖h‖N+2s

dxdh = C

∫
RN
‖x‖2s|f̂(x)|2dx.

Definition 168 Let Ω ⊆ RN be an open set, 1 ≤ p < ∞, and s > 1, with
s /∈ N. A function f ∈ Lp(Ω) belongs to the fractional Sobolev space W s,p(Ω)
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if f ∈ W bsc,p(Ω) and for every multi-index α ∈ NN0 , with |α| = bsc, ∂αf ∈
W s−bsc,p(Ω). We endow W s,p(Ω) with the norm

‖f‖W s,p(Ω) := ‖f‖W bsc,p(Ω) +
∑
|α|=bsc

‖∂αf‖W s−bsc,p(Ω).

When p = 2, we write W s,2(Ω) =: Hs(Ω).

Exercise 169 Let s > 1 and f ∈ L2(RN ). Prove that f ∈ Hs(RN ) if and only∫
RN
‖x‖2s|f̂(x)|2dx <∞.

Let’s use Fourier transforms to prove Morrey’s embedding theorem.

Theorem 170 (Morrey) Let s = N/2 + α, where 0 < α < 1, and let f ∈
Hs(RN ), then f admits a representative that is Hölder continuous of exponent
α.

Proof. Step 1: Let’s prove first that f has a representative in C0(RN ). By
Hölder’s inequality∫

RN
|f̂(x)| dx =

∫
RN

(1 + ‖x‖2)−s/2(1 + ‖x‖2)s/2|f̂(x)| dx

≤
(∫

RN

1

(1 + ‖x‖2)s
dx

)1/2(∫
RN

(1 + ‖x‖2)s|f̂(x)|2dx
)1/2

= C‖f‖Hs(RN ).

Hence, f̂ ∈ L1(RN ) ∩ L2(RN ). In particular, by Theorem 159 (which continues
to hold for the inverse Fourier transform) the inverse Fourier tranform of f̂ is
given by

(f̂)∨(x) =

∫
RN

e2πix·y f̂(y) dy for LN -a.e. x ∈ RN ,

while by the Fourier inversion theorem the right-hand side is given by f(x) for
LN -a.e. x ∈ RN . Since f̂ ∈ L1(RN ), it follows by the Riemann-Lebesgue lemma
that the function

g(x) :=

∫
RN

e2πix·y f̂(y) dy, x ∈ RN ,

belongs to C0(RN ), with

‖g‖C0(RN ) ≤ ‖f̂‖L1(RN ) ≤ C‖f‖Hs(RN )
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Step 2: Let h,x ∈ RN with 0 < ‖h‖ ≤ 1/2. Then by Hölder’s inequality,

|g(x+ h)− g(x)| =
∣∣∣∣∫
RN

[e2πih·y − 1]e2πix·y f̂(y) dy

∣∣∣∣
=

∣∣∣∣∫
RN

(1 + ‖y‖2)−s/2(1 + ‖y‖2)s/2[e2πih·y − 1]e2πix·y f̂(y) dy

∣∣∣∣
≤
(∫

RN

|e2πih·y − 1|2
(1 + ‖y‖2)s

dy

)1/2(∫
RN

(1 + ‖y‖2)s|f̂(y)|2dy
)1/2

.

Write∫
RN

|e2πih·y − 1|2
(1 + ‖y‖2)s

dy =

∫
B(0,1/‖h‖)

|e2πih·y − 1|2
(1 + ‖y‖2)s

dy+

∫
RN\B(0,1/‖h‖)

|e2πih·y − 1|2
(1 + ‖y‖2)s

dy

Since sin t = t+ o(t) and 1− cos t = t2

2 + o(t2), for y ∈ B(0, 1/‖h‖) we have

|e2πih·y − 1|2 = (1− cos(2πh · y))2 + sin2(2πh · y)

≤ C‖h‖2‖y‖2,

and so∫
RN

|e2πih·y − 1|2
(1 + ‖y‖2)s

dy ≤ C‖h‖2
∫
B(0,1/‖h‖)

‖y‖2
(1 + ‖y‖2)s

dy

+ C

∫
RN\B(0,1/‖h‖)

1

(1 + ‖y‖2)s
dy = C‖h‖2

∫ 1/‖h‖

0

rN−1r2

(1 + r2)s
dr

+ C

∫ ∞
1/‖h‖

rN−1

(1 + r2)s
dr ≤ C‖h‖2

∫ 1/‖h‖

0

rN+1−2sdr + C

∫ ∞
1/‖h‖

1

r2s−N+1
dr

= C
‖h‖2

N + 2− 2s

[
rN+2−2s

]1/‖h‖
0

+
C

2s−N

[
1

r2s−N

]1/‖h‖

0

∫ ∞
1/‖h‖

1

r2s−N+1
dr

= C
‖h‖2

2(1− α)

1

‖h‖2(1−α)
+
C

2α
‖h‖2α = C‖h‖2α,

where we used the fact that N + 2− 2s = N + 2−N − 2α = 2(1− α) > 0 and
2s−N = 2α > 0. Hence,

|g(x+ h)− g(x)| ≤ C‖h‖α
(∫

RN
(1 + ‖y‖2)s|f̂(y)|2dy

)1/2

= C‖h‖α‖f‖Hs(RN ).

On the other hand, if ‖h‖ > 1/2, then

|g(x+ h)− g(x)| ≤ 2‖g‖C0(RN ) = 2
‖h‖α
‖h‖α ‖g‖C0(RN )

≤ 21+α‖h‖α‖f‖Hs(RN ).
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14 Convolutions

Given two measurable functions f : RN → C and g : RN → C, the convolution
of f and g is the function f ∗ g defined by

(f ∗ g) (x) :=

∫
RN

f (x− y) g (y) dy (103)

for all x ∈ RN for which the right-hand side is well-defined.

Theorem 171 Given f, g ∈ S
(
RN
)
, the function f ∗ g belongs to S

(
RN
)
.

Proof. Fix x ∈ RN . For m ∈ N with m > N , we can write

| (f ∗ g) (x) | ≤
∫
RN
|f (x− y) ||g (y) | dy

≤ C ‖g‖0,m ‖f‖0,m
∫
RN

1

(1 + ‖y‖)m
1

(1 + ‖x− y‖)m
dy.

We now split RN in the sets E := {y ∈ RN : 1
2‖x‖ ≤ ‖x − y‖} and R

N \ E.
Then we have ∫

E

1

(1 + ‖y‖)m
1

(1 + ‖x− y‖)m
dy

≤ 2m

(2 + ‖x‖)m

∫
RN

1

(1 + ‖y‖)m
dy ≤ C(m,N)

(2 + ‖x‖)m
,

while in RN \ E, ‖y‖ ≥ ‖x‖− ‖x− y‖ ≥ ‖x‖− 1
2‖x‖ = 1

2‖x‖, and so∫
RN\E

1

(1 + ‖y‖)m
1

(1 + ‖x− y‖)m
dy

≤ 2m

(2 + ‖x‖)m

∫
RN

1

(1 + ‖x− y‖)m
dy ≤ C(m,N)

(2 + ‖x‖)m
.

Hence,
(2 + ‖x‖)m| (f ∗ g) (x) | ≤ C ‖g‖0,m ‖f‖0,m .

This shows that f decays to zero faster than any power of ‖x‖.
On the other hand, by differentiating under the integral sign, for every multi-

index α,

∂α (f ∗ g)

∂xα
(x) =

∫
RN

∂αf

∂xα
(x− y) g (y) dy

=

(
∂αf

∂xα
∗ g
)

(x) ,

and so by repeating the same calculations above with f replaced by ∂αf
∂xα , we get

that all derivatives of f ∗ g decay to zero faster than any power of ‖x‖, which
shows that f ∗ g ∈ S

(
RN
)
.

91



Exercise 172 Prove that for every f , g, h ∈ S
(
RN
)
,

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Theorem 173 For every f , g ∈ S
(
RN
)
,

f̂ ∗ g = f̂ ĝ.

Proof. For x ∈ RN by Fubini’s theorem we have

(̂f ∗ g)(x) =

∫
RN

e−2πix·y(f ∗ g)(y) dy

=

∫
RN

∫
RN

e−2πix·yf (y − ξ) g (ξ) dξdy

=

∫
RN

g (ξ)

∫
RN

e−2πix·yf (y − ξ) dydξ

=

∫
RN

e−2πix·ξg (ξ)

∫
RN

e−2πix·(y−ξ)f (y − ξ) dydξ

=

∫
RN

e−2πix·ξg (ξ)

∫
RN

e−2πix·ηf (η) dηdξ

= ĝ(x)f̂(x),

where we have made the change of variables η := y − ξ.

Remark 174 The previous theorem continues to hold for f ∈ L1
(
RN
)
and

g ∈ S
(
RN
)
.

Given two measurable functions f : RN → R and g : RN → R,

Theorem 175 Let f ∈ Lp
(
RN
)
, 1 ≤ p ≤ ∞, and g ∈ L1

(
RN
)
. Then

(f ∗ g) (x) exists for LN -a.e. x ∈ RN and

‖f ∗ g‖Lp(RN ) ≤ ‖f‖Lp(RN ) ‖g‖L1(RN ) .

Proof. Consider two Borel functions f0 and g0 such that f0 (x) = f (x) and
g0 (x) = g (x) for LN -a.e. x ∈ RN . Since the integral in (103) is unchanged if
we replace f and g with f0 and g0, respectively, in what follows, without loss of
generality we may assume that f and g are Borel functions.
Let h : RN × RN → R be the function defined by

h (x,y) := f (x− y) , (x,y) ∈ RN × RN .

Then h is a Borel function, since it is the composition of the Borel function f
with the continuous function g : RN ×RN → RN given by g (x,y) := x− y. In
turn, the function

(x,y) ∈ RN × RN 7→ f (x− y) g (y)
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is Borel measurable. We are now in a position to apply Minkowski’s inequality
for integrals and Tonelli’s theorem to conclude that

‖f ∗ g‖Lp(RN ) =

∥∥∥∥∫
RN
|f (· − y) g (y)| dy

∥∥∥∥
Lp(RN )

≤
∫
RN
‖f (· − y) g (y)‖Lp(RN ) dy

=

∫
RN
|g (y)| ‖f (· − y)‖Lp(RN ) dy = ‖f‖Lp(RN )

∫
RN
|g (y)| dy,

where in the last equality we have used the fact that the Lebesgue measure is
translation invariant. Hence, f ∗g belongs to Lp

(
RN
)
, and so it is finite LN -a.e.

in RN .
Wednesday, April 27, 2022

The following is the generalized form of the previous inequality.

Theorem 176 (Young’s inequality) Let 1 ≤ p < q′ ≤ ∞ and let f ∈
Lp
(
RN
)
and g ∈ Lq

(
RN
)
. Then (f ∗ g) (x) exists for LN -a.e. x ∈ RN and

‖f ∗ g‖Lr(RN ) ≤ ‖f‖Lp(RN ) ‖g‖Lq(RN ) ,

where
1

p
+

1

q
= 1 +

1

r
. (104)

Proof. If p = 1, then r = q and the result follows from the previous theorem.
Thus assume that p > 1. Fix g ∈ Lq

(
RN
)
and consider the linear operator

Lg(h) := g ∗ h. By the previous theorem we have that Lg : L1(RN )→ Lq(RN )
is linear and continuous, with

‖Lg(h)‖Lq(RN ) ≤ ‖g‖Lq(RN ) ‖h‖L1(RN ) .

Hence,
‖Lg‖L(L1(RN );Lq(RN )) ≤ ‖g‖Lq(RN ) .

Moreover, by Hölder’s inequality for every h ∈ Lq′
(
RN
)
,

|Lg(h) (x) | =
∣∣∣∣∫
RN

h (x− y) g (y) dy

∣∣∣∣ ≤ ‖g‖Lq(RN ) ‖h(x− ·)‖Lq′ (RN )

= ‖g‖Lq(RN ) ‖h‖Lq′ (RN ) ,

where in the last equality we used the translation invariance of the Lebesgue
measure. This shows that Lg : Lq

′
(RN ) → L∞(RN ) is linear and continuous,

with
‖Lg(h)‖L∞(RN ) ≤ ‖g‖Lq(RN ) ‖h‖Lq′ (RN ) .

Hence,
‖Lg‖L(Lq′ (RN );L∞(RN )) ≤ ‖g‖Lq(RN ) .

Next we observe that

Lg : L1(RN ) + Lq
′
(RN )→ Lq(RN ) + L∞(RN )
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is well-defined. Hence, by Theorem 112, for every σ ∈ (0, 1),

Lg : (L1(RN ), Lq
′
(RN ))σ,p → (Lq(RN ), L∞(RN ))σ,p,

with

‖Lg‖(Lq(RN ),L∞(RN ))σ,p ≤ ‖Lg‖
1−σ
L(L1(RN );Lq′ (RN ))

‖Lg‖σL(Lq(RN );L∞(RN ))

≤ ‖g‖1−σLq(RN ) ‖g‖
σ
Lq(RN ) = ‖g‖Lq(RN ) .

By Theorem 130,
(L1(RN ), L2(RN ))σ,p = Lp3,p(RN ),

where 1
p3

= 1−σ
1 + σ

q′ = 1−σ
1 + σ(q−1)

q = 1− σ
q , while

(Lq(RN ), L∞(RN ))σ,p = Lp4,p(RN ),

where 1
p4

= 1−σ
q + σ

∞ . Since p > 1, it follows from (104) that r > q and so we
can find 0 < σ < 1 such that q = (1− σ)r. Hence p4 = r. In turn

1

p
= 1− 1

q
+

1

r
= 1− 1

q
+

1− σ
q

= 1− σ

q
,

which shows that p3 = p.

‖Lg(h)‖Lr,p(RN ) ≤ ‖Lg‖(Lq(RN ),L∞(RN ))σ,p‖h‖Lp,p(RN )
≤ ‖g‖Lq(RN ) ‖h‖Lp,p(RN )

Since r > p, it follows that

‖Lg(h)‖Lr,r(RN ) ≤ C‖Lg(h)‖Lr,p(RN ) ≤ C ‖g‖Lq(RN ) ‖h‖Lp,p(RN )
.

To conclude the proof it remains to show that the convolution is defined point-
wise. This is left as an exercise.

15 Convolution of Tempered Distributions

In this section we define the convolution of a tempered distribution T and a
function ϕ. We begin with the case in which T = Tf for some function f ∈
S(RN ), where we recall that Tf ∈ S ′(RN ) is defined by

Tf (φ) :=

∫
RN

ψ(x)φ(x) dx, φ ∈ S(RN ).

By Fubini’s theorem∫
RN

(f ∗ ϕ)(x)φ(x) dx =

∫
RN

φ(x)

∫
RN

f(x− y)ϕ(y) dydx

=

∫
RN

f(ξ)

∫
RN

ϕ(x− ξ)φ(x) dxdξ

=

∫
RN

f(ξ)

∫
RN

ϕ̃(ξ − x)φ(x) dxdξ

=

∫
RN

f(ξ)(ϕ̃ ∗ φ)(ξ) dξ,
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where ξ := x − y and ϕ̃(x) := ϕ(−x). Hence, we have shown that Tf∗ϕ(φ) =
Tf (ϕ̃ ∗ φ) for all φ ∈ S(RN ). Motivated by this formula we define:

Definition 177 If T ∈ S ′(RN ) and ϕ ∈ S(RN ) the convolution of T and ϕ is
the linear functional T ∗ϕ : S(RN )→ R defined by (T ∗ϕ)(φ) := T (ϕ̃∗φ), where

ϕ̃(x) := ϕ(−x), x ∈ RN . (105)

It turns out that T ∗ϕ can be identified with a function. Given x ∈ RN and
a function ϕ : RN → R we define the function

ϕx(y) := ϕ(x− y), y ∈ RN . (106)

Theorem 178 Let T ∈ S ′(RN ) and ϕ,ψ ∈ S(RN ). Then T ∗ ϕ = Tfϕ , where
fϕ is the function given by fϕ(x) := T (ϕx), x ∈ RN . Moreover

(i) fϕ ∈ C∞(RN ) and for every multi-index α there exist cα > 0 and nα ∈ N
such that

‖∂αfϕ(x)‖ ≤ cα(1 + ‖x‖2)nα (107)

for all x ∈ RN .

(ii) ∂αfϕ(x) = f∂αϕ(x) = ∂αT (ϕx) for all x ∈ RN and for every multi-index
α ∈ NN0 ,

(iii) (T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ).

Friday, April 29, 2022
Proof. Step 1: If xn → x in RN , then by your homework, ϕxn → ϕx in
S(RN ), and so by the continuity of T ,

fϕ(xn) = T (ϕxn)→ T (ϕx) = fϕ(x),

which proves that T ∗ ϕ is a continuous function. Let ei be an element of the
canonical basis of RN and for every x ∈ RN and h 6= 0 consider the function

ϕx,h,i(y) :=
ϕ(x+ hei − y)− ϕ(x− y)

h
, y ∈ RN .

Again by your homework, as h→ 0, we have that ϕx,h,i → ∂ϕ
∂xi

(x−·) in S(RN ).
Hence, by the linearity and continuity of T ,

fϕ(x+ hei)− fϕ(x)

h
= T (ϕx,h,i)→ T ((∂iϕ)x)

as h→ 0, which proves that ∂ifϕ = f∂iϕ.
Moreover, since for all x,y ∈ RN ,(

∂ϕ

∂xi

)x
(y) =

∂ϕ

∂xi
(x− y) = − ∂ϕ

∂yi
(x− y) = −∂ϕ

x

∂yi
(y),
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for all x ∈ RN we have

∂T

∂yi
(ϕx) = −T

(
∂ϕx

∂yi

)
= T

(
−
(
∂ϕ

∂yi

)x)
= f ∂ϕ

∂yi

(x),

which, together with an induction argument, gives (ii).
Step 2: Since ∂αϕ ∈ S(RN ) and ∂αfϕ(x) = f∂αϕ(x) by part (ii), it suffi ces to
prove the bound (107) for α = 0. Since T is continuous, there exist a constant
C > 0 and some m,n ∈ N0 such that

|T (g)| ≤ C ‖g‖m,n .

for every g ∈ S
(
RN
)
. In particular,

|fϕ(x)| = |T (ϕx)| ≤ C‖ϕx‖m,n.

Now

‖ϕx‖α,β := sup
y∈RN

∣∣∣∣yα ∂βϕ∂yα
(x− y)

∣∣∣∣ = sup
z∈RN

∣∣∣∣(x− z)α ∂βϕ∂zα
(z)

∣∣∣∣
≤ C(1 + ‖x‖|α|)‖ϕ‖|α|,|β|.

Step 3: Fix φ ∈ S(RN ). For h > 0 define

fh(x) := hN
∑
y∈ZN

ϕ̃(x− hy)φ(hy), x ∈ RN ,

where h > 0. By your homework fh → ϕ̃∗φ in S(RN ). Hence, by the continuity
and linearity of T and by Theorem 140 we have that

(T ∗ ϕ)(φ) = T (ϕ̃ ∗ φ) = lim
h→0+

T (fh) = lim
h→0+

hN
∑
y∈ZN

T (ϕ̃(· − hy))φ(hy)

= lim
h→0+

hN
∑
y∈ZN

T (ϕ(hy − ·))φ(hy) = lim
h→0+

hN
∑
y∈ZN

fϕ(hy)φ(hy) =

∫
RN

fϕ(y)φ(y) dy

= Tfϕ(φ),

where in the second to last equality we used Riemann sums and the fact that
fϕφ ∈ S(RN ) (which follows from the previous two steps). This shows that
T ∗ ϕ = Tfϕ .
Step 4: Finally, to prove (iii), we define

fh(x) := hN
∑
y∈ZN

ϕ(x− hy)ψ(hy), x ∈ RN ,
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where h > 0. As before we have that fh → ϕ∗ψ in S(RN ) as h→ 0+. It follows
that for every x0 ∈ RN , (fh)x0 → (ϕ ∗ ψ)x0 in S(RN ) as h→ 0, where

(fh)x0(x) = hN
∑
y∈ZN

ϕ(x0 − x+ hy)ψ(hy), x ∈ RN

(ϕ ∗ ψ)x0(x) = (ϕ ∗ ψ)(x0 − x), x ∈ RN .

By the linearity and continuity of T and we have that

fϕ∗ψ(x0) = T ((ϕ ∗ ψ)x0) = lim
h→0

T ((fh)x0)

= lim
h→0

hN
∑
y∈ZN

T (ϕ(x0 − ·+ hy)ψ(hy))

= lim
h→0

hN
∑
y∈ZN

T (ϕ(x0 − ·+ hy))ψ(hy)

= lim
h→0

hN
∑
y∈ZN

fϕ(x0 + hy)ψ(hy)

=

∫
RN

fϕ(x0 − y)ψ(y) dy = (fϕ ∗ ψ)(x0).

This completes the proof.
As a consequence of the previous theorem, we can approximate distributions

with C∞ functions.

Exercise 179 Let T ∈ S ′(RN ) and let {ϕε}ε, ε > 0, be a family of standard
mollifiers. Prove that T ∗ ϕε → T in S ′(RN ) as ε→ 0+.

Given a tempered distribution T ∈ S ′(RN ) and a C∞ function g : RN → R
such that for every multi-index α there exist cα > 0 and nα ∈ N such that

‖∂αg(x)‖ ≤ cα(1 + ‖x‖2)nα

for all x ∈ RN , we define

(gT )(f) := T (gf), f ∈ S(RN ).

We leave as an exercise to check that gT ∈ S ′(RN ).
Let s < 0 and T ∈ S ′(RN ). We say that T belongs to the fractional Sobolev

space Hs(RN ) if there exists a function g ∈ L2(RN ) such that (1 +‖x‖2)s/2T̂ =
Tg.
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