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1 Convex Functions on the Real Line

In what follows an interval I C R is any set of R such that if z, y € I and = < y,
then [z,y] C I.

Definition 1 Given an interval I C R, a function f: I — R is
(i) convex if
fz+(1-0)y) <0f(x)+(1-0)f(y)
forallz, ye I and 6§ € (0,1);
(ii) strictly convex if the inequality in (i) is strict whenever x # y;

(iii) concave (respectively strictly concave) if —f is convex (respectively strictly
convez).

Geometrically, the inequality in (i) means that if P, @, and R are any three
points on the graph of f with @ between P, and R, then @ is on or below the
chord PR, or in terms of slopes

slope PQ < slope PR < slope QR, (1)
with strict inequalities if f is strictly convex.

Example 2 (i) The function f: R — [0,00) defined by f (z) :=|z|*, p > 0,
is convez if and only if p > 1, and is strictly convez if and only if p > 1.
In particular, if x, y > 0, and p > 1, then by the convexity of f,

1 +1 3 < } P+1 P
2t T oY) =t TV
or equivalently,
(z+y)" <2771 (2P + o).
(ii) The function f : R — [0,00) defined by f (z) := Va2 + 1 is strictly convex.
(iii) The function
f(x):=logz ifx>0

is strictly concave. In particular, if x, y > 0, 1 < p < oo, and q is its
conjugate exponent, then by the concavity of f,

1 1 1 1
log (zy) = —logz? + —logy? < log (zp + xq) ,
p q p q

or equivalently,
1 1
zy < —aP 4+ —yi.
p q
This is known as Young’s inequality. Note that, in view of the strict
concavity of f, equality holds if and only if P = y9.



We say that f : R — R is linear if f (az + By) = af (z) + Bf (y) for all a,
B € R and all z, y € R. A linear function f takes the form f(x) = ma for all
z € R and for some m € R. Given an interval I C R, we say that f : I — R is
affine if it has the form f (z) = ma + p for all € I and for some m, p € R.

Exercise 3 Given an interval I C R, prove that f : I — R is affine if and only
if it is both conver and concave.

1.1 Regularity of Convex Functions

Next we start looking at the regularity of convex functions.
Definition 4 Let E C R. A function f: E — R is said to be

(i) Lipschitz continuous if there exists a constant L > 0 such that

[f (@) = f W)l < Lz -yl
forallx, y € E;

(ii) locally Lipschitz continuous if for every compact set K C E if there exists
a constant Lg > 0 such that

[f(x) = f(y)| < Lk |z —y
forallx, y e K;

(#i) Holder continuous with exponent 0 < a < 1 if there exists a constant
L >0 such that

[f (@)= fWI<Llz—y*
forallx, y € E.

Exercise 5 The Weierstrass function
f(s):= OOE L sin2"s, seR
L 27L b ?

n=1

satisfies the estimate

[f(s) = f ()] <Cls—tllog

|s — 1|

for all s,t € R, with 0 < |s—t| < 1, and hence provides an example of a
function that is Holder continuous of any order a« < 1. Prove that f is not
Lipschitz continuous, and actually it is nowhere differentiable (see [?]).

In what follows I° denotes the interior of I.

Theorem 6 Let I C R be an interval and let f : I — R be conver. Then
f:I°— R is locally Lipschitz.



Proof. Step 1: Let [a,b] C I. We begin by proving that f is bounded
in [a,b]. Let M = max{f(a),f(b)}. If z € [a,b] then we may write z =
fa + (1 — 0) b for some @ € [0,1], and so by the convexity of f,

fe)=f(0a+(1-0)b) <0f(a)+(1—-0)f(0) <OM+(1-0)M =M,

which shows that f is bounded from above. To see that f is also bounded from
below, write x = “T'H’ +t. Then

CURIERRICS)

1 a+b 1 a+b
2f< 5 +t>+2f< 5 —t).

r=r () 2o () - (G- )
ZQf(a;rb> — M =:m,

which shows that f is also bounded from below.
Step 2: Let € > 0 be so small that a — e and b+ ¢ belong to I, and let

M:= sup f, m:= inf f (2)
l[a—e,b+e] [a—e,b+e]

Hence

If z, y € [a,b] and z # y, define

Then z € [a —e,b+¢] and y = 6z + (1 — 0) =, where
__ly—a
ety —x|
Hence by the convexity of f,
fy)=10z+0=0)x) <0f(2)+ (1 -0)f(x) =0(f(2) = f () + [ (2),

or, equivalently,

|y —=| B
f) —flx)<0(f(2)—f(x)) SQ(M—m)—m(M m)
M —-m
S ———ly—zl.
By interchanging the roles of x and y we obtain
M —
F )~ f@) < —=ly—xl, 3)

which shows that f is locally Lipschitz in the interior of I. =

Remark 7 Note that a conver function may not be continuous at the boundary
points of its domain, since it may have upward jumps there.
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Next we prove that f is actually differentiable except for at most a countable

number of points. Let I C R be an interval and let f : I — R be a function. For
x € I° we define the left and right derivatives of f at x (whenever they exist)

P = tim LW ZT@ oy [ ZT@)

y—x— y—x y—axt y—x
We have the following result.

Theorem 8 Let I C R be an interval and let f: I — R be convex (respectively
strictly convex). Then f’ (x) and f! (x) exist in R for all x € I° and the
functions f' and f’. are increasing (respectively strictly increasing).

Proof. Consider four points w < z < y < z in I° with, P, @, R, S the
corresponding points on the graph of f. By (1),

slope PQ < slope PR < slope QR < slope QS < slope RS, (4)

with strict inequalities if f is strictly convex. Since slope PR <slope QR, we
have that slope QR increases as = " y, while slope RS decreases as z \, y.
Thus the left-hand side of the inequality

fla)—fly) _ flx)-f)
r—y T z—y

increases as " y and the right-hand side decreases as z \, y. Hence we have
proved that f’ (y) and f! (y) exist in R and satisfy

fw) < (). (5)
Moreover, by (4),
£ DL JWETE (©

with the second inequality strict if f is strictly convex. Hence also from (5),

fow) < fi(w) < 2 () < 1 (),

which shows that f’ and f/ are increasing (respectively strictly increasing) in
inl° m

Exercise 9 What can you conclude if one of the endpoints of I belongs to I?

Corollary 10 Let I C R be an open interval and let f : I — R be convex.
Then f s differentiable except at most on a countable set E C I. Moreover,
f' I\ E — R is continuous.



Proof. Fix any w € I. Then for all w < z < y in I, by (6) (with  and y in
place of w and x) and the monotonicity of f/,

fy) —fl=)

o) < f1 (@) < U=

Since f! is increasing and f is continuous in I, letting = \, w gives

f(w) < lim f (z) < lim fly —f@) _ fly) - flw)

r—wt y—x Yy—w

Letting y \, w yields

Similarly, for all z <y < w in I, by (6),

fy)—f(2)

<< 1 w).

Since f! is increasing and f is continuous in I, letting y / w yields

W = W < tim S (y) < f7 (w).
Letting x " w gives
Jim_ f1 () = £ (w). 8)

It now follows from (7) and (8) that f’ (w) = f{ (w) if and only if f} is
continuous at w. Thus the set E consists of the discontinuity points of the
increasing function f,. This proves that £ is countable. Since f! is continuous
on I\ Eand f' = fi on I\ E we have that f': I\ E — R is continuous. m

Exercise 11 What can you conclude if one of the endpoints of I belongs to I?

1.2 Characterizations

The previous result leads to the first characterization of convex functions.

Theorem 12 Let I C R be an open interval and let f : I — R be a function.
Then f is convex (respectively strictly convex) if and only if there exists an
increasing (respectively strictly increasing) function g : I — R such that

f(y)—f(w)=/yg(t) dt

for all x <y in I. In particular, if f is convez, then

f(y)—f(w)=/yfi(t) dt=/yf;<t> dt (9)

forallx <y in I.



Here the integral can be taken either in the sense of Riemann or of Lebesgue.
Proof. Assume first that f is convex. Fix any z < y in I and consider any
partition P := {zg,...,z,} of [z,y], that is

T=20< 1 <...<Tp =Y.

By (6),
fi(zimy) < % < fL (i) (10)
forall i =1,...,n, and since
F) = F @) =)= f (o) =D f ()= f(wi)
=1
we have

Yo F @) @i =) S F @)~ F @) <D0 F () (@i — i)
i=1

i=1

It follows in particular that

/f dt</f+ dt < £y /f dze</f+

where fxy and Tf are the lower and upper Riemann integrals. Since f’ and f’,

are increasing, they are Riemann integrable in [z, y], and so (9) holds.
Conversely assume that there exists an increasing function g : I — R such
that

y
F) =@ = [ gt
for all z < y in I. Then for all z < y in I and 6 € (0,1),

0f () + (1 =0)f(y) - f0z+(1-0)y)
=—0(f(0x+(1—=0)y) - f(2)+1=-0)(f(y) - f(Ox+(1-0)y))

z+(1-0)y Y
:_9/9+ ' g(t)dt+(1—9)/ g (t) dt

Oz+(1-0)y
0z+(1—0) y
—9/ g0z +(1—0)y) dt+(1—9)/0 G BOURE
=gz +(1-0)y)[-000z+(1-0)y—z)+(1—-0)(y—0z—(1-0)y)]

:O’

where we have used the fact that g is increasing. This shows that f is convex.
Finally, we observe that if g is increasing, then the previous inequality becomes
strict, and thus we have that f is strictly convex. m



Corollary 13 Let I C R be an open interval and let f : I — R be a differential
function. Then f is convex (respectively strictly convex) if and only if f' is
increasing (respectively strictly increasing).

Proof. We have already proved in Theorem 8 that if f is convex (respec-
tively strictly convex), then f’ is increasing (respectively strictly increasing).
Conversely, assume that f’ is increasing (respectively strictly increasing). Then
by the fundamental theorem of calculus

f(y)—f(x)=/yf’(t) dt

for all x < y in I. The result now follows from the previous theorem. m
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We now provide another characterization of convex functions in terms of
tangent lines.

Definition 14 Let I C R be an interval and let f : I — R be a function. We
say that f is subdifferentiable at x¢ € I if there exists m € R, such that

f@)> f(zo) +m(x—xg) forallzel.

The element m is called a subgradient of f at xg, and the set of all subgradients
at xq is called the subdifferential of f at xo and is denoted by Of (xo). If f is
not subdifferentiable at xq, then Of (xg) := 0.

Remark 15 Let I C R be an interval and let f : I — R be a function. It
follows from the definition of subdifferentiability that f attains a minimum at
some point xg € I if and only if 0 € Of (z¢).

Theorem 16 Let I C R be an open interval and let f : I — R be a function.
Then f is convex if and only if it is subdifferentiable at every xy € I.

Proof. If f is convex and zg € I, choose m € [f’ (o), f} (x0)]. Then by

(6),
f@) = F (o)

m < f} (o) < pra—

if x > xo,

while
f () = f(2o)

< fL(xo) <m if x < zo0.
r — X

Hence, f (z) — f (zg) > m (x — xg) for all z € I, or, equivalently
f@x)> f(zo)+m(z—x9) foralxzel.

This shows that [f’ (o), f (z0)] C 8f (z0).
Conversely, assume that f is subdifferentiable in I. Let x, y € I and 0 €
(0,1). If
xo=0x+(1-0)yel,

let m € Of (z9). Then

f0x+(1=0)y) = f(x0) =0[f (xo) + m (z — z0)] + (1 = 0) [f (x0) +m (y — w0)]
<0f(x)+(1-0)f(y),

which shows that f is convex. m

Exercise 17 FExtend the previous result to an arbitrary interval 1.

Corollary 18 Let I C R be an open interval and let f : I — R be convex. Then
Of (o) = [~ (o), f} (z0)] -

In particular, f is differentiable at xo € I if and only if Of (xo) is a singleton.
In this case, Of (zo) = {f’ (x0)}.



Proof. We have already shown in the first part of the previous proof that
[fZ (z0), fi (z0)] € Of (x0)-
To prove the opposite inclusion, let m € 9f (xg). Then
f(x)=f(zo) >m(x—mo) foralazel.
For z1 < x¢ < x2, we have
f(x2) = f (o)

f(@1) — f (20) <m<
xr1 — X - - To — X '

Letting xo \, ¢ and x1 /" xg gives
fL (o) <m < fl (x0)
Hence 9f (zg) = [fL (wo), £ (:co)]. []
Exercise 19 Faxtend the previous result to an arbitrary interval 1.

Corollary 20 Let I C R be an open interval and let f : I — R be convex. Then
the multifunction Of is increasing, that is if 1 < xo are in I, then s < so for
all s1 € Of (x1) and so € Of (x2).

Proof. By the previous corollary and (6) we have that

51 < f (1) < fL (22) < sa.

]
Let I C R be an interval and let f : I — R be convex. The domain of the
subdifferential 0f of f is defined as

domdf :={xel: df (z)#0}.
By Theorem 16 and Exercise 17
I° Cdomof C I. (11)
Note that the application
z € domdf — 9f (x)

is a set-valued function that is single valued whenever f is differentiable.
To study the second derivative of a convex function we recall the following
definition of differentiability at points that are not necessarily interior points.

Definition 21 Let E C R and let xg € E be an accumulation point of E. Given
a function g : E — R, we say that g is differentiable at zo if there exists in R
the limit

lim () —yg (560).

T—To r — X

In this case the limit is called derivative of f at xo and is denoted ¢’ (xg) or
Y (z0)
dz



Theorem 22 Let I C R be an interval and let f : I — R be convex. Then
" (x) exists for L' a.e. x € I and f" is nonnegative and locally (Lebesgue)
integrable.

Proof. By Theorem 8, the function f} : I° — R is increasing. By the
Lebesgue differentiation theorem, it follows that ( fjr)’ (x) exists for L' a.e.
z € I and that ( f’+)/ is nonnegative and locally integrable. Since f' = f/

except on a countable set £ C I, we have that f/: I \ E — R is differentiable
LY ae. in I\ E and f” is nonnegative and locally integrable in [\ E. m

Corollary 23 Let I C R be an open interval and let f : I — R be a twice
differential function. Then f is convex if and only if f” > 0. Moreover, if
1" >0, then f is strictly convex.

Proof. Under the present hypotheses, we have that f’ is increasing if and
only if f” > 0 and that f’ is strictly increasing if f” > 0. Hence the desired
result follows from the previous corollary. m

Example 24 The function f (x) = z* is strictly convez but f" (0) = 0.

Next we prove that for convex functions the existence of the second derivative
at a point is equivalent to the validity of a second order Taylor’s formula.
The proof will make use of the following result.

Corollary 25 (Mean Value Theorem) Let f : [a,b] — R be a conver and
continuous function. Then there exists ¢ € (a,b) such that

f(b) = f(a)

— € df (c).

10
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Proof. As in the proof of the mean value theorem, consider the function

_ ()~ f(a)

— (x—a), z€lab].

The function g is convex, continuous, and g (a) = g (b). Hence it has a minimum
at some point ¢ € (a,b). It follows by Remark 15 that 0 € dg (¢). On the other
hand, by direct calculations,

@ =r @ - TOTD oy — @ LOZTD
and so by the previous corollary
veoee =10 LOI@ gy SO-T@)

which implies that
f () = fl(a) c [

fL(e), fi (] = 0f (c).
]

Theorem 26 Let I C R be an open interval and let f : I — R be a convex
function differentiable at some xg € I. Then f" (x¢) exists if and only if there
exists £ € R such that

f (@) = f(x0) + [ (w0) (x — w0) + g (z — 900)2 +o ((33 - 370)2) (12)

for all x near xg. In this case, £ = f" (x¢).

Proof. Let FF C I be the set in which f is differentiable. Assume that
f" (x0) exists and fix € > 0. Then there exists § > 0 such that

f' (@) = f' (o)

T — X9

-1 (o) <
for all z € F with |x — 2| < 4, or, equivalently,

—elz —mo| < f'(z) = f' (zo) — " (20) (z — o) < €|z — 20

for all x € F with |v —z9| < §. Integrate between xy and z and use the
fundamental theorem of calculus to obtain

—2 (@ 00)? < (0)=f @0)—f" (w0) (@ = 0)= 5" (20) (& = 30)* < 5 (& = w0)? .

Conversely, assume that (12) holds and fix ¢ > 0. Fix 6 € (0,1) and apply
(12) with = g + 6h and = = xy + h and subtract the two identities to obtain

[ (o +h) = f (w0 +0h) = (1) /' (o) h 20 (1 — %) B2 + o ()

11



for all h sufficiently small, that is,

f(xo+h) — f(xo+0h)
(1—0)h

:f’(mo)—i—%ﬁ(l—i-e)h—}-o(h)

for all h sufficiently small. By the mean value theorem there exists ¢ between
xo + h and xy + 0h such that

f(xo+h) = f(xo + 0h)

s = a=0h €adf(c).

Hence s = f'(z9) + 20(1+6) + o(h) € Of (c). Assume that h > 0. By the
monotonicity property of the subgradient for all A but a countable number

f (o +0h) < s < f(zo+h), (13)
that is
/ oh) — f’ —f 0
Pl =) o=l o) L0
[@oth) = J"(@o) , s =17@0) _ Ly )46y,

h - h 2
If h < 0 then the inequalities in (13) are reversed, but dividing by h we obtain
the same last two inequalities. Letting h — 0 we obtain

1 ot ! _ f!
Jim sup [ (@) = [ (@) _ Jim sup [ (zo + 0h) — f" (20) < 1,1 +97
T—Tg x h—0 oh 2 0
’ o / o
iming L) =S @0 e L@t W) = (o) S 1, g
T—xo €T h—0 h 2

Letting # — 1~ gives
/ gl
lim [ (z) = [ (wo) —/
Tr—x0 €T

Remark 27 (i) Note that for a (nonconvez) function the previous theorem
is false. Indeed, take

)= { % if x is rational,

0  otherwise.

Then f'(0) = 0 and formula (12) holds with £ = 0, but f is discontinuous
in R\ {0}, and so it not differentiable in R\ {0}.

(i) Reasoning as in the last part of the proof, one can also show that (12)
implies that f' and f! are differentiable at xo with

(f1) (o) = (1)

!’

(1‘0) =/.

12



1.3 Operations Preserving Convexity

We begin with a simple result.

Theorem 28 Let I C R be an interval, let f : I — R and g : I — R be conver,
and let o > 0. Then f+ g and af are convex.

Proof. Since f and g are convex,

flz+(1—-0)y) <0f(x)+(1—-0)f(y),
g0z +(1-0)y) <0g(z)+(1-0)g(y)

for all z, y € I and 6 € (0,1). The result now follows by summing the two
inequalities and by multiplying the second by o > 0. m

13
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The product of convex functions is not convex, in general.

Example 29 The functions f () = z, g(x) = —x, x € R, are linear, and so
convez, but their product, (fg) (z) = —x2, x € R, is not convex.

However, we have the following.

Theorem 30 Let I C R be an interval, let f : I — [0,00) and g : I —
[0,00) be conver and increasing (respectively decreasing). Then fg is convex
and increasing (respectively decreasing).

Proof. If z < y are in I, then

(f (@)= f(y) (g(y) —g(x)) <0,

or, equivalently,

f@g) +g@) fly) <flx)g@)+fwgly),
and so for any 0 € (0,1),

fOz+(1—-0)y)g(0x+(1-0)y)
<[0f (@) +(1—-0)f()]0g(x)+(1-0)gy)
=02f(2)g(z)+0(1-0)[f(@)g)+fWg@]+1-0f(y)gy)
<Of(2)g@) +01-0)[f(@)g@) +fWagw]+1-07Ff(y)g®)

=0f(2)g(z)+(1-0)f(y)g(y).
Note that we have used heavily the fact that f and g are nonnegative. m

Theorem 31 Let I, J C R be intervals, let f : I — R be convex with f (I) C J,
and let g : J — R be convexr and increasing. Then go f: I — R is convexr.

Proof. For all z, y € I and 0 € (0,1), we have
(gof)(0x+(1=0)y)=g(f(0x+(1-0)y))

g increasing

gOf (x)+(1-0)f(y))
S 0 (F @)+ (1-0)g(F ).
| |

Theorem 32 Let I C R be an interval, let fo, : I — R, a € A, be an arbitrary
family of convex functions, and let

f(x):=sup fo(z), zel.
acl

If J.={zel: f(x)<oo} is nonempty, then J is an interval and f : J — R
18 convez.

14



Proof. Since f, is convex, for all =, y € I and 0 € (0,1),

[0z +(1-0)y) = sup fo (024 (1= 0)y) < sup [0fa (z) + (1 = 0) fo (y)]

aEN

Sﬁsgfa(x)Jr(l—@)sgfa(y) =0f(x)+(1-0)f(y),

which shows simultaneously that if f (z) and f (y) are finite then f is finite in
the interval of endpoints x and y, so that J is an interval, and that f is convex.
]

The infimum of convex functions is not convex, in general.

Example 33 The functions f () = z, g(x) = —x, x € R, are linear, and so
convez, but their minimum, min{f, g} (z) = — |z|, € R, is not conver.

Theorem 34 Let I C R be an interval, let f, : I — R, n € N, be a sequence of
convez functions such that for every x € I there exists in R the limit

f (@)= lim f, (2).

Then f : I — R is convex and {fn} converges uniformly to f on any closed
interval of 1°.

Proof. Step 1: We prove that f is convex. Since f, is convex, for all z,
ye€land e (0,1),

[0z + (1 =0)y) = lim f,(0z+(1-0)y) < lim [0f, (z)+ (1=0) fn ()]
=0 lim f, (z)+(1=0) lim f, (y) =0 (2) + (1= 0) f (1),

which shows that f is convex.
Step 2: Let a < b be two points in I°. As in the proof of Theorem 6 we have
that

an <a;b> 7maX{fn (a) 7fn (b)} S fn (I) S max{fﬂ (CL) ’f" (b)}

for all « € [a,b] and all n € N. Hence,
for all « € [a,b] and all n € N, where

M :=supmax{f, (a), fn(b)}, m:= QTiLrelfon <(12+b> — M.

neN

Step 3: Let [a,b] C I°. In view of the previous step (applied to a larger interval
[a —e,b+ ] C I° and of Theorem 6 (see in particular (2) and (3)), we may find
a constant L > 0 depending on [a, b] but independent of n such that

|fn (y) = fu (z)] < Ly — =,

15



for all n € N and for all z, y € [a,b]. Note that letting n — oo in the previous
inequality shows that the same condition holds for f. To prove uniform con-
vergence, we could invoke the Ascoli-Arzeld theorem, or prove it directly. Fix
€ > 0 and consider any partition P := {xg,...,zmn} of [a,b], that is

a=x90<x1<...<Tpy, =D,

such that |v; — ;1| < 57 foralli=1,...,m. Find N € N such that

| fo (i) — f (23)] <

Wl M

foralli =1,...,m and for all n > N. If z € [a,b] let ¢ € {1,...,m} be such
that « € [z;_1,x;]. Then for n > N,

[fn (@) = [ (@) = [fn (%) £ fr (2i) £ f (20) = [ (2)]

< |fn (@) = S @)+ [ fn () = f (@i)| + |f (23) = f (2)]
S g + g + g =¢&.

Hence

sup |fn (2) = f ()] <e

z€la,b]

for all n > N, which proves uniform convergence. m

1.4 Differences of Convex Functions

In this subsection we assume for simplicity that
I:=]a,b].

The set of convex functions u : [a, b] — R is not a vector space since the difference
of convex functions is not convex in general. We now study the smallest vector
space of functions u : [a,b] — R that contains all convex functions. To avoid
anomalies at the endpoints we will restrict this space slightly. Let BC'[a, b] be
the class of functions f : [a,b] — R that can be written as f = g — h, where
g :la,b] - Rand h : [a,b] — R are two convex functions such that ¢/, (a),
g~ (b), b (a), h"_ (b) are all finite.

Exercise 35 Prove that BC [a,b] is a vector space and that all its elements are
Lipschitz.

Theorem 36 A function f : [a,b] — R belongs to the space BC'la,b] if and
only if there exists a function g : [a,b] — R of pointwise bounded variation such
that

f(fc):f(a)+/$g(t) dt

for all x € [a, b].
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Proof. If f € BC[a,b], then f = g — h, where g : [a,0] — R and h : [a,b] —

R are two convex functions such that ¢/, (a), g" (b), I/, (a), h"_ (b) are all finite.
By a slight variation of Theorem 12,

for all x € [a,b] and for some increasing functions p : [a,b] — R and ¢ : [a,b] —
R. Hence

f(x):g(x)—h(fﬂ):f(a)Jr/z[P(t)—fJ(f)] dt
for all x € [a, b].

Conversely assume that there exists a function ¢ : [a,b] — R of pointwise
bounded variation such that

f@%:ﬂ®+/wﬂﬂﬁ

for all € [a,b]. Since any function of pointwise bounded variation may be
written as the difference of two increasing functions, we may write g = p — q,
where p : [a,b] — R and ¢ : [a,b] — R are increasing. Hence

f (@) f@+/%@ﬁ—/%@ﬁ
—g(x) — h(2)

for all z € [a,b], which shows that f is the difference of two convex functions.
Moreover,

_Jap@dt _g@)—g(a) _ [rp®)dt _ [ip(x)dt

< <
p(a) r—a ~  zT-—a r—a ~  zT-—a sp(@),
and so
_ D e i @) —gla)
oo <pla)<g. (a):= xligl+ P leirfbp(x) < 0.

Similarly g’ (b), b/, (a), h’_ () are all finite. m
We recall that:

Definition 37 A function f : [a,b] — R has pointwise bounded variation if

Var f := sup {Z If () = f (i) :

i=1
P:={xzo,...,xy} is a partition of [a,b]} < oo.

17



It turns out that the space of functions of bounded variation is the smallest
vector space that contains all monotone functions.
A similar characterization holds for functions in BC [a, b].

Definition 38 A function f : [a,b] — R, we define

n—1

K (f) :=sup {Z IOisaf =06 f]

i=1
P =A{xg,...,z,} is a partition of [a,b]},

where

O, f = L @) = f @)

Ty — Tj—1

To highlight the dependence of K (f) we will write K, (f). Also, given a
partition P = {zg,...,z,}, we write

n—1
K(f,P):=) |Oinaf - Oifl,
i=1
so that
K(f)= sup K (f,P).

P partition of [a,b]

Theorem 39 If f : [a,b] — R is convex and f! (a), f. (b) are finite, then

K(f)=f(b) = fi(a).
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Wednesday, January 30, 2008
Proof. By (10) for any partition P = {zq,...,Zn},
fi(@io) <Oif < fL (),

and so

0 < fy (@) = fL (i) <O f = Oif < fL (i) = f (1) -

Hence

n—1 n—1
D18 f —Oifl =) Oinf —Oif =0uf —Ouf
i=1 i=1

fO) = f@ica)  f(@)—fla) _ /
T D <)~ £ (@),
which shows that K (f) < f (b) — f4 (a).
To prove the converse inequality, find a < 1 < x5 < b such that

f(w2) = £ (b) ) = fla)|

€
To —b T1—a 2°

fL () - fi(a) -

E

€
2 b
Then

f/_(b)—f_/,_(a)—sﬁ f(IQ)_f(b)—f(xl)_f(a)=D3f—D1f:I:D2f

To —b T —a
2
<Y O f -Oif| S K ().
i=1
It suffices to let € — 07, m

Remark 40 If f € BC|a,b], then f = g — h, where g : [a,b] — R and h :
[a,b] — R are two convex functions such that g', (a), g (b), b', (a), h" (b) are
all finite. Hence

K (f) < K(g9)+ K (h) =g_(b) — g} (a) + hL (b) — hly (a) < o0.
Proving the opposite implication requires much more work.

Theorem 41 Let f : [a,b] — R be such that K (f) < co. Then f. exists in
(a,b], f exists in [a,b), and f is Lipschitz.

Lemma 42 Let n € N be greater than 2, let ag, . .., a, be real numbers, and let
b1,...,by be positive numbers. Then
n—1
Z Air1 — Gy Gy — Q1
| bita b;
1 [ p — Gy  Ap_1 — aQ — |ait1 —ag  a; —a
o 1 g oo dnt o) S e —a o
= 4 = +1
bn (i—l > i1 bi 2?21 bi i=1 23:1 b; 23:1 b;
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Proof. The proof is by induction on n. For the case n = 3,

az — az a2 — a1 a2 — ay a1 — Go
by b by b
_|@B—a a-a +( by n ba )az—ao_(a1—ao)(b1+b2)
bs bo bi+bs by +bo b b1bo
_laz—az az—ax by las —ag a1 —ag as —ag a1 — ag
B bs Dby by |bi+by by bi+by b
> &3—(12_&2—(11 bilag—ao_al—ao (12—(10_(11—(10
- b3 bo by b1 + ba by b1 + by by
_ as — as + ag —bo (a _a)+a2—a0_a1—ao
b3 by (b1 + b2) ? 0 b1 + bo by
az—ag by + b2+ 03 az—ap a1 —agp
s b (bi +bo) (a2 = ao)| + bi+by b
_bi+ba+bs| az—ag as — ag ag—ap a1 —agp
B b3 by + by +b3 b+ by bi+by b ’

where we have used the triangle inequality.

Assume now that the result is true for n and let’s prove it for n 4+ 1. By the

induction hypothesis,

n
Z Ai+1 — Qi Qi — Qi1
| bina b;
n—1
Qp41 — Gn Gp — Ap—1 2 : Qi1 — A4 a; — Qj—1
= - + -
bn+1 bn i—1 bi+1 bz
n
pt1 — Qn  Gp — Qp—1 1 Zb ap — Qo Gp-1 — g
et - 7 i n - n—1
bn+1 by bn i=1 2 iz bi Di1 bi
n—2
+ Aij4+1 — Qo a; — aop
§ : Ziﬂb - Zi b
i=1 =107 =195
n—1
_ | On+1 — Gn Qp — Qp—1 n 1 Z b apn — ag Gp—1 — Qag
- 7 i n T n—1
bn+1 bn bn i=1 Zi:l bz Zi:l bz

ai+1 —Go @i — Qg

n—1
+ 7
; POMET TREND DA

=T+II+1II

i
Jj=1
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Now, again by the triangle inequality
I+11>

n—1 n—1
Gp41 — An Ap — Ap—1 1 ap — Qg 1 ap—1 — QAo
- D E =y b )
bt b b <_ ) 2imibi bn ( ) i b

i=1 4

il — 1 1 "lp +b,
fnil a0+<—b P D= )(an—ao)

n
bn+1 n+1 bn bn Z¢:1 bi
n+1
Gp41 — Qo Zizl b;

- - an — a
bn—i-l bn+1 (Zi:l bl) ( 0)

1 n+1
B bn+1 (Zz_; bl)

Up1 — Go apn — ag

222_11 bi Z?:l bi|
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Lemma 43 Let n € N be greater than 2, let ag, ..., a, be real numbers, and let
g <o S epe
Then
n—1 n—1
Qi4l — Qi Qi = Gim1]| di+1 — Qo a4 —ag
lcivi—¢ G —cia] Ci+1—Co  Ci—Co
Proof. Define b; :=c¢; —c¢;_1 for i = 1,...,n and apply the previous lemma
to obtain
Z Ait1 — Qi G — Gi—1
1 Ci+1 — C; C; —Ci—1
ap — Ao ap—1 — Ao

Yimi (G —eim1) T (e —eina)

1=1

1 n
Z e (Z (o= >)
n—2

Qi1 — Qo _ a; — ap
l+1 7
> (g —¢j-1) Zj—l (¢j —¢j-1)
1 p — Gy Gp_1— agQ
= —Cp—1+ E ; — Ci—1) -
(Cn - CTL—l) Cn — Co Cn—1 — Co
Ajq1 — a; — g

+Z

ap —ag  Gnp

Ci+1 — Co C; — Co
n—2
=1
where we have used the fact that Z;:ll (¢i—ci—1)>0. m
Proof of Theorem 41. Step 1: We prove that for every z; € [a,b),

Qi1 — G —ao

Cp — Co Ch—1 — Co

Ci+1 — Co C¢i —Co

limsup |L @ =L@
+ r— o
T—x]

Fix a < x1 < 29 < b and choose 29 < 23 < b. Let a = 29 < 1 < 29 < 23 <
x4 = b. Since

D2 f| = [Haf| = [Baof | = 104f] £ O3 f] < |[Osf — Oof + |Oaf — Osf| < K (f),

we have
f($4) — f(.Tg) ) (14)
To — X1 T4 — x3

UE SN P

Letting 22 — xf gives the desired result. Similarly, for any z; € (a,b],

f(x) = f(x1)

xr — T

lim sup

T—T]

< 0Q0.
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Step 2: We prove that f/ exists in [a,b). Assume by contradiction that there
exists xq € [a,b) for which the limit

fi (zo) :== lim I () = f(z0)

z%zar T — o

does not exists. Hence there exists an g9 > 0 with the property that for any
x € (xo,b) there exists y € (zo,x) such that

fx) = fxo) _ fy) = [ (o)

T —Zo Yy — 2o

By applying the previous inequality repeatedly for any n > 2 we may construct

co=xp<c1<...<¢,

such that
n—1
f (CiJrl) - f (370) _ f (Ci) _ f (x0> -
; Ci+1 — To ¢ — o > (n—1)ep.

By the previous lemma we obtain

n—1

n—1
K(f)> Y 10 f =0uf[ =)

=1 =1

fleiy) = fle)  fle) = fleima)

Ci+1 — Ci Ci — Ci—1

> (’I’L— 1)507

which gives a contradiction as n — oo.
Step 3: We show that f is Lipschitz. Fix a < 21 < 2 < b and choose
T < x3 < b. By (14),

T2 — T1

Letting x5 — b~ gives

‘ fl@2) = f (1)

T2 — T1

<K (f)+|f )]

Thus we have proved that

|f (22) = f(21)] < (K (f) + [f2 (B)]) Jo2 = 21]

for all z1 < x5 in [a,b). Since f’ (b) € R, we have that f is continuous at b, and
so the previous inequality holds also for o =b. =
We are now ready to prove the desired characterization.

Theorem 44 A function [ : [a,b] — R belongs to BC [a,b] if and only if
K (f) < o0.
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Proof. Step 1: Let P = {xy,...,x,} be any partition of [a,b] and let
T € [a,b]. We claim that the partition @ obtained by adding Z to P is such that

K(f,P)<K(f.Q).

To see this, let ¢ € {1,...,n} be such that & € [x;_1,2;]. If T coincides with
one of the endpoints, then there is nothing to prove. Thus we can assume that
Z € (x;-1,2;). Let

O,f = f(x;?:{f(f), Ouf = f(j;:i(f_l)
Then
O, f = fxi) = f(zia)  f(@) £ (@) = f(zio1)
v Tj— Tj1 B Ti— Ti_1
=00,.f+ (1 -0)0uf,
where s
0:= m €(0,1).

Assume that 2 <7 <n —1 (the cases i = 1 and i = 2 are simpler). Then

Ot f —0Oif| + |Of —Oica fl = i f = O f+ (1 = 0) (O, f —O,f)|
+10(O,f =0 f) + O f = Oia f]
< B f 00 f+ Q= 0) |0 f — L f]
+ 0|0, f = Ouf] + |0 f — Bica f]
= 0o f = OpfI + 10, f = O f| + O f — 01 f] -

Since the remaining terms in K (f, P) and in K (f, Q) are the same, this com-
pletes the proof of the claim.

Note that Step 1 implies in particular that the function 2 € [a, b] — K, 41 (f)
is increasing and that there exists an increasing sequence {P, } of partitions of
[a, b] such that

n—oo
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Monday, February 4, 2008
Proof. Step 2: In view of Remark 40, it remains to show that if K (f) < oo
then f € BC'[a,b]. Define the function

gy ={ J TR Hezr st

if x = a.

Fix a < s <t < b. Since by Step 1 of the previous theorem refinement of a
partition increases K (f, P), in view of the previous remark we can construct
two increasing sequences {P,} and {Q,} of partitions of [a,t] and of [a, s],
respectively, such that @,, C P, for all n € N,

lim K (f7 Pn) = K[a,t] (f) ) lim K <f7 Qn) = K[a,s] (f) ) (15)

n—00 n—00

and the size of the maximum interval of P,, goes to zero as n — oo. For every n
write Q,, 1= {zé")’ . ,ij)} and P, := {;p(()n)’ . ,xlg:),xé:)ﬂ, e ,xﬁ,’f}b }, where

(n)

r=1x5 < xﬁ")

<...<x§:)=s<xéi)1<...<x(") =t.

My

Then
mp—1 mp—1
K(fP)=K(f.Qn) =Y |Dipf —0if[ > | > Oipaf - Oif
=L, i=Ly,
= ||:|mnf - I:]enfl
PO - f(50-)  fe =1 (=)
t—xg,?lfl s—xﬁz)_l '

) _

Letting n — oo and using (15) and the fact that 2™t and xétLI — 57,

myp—1
we obtain

Ko (f) = Ko () 2 [£2(6) = F2(5)| = g (&) — g (5)] -

Note that this inequality continues to hold if s = a since reasoning as before

e (g
K (f,Pa) > |Om, f—0Ouf| = f(t)t f((jmn_l) _f(a) f<(n>1 ) ’

_x’mn—l a4 — Ty

and so letting n — oo and using (15) and the fact that xfﬁi_l — ¢t~ and

2\ = aF, we obtain

Ko (f) = Kpaya) () = Kja,) (f) =02 [fL (1) = fi (@) = |9 (t) — g (a)].

Thus, we have proved that for all a < s <t < b,

K[mt] (f) - K[a,s] (f) >+ (g (t) -9 (8)) y
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which implies that the functions z — Kj, 4 (f) —g (z) and 2 — K, 4 (f) +g ()
are increasing. It follows that the function

1

2 (Kja) (f) —g (), z€la,b],

1
2
has pointwise bounded variation. Since f is Lipschitz continuous, it follows that

f exists for £ a.e. x € [a,b] and that the fundamental theorem of calculus
holds, so that

f (@)~ f(a) :/ 20 dt:/ o)+ fs (@)] dt, =€ [ad].
It follows by Theorem 36 that f € BC[a,b]. m

1.5 Conjugate Functions

Let g : [0,00) — [0,00) be strictly increasing and continuous, with g (0) = 0
and g (z) — oo as z — co. Then g~! exists and has the same property of g.
Moreover, if we define the functions

f () = /Oxgu) dt, f* (@) = /g ) dt, x>0,

in view of Theorem 12 we have that f and f* are convex. Looking at the picture
we have that:

*(y) = sup {ay — f (z)} for all y > 0.
x>0

The function f* is called the conjugate of f. To extend this notion to general
functions we will use (A45) as a definition.

Definition 45 Let I C R be an interval and let f : I — R be a function. The
conjugate of f is the function defined by

[ (y) = ilér;{my— f@)},

with domain I* .= {y e R: f*(y) < oo} .

We will show that f* is a convex and that it is closed.
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Definition 46 Let J C R be an interval and let g : J — R be a convex function.
Then g is closed if the set

red: gl <t}
s a closed set for all t € R.

Exercise 47 Let J C R be an interval and let g : J — R be a convex function.
Prove that g is closed if and only if it is continuous at each end point contained
in J (if any) and such that g (x) — oo as x approaches every (real) endpoint
not contained in J (if any).
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Theorem 48 Let I C R be an interval and let f : I — R be convexr. Then I*
18 an interval and f* : I* — R is convex and closed.

Proof. If I = {xzg}, then f*(y) = zoy — f (z0), and so I* = R. If I does
not consist of a single point, let ¢ € I°. By Corollary 18,

Af (zo) = [~ (z0), [ (zo)] -
Let y € 9f (zo). Then
F(2) > f (o) +y(@—a0) foralleel,
and so 2y — f () < 2oy — [ () for all z € I. Hence,

f y) = Slél;{wy — (@)} <zoy — f (20) < 0,

which shows that y € I*.
For every x € I define the affine function

g° () =xy—f(z), yek

Since g* is convex and

[ (y) = Sur;g”” (v), yeR,
TE

it follows by Theorem 32 that I* is an interval and that f* is convex.

It remains to prove that f* is closed. Fix ¢t € R and let {y,} C I* be such
that y, — y and f* (y,) < t for all n € N. We claim that f*(y) < ¢. Since,
f* (yn) <t for all n € N, we have that

xyn — f(z) <t

for all x € I. Letting n — oo gives

vy — f(z) <t

for all z € I, and so f* (y) < t. Hence the set {y € I* : f* (y) <t} is a closed
set forallt € R. m
Next we prove the appropriate versions of (A1) and (As).

Theorem 49 (Young Inequality) Let I C R be an interval and let f : I — R
be convex. Then

vy < f(x)+ 17 (y)
for allz € I and all y € I* and the equality holds if and only y € Of (x).
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Proof. If y € I'*, then
zy — f(z) < f*(y)

for all x € I, and so Young’s inequality holds.
To prove the second statement of the proof, note that yo € 9f (z¢) if and
only if
f(@) > f(zo) +yo(z—z0) forallzel,

or equivalently
voxo — f (x0) > yox — f(x) forallxel.
In turn, this is equivalent to saying that
yozo — f (zo) = f* (yo) -

It now follows by the Young inequality that yo € 9f (x¢) if and only if yoxo =
f(@o) + f* (yo). =

To extend (As) we need some preliminary results.

Definition 50 Given two nonempty sets X, Y, a multifunction or correspon-
dence from X toY is a map from X to the family of subsets of Y, namely

' x—-»,(Y).
The domain of a multifunction is the set
domTI':={z e X : I'(z)#0}.
The graph of a multifunction T' is the set
graphT' := {(z,y) e domT' x Y : y €' (2)}.
The inverse of a multifunction T is the multifunction T=1 1Y — P (X) defined
K I l(y)i={re X: yel(@)}. (16)

A multifunction T : X — P (Y)) is univalued on a set E C X if T (x) consists
of at most one element for every z € E. In this case the restriction of I' to
ENdomI' may be identified with a function.

Definition 51 A multifunction T' : RN — P (RN) 1s called monotone if
(ra —21) - (y2 = 91) 2 0

for all (x1,v1), (z2,y2) € graph. A monotone I' : RN — P (RN) is called
maximal if its graph is not a proper subset of the graph of a monotone multi-
Sfunction.
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Note that T' is a (maximal) monotone multifunction if and only if T~1 is a
(maximal) monotone multifunction.

Theorem 52 Let I C R be an interval and let f : I — R be convex. Then the
multifunction Of is monotone.'

Proof. Let (z1,m1), (2, m2) € graph df. Without loss of generality assume
that 7 < x2. Then by Theorem 8 and Corollary 18,

fl(@) <my < f (1) < fL(w2) <mg < ff (22)

which implies that ma —m; > 0. In turn, (22 — 21) (M2 —mq) > 0, and so Jf
is monotone. ®

!Here we set Of (x) := @ if either z € I and f is not subdifferentiable at = or if z does not
belong to I.
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Theorem 53 Let I C R be an interval and let f: I — R be closed and convez.
Then the multifunction Of is maximal.

Proof. To prove maximality, it suffices to show that if (z1,m1) ¢ graph9f,
then there exists (z3,mg) € graph df such that

(2 — 1) (Y2 —y1) <O.

Replacing f with the function
9 (%) = f(z+x1) —2my,

which is still convex and closed (see Theorem 30, and Exercise 47), without loss
of generality we may assume that 1 = m; = 0. Thus, we have to prove that if
(0,0) ¢ graph @f, then there exists (z,m) € graph df such that zm < 0.

There are now three cases. If < 0 for all x € domdf, then by (11) the
interval I is bounded from above. Let b:=sup I < 0. If b ¢ I, then by Exercise
A7,

hril fz)=00
and so by (5) there must exists < 0 such that f! (z) > 0 (since otherwise f
would be bounded from above). Since (z, f| (z)) € graphdf and z f} (z) <0,
the proof is concluded in the case in which b ¢ I. If b € I and f’ (b) = oo, then
(why?)

lim f} (y) = oo,

Yy—w—

and so we are back to the previous case. If b € I and f’ (b) < oo, then
b€ domdf, so b <0, and (why?)

Of (b) = [fL (b) ,0) .

Hence we may find m € df (b) N (0,00). Then (b, m) € graph df and bm < 0.

A similar argument holds if z > 0 for all x € dom 0f.

Thus, it remains to consider the case in which 0 € domdf. Since (0,0) ¢
graph df, it follows that 0 ¢ 9f (0), and so by Remark 15, f (0) cannot be a
minimum for f. Hence there exists 21 € I such that f(x1) < f(0). If z; <0,
then by (9) we can find x5 € [x1,0) such that f| (z1) > 0, and so we are back
to the previous case. Similarly, if z; > 0, then by (9) we can find x5 € (0,21, 0]
such that f} (z1) <0. m

We are now ready to extend (A3) and (A4). Note that since f** = (f*)7,
the function f** is convex and closed. Thus to recover (A4) we need f to be
convex and closed.

Theorem 54 Let I C R be an interval and let f : I — R be convex. Then

graph (0f)”" C graphdf*.
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Moreover, if f is also closed, then
@n) 7 =or (17)
and f** = f.
Proof. Fix « € I. From the definition of f*,
ffly)—axy>—f(x) forallye I

Hence the function on the right-hand side is minimized (as a function of y)
when there is equality in the Young inequality, that is when y € df (x). Thus, if
y € 0f (z), then the function h (2) := f* (z) —xz, z € I*, is minimized at z = y.
In view of Remark 15, we have that 0 € 0h (y), which is equivalent to say that
x € 0f* (y). Hence we have proved that if y € 9f (), then € df* (y). In
terms of graphs this means that if (z,y) € graph df, then (y,x) € graph df*, in
other words, graph (8]”)_1 C graph Of*.

If we assume that f is also closed, then by the previous theorem, Of is
maximal monotone, and so is (9f)”'. Since 8f* is also maximal monotone, it
follows that (0f) "' = af*.

It remains to prove that f** = f. Applying (17) with f* in place of f we
have that .

oft = =(@n) =ar.

It follows by Corollary 18 that
(f)=fL
and so by (9),

-t @= [ e oa= [ oa=re-re

for all z < y in I. To conclude the proof, we prove that f(z¢) = f*(zo) at
some point xg € I. Choose xy € I and yo € I* such that yo € f (o). Then

(Yo, o) € graph (8]‘)71 = graph 9f*.

Applying the equality in the Young inequality first to f and then to f*, we
obtain

zoyo = f (wo) + f* (v0),
Yoo = f* (yo) + f** (w0),

which implies that f (z¢) = f* (x0). ®
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As a corollary of the previous theorem we can study the regularity of f*.

Theorem 55 Let I C R be an interval and let f : I — R be convex and closed.
Then f* : I* — R is differentiable in (I*)° if and only if f is strictly conver in
all intervals contained in

U arw

ye(I*)°
Proof. Assume that f is strictly convex in all intervals contained in

= U orw

ye(I*)°

let yo € (I*)° and assume by contradiction that f* is not differentiable at yq.

Then
(F)" (yo) < ()Y (wo) -

)=
Let (f*)" (yo) < @1 < x2 < (f*)) (yo). Since z1, x5 € df* (o), it follows by
the previous theorem that yo € df (z1) N If (x1). By the equality case in the
Young inequality, we have

1Yo = f(21) + " (o),  @2yo = f(z2) + f (yo) -

Hence, for any 6 € [0, 1] we have

0f (x1) + (1 =0) f (z2) + [ (yo) = 0 (f (x1) + f* (o)) + (1 = 0) (f (x2) + £~ (v0))
=0 (z1y0) + (1 — 0) (z2y0)
= (0z1 4+ (1 — 0) z2) yo
< f(0z1+(1=0)z2) + " (v0),

where in the last inequality we have used the Young inequality. It follows that

0f (x1) + (1 =0) f(x2) = [ (6x1 + (1 = 0) 22),

which contradicts the strict convexity of f in the interval [x1,z2] C E.

Conversely, assume that f* : I* — R is differentiable in (I*)°. By the
previous theorem, f = f**. Let J be any interval contained in £ and assume
by contradiction that f is not strictly convex in J. Then there exist x; < z2 in
J such that f is affine in [z1,x2]. Let z := % € J C E. By the definition of
E, there exists y € (I*)° such that z € 9 (f*) (y), and since f* is differentiable
n (I*)°, it follows that (f*)’ (y) = x. Using the facts that f is affine in [z, 23]
and that (f*)' (y) = x it follows from the equality in the Young inequality that
(recall that f = f**) we have

x 1 . 1
0= F(2)+ 1* () ~ 2y = 5 (F (22) + £ (4) — oa9) +
By the Young inequality, necessarily f (z1) + f*(y) —
f*(y) — 2y = 0, which implies that 1, z2 € 9 (f*) (y)
contradiction. m
The next two exercises illustrate the previous function.

(f (x2) + f* (y) — w2y) .

Ty = 0 and f(z2) +
={(f*) (y)}. Thisis a
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Exercise 56 (i) Consider the function

a2 el <1,

f(m){ w =L i o] > 1.

Note that f is not strictly convex. Prove that

ey [ 3y iyl <1,
f(y)_{éo if Jyl > 1.

Note that f* is differentiable in the interior of its domain. Why this does
not contradict the previous theorem?

(ii) Consider the function

La+1)® ife< -1,
fl@x)y=¢ 0 if —l1<z<1,
%(:1771)2 if x> 1,
and prove that f* (y) = |y|+3y>.
theorem?

Why this does not contradict the previous

Concerning the second order derivative of f** we have the following result.

Theorem 57 Let I C R be an interval and let f: I — R be convex and closed.
Let zg € I° be such that f and [’ are differentiable at zo and " (xg) > 0. Then
(f*)" exists at yo = f' (x0) and

o/ _ 1
(f ) (yO) - f// (-TO)

Proof. We claim that f* is differentiable at yy. Note that by Theorem 54,

Af* (yo) = (Of) " (yo) = {& € domdf : yo € f (x)},

and since yo = f’ (x0), we have that xg € Jf* (yo). If the convex set 0f* (yo)
contains another element, say xo+v for some v € R, then it contains the segment
xo + v[0,1]. Again by Theorem 54 we have that yg € Of (zo + tv) for all all
t € [0,1]. Hence
f (o +tv) = yo

for all but countably many ¢ € [0, 1], which contradicts the fact that f” (zo) > 0.
Thus the claim holds.

For all but countably many y near yo we have that 9f* (y) = {(f*)' ()}
and so again by Theorem 54, y € df (z,) for some z, € domdf. Hence

(f) W)= () (o) my— o

Y—1Yo Z/—yo'
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If x, > xo we have
my—xo .%‘y—l‘0< l‘y—xo
fL(y) = (x0) = y—yo ~ fi(wy) = f (0)

Note that by the previous part of the proof, since f* is differentiable at yq, we
have that z, — 9 as y — yo by (7) and (8). Hence the result follows by the
fact that f/ is differentiable at zy by Theorem 26 and Remark 27. m
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2 Convex Functions in RY

2.1 Affine Sets and Convex Sets
Definition 58 Let V' be a vector space. A set E C V is said to be

(i) affine if for all vi,vo € E and 6 € R,
9’01-’-(1—9)1}2 GE;

(i) convex if for all vi,ve € E and 0 € (0,1),

9U1+(1—9)U2 cF.

In a geometrical language, a set F is affine if whenever it contains two points,
it also contains the line through these two points, while a set E is convex if
whenever it contains two points, it also contains the segment joining these two
points. Hence every affine set is convex, but not viceversa. The entire space V,
the empty set, a set consisting of a single point are both affine and convex sets.
A segment is a convex set that is not affine. In R? the interior of an ellipse or
any regular polygon is a convex set.

The next proposition shows that an affine set can be regarded as a translation
of a subspace.

Proposition 59 A set E C V with more that one point is affine if and only if
it can be written as vg + W, where vg € E and W is a vector subspace of V.

Proof. Suppose that £ C V can be written as £ = vy + W, where vy € F
and W is a vector subspace of V. If v1,v3 € E and 0 € R, then we may write
v1 = Vg + W1, V2 = Vg + wa, where wy,we € W. Hence

9U1+(1—9)02 :9(00+w1)+(1—9) (U()+w1)
:v0+[0w1+(179)w1] GE,

since fwy + (1 — ) wy € W.

Conversely, assume that E is affine and let vy be any vector in F. Define
W := —vg+ E. We claim that W is a subspace of V. To see this, let wy,ws € W
and t € R. Then we may write w; = —vg+ v1, Wy = —vg + v2, Where vy,v3 € F.
Hence

1 1
w1 —|—tw2 = —Ug + V1 — tv(] + t’UQ = —7p +t |:2 (2’01 + 2'1}2) — 'U():| + (]. — t) V1.

Since F is affine, z := %vl + %’1}2 belongs to F, and in turn so does v := 2z — vy,
and so also tv + (1 —¢) v;. Hence wy 4 twy = —vg + (tv + (1 —t)v1) € W, by
definition of W. m
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2.2 Operations Preserving Convexity

Proposition 60 If V, W are vector spaces and E C V, F C W are affine
(respectively convez), then E X F' is affine (respectively convez).

Proof. We give the proof only for convex sets. Let z1, 20 € E X F and let
6 € (0,1). Then there exist vy, vo € E and wy, wy € F such that z; = (vy,w)
and zo = (ve,ws). Hence

0z + (1 — 9) 2o =0 (vl,wl) + (1 — 9) (UQ,U}Q)
= (v + (1 —0)va, 0w + (1 —)wy) € E X F,
where we have used the convexity of £ and F'. =
Given two vectors spaces V and W, an affine transformation T : V — W
consists of a linear transformation followed by a translation, that is T can be
written as
T(w)=Lw)+wy, veEV,
where L : V' — W is linear and wy € W is a fixed vector. Affine transformations
preserve convexity.

Proposition 61 Let V and W be two vector spaces, let T : V. — W be an
affine transformation and let E C V be affine (respectively convez). Then T (E)
is affine (respectively convex).

Proof. We give the proof only for convex sets. Let wq, we € T (E) and let
6 € (0,1). Then there exist vy, vo € E such that T (v1) = wy and T (v2) = wa.
Hence
9w1 + (]. — 0) Wy = QT(’Ul) + (]. — Q)T(’UQ)

=40 (L (Ul) + wo) + (1 - 0) (L (UQ) + wo)

ZL(le —|—(1 —9)1}2) “+ wo =T(9v1 + (1 —0)1]2),
where we have used the linearity of L. m
Remark 62 Some simple consequences of the previous proposition are the fol-
lowing:

(i) (Projection) If V, W are vector spaces and E C V. x W is affine (re-
spectively convex), then the projection of E into either V. or W is affine
(respectively convex). To see this, it suffices to consider the linear trans-

formations
VW=V, VxW-=W,
(v, w) — v, (v, w) — w.

(i) If V., W are vector spaces by considering the linear transformations

VxV -V, V-V,
(v,w) — v+ w, v — to,

where t € R, it follows that if E1, E2 C V be affine (respectively convez),
then the sets E1 + Eo and tFEy are affine (respectively convez).
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The arbitrary intersection of convex sets is still convex, but in general the
union is not (the simplest example is the union of two disjoint closed segments
on the real line).

Proposition 63 Let V' be a vector space and let {Eo} ¢ ; be an arbitrary family
of affine (respectively convex) subsets of V. Then

E_:= () Ea
aed
is affine (respectively convex). If {Eq},c; is totally ordered with respect to
inclusion (that is, for o, 8 € J, either E, C Eg or Eg C E,), then
Ey:=|JEa
aed

is affine (respectively convez).

Proof. We give the proof only for convex sets. Let v1,v2 € E_ and 6 € [0, 1].
Then vy,vy € E, for all « € J, and since E,, is convex, vy + (1 — 0)ve € E,
for all & € J. Hence Ov; + (1 — 0)ve € E_.

Let v1,v2 € E4 and 0 € [0,1]. Then vy € E, and vy € Eg for some «, § € J.
Then either £, C Eg or Eg C E,, say, Eg C E,. It follows that vi,vs € E,,
and since F,, is convex, fv; + (1 —0) vy € E,. Hence v; + (1 —0)vs € E,. W

Remark 64 In particular, if C C RY is convex and H is any hyperplane then
the intersection C N H is convex. Thus, sections of convez sets are convex. This
18 useful for induction proofs on the dimension N.

Corollary 65 Let V' be a vector space and let {E,}, . be a sequence of affine
(respectively convex) subsets of V.. Then

lim inf E,, := fj ﬂ E;
k=11i=k

is affine (respectively convez).
Proof. We give the proof only for convex sets. By the previous proposition
the sets
F = ﬂ E;
i=k
are convex. Since the sequence {F}} is increasing, the set
n—oo

lim inf E,, = U F
k=1

is convex. m
We consider next the case in which V' is the Euclidean space RY.
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Theorem 66 If C C RY is conver, then for every 6 > 0 the set
Cs = {z e RV : dist (2,C) < §}
18 convez.

Proof. Let 21, x5 € Cs and 6 € (0,1). By the definition of Cs we may find
Y1, Y2 € C such that

|x17y1|<5, |$2*y2|<5.
Since C' is convex, Oy; + (1 — 0) y2 belongs to C, and so

[0x1 + (1 —0)ze — (By1 + (1 — ) y2)| = |0 (z1 —y1) + (1 — 0) (2 — y2)|
<Olzy — 1| + (1= 0)[r2 — ya| <6,

which implies that 6z + (1 —0) 22 € Cs5. ®

Remark 67 The same proof works in a normed space. Note that taking a line
in R? shows that the previous result does not hold for affine sets.

Corollary 68 If C C RY is conver, then so is its closure C.

Proof. First proof: Let §,, — 0%. Since

o= Cs
k=1

the result follows from the previous theorem and Proposition 63.

Second proof: Let 21, 15 € C and 6 € (0,1). Then there exist two sequences
{yn} and {z,} contained in C such that y,, — x; and z, — x3. Since C is
convex, 0y, + (1 — 0) z, € C for all n, and since

lim Oy, + (1 —0)z, = 0x1 + (1 — 0) 2o,

=00

it follows that 0z + (1 —0) 22 € C. =

Proposition 69 Let C C RN be a conver set. If x1 € C° and xo € C, then
z:=0x1+(1—-0)zy € C°

for all0 < 6 < 1. In particular, the interior of C is convex.

Proof. Since z; € C° and 2o € C, we may find » > 0 and a sequence
{yn} C C such that B (z1,r) C C and y, — z3. We claim that B (z,0r) C C.
To see this, note that if y € B (z,0r), then |y — x| < 6r, or equivalently,

(1-06)
0

To — 1| <T.
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Since y,, — x2 we may find n € N so large that

(1-90)

— ) Yp — 1| <T.

SSIRSS

Thus 4 — (1;9)% € B(x1,r) C C, which implies that

y (1-0)
7 7 yn =§ € C.

In turn, y = (1 — 0) y, + 6£ € C, and the proof is complete. ®
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Corollary 70 If C c RY is a convex set and C° is nonempty, then the closure
of C° is the closure of C' and the interior of C is C°.

Proof. Since C° C C, we have that C° C C. Conversely, if z; € C° and
w9 € C, then 01+ (1 — 0) 29 € C° 0 < 0 < 1. Since limg_,g+ Oz + (1 — ) 29 =
T, it follows that 2o € C°. Hence, C° = C.

Next C C C, and so C° C (6)0. Ifx € (6)0 \ C°, let 7 € C°. Since
z € (C)° there exists B (z,7) C C. Pick a point y € B (z,r) on the segment
TZ7 on the opposite side of x1, so that x = 0y + (1 — ) z1 for some 6 € (0, 1).
In view of the previous theorem, we have that € C°. This is a contradiction.
Thus, (C)" =C°. =m

2.3 Affine and Convex Hulls

Let V be a vector space. If vy,...,v, € Vand 64,...,0, € Rwith6,+...4+0,, =
1, then the vector v := 61v1 + ... + 0,v, is called an affine combination of
v1,...,0, € V. If in addition 6; € [0, 1], then v := 61v1 + ... + 0,v,, is called a
convex combination of vy,...,v, € V.

Proposition 71 Let V' be a vector space. A set E C V is affine (respectively
convex) if and only if every affine (respectively convex) combination of elements
of E belongs to E.

Proof. We give the proof only for convex sets. If a set contains every convex
combination of its elements, then it is convex (take n = 2). Conversely, assume
that E is convex. The proof is by induction on the number n of elements in
the convex combination. If n = 2, this is just the definition that F is convex.
Assume that the result is true for n € N and let’s prove it for n + 1. Let
ViyeooyUpt1 € B, 01,...,0,41 € [0,1], with 6; + ... + 0,11 = 1, and v :=
O1v1 + ...+ 0pt1Un41. If 01 =1, then v = v, € V and there is nothing to
prove. Thus, assume that 6,47 < 1. Then 61 +...+ 6, =1—6,,1 > 0, and so
we may rewrite v as

01

0r,
40 )+ On1ns
40, 0+ ...+ 0, ) e

By the inductive hypothesis, the point

91 0n

AN +...4—
0 +...10,

T o+, . +0,"

Un

belongs to E, and since v = (01 + ...+ 6,) z 4+ 0410541, by the convexity of
the set E we have that v belongs to E and the proof is complete. m

Given any set E C V, the convex hull co (E) is the intersection of all convex
sets that contain F.
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Proposition 72 Let V be a vector space and let E C V. Then

CO(E):{Z&W: nEN,ZQi:LGiZO, viEE,izl,...,n}. (18)

i=1 i=1

Proof. If F is any convex set that contains F, then it must contain all
convex combinations of elements of E, and so

n n

FD {Z@zvz n €N, Zﬁizl, 0; >0, UiEE,iZI,...,n} =:G.

i=1 i=1

Since this holds for all convex sets containing F, it follows that
co(E)DG.

To prove the opposite inclusion it suffices to show that G is convex and contains
E. The latter assertion follows from the fact that if v € E, then we can take
n =1 and 6; = 1. To show that G is convex, let 0 < 6§ <1 and let u, v € V be

of the form
n l
u = E Oiv;, v = E sjwj,
i=1 j=1

Wherezyzlﬂizzl s;=1,0;,8>0,v,w;€eEi=1,...,n,j=1,...,L

j=1
Note that without loss of generality, we may always assume that n = [. Indeed, if
n # [, say n > [, then it suffices to set s;41,...,5, := 0 and w41, ..., w, = w;.

Then . .
0u+(1—0)v:ZﬁeiviJrZ(lfﬂ)siwi,

i=1 i=1
which is still a convex combination of elements of F/, and so it belongs to G. =

Note that without loss of generality, in (18) one may consider only posi-
tive coeflicients ;. Carathéodory’s theorem improves (18) in that it limits the
number of terms in the convex combination to at most N + 1.

Theorem 73 (Carathéodory) Let E C RY. Then

N+1 N+1
coE:{ZQZmZZ@lzl,ﬁle,xleE,z:l,,N—l—l}
i=1 i=1

Proof. Fix o € coE and let
S:={eN: zisa convex combination of ¢ vectors of E}.

Note that by the previous proposition, S is nonempty. Let k := minS. We
claim that £ < N + 1. Assume by contradiction that £k > N + 1 and let

k
T = E 07;1'2',
=1
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where Zf:19i =10, € (0,1), z; € E, i =1,...,k. Since k—1 > N, the

k — 1 vectors o2 — x1,...,%; — o1 are linearly dependent, and so we may find
S2,...,8k € R not all zero such that
k
Z si(zi—x1)=0
i=2
Let s1 := — 25;2 $;. Then Zle s;z; =0 and Zle s; = 0. Since not all the s;

are zero, there must be positive ones. Define

0;
c::min{: s; >0, izl,...,k}
8

and let m be such that ¢ = ‘Lm. Then 6; —cs; > 0 for all i = 1,...,k (if
s; > 0, then this follows from the definition of ¢, while if s; < 0, then —cs; > 0),
0 — ¢Sy = 0, and

M»

(0; — csq) 20—0251—1—

i=1 i=1

Since
k

k k
i=1 i=1

i=1
we have written x as a convex combination of less than k elements (6, — ¢s,,, =
0), which contradicts the definition of k. =

Exercise T4 Prove that the convex hull of an open set A C RY is open.
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Analogously, the affine hull aff (E) is the intersection of all affine sets that
contain F. Reasoning as in the proof of Proposition 72, it can be shown that

aff(E)z{ZGivi: n €N, Zeizl, 0; R, v; € E, izl,...,n}.

i=1 i=1

2.4 Relative Interior

The relative interior of a set E C RN with respect to aff (E), denoted by
riaf (E), is the set of points x € E such that B (x,r) Naff (E) C E for some
r>0. Aset ECRY is relatively open if rig (F) = E.

The relative boundary of E with respect to aff (E), denoted by rb,g (E), is
the set E \ riug (E).

Exercise 75 Let C C RN be a nonempty convex set and let T : RN — RN be
a bijective affine transformation. Prove that

(i) T (C) =T(C);

(i) riag (T(C)) =T (riag (C)).
Remark 76 The previous exercise shows that closures and relative interiors
are preserved under bijective affine transformations. Hence if aff (C) is the

translation of a subspace of RY of dimension m, there exists a bijective affine
transformation T : RN — RN that carries aff (C) onto the subspace

{vy=1,- -, Ym,0,...,0) : y1,...,ym € R}.

This subspace can be regarded as a copy of R™. Hence it is often possible to
reduce a question about general convex sets to the case in which the convex set
has the whole space as its affine hull. Note that in this case the relative interior
18 simply the interior of the set.

The dimension of a conver set C C RN (with at least two elements) is the
dimension of the translation of its affine hull thorough the origin. Note that
if the dimension of C' is m, then there exist zg,...,x,, € C such that the m
vectors x1 — g, - - -, T;m — To are linearly independent.

Proposition 77 Let C C RY be a nonempty convexr set. Then Tiag (C) 1is
convex and nonempty. Moreover, if x € C' and xq € riag (C), then

Ox + (1 —0) o € rian (C)

for all0 <6 < 1.
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Proof. If C is a singleton, then ri,g (C) = C, and so there is nothing to
prove. Thus assume that C has at least two elements. By Exercise 75 and the
previous remark, without loss of generality, we may assume that the convex set
has the whole space as its affine hull. Note that in this case the relative interior
is simply the interior of the set and so it remains to show that C° is nonempty.
Applying an affine transformation, if necessary, we may assume that the vectors

er=(1,0,...,0),...,ex = (0,...,0,1)

belong to C. Since 0 € C', any point of the form

N N N
w = Zﬁiei =0 (1 — Z@) +Zgieia
1=1 =1 =1

where Y1 1 0; <land 6, >0 foralli=1,...,N, belongs to C. Hence,

n
{(xl,...,xN):Zmigl, xizo,i:L...,N}CC.

i=1

Since the interior of the set {(z1,...,2n): Y i 2 <1,2;>0,i=1,...,N}

is
{(ml,...,xN):in<1,xi>07i—l,...,N},

i=1
which is clearly nonempty, we have proved that C° is nonempty. The second
part of the statement follows from Proposition 69. m

Example 78 Note that if C1 C Cy are two nonempty convex sets, then in
general one cannot conclude that

Tlag (Cl) C Tiag (CQ) .

Indeed, let Cy be the closed unit cube in R? and let Cy be one of its faces. Then
tiafr (Ca) is the open unit cube, while riag (C1) is the face without its four edges.
Hence tiag (C1) and riag (Co) are disjoint and nonempty.

Proposition 79 Let C1, Cy be two nonempty convex sets of R™V. Then the
following three conditions are equivalent:

(ZZ) I‘iaff (01) = riaff (CQ),’
(m) Tiaf (01) cCy C a

Proof. We begin by observing that by Corollary 70 and remark 76 for any
nonempty convex set C C RY,

C = riaff (C), riaﬁ‘ (6) = riaﬂ‘ (C) . (19)
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If (i) holds, then by (19),
riaf‘f (Cl) = riaff (a) = riaff (?2) = riaff (02) 3

that is, (ii) is true.
Similarly, if (ii) holds, then again by (19),

ﬁ1 - riaff (Cl) = riaff (02) = @7

which is (i).
If (iii) holds, then by (19),

riag (C1) C Cy C Cy = tiag (C1),

and (i) is satisfied.
Finally, if (i) holds, then so does (ii), and we deduce that

Tagr (C1) = iag (Ca) C Cy C Co = C,
which is (iii). m

Exercise 80 Let Cy, Cy be two nonempty convex sets of RN and let t € R.
Prove that

(Z) riaff (tCl) = tI‘iaff (Cl);
(ZZ) Tag (01 + 02) = Iiag (Cl) + riug (02)

46



Wednesday, February 20, 2008

2.5 Projection

Theorem 81 Let C C RY be a nonempty closed convex set. Then for every
x € RY there exists a unique point y € C such that

e —y| <|x—=z| foralzeC. (20)

Moreover,
(x—y) - (z—y) <0 foralzeC. (21)

Proof. Fix z € RY. For r > 0 sufficiently large, the set B (x,7) N C is
compact and nonempty. Hence the continuous function

z€RN |z — 2]

attains a minimum on this set, say at y € B (x,r) N C. Hence

|l —y| <|x—z| forall ze B(z,r)NC.

If ze C\ B(x,r), then | — z| > r > |x — y|, and so we have shown (20).
To prove uniqueness, let y; € C be such that

|z —y1| < |x— 2 forall zeC. (22)
Then yy := (y%@“) € C and

+
‘l‘(y yl) <|1_7y|7

2

unless y; = y.
To prove (21), note that by squaring both sides of (22) we get

|z —y|* < |z —2> forall zeC.

In particular, for any w € C, taking z :=y+ 60 (w—y) € C, 0 < 6 <1, in the
previous inequality yields

02@-y -y -(r—2) (r-2)
=@-y)-(-y)-@-y-0w-y) (z-y—0(w-y)
=20(z—y) (w—y) =0 (w—y) (w-y).

Dividing by 20 > 0 and letting # — 07 gives
which is (21). m
The point y is the projection of the point 2 onto C and is denoted p¢ ().
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Exercise 82 Let C C RY be a nonempty closed conver set.
(i) Prove that if x € RN and if a point y € C satisfies (21), then
e —y| < |z —2z forallzeC,

that is, y = pc ().

(ii) Prove that the mapping pc : RN — C is Lipschitz continuous with Lip-
schitz constant less than or equal one, that is

o (2) = po (21)] < |o — 1]

for all x, x1 € RV,

The existence and uniqueness of a projection mapping actually characterizes
convex sets.

Theorem 83 Let C C RN be a nonempty set with the property that to each
point x € RN \ C there exists a unique nearest point in C. Then C is closed
and convez.

Proof. Step 1: Let {z,} C C be such that x,, — x. We claim that = € C.
If not, then there exist a unique point y € C closest to . This implies that

dist (z,C) = |z — y| > 0,

which is a contradiction since dist (z,C) < |z — z,,| — 0.

Step 2: If C is not convex, there exist two points x, y € C such that
the segment Ty is not completely contained in C. Since C' is closed (and so
its complement is open), by changing endpoints, we can actually assume that
Ty N C = {z,y}. Let 2o := Zt¥ and construct a ball B(zo,m0) C RV \ C.
Consider the family F of all open balls whose contained in RY \ C' and that
contain B (xo, %0) and let

R:=sup{r: B(zr) € F for some ZERN}.

Note that R < oo, since if the radii get too large the balls must contain z
and y in their inside. In turn the set of centers is bounded. Hence by a simple
compactness argument there exists a ball B (z, R) € F, (consider B (z,,1,) € F
such that 7, — R and find a subsequence such that z, — z. Then B (z,R) C
RY\ C). By maximality, the ball B (z, R) touches C in a unique point p. There
are now two cases. If B (z,R) N IB (xo, "—0) is nonempty, then let g be the
unique point of intersection, while if the two boundaries don’t intersect, take
g to be z. For ¢ > 0 sufficiently small, the ball € (¢ —p) + B (2, R) contains
OB (z0, %) and does not intersect C' (otherwise B (z, R) would touch C' into
two different points: we are moving away from p so if we touch we must touch
in a different point). Hence we can enlarge the ball slightly to get a larger
ball contained in RY \ C and that contains B (g, %). This contradicts the
maximality of R. =
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2.6 Separating Theorems

In this section we prove some separation theorems for convex sets in R™. Their
counterparts in the infinite-dimensional setting are the Hahn-Banach theorems,
which are stated in the appendix.

Theorem 84 Let C, K C RY be nonempty disjoint convex sets, with C closed
and K compact. Then there exist a vector b € RN \ {0} and two numbers o € R
and € > 0 such that

b-x<a—c forallxeCandb-x>a+e foralzekK.

Proof. Define
Co =C-K.

Then Cj is closed. Indeed, if z, € Cy is such that z, — z, then writing
Zn = Xp — Yn, where x, € C and y, € K, by compactness there exists a
subsequence {yn,} of {y,} that converge to some y € K. In turn, x,, =
Zne +Yn, — 2+ y =2 € C, since C is closed, and thus z =z — y € Cy.

Since C' and K are disjoint, we have that 0 does not belong to Cy. Let
yo € Cy be the projection of 0 onto Cy. Then yo # 0 (since 0 ¢ Cp) and by (21),

—yo - (2 —yo) <0 for all z € Cy,

or equivalently
—yo-z < — |yo\2 <0 forall z € (.

Define b := 0 — yo. Then
b-z<—b> <0 forall zeC.
Writing z =z — y, with x € C and y € K, we get
b-z—b-y<—|b* <0 forallzeC andyecK.

Taking first the supremum over all x € C' and then over all y € K, and using
the fact that sup (—FE) = —inf E, gives

sup (b-z) — inf b-y < —|b* <0,
xeg( ) Infb-y< 0]

which gives

su b~$+b2<infb-.
sup (b-a) + [bf < inf by

This is the desired inequality. m

Exercise 85 Prove that a nonempty closed convex set C C RN is given by the
intersection of all the closed half-spaces that contain it.
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Exercise 86 Let z1,...,x; € RN be linearly independent vectors and let s;,
sgn) eR,i=1,...,k, n € N. Prove that if

k k
. n
nhngo E 51(' ):ci: E SiTi,
—

i=1 i=1

(n)

. n .
then lim, . s; ~ = s; for everyi=1,...,k.

Exercise 87 Let C C RY be a nonempty convexr set and let x € C and zo €
riaff (C)
(i) Prove that o+t (xo — x) € aff (C) for all t € R.

(ii) Prove that the function g : R — aff (C), defined by g (t) :== xo+1 (x0 — 2),
t € R, is continuous.

(iii) Prove that xo + t (xo — x) € riag (C) for all t sufficiently small.

Theorem 88 Let Cy, Co C RN be nonempty convex sets. Then there exist a
vector b € RN \ {0} and o € R such that

b-z<a forallx €Cyandb-z>a forallx e Cy,

and Cy UCy is not contained in the hyperplane {x ERN: b= a} if and only
Zf Tl (Cl) N Tigg (CQ) = 0.

Proof. Step 1: Assume that C;, Co, C RY are nonempty convex sets with
Tiag (C1) N1iag (C2) = 0. Define

C:=C—Cs.

By Exercise 80,
I'iaff (C) = I'iaff (Cl) - riaff (02) s

and so by hypothesis 0 ¢ ri,g (C'). To complete the proof in this case it suffices
to prove that there exists b € RY \ {0} such that -z > 0 for all z € C with
strict inequality for at least one element of C. There are two cases. If 0 ¢ C
then it suffices to apply Theorem 84 to the closed set C' and the compact set
{0}. Thus assume that 0 € C. Define the set

E = tri.a(C).
t>0

Then E is convex, ri,g (C) C E C aff (E), and 0 ¢ E. Since riyg (C) is non-
empty by Proposition 77 and R” is finite-dimensional, there is a finite maxi-
mal (with respect to inclusion) set of linearly independent vectors 1, ...,z €
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riag (C). Again by Proposition 77 we have that ri,g (C) is convex, and so the

vector
k
1
ZTo = E %.’Ez
=1

belongs to riag (C). We claim that —z¢ ¢ E. Indeed, assume by contradiction
that —r € E and find a sequence {w,} C E converging to —zo. Then by
definition of F we may write each w,, as w, = t,§,, where t,, > 0 and &, €
Tiag (C). Since x1,...,2, form a maximal set of linearly independent vectors
in riyg (C), each &, can be written as their linear combination (and so can
Wy, = tp&n). Thus we may write

for some sgn) eR,i=1,...,k. Hence

k k
. (), _ s I TS
nh—{go;‘sl xp = lm w, = xo—z ( k) ;.

i=1

(n) _

By Exercise 86 this implies that lim,, . s; f% for every i = 1,...,k. Fix

n € N so large that sgn) <0 foreveryi=1,...,k and set

k
5= ngn) < 0.
i=1

By the convexity of the set E' we have that

1 k s(n)
0=—uw, e LY
1—sw +; 1—s T €

which is a contradiction.

This shows that —zo ¢ E. We are now in a position to apply Theorem 84
to the closed set E and the compact set {—zo} to find a vector b € RV \ {0}
and two numbers « € R and ¢ > 0 such that

b-x<a-¢c forallz € Eand b- (—xz0) > a+e.

By the definition of F, for any x € ri,g (C) and ¢t > 0 we have that tx € E, and
so from the previous inequality we get

a—¢&

b-x < for all ¢ > 0.

Letting t — 0% and ¢ — oo yield @« —¢ > 0 and b-z < 0, respectively. Moreover,
b-xp < —(a+¢) < 0. Hence we have proved that bz < 0 for all z € ri,g (C)
with the strict inequality at xg € riag (C).
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Step 2: To prove the converse implication assume that there exist a vector
b€ RM\ {0} and a € R such that

b-x<a forallzeCiandb-xz>« forall xzeCy (23)

and C7 U} is not contained in the hyperplane {a: ERN: b2 = a}. As in the
previous step define

C .= Cl _02.

By Exercise 80,
riaff (C) = riaﬂ‘ (Ol) - riaff (Cg) .

Thus it suffices to show that 0 ¢ ri.g (C). By (23),
b-x<0 forallzeC

with the strict inequality for at least one element xy € C. Assume by contra-
diction that 0 € ri,g (C). Then by Exercise 87,

0+€(0—LE())€C

for all ¢ > 0 sufficiently small. This implies that b- (—exg) < 0, which is a
contradiction since b-zg < 0. m

As a consequence of the previous separation theorem we obtain the following
result.

Corollary 89 Let C; C Co C RN be nonempty convex sets. Then there exist
be RN\ {0} and a € R such that

bx=a forallxeCyandb-z>a forallxeCy
if and only Cy Nriug (C2) = 0.

Exercise 90 Prove the previous corollary.
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Definition 91 Let C C RY be a convexr set. A point xog € C is called an
extreme point of C if xg is not an interior point of any segment contained in
C, that is, if there do not exist x1, xo € C and 0 € (0,1) such that o =
Ox1 + (1 —0) 2.

Example 92 A line has no extreme points. The extreme points of a closed ball
are the its boundary, while the extreme points of a closed cube are its vertices.

Theorem 93 Let C C RY be convexr and compact. Then C is the convex hull
of its extreme points.

Proof. The proof is done by induction on the dimension m of the set C.
If m =0 or m =1, then C is a point and a closed segment, respectively, and
so there is nothing to prove. Assume that the result is true for any convex and
compact set of dimension at most m, where m < N — 1 and let C C R" be a
convex and compact set of dimension m + 1. As in Remark 76 we may assume
that C c R™*L. If 2y € OC, then by the previous corollary (with C; = {x¢}
and Cy = C°) we may find b € R™*1\ {0} and o € R such that

b-zg=a andb-z >« forall xz e C°.

Let H be the hyperplane (in R™*1) of equation b-z = . Then HNC'is compact
and has dimension at most m. Hence by the induction hypothesis o may be
written as a convex combination of extreme points of H N C. To conclude the
proof in this case, it remains to show that an extreme point of H N C is also
an extreme point of C. Thus let x € H N C be an extreme point of H N C and
assume that there exist z1, 2 € C and 6 € (0, 1) such that x = 0z + (1 — 0) z2.
Then at least one of 1, 2 € C, say 1, does not belong to H, so that b-z1 > «a,
while b -z > «. Multiply the first inequality by 6 € (0,1) and the second by
(1 —0) and add them to find

b-x=0b-(0z14+ (1 —0)x2) > a,

which contradicts the fact that x € H. This shows that if g € 9C, then xy may
be written as a convex combination of extreme points of C'. On the other hand,
if o € C°, then any line through x( intersects dC in two points z1, zo € C.
Since 1, x9 are convex combinations of extreme points of C' and xg is a convex
combination of x1, xo, it follows that xy is a convex combinations of extreme
points of C. m

3 Convex Functions
We now turn to the study of convex functions.

Definition 94 Given a vector space V, a function f:V — [—o0, 0] is said to
be
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(i) convex if
f(0v1+ (1= 0)v2) <Of (v1) + (1-0) f (v2) (24)

for all vi, vo € V and 0 € (0,1) for which the right-hand side is well-
defined;

(ii) strictly convex if
fOvy+ (1 =0)v2) <Of (v1) + (1= 0) f(v2)

for all vy, vo € V, vy # va, and 6 € (0,1) for which the right-hand side is
well-defined;

(iii) proper if it is convex, does not take the value —oo, and is not identically
00;

(iv) concave (respectively strictly concave) if —f is convex (respectively strictly
conver).

In (i) and (ii) the right-hand side is not defined only when f (v;) = o0 and

f (v2) = Foo.
If E is a subset of the vector space V, then a function f : E — [—00,00] is
said to be conver if the extension

=y [ fv) ifvekE,
f(v)'{oo ifvé¢E,

is a convex function in V. Analogous definitions apply to the concept of strict
convexity, concavity, and strict concavity.

Example 95 Prove that:
(i) The function f: RN — R defined by
f(x) = Az -z,

RNXN

where A is a symmetric matriz in , is convex if and only if A is

positive semidefinite.
(i) If V is a vector space, the indicator function of a set E C V defined by

ro=tew={ % 4L

is a convex function if and only if the set E is conver.
(iii) The function f:R — [—o0, 0] defined by

—oo if |z| < 1,
fle)=40 i fz[=1,

oo if |z > 1,

s convexr and not proper.
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Definition 96 Let E be a set and let f : E — [—00,00] be any function. The
epigraph of f is the (possibly empty) set

epi f:={(v,t) e ExR: f(v) <t}.

Proposition 97 Let V be a vector space. A function f : V — [—o00,00] is
convez if and only if epi f is a convex set.

Proof. Assume that f is convex and let (v, s), (v2,t) € epi f and 6 € (0, 1).
We claim that
0 (vi,s) + (1 —0) (va,t) € epi f.

Indeed, since s > f (v1), t > f (z), it follows that
Os+(1—0)t = 0f (v1) + (1= 0) f (v2) = f (6o + (1 =) va),

where we have used the convexity of f. Hence the claim is proved.

Conversely, let epi f be a convex set, let vy, vo € V, and let 8 € (0,1). If
f(v1) = £oo and f (v2) = Foo, then the right-hand side of (24) is not well-
defined.

If f(v1) = oo and f(v2) > —o0 or f(vy) > —oo and f(ve) = oo, then
(24) holds. Thus assume that f(v1), f(v2) < oo and let s > f(v1), t >
f (v2). Since (v1,s), (va,t) € epif it follows from the convexity of epi f that
0 (v1,8) + (1 —0) (va,t) € epi f, that is,

F(Ovr + (1 —0)vs) <Bs+(1—6)t.

The convexity of f follows by letting s \, f (v1) and t \ f (v2). m
Let V be a vector space. The effective domain of a function f : V — [—00, 0]
is the set
dom, f:=={veV: f(v) <oo}.

We observe that if f is convex, then the effective domain of f is a convex
set, and that
epi f :={(v,t) €dom, f xR: f(v) <t}.

Exercise 98 Prove that if f : RY — [—00, 0] is a convex function, then

riag (epi f) = {(v,1) € riag (dom, f) x R: f(v) <t}
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Remark 99 Note that if f : RN — [~o00,00] is a convex function, finite at
some point in the interior of dom. f, then f is proper. Indeed, suppose that
f (xo) € R for some xq in the interior of dom, f, and that f (x) = —oo for some
x € RN, Let B(xg,7) C dom, f. Let ¢ > 0 be so small that |e (zg — z)| < 7,

i.e., To + € (xog — x) € B(wo,7). Set 0 := ;T_. Note that

xo=0x+ (1—-0)(zg+¢e(xg—1x)),

and due to the convezity of f we conclude that f (xg) = —oo, which is a contra-
diction.

Note that if f is convex and ¢ > 0, then cf is still convex, the sum of
two convex functions f and ¢ is convex (we set (f + g) (v) := 400 whenever
f(v) = oo and g (v) = Foo), and the pointwise supremum of an arbitrary
family of convex functions is again a convex function. If f is convex and if
g : [—00,00] = [—00, 0] is convex and nondecreasing, then g o f is convex.

Most of the result in Subsection 1.3 continue to hold.

Theorem 100 Let V' be a vector space, let f : V — [—oco0,00] and g : V —
[—00, 0] be convex, and let o« > 0. Then f + g and af are convex.

Proof. Since f and g are convex,

fOv+(1—=0)w) <0f(v)+(1-0)f(w),
g (Ov+(1-0)w) <0g(v) +(1—-0)g(w)

for all v, w € V and 6 € (0,1). The result now follows by summing the two
inequalities and by multiplying the second by a > 0. =

Theorem 101 Let V' be a vector space, let f : V — R conver and g : R —
(=00, 0] be convex and increasing. Then go f:V — (—o00,00] is convet.

Proof. For all v, w € V and 0 € (0,1), we have

(go f) (Bv+(1—0)w) =g (f v+ (1—0)w))
g increasing g (Qf (v) + (1 B 0) f (w))
TS 0 (F )+ (- 0) g (f (w)).

Example 102 If f : RN — [0, 0] is convex, then taking

[ oift>o0,
g(t)"{o ift <0,
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where p > 1, or

o 241 ift>0,
g(t)‘_{ 1 ift <0,

it follows that the functions
U1 (@) = (f (@), ta(z):=Vf(2)+1
are conver. In particular, if f (z) := |z|, then the functions 11 (x) := |z|’ and

Yo (x) := 1/ |x|* + 1 are convex.

Theorem 103 Let V' be a vector space, let fo : V — [—00,00], a € A, be an
arbitrary family of convex functions, and let

f(0)i=sup fu(v), veV.
aEN

Then f : V — [—00,00] is convexr.
Proof. Since f, is convex, for all v, w € V and 6 € (0, 1),

f(Ov+ (1 =0)w) = sup fo (v + (1 = 0) w) < sup [0fa (v) + (1 = 0) fa (w)]

acA a€EA
<Osup fo (v) + (1= 0)sup fo (w) =0f (v) + (1 -0) f(w).
aEA acA

Theorem 104 Let V and W be vector spaces, let L : W — V be a linear
transformation and let f : V — [—00, 00| be convex. Then the function g : W —
[—00, 0], defined by

gw):=f(Lw), weW,

18 convez.
Proof. Since f is convex, for all wy, wy € W and 0 € (0, 1),

g (Owr + (1 = 0)wa) = f (L (Owr + (1 = ) wa)) = f (6L (w1) + (1 - 0) L (w2))
<Of (L(wr))+(1—0)f(L(wz)) =0g(wr)+(1—-0)g(w2).

Theorem 105 Let V and W be vector spaces, let L : V. — W be a linear
onto transformation and let f : V — [—o00,00] be convexr. Then the function
Y : W — [—o00,00], defined by

Y (w):=inf{f(v): L(v)=w}, weW,

18 convez.
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Proof. Fix wy, wa € W and 6 € (0,1). If ¢ (w1) = oo or ¢ (we) = oo,
then there is nothing to prove. Thus, assume that v (w1) < 0o or ¥ (w3) < oo.
Let v1, vo € V be such that L(v1) = wy; and L (vy) = we and f(v1) < oo,
f(v2) < oo. Since L is linear,

L (01 + (1— 0) va) = ws + (1 — 0) ws,
and so
¥ (Qwy + (L= 0)wz) < f(Ovr + (1= 0)vz) <Of (v1) + (1 —0) f (v2).
Taking the infimum over all such vy, vs € V' yields
¥ (Qwy + (1 = 0) wz) < 01 (w1) + (1= 0) ¥ (w2) .

3.1 Regularity of Convex Functions

In this section we address continuity and differentiability properties of convex
functions.

In the first result we prove that real-valued convex functions on finite-
dimensional spaces are locally Lipschitz. This is hinged on the following char-
acterization of convex functions on the real line.

If E is a subset of RN and f : E — R, then the oscillation of f on E is
defined by

osc (f; E) :==sup{|f (x1) — f (x2)| : z1,22 € E}.
Theorem 106 If f : B (xg,2r) C RN — R is convez, then

osc (f; B (zo, 2r))

Lip (f: B (w0, 7)) < s

In particular, any convex function f : RN — (—oo, 00| is locally Lipschitz in the
interior of its effective domain dom, f.
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Proof. Step 1: Without loss of generality we may assume that zo = 0.2

To see this, assume that osc (f; B (zo, 2r)) is finite and let w, x € B (zg,r). Fix

0 < e < r. Suppose that f () > f (w) and choose & to be a point of intersection

of OB (xg,2r — ) with the ray from w through x such that |w —§| > r —e.

Define g (t) := f (w + tv) , where v = (z — w) / |x — w|. Since f is convex, then
g is convex, and so, using the fact that | — w| > | — w| we have

gz —wl) —g(0) _ g(l€—wl) —g(0)
|z —wl - € — wl ’

or equivalently

fz) = f(w)

|z — wl

F1€) = f (w) _ ose(f:B(0,2r))

€ —w| — r—e ’

<

where we have used the fact that |w — &| > r —e. Letting e — 07 yields

J @)= (w) _ ose(f;B(0,20)

|z — w| r

=L (25)

Step 2: Here we prove that if x¢ belongs to the interior of dom, f, then there
exists a neighborhood of xg on which f is bounded and thus its oscillation is
finite.

Without loss of generality we may assume that 2y = 0, and consider in RY
the equivalent norm

|||, = max {|z;|: i=1,...,N}.
Let & > 0 be such that By (0,2¢) C dom, f and set
a:=max{f(z): z; € {—e,0,e},i=1,... N}.

We claim that
f(x) <a forall z € By (0,¢). (26)

Indeed, let z, w € By (0,¢) with w; € {—¢,0,e},i=1,...,N. If xy # 0 write

TN = 2wl (sgnzy)e + (1 - |xN> 0.
€ €

By the convexity of f we have

|z

flw,...,uNn_1,2N) g?f(wlm~'7wN71a(Sgan)5)

+ (11N|>f(wl,...,w1v—170) < a.

2In the proof of this theorem, z(?) denotes a vector of RN, while x; is the ith component
of a vector z € RV,
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The same inequality holds if x = 0. Similarly, if xy_1 # 0, then we have
flwi, ..., wN_2,ZN—1,ZN)

TN—
S%f (w1, .., wN—2,(sgnaTN-_1)€,2N)

TN—

where we have used the previous inequality. Recursively we obtain (26).
Next we show that

f(x)>2f(0)—a forall z € By (0,¢). (27)
Writing
0=—-xz+ 1 (—x)
= 5 ’
we have
FO)=1 (;w + % (—w)) < %f(w) + %f(—x) < %f(x) + %a,
and so

where we have used (26). m

Remark 107 It follows from the previous proof (see (27)) that if f : Boo (x0,2r) C
RN — R is convez, then

inf f>2f(x9)— sup f.
Boo (z0,7) Boo (z0,7)

Corollary 108 Let f : RY — (—oc0, 00| be a proper convex function. Then the
restriction of f to riug (dom, f) is locally Lipschitz. In particular, if dom, f is
affine, then the restriction of f to dom, f is locally Lipschitz.

Proof. If dom. f consists of a point, then there is nothing to prove. If
dom, f has more than one point, by Proposition 59,

aff (dom, f) = a9+ W,

where o € dom, f and W is a subspace of RY of dimension 1 < ¢
Construct an affine transformation 7' : R — RY such that T (Rz) =z
and T : R — o + W is bijective. Define

g(w) = f(T(w), weR"

< N.
o+ W

Then riug (dom, g) reduces simply to the interior of dom, g. If K C ri,g (dom, f)
is any compact set, then 7! (K) is compact (since T : RY — x4 + W is bijec-
tive) and so by Theorem 106 applied to g, there exists a constant Lx > 0 such
that

lg (w1) — g (w2)| < L Jwy — ws|
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for all wy, we € T~ (K), or equivalently,
|f(T (w1)) = (T (w2))] < Lk |wy — we
for all wq, we € T~! (K). Hence,
f (1) = f (22)| < Lic [T (1) = T (w2)| < L Clary — 2
forall z1, z0 € K. =

Exercise 109 The previous corollary cannot be improved in general. Indeed,
let N = 2 and consider the function

31‘2)2

f (@)= f(z1,22) = 02351 ifry=29=0

00 otherwise.

—

’LfﬁL’l >0,

Prove that f is convex and lower semicontinuous in R? and continuous every-
where except at the origin.

Corollary 110 Let A C R be a relatively open convex set and let fo : A — R,
a € 1, be an arbitrary family of convex functions such that for every x € A,

sup | fo (z)| < oo.
acl

Then for every compact set K C A there exist two constants Ly, Mg > 0 such
that
|fo¢ (JT)l < Mk

forallx € K and all @ € I, and

|foc (33) — fa (y)' < Ly |$_y|
forallz, y € K and all v € I.

Proof. As in the previous corollary, without loss of generality we may
assume that A is open. Fix any ball By, (xg,2r) C A. By Theorem 103 the
function

g (z) = sup fo (v)
acl

is convex, and since by hypothesis it is finite on A, it is continuous by the
previous theorem. Hence there exists M > 0 such that

g(z) =sup fo (z) <M
acl

for all x € By (20, 2r). Since

inf fa (0) > —oo,
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it follows by (27) that

fa(z) > infj fa(0) =M =:m for all x € By (0,2¢)
[e7S

and all € I. In turn, by (25),

[fa (@) = fo (y)| < (M —m) & —y|

for all z, y € Bu (z0,7) and all & € I. A simple compactness argument now
gives the result for an arbitrary compact set K C A. =

Exercise 111 Prove that the previous corollary continues to hold if we only
assume that

sup fo (z) < o0
acl

for all x in a dense subset of A and
i Je () = o
for some xg € A.

Theorem 112 Let A C RY be a relatively open convex set and let f, : A — R,
n € N, be a sequence of convex functions. Assume that there exists a set E C A
such that E O A and for every x € E there exists in R the limit
f (@)= lim f ().
n—oo

Then the limit f(x) = lim, o fn (z) exists in in R for every x € A, the
function f : A — R is convex, and {f,} converges uniformly to f on any
compact subset of A.

Proof. Exercise. m

Definition 113 Given a function f : RY — [~00,00] and a point zo € RY
such that f (xg) € R, the one-sided directional derivative of f at xq in the
direction v € RY is defined by

otf o fwo+tv) — f(20)
Ty (@0)i= fim, "

whenever the limit exists.

Note that we allow the possibility that 8ng (z9) takes the values co or —oc.

Remark 114 Note that
o T t) = f@o) L f (0= t(=v) = f (20)

t—0— t t—0— —t
_ . fwo+s(=v)) = f(wog) otf
=~ s = "oy )
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provided the limit exists. Hence if the directional derivative

% (w0) 1= }E% f (o + tUt) — f (20)

exists, then necessarily,

3+f< _ f(wo+tv) = f(zo) . f(wo+1tv) — f(x0)
— (z9) = lim = lim
v t—0+ t t—0- t
__of
= o) @)
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Theorem 115 Let f : RY — [—00,0] be conver and let zg € RN be such

that f (zg) € R. Then % (x0) exists for all v € RN. Moreover the function
p: RN — [—o0, 00] defined by

+
p(v) = %(xo), veRY,

1§ convez, positively homogeneous of degree one, and
—p(-v) <p(v) (28)

for allv € RN,

Proof. To prove the existence of ag—vf (z9), it suffices to consider the case

v # 0, since % (zp) = 0. Consider the function g : R — [—o00, 0] defined by

g(t):=f(zg+tv), teR.
Then g is convex and

g(t)—g(0)  f(wo+1tv) — f(x0)

t - t

for all t € R. Thus to prove that % (zo) exists, it remains to show that

g’y (0) exists. If there exists t; > 0 such that g (t;) = —oo, then by convexity
g (t) = —oo for all ¢ € (0,¢1] so that

g9() —9(0)
t

= —00 — —00

as t — OF. If there exists £; > 0 such that ¢g(t;) = oo, then by convexity
g (t) = oo for all ¢ > t;. Hence, if there is a decreasing sequence ¢, — 0% such
that g (t,) = oo, then g (t) = oo for all ¢ € (0,;], and so

g9(t)—g(0)
t

= o0 — OQ.

The only case left is the case g (t) € R for ¢ > 0 near 0, which we already treated
in Theorem .
To prove that p is positively homogeneous of degree one, fix A > 0. Then

(9+ T Atv) — €T
= A lim f (2o + Atv) — f (o) =\ lim f (@0 + 5v) — [ (20)
t—0* At s—0t S
+
=A% (20) = (o).

64



Next we prove that p is convex, let v1, v € RV, 6 € (0,1), and t > 0. Assume
that the sum

Op (v1) + (1 —0) p (va)

is well-defined. Then for all ¢t > 0 sufficiently small, so is the sum

f (w0 +tv1) — f (w0) f (o +tvz) — f (o)

0 ; +(1-196) ;
Hence, from the convexity of f,
f(@o+1t(Bvr + (1 —0)v2)) — f (20)
t
_ fo (330 + t’Ul) + (1 — 9) (o + t’Uz)) —f (xo)
t
< af(ffo + tv1) — f (2o) L (1-6) [ (@o + tvg) — f(xo)'

t
Letting t — 0T yields

p(Ovr + (1= 0)v2) < Op(v1) + (1 —-0)p(va).

Finally, to prove that —p (—v) < p(v) it suffices to assume that p (v) < oo.
Then by convexity,

1

0=p0) =p (5045 () < 300)+ o (-0,

which gives the desired result. m

Remark 116 Under the hypotheses of the previous theorem, we have that the
function p is subadditive in the sense that

p(v1 +v2) <p(v1) +p(v2) (29)

for all vy, vy € RN for which the right-hand side makes sense. Indeed, by
convezity and positive homogeneity of p we have

p(vi+wv2)=p (; (201) + % (2112)) < %p (201) + %p (2v2) = p(v1) +p (v2).

Note that if f is differentiable at xqo, then p should be real-valued and linear. In
particular, equality should hold in (28) and (29).

Theorem 117 Let f : RN — [~00,00] be conver and let zg € RN be such
that f(xo) € R. If all the the one-sided directional derivatives % (zo) and
% (x0),i=1,...,N, are finite, then f is real-valued in a neighborhood of xg.
Moreover, if all the partial derivatives a%; (zo),t=1,...,N, exist (finite), then
f is differentiable at xo. In particular, any convex function f : RN — (—oo, o0]
is differentiable LV a.e. in the interior of its effective domain dom, f.
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Proof. Step 1: Since
o S wotte) — f(w) _ 9

t—0+ t n 8ei
. flwo—te) = flzo)  OFf
tlir& t - 0 (—e) (z0) € R

(zo) €R

for alli =1,..., N, there exists ¢ > 0 such that

flmotte) —f(xo)  O7f (20)

<

forall0 <t <¢§andall4=1,...,N. In particular,
|f (w0 £te;)| < C

forall0<t<dandalli=1,...,N.
Define

b (h) = f (z0+h), heB(O,Jff).

Then the function ¢ is convex. Hence, if we write
1
h = (hl,...,hN) = N(Nh1€1+...+NhN6N),

forall h € B (O ) we have

o
' N
Y (h) :1/J<]1[ (Nh1€1+...+NhN€N)>

< @ (Nher) + .+ (Nhyew) < C.

From the definition of ¥ and its convexity,

[ (h) +CT,

N

P =60 =u () < L +o o) <

forall h € B (O7 %), we have that
Y (h) = 2f (x0) = C

for all h € B (0, %).
Step 2: By the previous step f is finite in some B (zg, r) for some r > 0. Define

g(h):f(l'o+h)—f($0)—Vf($0)h, hEB(Oﬂ").
Then the function g is convex, since it is given by the sum of a convex function
and a linear function. Hence, if we write

1

h=(h,... hy) =

(Nhlel—i—...—i—NhNeN),
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for all h € B (07 %) we have

1 1

g(h)=g (N (Nhiey +...+ NhNeN)> < i (g(Nhie1)+ ...+ g(Nhyen)).
(30)

Since o7

9 (Nhiei) = f (w0 + Nhies) = f (w0) — 57~ (0) Nhs,
K3
it follows from the definition of partial derivative that
. g (Nhie;)

lim =—=—= =0. 1
hiITO Nhi 0 (3 )

For any z, y € RY by the Cauchy-Schwarz inequality

sy £ anyy < Jzlfyl < 2 () + -+ lus])-

Hence from (30) and using the fact that 0 = ¢ (0) = 0, we get

Nh i Nh g (Nhiei)
<3 n g(Whier) NRE el
i hi 70 i: hi#0
Similarly,
Nh i€
y< i Yo |
it h; #0
From the definition of g and its convexity,
h+ (=h 1
0=30 =g (") < Sl + g -n.

or equivalently g (h) > —g (—h). Thus,

S <-—g(-hy<gmy < Y |2

it h; #0 it h; #0

Nh 6z Nh 61

Diving by |h| and using (31) gives
g(h) im J(xo+h) — f(xo) = Vf(x0) h

h—0 ‘h| h—0 |h|

Step 3: Let f: RY — (—00,00] be convex and for every fixed i = 1,..., N, let

E; = {1: € (dom, f)° of exists at x for all } .

Tq

We claim that £V ((dom, f)°\ E;) = 0. For simplicity in the notation we
assume ¢ = IN. Write
r=(2/,t) e RN xR,
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Fix any 2/ € RY~! and consider the function
9" (t):=f(,t), teR.

If the line {z'} x R intersects (dom, f)°, fix any ¢, € R such that (z/,t9) €
(dom, f)° and let I C R be the largest segment such that {z'} x I C (dom, f)°.
Since the function g% : I — R is convex, it follows from Corollary 10 that ¢*’
is differentiable in I except on a countable number of points. Note that if g””/ is
differentiable at ¢y € I, then

Y oy g OB —g" (o) _ @)~ flt) O,
(g ) (o) = Jlim === =i t—to = fuy @t

Since the section

((dom, f)°),, == {t € R: (a',) € (dom, f)°}

is an open set in R we may write as a disjoint union of open intervals. Thus,
we have shown that ai{\, (2',-) exists in ((dom, f)°)_, except on a countable
number of points, that is, that the set ((dom, f)°\ EN)a;' is countable. In
particular, £! (((dom. f)°\ E;)_,) = 0. By Tonelli’s theorem

x!

£V ((dom, f)°\ Ei) = / £ ((dom, f)°\ E;)_) da’ = 0.

RN—l
This concludes the proof. m

Remark 118 (i) If a function f : B (zo,7) C RY — R is differentiable at
g, then

(a) all directional derivatives g—fj (x0) exist;

(b) vERYN % (o) is linear, that is,

%(x@sz(xo)m, veRN.

It is easy to construct (nonconvez) functions for which (a) and (b) hold,
but the function f is not differentiable there. For example, the function

o {2 Ty

otherwise
satisfies (a) and (b), but it is not differentiable at (0,0).

(i) The second part of the proof follows also from Theorem 106 and Rademacher’s
theorem.
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(iii) It can actually be proved that
oo
{z € (dom. f)° : f is not differentiable at x} C U K,,
n=1

where K,, is compact and HN 1 (K,,) < co. (Anderson and Klee, Theorem
3.1 page 353).

(iv) It follows by the previous theorem that if xo € dom, f\ (dom, f)°, for any

orthonormal basis {e1,...,en}, one of the one-sided directional deriva-
tives ?Tf (o) and % (xo) must be +oo for somei=1,...,N.
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Wednesday, March 5, 2008
Next we prove that differentiable convex functions are of class C*.

Theorem 119 Let B C RY be an open ball. If f : B — R is convex and E
is the set of points in B at which f is differentiable, then Vf : E — RN is
continuous.

Proof. Let zg € F and define
g9 (@)= f(z) = f(w0) = V[ (w0) - (& —20), w€DB.
Then the function g is convex and differentiable in £. By Theorem 106,

osc (g; B (xg, 2r))

IVf (z) =V (zo)l = Vg (2)] < Lip (g; B (w0, 7)) < "

for any x € E with |z — x¢| < r and with B (x¢, 2r) C B. Since f is differentiable
at xg we have that

osc (g; B (o, 2r))
T

lim sup IVf(z)—Vf(z0) < liI(I)1+ =0,

r—0% e B, |[z—zo|<r
and thus Vf (z) - Vf(z9) asz — z9, 2 € E. m

Remark 120 The (nonconvex) function

_ $2Sin2%71 if x £0,
f(x)_{—1 ifz=0

is differentiable in R, but f’ is not continuous in R.

We will actually prove more, namely, that Vf is a function of bounded
variation.

Definition 121 Let Q C RY be an open set. We say that a function g € L' (Q)
has bounded variation and we write g € BV (Q), if there exist finite signed
Radon measures piy, ..., un € M (;R) such that

[ gade=— [ v
o 0z; Q

foralli=1,...,N. We say that a function g € Li .(2) has locally bounded

loc

variation if g € BV (') for every open set Q' CC Q.

Theorem 122 If f : B (xg,7) C RY — R is convex, then g—i € BViec (B (o, 1)),
i=1,...,N.
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Proof. Without loss of generality assume that zo = 0. Let ¢ € C2° (B (0,7))
and let 0 < & < dist (supp ¢, 9B (0,7)). Let ¢, be a standard mollifier, and de-
fine

f- () ::/ (e —y) fy) dy, B0, ).
B(0,r)

We claim that f. is convex. To see this, let x1, 2o € B (0,7 —¢) and 6 € (0,1).
By a simple change of variables

f@= [ e@ @2 dn seBOr-9),
B(0,r)
and so by the convexity of f and the fact that . > 0,

f5(9x1+(1—9)x2):/B(Oﬂ)cpg(z) fx1+(1—0)x2 —2) dz

=/ e (2) £(B(xr—2) + (1—0) (22— 2)) d=
B(0,r)

= H/B(O,r) ve (Z) / (Il N Z) dz + (1 - 0) /B(O,r) e (Z) f (552 - Z) dz

= 0f. (x1) + (1 — 0) fe (22).

2r AN
Since f. € C* (B (0,7 —¢€)), we have that its Hessian matrix (8ii£;j )ijzl is

semipositive definite. Hence for any vector v € RY

N

-()vv; 20, z€B(0,r—¢).

Moreover, integrating by parts twice yields

N o2 f N 9%
P (x — - (z Vil/‘d:C:/ fe (x ——— () v, dz.
/B(o,r) ( )121 axiazj( Jvis B(0,r) ( )”ZZI 59%3501'( i

Note that if ¢ > 0, then so is the integral. Since f is continuous, we have that
f- converges uniformly to f in supp, and so letting € — 0T we obtain that

_ Py
L= [ e Y Go; @ ds

for all ¢ € C* (B(0,r)), with L, (¢») > 0 whenever ¢»p > 0. Since L, : ¢ €
C (B(0,7)) — R is linear and nonnegative, it follows by the Riesz represen-
tation theorem that there exists a measure p, : B(B(0,r)) — [0, 0] finite on
compact sets, such that

L, = du,
) /B R
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for all p € C° (B (0,7)).
Fixi,j=1,...,N. If i = j define p;; := pe,. If i # j consider the vector

y = HT% In this case,
o~ O () viv; = 1 &% z)+2 U x) + i T
=1 8{)3,‘8{,6]‘ vy 2 axlaxz 6.’171‘81']‘ 8$jaxj ’
and so

0%y N 9%y
f dx :/ f ———yvide
/B(O,r) 8xia$j B(0,r) Z.J_Z:1 (’maxj J

1 / 321/) 821/)
-5 f dz +/ f dx
2 l B(0,r) 0z;0x; B(0,r) 8.’11‘j6.’1}j

1
:/ Vdpeie; — 5 / Y dpie, +/ 1/fduej]
B(0,r) 2 B(0,r) B(0,r)

= / b dpj,
B(0,r)

where [1;; = fleite; — %Me,; - %,uej. Then we have proved that for all i, j =
2
1,...,N and for all v € C° (B (0,1)),

0%y
/B(o,r) Oz B(0,r) s

Integrating by parts, yields

af oy /
- —dx = Y dpiyg,
/B(O,r) Ox; Ox B(0,r) !

which implies that for every i =

—_

,..., N, the weak partial derivatives of %

are the signed measures p;5, j = 1,..., .V, that is, that % € BVioe (B(0,7)).
|
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3.2 Lower Semicontinuous Functions

Definition 123 A function f : RN — [—o0, 00] is said to be

(i) lower semicontinuous if the set {x € RN : f(x) <t} is closed for every
teR.

(i) upper semicontinuous if —f is lower semicontinuous (respectively sequen-
tially lower semicontinuous).

Exercise 124 Let f : RY — [—00,00]. Prove that the following conditions are
equivalent:

(i) f is lower semicontinuous;
(i) epi f is closed;
(iii) for every zo € RN
f (xo) <liminf f (x).

T—xT0

Exercise 125 Let {f,} be a (possibly uncountable) family of lower semicontin-
uous functions, fo : RN — [—00,00].

(i) Prove that the function
fii=sup fo
«

18 still lower semicontinuous.
(ii) Prove that if the family {f,} is finite, then the function
f— :=min f,
P
1s still lower semicontinuous.

Definition 126 Given a function f : RN — [—o00,00], the lower semicontinu-
ous envelope Isc f : RN — [—00,00] of f is defined by

Isc f () :=sup{g(z): g:RY — [—00,00]

is lower semicontinuous, g < f}, x € RV,
We now relate the various types of convex envelopes.

Definition 127 Let f : RN — [~00,00]. The lower semicontinuous envelope
Isc f : RN — [—o00,00] of f is defined by

Isc f (z) :=sup{g(z): g: RN — [~00, o]

is lower semicontinuous, g < f}.
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Exercise 128 Prove that for any f : RN — [—o00,00],
Isc f (z) = inf {liminff (zn): {zn} CRY, 2, — x}
{an} Un—soo
= min {f (z),liminf f (y)} .
y—z

and that epi (Isc f) = epi f.
Proposition 129 Let f : RY — [~c0, 0] be conver. Then lsc f is convex, and

epi (Isc f) = epi f.

Proof. Since f is convex, then epi f is convex by Proposition 97, and by
the previous exercise we have

epi (Isc f) = epi f,

hence epi (Isc f) is convex because it is the closure of a convex set, i.e., Isc f is
convex. W

Corollary 108 implies in particular that the lower semicontinuous envelope
of a proper convex function coincides with the function except at most on the
relative boundary of its effective domain. Indeed, we have the following result.

Theorem 130 Let f : RY — (—oc0,00] be a proper convex function. Then lsc f
agrees with f everywhere except possibly on rb.g (dom, f). Moreover, for any
fired ¢ € riag (dom, f) and for any x € RN 3

[ (@) 2k (@) = lim [ ((1-0)+0). (32)
Proof. Step 1: Fix any

x ¢ rbug (dom, f) = dom, f \ riag (dom, f).

By the previous exercise, for every € RV,

Isc f (z) = inf {liminff(mn) Az, CRY, 2, — x},

T}
and so we may find {z,} C RY such that z,, — x and

Isc f(z) = lim f(z,).

n—oo

We now distinguish two cases.
If « € riag (dom, f), then since

oo > f(x) = lsc f(x) = lim f(z,),

n—oo

3 esercizio?
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it follows that z,, € ri.g (dom, f) for all n sufficiently large, and thus, using the
continuity of f in ri,g (dom, f) (see Corollary 108), we obtain that

Iscf(z) = lim f(z,)=f(x).
If x ¢ dom, f, then z,, ¢ dom, f for all n sufficiently large, and so
F2) = lsc f () = i f (2a) = o0,
which concludes the first part of the theorem.

Step 2: To prove (32) fix any zp € ri.g (dom, f) (note that since f is proper,
by Proposition 77 we may always find at least one). We again distinguish two
cases.
If € dom, f, then in view of the convexity of dom,. f, by Proposition 77
we have
Oz + (1 — 0) xg € riag (dom, f)

for all 0 < 6 < 1. Hence by Step 1,
fOz+(1—0)xg)=lscf(0z+ (1 —6)x)

for all 0 < 0 < 1. The lower semicontinuous function
g(0):=1scf(@x+(1—-0)zo), 6€]0,1],

is convex and real-valued (except possibly at # = 1), and so continuous in [0, 1].
Therefore

flz) =lse f(z) =g (1) = lim g(0)

60—1—

= elinln_ Isc f (Bz 4+ (1 —0) x) = ehr{l— fOz+(1—0)zo).

Finally, if ¢ dom, f, then 6z + (1 — 0) 29 ¢ dom, f for all § sufficiently close
to one, and so again by Step 1,

oo = f(0zx+ (1 —0)zo) =1sc f(0x+ (1 —0)xp)
for all @ sufficiently close to one, which yields (32). m

Example 131 The previous theorem can be used to show that a function is
convex. As an example, consider the function

—/1— |z <1
g(z) = |lz|” for |z <
00 otherwise.

Then dom, g = B(0,1). Using the second partial derivative condition, we can
check that g is convex in B (0,1). If we now define

(@) ::{ —\/1—|z|* for |z] <1,

00 otherwise,

we have that f is convex. In view of the previous theorem, it follows that g =
Isc f, and so g is conver.
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Corollary 132 Let f : RN — (—o0,00] be a proper lower semicontinuous con-
vex function. Then for any fized xo € dom, f and for any v € RY,

F) = lim [ (1= 0) +02).
Proof. The function
g(t) = f(to+(1-t)wo), tER,
is proper, convex, lower semicontinuous, with g (0) = f(z¢) € R and g (1) =
f (z). The effective domain of g is an interval I. If I° N[0, 1] # 0, then, taking

any t; € I°N[0,1], for ¢ > t; we have that ¢t = (1 — )¢, + 61, and so by the
previous theorem

g(1)=1scg(1) = Jim g (1—=0)t; +01) = Jim g(t).

If 7°N[0,1] = 0, then g (¢) = oo in [0, 1], since ¢ is lower semicontinuous. m
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Next we prove that if f is lower semicontinuous, then f can be written as
the pointwise supremum of a countable number of affine functions below it.

In the case that f is real-valued it is possible to give an explicit characteri-
zation of the coefficients a; and b; in the previous proposition. Let f: RY — R
be a convex function and let ¢ € C} (RN) be any function with ¢ > 0 and
Jg~ @ (x) dz = 1. Define

%= | (@) (N +1) ¢ (z) + Ve (z) - x) du,
by = — f(x) Ve (x) d.
RN
When necessary we will also write a,, (f) and by, (f) to highlight the dependence
on f.
Theorem 133 (De Giorgi) Let f and ¢ be as above. Then
(i) f(z) > ay+by,-x for all z € RY;

(ii) f(2) = supren, geon {Gpn., + o, -} for all z € RN, where
Prq (@) = kYo (k(g—2)), zeRY. (33)

Proof. (i) Assume first that f € C* (R"). Since f is differentiable, for any
for any z, y € RV the function g : R — R, defined by

gt)=f{tz+(1-t)y), teR,
is differentiable and

g ) =(Vfltz+1-1)y) (z-y).
By Theorem 16,
9(1) = g(0)+4'(0)(1-0),
that is,

f@)=fW+Viw)- (x-y).
Multiply the previous inequality by ¢ (y) and integrate in 3 over R to obtain

f@= [ G-V e dyra [ Viwe) d

N

Integrating by parts now yields

f(z) > FW N+ ey)+Ve(y) - v) dy—w-/RNf(y)Vw(y) dy.

RN

This proves (i) when f € C* (RY). In the general case, let 1. be a standard
mollifier. Applying the previous inequality to the smooth convex function f. := O Yosida
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Ve * f gives

fe(z) > o @) (N+1D) e (y) +Ve(y)  y) dy—w/w fe (y) Vo (y) dy.

Since ¢ has compact support, by Theorem 112 we may now let ¢ — 0.

(ii) Let k € N, ¢ € QV. By replacing the function ¢ with ¢y, in (i) we obtain
f(x) > ap,, +by,, -z forallze RN

and hence f > g, where

g ($) = sup {a‘Pk’.q + bﬁak,q ’ LE} .
kEN, geQN

Since g is everywhere finite and convex, it is continuous, and so is f (see Corol-
lary 108). Hence, to prove (ii) it suffices to show that

f(q) =g(q) for all g € QV,

since QV is dense in RY.
For k € N, g € QV, we have

Qg o t btpk,q T
= [ @O+ DE (k=) = e (= 9) - (=) dy

= [ (1= F) @+ Do) = Ve (w) - (1= 2) =) du,

where we have made the change of variables w = k(¢ — y). Taking z = ¢ we
obtain

o b1 = [ 1 (0= F) (V410 (w) + Vo) w) du

Since the integrand is continuous and with compact support, we may let k — oo
to get

Jmap, , + by, -q=f(9) /RN (N+1) @ (w) + Vo (w) - w) dw = f(q),
where we have used the facts that

/ o (w) dw =1, Ve (w) - wdw=—-N ¢ (w) dw=—N.
RN RN

RN

Since
f (q) = kh—{go agok,q + btpk,q q S g (q) ’

(ii) follows. m
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To extend the previous theorem to the case in which f can take the value

00, we need the following approximation result that we will prove in the next
section.

Theorem 134 Let f : RY — (—o0,00] be a proper convex lower semicontinu-
ous function. For every e > 0, let

f-(z) := inf {f(y)+21€|:z:—y2}, zeRY.

yERN
Then f. : RN — R is convex, differentiable, and f. /' f ase — 0OF.
The function f. is called the Moreau-Yosida approximation of f.

Proposition 135 Let f : RN — (—o0, 00] be convex and lower semicontinuous.
Then

flz) = Sup {ai +b; -z} (34)
for all z € RN and for some a; € R, b; € RV,

Proof. Consider any sequence &, — 07. By the previous theorem the
Moreau-Yosida approximation f.  is real-valued, and so

fEn (.13) = sup {ak,’n + bk‘,n . ],‘}
keN

for all z € RY. Hence

f(z)=sup fe, () = sup {akn + bk v}
neN n, keN

forallz e RN. m

Remark 136 If f takes the value —oo, then the previous result fails, since
there cannot be any affine function below f. Note that there exist functions
f:RN — {—00,00} that are conver and lower semicontinuous with f # —oc.
As an example let N = 1 and define

_J oo ifz>0,
/(@) { if  <0.

3.3 Subdifferentiability

Next we study differentiability properties of convex functions. We begin by
introducing the notion of subdifferential.
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Definition 137 Let f : RY — [—o00, 00|, and let zo € RY be such that f (zo) €
R. The function f is said to be subdifferentiable at o if there exists yo € RV
such that

f@) > f(zo0) +yo- (& —m) forallz € RY.

The element yq is called a subgradient of f at xg, and the set of all subgradients
at xg s called the subdifferential of f at x¢ and is denoted by O f (xg). Precisely,

Of (z0) = {wo € RY . f(2) > f(zo0) +yo- (x— o) forala GRN}-
If f is not subdifferentiable at xq, then Of (zo) := 0.

Proposition 138 If f : RN — [—o0, 00| is subdifferentiable at some o € RY,
then Of (xg) is a closed and convex set.

Proof. If y1, ya € f (x0), then
f(x)> f(zo) +yi-(x—x0) forallz € RN andalli=1,2.

If 6 € (0,1), multiplying the first inequality by 6 and the second by 1 — 6 and
adding them shows that

f (@) > f(zo)+ (Oy1 + (1 —0)y2) - (x — ) for all z € RV,

Thus Oy; + (1 — 0) y2 € Of (x0), which shows that df (z¢) is convex. Moreover,
if y, € 0f (xo) and y, — yo, then

f(x)> f(xo) +yn-(x—x0) foralzeRY andallne N,
and so letting n — oo gives
f(x)> f(xo) +yo-(x—mx) forallzeRY and all n €N,

which shows that yo € 9f (z¢). Thus Of (z¢) is closed. ®
Note that

f(xo) = min f(x) ifand onlyif 0 € df (x0). (35)

z€RN

Exercise 139 Find the subdifferential of the following functions.
(i) f(z) = o], v € RV.
(ii) f(z) = max{|z1|,...,|zNn|}, z € RV.
Exercise 140 Show that the convex function f : RN — (—o0, 0] defined by

f(z):= *(1flw|2)% if |zl <1,

00 otherwise,

is differentiable, and so subdifferentiable (see Theorem 147 below) in the open
unit ball {z € RN : |z| < 1} but it is not subdifferentiable at points x with |z| =
1.
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We now study the existence of the subdifferential. This relies on the following
theorem. We now study the existence of the subdifferential. This relies on the
following theorem.

Theorem 141 (Hahn-Banach) Let V be a finite dimensional vector space
and let g : V. — (—o00,00] be a proper convex function finite in a neighborhood
of 0. Let Vi C V be a subspace of V and let L : Vi — R be a linear function
such that

g(v)>L(v)

for allv € V. Then there exists a linear extension L, : V — R of L such that
g() > Ly (v) forallveV.

Proof. If V; = V|, then there is nothing to prove. Thus let wy € V'\ V1, with
wp # 0 and consider the subspace W the linear span of V; U {w}. If w € W,
then w = v+twy where v € V; and t € R (this decomposition is unique). Define

L (v 4 twg) := L (v) + te,
where ¢ € R has to be chosen appropriately. We would like
g(v+tw) > L(v)+tc
for all v € V; and t € R. If ¢t > 0, then the previous inequality is equivalent to

glo+tw) L) _
t — )

that is,
nf g (v +tw) — L(v) > e
veVy, t>0 t

On the other hand, if ¢ < 0, then writing s := —t > 0, we have that
g(v—sw)>L(v)—sc
for all v € V4 and s > 0, that is

I (v) — _
sup (v) — g (v —sw) <e
veVy, s>0 S

Thus, to prove the existence of c it is necessary that

nf g(v—l—tw)—L('v)2 sup L(v)—g(v—sw)7 (36)

veEVL, t>0 t veEVL, s>0 S

that is,
g +tw) — L)  L(vz) = g(v2 — sw)
t - s
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for all vy, vo € V7 and for all s, £ > 0. This inequality may be rewritten as
sg (v1 + tw) + tg (vo — sw) > L (tvg + svy).
Since g is convex and L linear,
sg (v1 + tw) + tg (va — sw)

— (s +1) LJrg (01 + tw) + %g(vz _ sw)}

S t
> _
_(s+t)g(S_Hf(vl—&-tw)—i-s+ (vg sw))
(s+t)g(— >t D (2w +
= (s v (s v v
g s+t - s+t ! s+t 2

= L (tvy + sv1).

Hence (36) holds. Since g is finite in a neighborhood of 0, taking t1, s; > 0
sufficiently small, we have that g (tyw), g (—sjw) € R. Hence by (36),

g(0+tiw)—0 g (v +tw) — L (v)

o> — 2 > inf
tl veEVL, t>0 t
I (v) — _ _ _
> swp (v) — g (v —sw) 50 9(0=s1w) o,
veVY, >0 S S1

which shows that the numbers in (36) are real and thus we can choose any real
number ¢ between them.

Hence, we have extended L to W. If the dimension of W is not the dimension
of V', then we repeat the process until we extend L to all of V. =

Theorem 142 Let f : RN — (—o0,00] be a proper convex function. If xg €
riag (dom, f), then Of (xg) # 0. In particular, if f is real-valued, then Of (z) #
0 for every x € RV

Proof. Fix a point g € riyg (dom, f). If dom, f consists only of zg, then
f (wo) = min f(z),

and so 0 € Jf (z9) by (35).

If dom, f consists of at least two points, then by Proposition 59 we may write
aff (dom, f) = o1 + V, where V is a subspace of RY. Since x¢ € riag (dom, f)
we have that xog = x1 + vg for some vector vg € V. Let v be any vector in
V'\ {0}. Since z¢ € riug (dom, f), the line

{zog+tv: teR}

intersects the convex set dom, f into an interval. Let I := {t € R: xg + tv € dom, f}.
Then 0 € I'. The function h : I — R defined by

h(t) = f(xzo+tv), tel, (37)

82



is convex, and so by Corollary 18 it is subdifferentiable at ¢ = 0. Thus for any
¢ € 0h(0),
h(t)>h(0)+ct foralltel,

or equivalently,
flxo+tv)— f(xg) >ct foralltel.

Since f (zo + tv) = oo for all ¢ ¢ I, the previous inequality holds for all ¢ € R.
Thus we may apply the Hahn—Banach theorem to the convex function g (v) :=
f(zo+v)—f(x0),v €V and with L (tv) := ct, t € R, to find a linear extension
L1 :V — R of L such that

g(v)>Ly(v) forallveV,

that is
flro+v)— f(xo) > Li(v) forallveV.

Since L is linear, there exists wg € V such that Ly (v) = wg - v for all v € V|
with Ly (v) = L (v) = c¢. Hence

fzo+v)— f(xo) >wo-v

for all v € V and
wp -V =c. (38)

Since zg +V =x1 +vo+V =21 + V = aff (dom, f), we have proved that
f(@) = f(20) + wo - (z — o)

for all z € aff (dom, f). Since f = oo outside aff (dom, f), we have proved that
f is subdifferentiable at xg.
In particular, taking ¢ = A/, (0), from (38) we get that

wo v =21 (ay). (39)
| |

Remark 143 Actually one can prove that if f is not subdifferentiable at x,
then
OF O
ov VT 0 (—v)

for all v € RY such that x¢ + v € ri.g (dom, f).

(z9) = —00
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Monday, March 24, 2008

Corollary 144 Let f : RN — (—oc0, 0] be a proper convex function. If f is
subdifferentiable at xo € dom, f, then for every v € RV,

otf ot f
— (xg) > su - > inf > ————(x0) .
5, (o) 2 yeaf%)zo)y A T (o)
Moreover, if xg € riag (dom, f), then
otf otf
— (xg) = max -v > min U= — T
ov ( 0) yeaf(aco)y - yeaf(mo)y 8(—1}) ( O)

for allv € RN such that zo + v € aff (dom, f).
Proof. Fix any yo € 9f (xg). Then
f(x)> f(xo) +wo-(x—mx) forall zeRY,
Hence for any v € RY and ¢t > 0 we have that

I (zo +tv) — f(x0)

7 Z Yo - V-
Letting t — 0T yields
m—f (zg) > v
o 0) Z Yo 0.
Replacing v with —v gives
otf
> g -
8 (—0) (zo) = —yo - v,
and so
orf ot f
— (x9) > su -v > inf v > ——— (z0) .
By ( 0) = yeafl(:)xo)y = yGaf(.’Eo)y = 8(—1}) ( 0)

Moreover, from the proof of the previous theorem, see (38), if ¢ € ri.g (dom, f)

and g + v € aff (dom, f), then there exists yo € df (x¢) such that % (z9) =

Yo - v. Similarly, there exists y; € Of (z¢) such that y; - v = —% (z9). This
proves the last part of the statement. m

Exercise 145 Let f : RN — (—00, 00| be a proper convex function and let o €
RN, Prove that Of (z0) is a nonempty bounded set if and only if xo € (dom, f)°.

Exercise 146 The set of points at which a convex function is subdifferentiable
may be larger than riyg (dom, f). Indeed, let N = 2 and consider the function

1
max{l—xf,|x2|} if x1 >0,
00 otherwise.

f(x) = f(21,22) = {

Prove that f is subdifferentiable everywhere in the half-plane {x1 > 0} except in
the relative interior of the segment joining (0,1) and (0, —1). Note that the set
on which f is subdifferentiable is not convex.
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Now we study the relation between differentiability and subdifferentiability.

Theorem 147 Let f : RN — (—o00,00] be conver and let o € RN be such
that f (x0) € R. If f is differentiable at xo, then it is subdifferentiable at xq
and Of (zg) = {Vf(xo)}. Conversely, if f is subdifferentiable at xo and the
subdifferential of f at xq is a singleton, then f is differentiable at xg.

Proof. Assume that f is differentiable at zq. Then x¢ € (dom, f)° and so
by Theorem 142, df (x¢) is nonempty. Fix any yo € 9f (x¢). Then by Corollary
144

otf otf
—_— > v > — .
L w0z w0z 5 )

But since f is differentiable at xy we have that

+ +

and so
yo-v=Vf(xg)- v

for all v € R, which implies that yo = V.f (o).

Conversely, assume that f is subdifferentiable at x¢ and the subdifferential
of f at xg is a singleton, df (z0) = {yo}. By Exercise 145, o € (dom, f)°, and
so by Corollary 144, for any fixed v € RY

ﬁ(z)* max v = v = min v*faJrf
ov 0 y€Of(zo) 4 o y€df(zo) Y 0 <_U)

(zo) -
Hence

otf B ot f
T @)= "5y

for all v € R, which shows that f is differentiable at zo by Theorem 117. m
Next we study some continuity properties of the subdifferential.

(zo) €R

Theorem 148 Let f : RY — (—o0,00] be a proper convex function. Then for
any compact set K C (dom, f)°, the set

of (K)=|J of ()
rzeK

18 compact.

Proof. We prove first that 0f (K) is closed. Let {y,} C df (K) be such
that ¢, — yo as n — oco. Find {z,,} C K such that and y,, € df (x,). By the
compactness of K, there exists a subsequence {xnk} converging to some xy € K.
By the subdifferentiability of f at x,, we get that

f(@) > f(zn,) + (& —20,)  Yny,
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for all K € N and for all z € RY. Since f is continuous at z¢ € (dom, f)°,
letting £ — oo in the previous inequality yields

f(x) > f(x0) + (. — 20) - Yo

for all z € RY, which shows that yo € 8f (z0) C df (K). Thus df (K) is closed.
To prove that df (K) is bounded, for every zy € K and any yo € df (x0)\{0}
we have

f(@) = f(z0) = (x —20) m0
for all x € RN. Taking = x¢ + T‘Z—gl, where 7 > 0 is taken so small that
B (zg,7) C (dom, f)°, gives

Yo Yo
f <$0+Ty0|) — f (o) Zrm'yo =7yol -

On the other hand, since f is Lipschitz in K U B (zg,r), there exists Lx > 0
such that

|f (x1) — f(22)| < L |21 — 22|

for all 21, o € K U B (z0,7), and so from the previous inequality we get

Yo
Ty +T— — X

|yl
This shows that |y| < Lk for ally € 9f (K). m

TLK = LK

> f (ffo +7’g;0|> — f(zo0) > rlyol .
0
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Wednesday, March 26, 2008
As a corollary of the previous theorem we obtain that 0f is upper semicon-
tinuous.

Definition 149 A multifunction T : RN — P (RN) ts called upper semicon-
tinuous at xg € RY if for any open set V.C RN containing T (x), there exists
a neighborhood U of xy such that

ru):=Jr@cw
zeU

Theorem 150 Let f : RY — (—o0,00] be a proper conver function. Then Of
is upper semicontinuous in (dom, f)°.

Proof. Fix z € (dom, f)° and any open set V C RY containing df (z¢).
We claim that there exists r > 0 such that B (zg,r) C dom, f and

of (Bxo,r)= |J of(@)cV.

z€B(z0,r)
Indeed, if not, then there exist {x,} C (dom, f)° and y,, € df (z,) \ V such
that x, — xo as n — oo. Since the set df ( B (zg,r)) is compact for r > 0
small by the previous theorem, and y, € Jf (B (xo,r)> for all n large, there

exists a subsequence {y,, } converging to some yg € 9f (B (mo,r)). By the
subdifferentiability of f at z,, we get that

f(x) > f(xnk) + (‘T 79:77«1@) * Yny,

for all k£ € N and for all z € RY. Since f is continuous at zo € (dom, f)°,
letting k£ — oo in the previous inequality yields

f(x) = f(zo) + (z —20) - yo

for all x € RY, which shows that yo € df (z9) C V, which is a contradiction,
since Y, € Of (xn, )\ V. ®

As a corollary of the previous result we obtain uniform convergence of gra-
dients of differentiable convex functions.

Theorem 151 Let A C RN be an open convex set and let f,, : A — R, n € N,
be a sequence of convex functions converging pointwise in A to a convex function
f:A—TR. Then for any xg € A, for any sequence {x,} C A converging to xg,
and for any open set V.C RN containing Of (o),

Ofn () CV (40)

for all n sufficiently large.
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Proof. By Theorem 112, {f,} converges uniformly on compact sets of A.
Let 7 > 0 be so small that B (zg,2r) C A. Then for all n sufficiently large,
Zn € B (zg,2r) C A. For every such n and for every y € df, (z,)\ {0} we have

for all z € RY. Taking x = z,, + r% gives
fn <xn+ry> 7fn(xn) Zri'y:r‘M'
[yl [yl

By uniform convergence in B (xg,2r) we have that

f(fanrry) —f(fcn)+12r§| Yy =rlyl

for all n sufficiently large. On the other hand, since f is Lipschitz in B (xq, 2r),
there exists L > 0 such that

|f (21) = f(22)| < Ly — 22

for all x1, o € K, and so from the previous inequality we get

rL+1=1L xn—i—ri—xn +1
]
2f<xn+r'z|)f(xn)+127"|y|~

This shows that |y| < L + L for all n sufficiently large and all y € 9f,, ().
Now suppose by contradiction that (40) does not hold. Then there exist

infinitely many n and y,, € df, (z,) such that y,, ¢ V. By the previous part of

the proof, there exists a subsequence {y,,, } converging to some yo € R". Since

fnk (LL') 2 fnk (xnk:) + (.’E - ‘/I’.nk) “Yny,

for all z € RY. Using once more uniform convergence and letting k — oo, we
get

fx) =z f (@) + (@ —z0) 5o
for all x € RY, which shows that yo € df (z¢) C V. This is a contradiction. m

Corollary 152 Let A C RY be an open convex set and let f, : A — R, n € N,
be a sequence of differentiable convex functions converging pointwise in A to a
differentiable convex function f: A — R. Then {Vf,} converges uniformly to
Vf on compact sets.

Proof. Let K C A be a compact set and assume by contradiction that there
exist € > 0 and a sequence {x,, } C K such that

|vf7lk (‘r”k) -Vf (x’nk” > €
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for all k € N. Extracting a subsequence (not relabelled), we may assume that
ZTn, — To € K. Since V f is continuous, we that

[V Fu (@) = Vf (0)| > 5

for all k sufficiently large.
By the previous theorem, applied to the open set V := B (Vf (o), %) (that
contains df (zo) = {V [ (20)}) ,

Ofus (20,) € B (VF (@0).5)

for all k sufficiently large. This contradiction completes the proof. m

Next we study the subdifferentiability of the sum of two convex functions.

Proposition 153 Let f1, fo : RN — (—o0, 00] be two proper convex functions.
Then

9 (f1+ f2) D 0f1+ fa.

Moreover, if
Tiafr (dome fl) N Tiag (dOHle f2) 7é ®7 (41)

then
O(f1+ f2) = 0f1 + 0fa.

Proof. Step 1: Let 2o € RN. If y; € 0f1 (z0) and y2 € dfs (2¢), then
fi () > fi(wo) +y1 - (v —x) for all z € RY,
f2(@) = fa(20) +y2 - (x — o) for all z € RY,

and so, adding the two inequalities, we conclude that y1 +y2 € 9 (f1 + f2) (zo).
Hence if 0f1 (zo) and Ofs (z¢) are nonempty, then 9 (f1 + f2) (zo) is nonempty
and

9 (f1 + f2) (o) D 0f1 (x0) + 02 (x0) -
Step 2: Conversely, assume that (41) holds. If 9 (f1 + f2) (zo) is nonempty, let

y € d(f1+ f2) (xog). We claim that y € df1 (zo) + Of2 (z0). Replacing f; and
f2 with the convex functions

g1 (x) = f1(z+x0) — f1 (m0) —y - 30, xR,
g2 () = fa(z + zo) — f2 (z0), zeRY,

we can assume, without loss of generality, that
zg=y=0, fi1(0)=/f2(0)=0.
Since 0 € 9 (f1 + f2) (0), it follows by (35) that

0=(fi+ f2)(0) = (f1+ f2) (x).

min
reRN
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Consider the convex sets

Clt
CQZ

{(z,t) eERN xR: t > f, ()},
{(z,t) eRN xR: t < —fo(2)}.

Then (exercise)

riag C1 = {(z,1) € RY xR : 2 € riag (dom, f1), t > f1(2)},
tiag Co i= {(2,1) € RN xR : 2 € g (dome fo), t < —f2 (2)} .

Note that if (z,t) € riag C1 N1iag Co, then —fo (z) > ¢t > fi (x), which implies
that (f1 + f2) () < 0. This contradicts the fact that the minimum of f; + f2
is zero. Hence riug C Nriag Co = 0. By Theorem 88Then there exist a vector
(b,c) € RV x R\ {(0,0)} and « € R such that

b-z+ct<a forall (z,t)eCrandb-z+ct>a forall (z,t) € Cy,

and C1UC} is not contained in the hyperplane {(z,t) € RN x R: bz + ct = a}.
If ¢ = 0, then the hyperplane {x ERN: bz = a} would separate Cy and Cs,
which is impossible since riag (dom, f1) N riag (dom, f2) # @. Thus ¢ # 0, and
so letting ¢ — oo in the first inequality, it follows that ¢ < 0, while taking z = 0
and t — 0, we get that a = 0. Thus

cx <t forall (z,t) € Cy,

cx < —t forall (z,t) € Oy,

Il

or equivalently,

b N

——z+ f1(0)=— -2z < fi(z) forallzeRY,

c _

b b

E-x—|—f1(0)=E-x§f2(x) for all z € RY,
which implies that —% € 0f1(0), while % € 9f2(0), and so 0 = —% + % €
9f1(0) + 02 (0).
Step 3: To conclude the proof we observe that if either df; (x¢) or dfs () is

empty, then by Step 2 so must be 0 (f1 + f2) (x0). If both df; (x0) and 0 f2 (o)
are nonempty, then by Steps 1 and 2, 9 (f1 + f2) () is also nonempty and

0 (f1+ f2) (o) = 0f1 (z0) + O f2 (z0) .

This completes the proof. m
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Friday, March 28, 2008
We recall that a multifunction I' : RN — P (RN ) is called monotone if

(w2 —21) - (Y2 —y1) >0

for all (z1,41), (z2,y2) € graphI. A monotone I' : RV — P (RY) is called
mazximal if its graph is not a proper subset of the graph of a monotone multi-
function.

Theorem 154 LetT : RN — P (]RN) be monotone. Then

(i) for everye >0, +¢€l, and (I'+ sl)fl are monotone multifunctions;

(ii) for everye >0, (I +¢eI)™" is univalued and Lipschitz with Lipschitz con-
stant at most %;

(iii) if the domain of (I +eI)™" is RN for some e > 0, then ' is mazimal

monotone.

Proof. It is enough to consider the case ¢ = 1. Let (x1,21), (22,22) €
graph (I' +eI). Then 2; = y; + ex;, where y; € T'(z;), i = 1,2. By the
monotonicity of ',

(y2 —y1) - (22 —21) > 0,
and so
(22— 21) - (z2 — 1) = [(y2 —y1) + € (22 — 21)] - (22 — 1) (42)

= (y2*yl)'(l'2*$1)+5|332*$1|2 Z€|f'32*I1|2 >0,

which shows that I'+¢I, and, in turn, (T + el )_1 are monotone multifunctions.
Note that the previous inequality implies, in particular, that

5|$2—931| _[(y2—y1) (2—$1)]'(2—$1)
< |(y2 +ex2) — (y1 +ex1)| |22 — 71],

and so
elwy — m1| < |(y2 +ex2) — (y1 +ew1)| = 22 — 21]. (43)

To prove (ii), recall that by (16), for all z € RV,
(C+el) ' (z):={zeRY: z€ (T +el)(2)}.
To prove that (I' + ¢I) ™" is univalued, fix z € RN and assume that (I' + 1) ™" (2)
is nonempty. If z1, x5 € (I'4+¢I)” " (2), then z € (D +&l) (;), i = 1,2, and so

we may write
Z =11 +ex1 =y +exq,
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where y; € T'(z;), i = 1,2, and from the inequality (43) we get that x1 = zs.
Thus, (I' +&l) " is univalued. Hence, from now on the set dom (I + &)™ " we

may identify the multifunction (I' +&l)~" with the function

zedom (D +el) ',

where 2 € RY is the unique element such that z € (I' 4+ ¢I) (x). Inequality
(43) implies that this function is Lipschitz continuous with Lipschitz constant
at most %

Finally, to prove (iii), assume that the domain of (I +eI)”" is RY. Let
(z1,y1) € RY x RN be such that

(Y2 —y1) - (2 —21) >0

for all (x2,y2) € graphT". We claim that (z1,y1) belongs to graphT'. Since the
domain of (T 4+ sI)_1 is RN there exists a unique = € RY such that y; + ez, €
(T'+€l)(x). Hence y1 + ex1 = wy + ex, where w; € I'(x). Since (z,w;) €
graph ', we have that

0<(wr—y) (w—21)=—(—21) (€ —21) = — |2 — m1 |,
which implies that = x; and, in turn, that y; = w;. Thus (21,41) = (z,w) €
graph I" and the proof is complete.
We now study some monotonicity properties of the subgradient.

Theorem 155 Let f : RY — (—00,00] be a proper convex function. Then

(i) Of is a monotone multifunction;

(ii) if f is lower semicontinuous and not identically oo, then the domain of
df is maximal monotone.

Proof. Let (z1,y1), (z2,y2) € graph df. Then y; € 9f (x;), i = 1,2, and so

f(@) > f(z1) +yr- (2 —m1),
f(@) > f(z2) +y2- (v — 22)

for all x € R, Taking x = x5 in the first inequality, z = x; in the second and
adding the resulting inequalities yields

(Y2 — 1) - (z2 —21) 20,

which gives (i). To prove (ii), assume that f is convex and lower semicontinuous,
with f # co. In view of the previous theorem, it is enough to show that the
domain of (8f + I)~" is RN. Thus fix y € RN and consider the function

1
9()i=f @)+ 5laf —y 7, weRV.
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Then g is convex and lower semicontinuous. We claim that ¢ is bounded from
below. Indeed, since f # oo, we have that ri,g (dom, f) is nonempty, and so by
Corollary ?7 if xg € riag (dom, f), then df (zg) # 0 and so

[ () = f(zo) +yo - (z— o)
for all z € RY and for any yo € df (z0). Hence
1
g9(x) = f(zo) +yo- (x—xo)§|x\2 —y-z, zeRY,
which proves the claim. Thus g admits a minimum at some point 2z € RV. By
(35), 0 € 9g (x), that is
0€0dg(x)=0f (z)+z—y,

where we have used Proposition 153. This shows that y € (0f + I) (z), and so
the domain of (8f +1) ' is RN. m
As a corollary we have some characterizations of convex functions.

Theorem 156 Let E C RY be a convex set and let f : RN — [—o0,00] be
differentiable in E. Then the following three conditions are equivalent:

(i) f: E— R is convex;

(i) for all x,y € E,
f@)=fy)+Vfiy) - (—y);

(iii) for all z,y € E,
(Vf(z)=VIy) (z—y) =0

Proof. Assume that (i) holds. Since f is differentiable in E, by the previous
theorem f is subdifferentiable at every y € E and 9f (y) = {Vf (y)}. Hence
(ii) holds.

Assume next that (ii) holds. Then (iii) follows from the previous theorem.

Finally, assume that (iii) holds and fix z,y € E. Since f is differentiable in
E, the function g : [0,1] — R, defined by

g(0) = Fltx+(1-1)y), te0.1],
is differentiable and
§ 1) = (Vfltr+ (- 0)y) (@),
If s > ¢, then
g (5) =g (1) =(VF (s + (1= 5)y) = Vf (1 + (1~ )3)) - (2 ~ )
= (Vf (5w (1= 5)y) — Y (1 + (1~ 1))
(52 + (1= 8)y) — (1 + (1)) > .
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Hence ¢’ is nondecreasing, and so g is convex. In particular,
flle+1=t)y) =g@) <1 -1t)g0)+tg(1) =1 —1)f(y) +tf(2),
which implies the convexity of f. m

Remark 157 A similar result holds for strictly convex functions provided we
require the inequalities (i) and (ii) to be strict when x # y.
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Monday, March 31, 2008

Next we prove that the subdifferential uniquely defines a lower semicontinu-

ous function up to an additive constant. We begin with a regularization result
that is of interest in itself.

Theorem 158 Let f : RY — (—o0,00] be a proper convex lower semicontinu-
ous function. For every e > 0, let

f-(z) == inf {f(y)+21€|:z:—y2}, zeRY.

yERN

Then f. : RN — R is conver, differentiable,

or. = (eI +@n7)
and f. / f ase — 0T,

Proof. Step 1: We begin by showing that the infimum is attained. Fix
x € RY and consider the function

1
Gew (W)= F W)+ - lo—yl*, yeRY.

Then g is convex and lower semicontinuous. We claim that g is bounded from
below. Indeed, since f # oo, we have that ri,g (dom, f) is nonempty, and so by
Corollary 77 if zg € ri.g (dom, f), then df (zg) # 0 and so

f ) = f (o) + 20 - (y — o)
for all y € RY and for any zy € 0f (z¢). Hence
1 9 N
Jew (y) 2 f(20) + 20 (y = 20) + - |z — 9",y E€RT, (44)
which proves the claim. Thus g. , admits a minimum at some point y. , € RY.

By (??), 0 € 09 (y=,2), that is

€

0e 896,9: (ya,m) = af (ye,m) + {1 (ye,x - l’)} 5

where we have used Proposition 153. In particular, z., := %(x —Yeu) €
8f (ye,z)a and

fs (1‘) = f (ya,m) + % |Za,z|2 . (45)

Step 2: We claim that the mapping z € RY — Ze,o 18 Lipschitz, with Lipschitz
constant less than or equal % Since df is maximal, ((‘3]‘)71 is maximal. In turn
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-1
(e[ + (0f )_1> is univalued and Lipschitz with Lipschitz constant at most é

To conclude, it suffices to prove that z. , € (SI + (af)fl) (x). Indeed,

Zew € (EI + (8]‘)71)71 (x) e zxe (EI + (8f)71) (2e2) = e2e0 + (0F) " (2e.0)
ST —E2p € (8.}[)71 (Zs,x) & Zez € af (x - Ezs,x) = 8f (ys,x) :

Step 3: The convexity of f. follows as in your midterm. If z, z; € RY, then
Re,w1 € 8f (ys,x1)7 and so

f (ys,w) —f (ye,m) > 2eay (Yoo — ye,wl) .

In turn

fo @) = fo (@) = f (o) + 5 |22

2

€ 2
—f Wey) — ) |2e 4 |

Y

€ €
2 |75€,91|2 T 9 |2e,21 |2 + ez - Yoz — Yeru1)

4+ _
€ [|zm|2 e P4 25 (ye,z Frta yml)]

2 €
€

3 |l

2 |2e |2 + 222, (26,0 — Zexil)} + 2e,z, - (¥ — 1),

and so

fo(@) = fo(@1) = 2o, - (x— 1) > = |20 — 20y |” > 0.
By interchanging x an x; we get

fe (1) — fe () — Rex * (v —x) >0,

NCRNO)

or equivalently

fe (@) = fe(21) = 2y - (2 —21) — (220 — 2e,00) - (T — 1) <0
Hence

0< fo(@) = fo (1) = 2y - (@ — 1) < (2eyp — 2Zeyay) - (T — 31)

and so

‘fs (:L‘) - fe (xl) — Ze,xq t (1' - 931)|

|z — 1]

1
< |Zs,:cfze,n:1| < g‘l’*xﬂ —0

as ¢ — x1. Thus f. is differentiable and V[, (z1) = 2zcz, = %(ys,ml —x) €

Of (Yezr)-
Step 4: It remains to show that f. /' fase — 07. If 0 < &1 < &9, we have
that 51~ > 51—, and so for every = € RV,

P2 fa ) = int {760+ 5o -l

> inf {f(y)+2;|x—y2}=f52(ff)'
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Thus
f(x) > lim f.(z).

e—0+

To prove the opposite inequality, it suffices to assume that

0= Elir(r)lJr fe (z) < 0.

Then by (45) and (44),

2

5 1
(> fe(z) > f (:‘/S,I) + 5 |zs,:r: =f (yE,m) + % ‘x - ya,z|2

1
Z f ({L‘()) + 20 - (ys,m - CE()) + 275 ‘.’E - ys,x|27

which implies that y. , — = as ¢ — 0. In turn, by the lower semicontinuity of
f, and the fact that fe (x) > f (ye,), we have that

lim fe(z) 2 liminf f (ye0) 2 f (2).
]

Corollary 159 Let f: RY — (—o0,00] and g : RY — (—o0, c0] be two proper
convez lower semicontinuous functions such that

of = 0g.
Then g = f+const.

Proof. By the previous theorem Vf. = Vg.. Hence there exists ¢c. € R
such that g. (z) = f. (z) +c. for all z € RV, Fix 29 € domdf = dom dg. Then
¢. = g. (wo) — f- (o) — g (w0) — f (x0) = ¢, and 5o for all 7 € RY,

g(z) = lim g. (v) = lim (f: (@) + ) = f (@) + e

€
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Wednesday, April 2, 2008

Definition 160 A multifunctionT : RN — P (RN) 1s called cyclically monotone
if

(1 —20) Yo+ (T2 —71) Y1+ + (To — Tm) * Ym <0
for allm € N, and all (zo,y0), -, (Tm,ym) € graphT. A cyclically monotone
I': RV P (RN) 1s called maximal if its graph is not a proper subset of the
graph of a cyclically monotone multifunction.

Proposition 161 Let f : RN — (—oco, <] be a proper convex function. Then
of :RN P (RN) is cyclically monotone.

Proof. Let m € N, and all (zo,%0), ---, (Tm,Ym) € graphdf, ie., y; €
Of (x;) for all i = 0,...,m. Define z,,11 := xo and Y11 = yo. By the
subdifferentiability of f at x; we get that

J@) = f(z) > (x —23) -y

for all i = 0,...,m and for all € RY. Taking z = 2;,1 and summing all the
inequalities gives

0=f(zmy1) = f (o) = Z [f @is1) = f(@)] 2 Y (i1 = 20) - s

% =0

Theorem 162 (Rockafellar) LetT' : RN — P (RY) be a multifunction. Then
there exists a proper convex function f : RN — (—o00,00] such that T (x) C
Of (x) for all x € RN if and only if T is cyclically monotone.

Proof. Let I' : RN — P (RY) be a multifunction and assume that there
exists a proper convex function f : RY — (—o0, oc] such that I' (z) C df (z) for
all z € RN, Since f by the previous proposition, then the same must be true
for T

Conversely, assume that I' : RV — P (RN ) is cyclically monotone and fix
(z0,90) € graphT'. Define the function

f(@) =sup{(z1—20) vo+  + (Tm —Tm-1) Ym-1+ (T = T) Y
mGNa (xlayl),"'a(xmaym)Ggra'phr}7 xGRN'

Then f is convex and lower semicontinuous, since it is the supremum of a family
of affine functions. Since I' : RY — P (RN ) is cyclically monotone, we have
that f (zp) = 0, which implies that f is not identically co. It follows from the
definition that f never takes the value —oo, and so f is proper. It remains to
show that if (Z,7) € graphT, then § € 9f (Z). Fix any t < f(Z) and by the
definition of f find m € N, and (xo,¥0), -- -, (Tm,Ym) € graphT such that

t< (le - .730) Yo +-- (xm - x'm—l) *Ym—1 + (j - x'm) *Ym-
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Define 2,11 := 7 and 9,1 := y. Again by the definition of f for any z € RY,

f(z)Z(371*xO)'y0+"’+(xm*zm—1)'ym,—l“i’(f*xm)'ym+(x7§)'y
>t+(x—T) 7.

Hence f (z) > t+ (z —7Z) -7y for all z € RY and all t < f (Z). Letting t /' f (T)
we conclude that

f@)zf@)+@-7)-7

for all x € RY, which implies that f is subdifferentiable at & with 7 € 9f (T).
]

Note that the convex function f constructed in the previous theorem is lower
semicontinuous. Next we prove that maximal cyclically monotone multifunc-
tions are exactly the class of subgradients of proper convex lower semicontinuous
functions.

Theorem 163 Let f : RN — (—o00,00] be a proper convex lower semicontin-
uous function. Then Of : RN — P (RN) is a mazximal cyclically monotone
multifunction. Conversely, given a mazimal cyclically monotone multifunction
r:RY -Pp (RN), up to an additive constant, there exists a unique proper con-
vex lower semicontinuous function f : RN — (—oo, 00] such that T (z) = 0f ()
for all x € RV,

Proof. Let f : RN — (—o0,00] be a proper convex lower semicontinuous
function. We claim that 0f : RN — P (RN ) is a maximal cyclically monotone
multifunction. In view of the previous theorem, it remains to show that df is
maximal. Let ' : RN — P (RN ) be a cyclically monotone multifunction such
that I' (x) D 0f () for all z € RY. Since I' is cyclically monotone, in particular,
I' is monotone. On the other hand, df is a maximal monotone multifunction
by Theorem 155, and thus df =T. m

Exercise 164 (Monotone and cyclically monotone multifunction) (i)
Prove that a multifunction T’ : R — P (R) is monotone if and only if it is
cyclically monotone.

(ii) Let A be an N x N matriz, N > 2, and consider the multifunction

I:RY — P (RY),
z+— T () := {Az}.

Prove that T' is cyclically monotone if and only if A is symmetric and
positive-semidefinite.

(iii) Prove that if A+ AT is positive-semidefinite, then T' is monotone.
(iv) Construct a multifunction T that is monotone but not cyclically monotone.

We conclude this subsection with a proof of Alexandrov’s theorem.
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Theorem 165 (Alexandrov) If f: B(zg,7) C RN — R is conver, and
E :={x € B(xo,r): [ is differentiable at x},
then Vf : E — RN is differentiable LV a.e. in E.

Remark 166 Note that Theorem 122 does mot imply Alexandrov’s theorem,
unless N = 1. Indeed, by a Theorem of Serrin, a function in BV has a repre-
sentative for which the partial derivatives exist LY a.e., but this is not enough
to conclude differentiability.
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Exercise 167 Let C C RY be a convex set and let f : C — R be convexr and
Lipschitz. Consider the function

g(x) ==mf{f(y) + Lip f) |z —y|: y € C}, zeR.
(i) Prove that g is Lipschitz with Lipg = Lip f and that g = f in C.
(i) Prove that g is convez.

(iii) Give an example of a convex function f : [—1,1] — R that can be extended
to a convex function from R into R in two different ways.

Proof of Alexandrov’s theorem. Since the result is local, by restricting
f to a smaller ball and then applying the previous exercise, we may assume that
f is defined in the whole R (as a real-valued convex function). Let

E, = {x € RN : f is differentiable at x} .

By Theorem 117, the set E; has full measure, that is, £V (RN\El) = 0.

Moreover, by the previous theorem the function G := (8f +1)" " : RN — RN is
Lipschitz continuous with Lipschitz constant at most one and onto, since df (x)
is nonempty for every x € RV. It follows by Rademacher’s theorem that G is
differentiable £V a.e.. Moreover,G maps null sets to null sets, and the set

G ({y € RV : G is differentiable at y and det G (y) = 0})
has Lebesgue measure zero (see Rudin). Hence the set
E; ={G (y) : G is differentiable at y and det G (y) # 0}

has full measure, that is, £V (RN \ Eg) =0.

We claim that V f is differentiable in Fy N Es. For any « € E1 N E5. Then
x = G (y) for some y € RV, G is differentiable at y and det G (y) # 0. By the
definition of GG, we have

V(@) =Vf(Gy)=VI(GH)+Gy) (46)
=(Vf+D@f+D 7 () -G =y—G).

Fix o € F; N By and let 2o = G (yo) for some yo € RY. Take Moreover,

if (G(yo)+h) € Eq, then Vf (G (yo) + h) exists. Since G is Lipschitz and

det G (yo) # 0, if h is sufficiently small, there exists z; € RY such that (see
Rudin, proof of Theorem notes)

G (yo +2n) = G (yo) + h

and we may choose z, j, to satisfy |z, 5| < K |h| for some constant K > 0. On
the other, hand
[h| =G (yo + zn) — G (yo)| < |2l
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Using (46) twice, for all h sufficiently small we have

Vf(zo+h)=Vf(G(yo)+h)=Vf(G(yo+ 2n))
= Yo+ 2n — G (Yo + zn)
= V(G (¥o)) + G (yo) — G (yo + 2n) + 2n
=V f(zo) — VG (yo) 2 + 0 (h) + zp,

where in the last equality we have used the fact that G is differentiable at yq
and that o (z) = o (h). Since

G (y0) + VG (yo) 2n + 0 (20) = G (o + 20) = G (o) +
it follows that
2 = (VG (30) ™" (h+ 0 (=) = (VG (w0)) ™ h+ o (h),
and so we obtain
Vf(xo+h)=Vf(xo)+2zn— VG (yo) zn +0(h)
=V (@0) + (VG (o)™ = 1) h+o(h),
which shows that

VS (@o+ 1) =V (20) = (VG (o) — 1) h
Jimy Ih] =0,

namely that V f is differentiable at zo, with
V2 f (w0) = (VG (w)) " — 1.

We also show that a second order Taylor’s formula holds, precisely, that

Define
¥ (h) = f(zo+h),

G () = f (o) + Vf o) b+ 5 { (VG (o)~ 1) hoh).
Then ¢ (0) = ¢ (0) and for £V a.c. small h,

Vi () = Vf (w0 + h) = Vf (20) = (VG (90)) " = T) A+ 0(h)
=V (h) +o(h),

h) — 4 (h) is locally Lipschitz continuous and

and so the function ¥ (h) := 1) (
= o(h) for LY a.e. small h. Hence ¥ (h) = o (|h|2>,

satisfies U (0) =0, V¥ (h) =
which completes the proof. m
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Exercise 168 Consider the function f : R> — R, defined by

o wlytd
f(:c,y»:;ajm if (#.) #(0,0),
£(0,0):=0,

where ag, a1, as, az, as € R.

(i) Calculate the Hessian matriz

d*f 9% f

Oyozx dy? (.’L’, y)

for all (x,y) € R? and find a necessary and sufficient condition on ag, a1,
as, asz, aq for Hf to be symmetric.

(ii) Find a necessary and sufficient condition on ag, a1, ag, a3, ag for Vf to
be everywhere differentiable.

(iii) Prove that if n € N is sufficiently large, then the function

g(z,y) = f(z,y) +n(z* +9°)

is convez, but for appropriate values of ag, a1, az, as, as, Hg (0,0) is not
symmetric or Vg is not everywhere differentiable.

3.4 Conjugate Functions

Definition 169 Given a function f : RN — [~o0,0], the conjugate function
f* RN — [~o0,00] of f is defined by

J*(y):=suwp {y-a— f(2)}, yeRY,
z€RN
and the biconjugate function f** : RN — [—oc0, 00| of f is defined by f** :=
(f)"
Remark 170 It follows from the definition of f*, that

ffly)= sup {y-a—f(2)}, yeRY,

r€dome f

and so f* never takes the value —oo, unless f = co.

Since f* is the supremum of a family of continuous and convex functions, f*
is convex and lower semicontinuous. The same holds true for f**, and f** < f.
Even when f is convex and lower semicontinuous it may happen that f** = f.
Indeed, if f takes the value —oo at some point and f # —oo, then f* = oo, and

EE —

in turn, = —00.
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Exercise 171 Prove that:

(i) If 1 < p < oo, then the polar function of f (x) = o]

* ‘y|p N
forp>1 and
sy oo if lyl > 1,
f(y)‘{o iyl <1,
ifp=1.

1) The polar function of f (x) :=1/|x 241
(i) p

f*(y){ ¥ e
—yI=lyl® iyl <1
From the definition of f* we have that if f # oo,
) >y-z—f(2)
for all y € RN and x € RV, or equivalently
fFy+fE) =y

provided we exclude the case f*(y) = co and f(x) = —oco. The next result
characterizes pairs (z,y) € RY x RY for which equality holds.

Theorem 172 Let f : RN — (—oc,00] be a proper convex function, and let
(z,y) € RN x RN. Then y € 0f (x) if and only if

f@)+ 1y =y-= (47)
Proof. Fix (zg,y0) € RN x RN. If yo € 9f (2¢), then
f(x)> f(xo) +yo-(x—x) forallzeRY,
or equivalently,

Yo - xo — f(z0) = f* (yo) = sup {yo -z — f(x)}.
zeRN

Since the opposite inequality holds by definition of f*, equality (47) follows.
Conversely, assume that (47) holds at (xg, yo). In particular, f (z¢) € R. By
definition of f* (yo) we have that for all z € RV,

f@)=yo-z>—f" (yo) = f(x0) — yo - To,

that is,
f(x)> f(wo) +yo- (x—z) forallzeRY,

which is equivalent to yo € 9f (zp). =
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Theorem 173 Let f : RV — R be a proper convex function. Then
graph (9f) " C graph df*.
Moreover, if f is also lower semicontinuous, then

o)~ =or, (48)
and f** = f.
Proof. The proof is very similar to the one of Theorem 54, with the only

difference that we use Corollary 159 to conclude from (af)*1 = Jf* that f** =
f+const. We omit the details. =

Theorem 174 Let f : RN — (—oco,00] be a proper, lower semicontinuous,
convex function. Then f* : RN — (—o0,00] is differentiable in (dom, f*)° if
and only if [ is strictly convex in all convex sets contained in

U arw.
y€(dome f*)°
Proof. Assume that f is strictly convex in all convex sets contained in
E= |J oM,
y€(dome f*)°

let yo € (dom, f*)° and assume by contradiction that f* is not differentiable
at yo. Then by Theorems 147 and 142, Jf* (yo) contains at least two distinct
elements 1, 5. By the previous theorem it follows that yg € 9f (x1) NIf (x1).
By the equality case in the Young inequality, we have

z1-yo = f(z1)+ f" (o), z2-yo=[(22)+ f" (v0)-
Hence, for any 6 € [0, 1] we have
0f (1) + (1= 0) f(z2) + f* (o) = 0 (f (1) + [ (o)) + (1 = 0) (f (w2) + [ (10))
=0(21-y0) + (1 —0) (z2- o)
= (0z1 + (1 - 0) z2) - yo
< [0+ (1= 0)z2) + [ (30),

where in the last inequality we have used the Young inequality. It follows that
0f (z1) + (1= 0) f (2z2) = f (021 + (1 — 0) z2),

which contradicts the strict convexity of f along the segment T773 C F.
Conversely, assume that f* : (dom, f*)° — R is differentiable in (dom, f*)°.

By the previous theorem, f = f**. Let C be any convex set contained in F and

assume by contradiction that f is not strictly convex in C'. Then there exist
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21 # x9 in C such that f is affine along the segment Z175. Let x := % eCC
E. By the definition of E, there exists y € (dom, f*)° such that z € 9 (f*) (y),
and since f* is differentiable in (dom, f*)°, it follows that Vf* (y) = z. Using
the facts that f is affine in (dom, f*)° and that Vf* (y) = z it follows from the
equality in the Young inequality that (recall that f = f**) we have

0= @)+ W)=y = 5 (F (@) + [ (4) =1 -w)+5 (F (@) + 17 () — 22 0).

By the Young inequality, necessarily f (z1) + f* (y) — z1y = 0 and [ (x2) +
f* (y) — z2y = 0, which implies that z1, o € 9f* (y) = {Vf*(y)}. This is a
contradiction. m
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Monday, April 7, 2008
Next we extend Theorem ?? to RY.

Theorem 175 Let f : RV — (—o00,00] be a proper, lower semicontinuous,
convex function. Assume that Vf exists and is differentiable in a neighborhood
of some point xo € RY, that that V2 f is continuous at xq, and that the N x N
matriz V2 f (xq) is nonsingular. Let yo := V f (x¢). Then f* is differentiable in
a neighborhood of yo, V f* is differentiable at yg, and

. -1
V2f* (yo) = (V2f (x0))

Moreover, if f is of class C? in a neighborhood of xq, then f* is of class C? in

a neighborhood of yq.

Proof. Step 1: We claim that 9f* (y9) = {x0}. Indeed, since yo € If (x0),
by Theorem 173 we have that

(0F) " (yo) = {z € domOf : yo € Of (x)} C Of* (o),

and so have that g € 9f* (yo). If the convex set Of* (yo) contains another
element, say zo + v for some v € RY \ {0}, then it contains the segment zo +
v [0,1]. Again by Theorem 173 we have that yo € 9f (zo + tv) for all all ¢ € [0, 1].
Since f is differentiable in a neighborhood of g, there exists to € (0, 1] such
that

Vf(zo+tv) =1y

for all ¢ € [0,%o]. By differentiating with respect to ¢ we obtain that
V2 f (wo)v =0,

which contradicts the fact that V2f (x¢) is nonsingular. Thus the claim holds
and 9f* (yo) = {xzo}. By Theorem 147, we have that f* is differentiable at yo,
and, in turn, that yo € (dom, f*)°. Note that in this part we have not used the
fact that V2f is continuous at zg.

Step 2: We prove that f* is differentiable in a neighborhood of 3. Since V2 f
is continuous at zg and V2 f () is nonsingular, there exists 7 > 0 such that V f
is differentiable and V2f is nonsingular in B (zo,7). By Theorem 150 and the
fact that yo € (dom, f*)°, we have that df* is upper semicontinuous, so there
exists 0 > 0 such that B (yo,d) C dom, f* and

af* (B(yo,8)) = |J 9f" () CB(ao,r).

y€B(yo,9)

We claim that f* is differentiable in B (yg,d). Since B (yo,0) C dom, f*, by
Theorem 147 we have that 0f* (y) is nonempty for each y € B (yp,0), and so it
remains to show that 0f* (y) is a singleton. If € 9f* (y), then = € B (zo,7),
and thus by the previous step applied to = instead of zg we get the desired
result.
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Step 3: Define W := 0f* (B (yo,9)) C B (zo,7). We claim that W is a neigh-
borhood of zy. Since Vf is continuous at xg, there exists r; € (0,r) such that if
x € B (xg,71), then V[ (x) € B (yo,0) (recall that yo = V f (x¢)). By Theorem
173, (0f) "' = af*, and so for all z € B (zq,r1),

zedf (Vf(x)) COf* (B(yo,0)) =W.

Next we prove that Vf is bijective from W onto B (yo,d). If x € W, then
there exists at least one y € B (yo,d) such that x = V f* (y). Hence y € 9f (z),
but since x € B (xp,r), then necessarily, y = Vf (z). This shows that Vf is
bijective from W onto B (yo,d) and its inverse is V f*. We are now in a position
to apply the inverse function theorem to conclude that V f* is differentiable at

Yo, and
1

V2f (o) = (VS (20))
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3.5 Convex Envelopes

As we will see in relaxation problems, in the case of nonconvex integrands f one
is interested in “convexifying” f. This brings us to various notions of convex
envelopes.

Definition 176 Let V be a vector space and let f : V — [—00,00]. The convex
envelope co f : V — [—o00,00] of f is defined by

(cof) (v) :=sup{g(v): g:V — [—00,00] convex, g < f}.

Remark 177 To obtain co f, we should first convexify the epigraph of f, that
is consider the set co(epif), and then consider a function whose epigraph is
co (epi f). We will see that to make this precise we need to somewhat “close”
the bottom of co (epi f). See the next proposition and Remark 180 below.

Let V be a vector space f: V — [—00,00]. Define

(co' f) (v) :==1inf {Of (v1) + (1 = 0) f (v2) : 6 € [0,1], v1, vo € dom, f,
v="~0v +(1—0)va},
where if § = 0 we set 0f (v1) := 0 even if f(v;) = —oo (and similarly if
(1 —6) = 0). Note that co f < col f < f, but in general co® f is not convex.
Moreover, if f is convex, then co f = co! f = f.
For every n € N, define recursively

co™ ! f:=co' f(co™ f).

Exercise 178 Let x1, x2, 3 € R? be three points that are not alligned, let
E = {x1,79,23} and let f = Ig. Find co f and co f.

Proposition 179 (Dal Maso) Let V be a vector space f : V — [—00,0].
Then co f < co™tl f < co™ f < f for everyn € N and

(cof)(v) = lim (co™ f)(v) = inf {Z@f (vi): meN, 6; €[0,1], v; € dom, f,
i=1
i=1,...,m, Y 6;=1, 9ivi=v},
i=1 i=1

forallveV.

Proof. The inequalities co f < co™! f < co™ f < f follows from the
definitions. Define fo, (v) := lim,— oo (c0™ f) (v). Then co f < foo < f. Note
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that

foo (V) = élelg (co™ f) (v) = inf {;01]” (vi) : meN, 0; € 0,1], v; € dom, f,

m m
i:l,...,m,Zﬁizl,zeivi:v}.
i=1 i=1

To prove that f., < co f, it remains to show that f., is convex. To see this, let
vy, va € Vand 6 € (0,1). If foo (v1) Or foo (v2) are infinite, there is nothing to
prove, so assume that foo (v1) < 00 and foo (v2) < 00. In turn, (co™ f) (v1) < oo
and (co™ f) (v2) < oo for all n sufficiently large. Fix any such n. By the
definition of (co™ f) (v), , we have

(co™™ f) (Bur + (1 = 0) v2) < 0(co™ f) (v1) + (1= 0) (co™ f) (v2),
whenever the right hand-side is well-defined. Letting n — oo, yields
Joo (Bv1 + (1 = 0) v2) < 0fos (v1) + (1 = 0) foo (v2),
which shows that f. is convex. Hence foo <cof. m
Remark 180 Note that Proposition 179 implies that
dom, co f = co (dom, f)

and that
co (epi f) C epi(co f).
In general, the strict inclusion possible. The problem is the bottom of the set
co (epi f).
Exercise 181 Prove that if f : RN — [—oc0, ], then
co (epi f) C epi(co f) C co (epi f).
Exercise 182 Let f : R — R, defined by

[l ifx#0,
f@y_{l if v = 0.

Find co (epi f) and epi(co f).

If we restrict our attention to the space V' = RY, then by Carathéodory’s
theorem one may restrict the number of convex combinations in co f.

Corollary 183 Let f : RY — [~00,00]. Then for all z € RV,

N+2
(Cof)(x):inf{ZGif(xi): 0; €10,1], z; e dom, f,i=1,...,N +2,
i=1

N+2 N+2
i=1 i=1
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Proof. Let g (z) denote the the right-hand side of the previous identity. By
the previous theorem we have that co f < g. To prove the opposite inequality,
let = be such that N

i=1

for some n € N, " 6, =1, 0; > 0, z; € dom, f. Then for any ¢; > f (z;),
with ¢t; € R, (note that f (x;) could be —o0) the point

n n
(Z Oiwi, eiti>
i=1 i=1
belongs to co (epi f), and so, by Carathéodory’s theorem applied to co (epi f),
it can be written as a convex combination of IV + 2 elements, say
N+2 N+2

(Z 91‘331‘,291'751‘) = D Nwi D Nisi |
i=1 i=1 =1 i=i

where s; > f (y;). Hence

N+2 N+2

g(@) <D NF) <D Nsi =D bits.
j=i j=i i=1
Letting ¢; \, f (z;), gives
g(z) < Z@f(fﬂz‘)a
i=1

and taking the infimum on the right-hand side yields g (z) < co f(z). m
Actually, it is possible to prove that in the previous corollary one can replace
N + 2 with N 4+ 1. This follows from the following auxiliary result.

Proposition 184 Let E C RY be a nonempty set and let o € coE N O (coE).
Then x can be represented as a convex combination of N elements of E.

Proof. If coF has dimension less than N, then there is nothing to prove.
Thus assume that coE has dimension less than NV, so that By Theorem 89 with
C1 = {z0} and Cy = co E there exist b € RV \ {0} and « € R such that

b-zp—a=0andb-z—a>0 forallz €cokF. (49)

On the other hand, by Carathéodory’s theorem there exist x; € E,i =1,..., N+
Land 0; >0,i=1,...,N + 1, with >0, = 1 and

N+1

i=1
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Without loss of generality we may assume that ; > 0 for alli =1,..., N 4+ 1,
since otherwise there is nothing to prove. Taking = z; in (49) gives b-z; —a >
0,7=1,...,N 4+ 1, and summing we obtain

N+1
O:b~xofa220i(b~xifa)20.
i=1
Hence b-x; —a = 0 for all 4 = 1,..., N + 1. Hence all the x; belong the

hyperplane b - x = «, and since this has dimension N — 1 we can write z( as as
a convex combination of N elements of EN{b-z=a}. m
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Theorem 185 Let f: RY — [—o00,00]. Then for all z € RY,

N+1
(cof)(x):inf{ZGif(mi): 0; €[0,1], z; edom, f,i=1,...,N +1,
i=1

N+1 N+1
Zﬂizl, Zﬂixi—z}.
i=1 i=1
Exercise 186 Prove the previous theorem.
The next proposition gives another characterization of co f.
Corollary 187 Let V be a vector space and let f : V — [—00,00]. Then
cof(v)=inf{t e R: (v,t) € co(epif)}
forallveV.
Proof. Define
h(v):=inf{t e R: (v,t) €co(epif)}, wveW

If (v,t) € co(epif), then by Proposition 72, (v,t) can be written as a convex
combination of elements of epi f, that is,

v:ZGivi, tzZ@iti
i=1 i=1
for some n € N, 3" 10, =1, 60, >0, v; € dom, f, t; > f (v;). Hence,
t> Zeif(vi) >cof(v).
i=1

Taking the infimum over all ¢ such that (v,t) € co (epi f), gives
h(v) >cof(v).

Conversely, if v = )" | ;v;, for somen e N, 3" 1 6; =1, 6; >0, v; € dom, f,
then for any t; > f (v;), define

n
i=1

Then (v,t) € co (epi f), and so

=1
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Letting t; ™\, f (v;) yields
D 0:f () = h(v),
i=1

and taking the infimum on the left-hand side gives co f (v) > h(v). =
We conclude this section with some regularity results for the convex envelope
co f of a smooth function f.

Theorem 188 Let f : RN — (—o0,00] be a continuous function. Assume
that f is differentiable in dom, f. Then its conver envelope co f is C' in a
neighborhood of each point o € RN satisfying

(co f) (zo) < llu‘n inf f (x) .
Moreover, if V f is locally Holder continuous with exponent 0 < o < 1 or locally
Lipschitz in dom, f, then V (co f) has the same (local) regularity in the open
set
{w €RY : (cof) (w) < l‘irlninff (a:)} .

Lemma 189 Let B C RN be any open ball. If g : B — R is convex, and
f + B — R is differentiable at xo € B, g < f, f(x0) = g(xo), then g is
differentiable at xo and Vg (zo) = V f (z0).

Proof. Proof 1: Since g < f and f is differentiable at x(, we have

g9(x) = g(x0) = Vf (20) - (x = 20)

lim sup (50)
T—T0 |;E - x0|
< lim f (@) = f(@o) = V[ (20) - (x — 20) -0
T—x0 |z — o]
Conversely, using Remark 107(i), for € > 0 sufficiently small we have
inf ~ {g(y) —g(xo) = Vf(xo) - (y— o)}
YEBoo (z0,€)
>—(2¥-1) sup {g(y)—g(w) = Vf(wo) (y — z0)}
YEBoo (z0,€)
> =% s A7)~ f (w0) =V (o) (g~ o)}
YyEBoo (x0,e
> (2¥-1)  swp {|f(l/)—f(ffo)—vf(wo)'(y—moﬂ ||y_x0||oo}
Y€ Boo (20,¢) |y — ol
> @V 1) sup {|f(y)—f($o)—vf(-’ﬂo)'(y—xo)|}
Y€ Boo (20.¢) v — zoll

=—(2¥ - 1)eo(1),
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where in the last identity, we have used the fact that f is differentiable at x.
Hence if ||z — x¢||, =€, then

g(x) —g(x0) = Vf(x0) - (x — x0)
|z — Zoll o
S I0fyen @) {9(y) —g(z0) = V(o) (y—0)}
o e
S

and so, since ||-||, is equivalent to ||,

liming 9(%) = 9 (@0) =V (20) - (2 — 20)

> 0.
z—xo |z — o]

This, together with (50), implies that g is differentiable at xg and Vg (zg) =

Vf (o).
Proof 2 (suggested by Pietro): Since g is subdifferentiable at z for any

Yo € 99 (20),
g(z) > g(z0) +yo - (¥ — o)

for all x € B. On the other hand, since f is differentiable at zg,
[ (@) = f(x0) + Vf(20) - (z —x0) + 0|z — xol),
and so
f(z0) + Vf (o) - (x — z0) + 0|z — zol)
= f(z) > g(x) > g (o) +yo - (z— o),

which implies that

o(lz —xol) > (yo — V£ (20)) - (z — 20)

for all z € RY, with |z — x| sufficiently small. This implies that yo = V f ()
(why?). Thus dg (z0) = {V/ (z0)}. m

Example 190 The next two examples show the sharpness of the previous the-
orem.

(i) The function f (x) = f (x1,22) = \/exp (—x%) + x3 shows that the condi-

tion (co f) (z) < liminf|, o f (x) cannot be eliminated.

(i) Note that in general one cannot go beyond the regularity stated in the
previous theorem. Indeed, any smooth function f : R —[0,00) such that
co f = f outside [-1,1], f~1({0}) = {—1,1}, and f” (£1) > 0 shows that
co f may not be of class C? even if f is.
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Proof of Theorem 188. Step 1: Let

A= {a: eRY : (cof)(x) < l‘irflinff (w)}

If A is nonempty, then

liminf f (z) > —o0,

|| — o0
and since f is continuous, we deduce that f must be bounded from below by
some constant c. By replacing f with f — ¢, without loss of generality, we may
assume that f > 0.
Step 2: Next we claim that co f is differentiable in A. Indeed, fix 2o € A. By
Theorem 185, let {(an)mgn))} C01] xRN, i=1,....N+1,n €N, be a

minimizing sequence such that

N+1 N+1
=t S0
i=1 i=1

and
N+1
>0 (a) = co f (wo) (51)
i=1
as n — o0o.
Upon extracting a subsequence if necessary, for each ¢ = 1,...,N + 1 we

(n)

%

may assume that an) — 6;, and that either ‘xin)‘ — ooor e
Fix

— T; as n — 00.

(cof) (x0) < s <t <liminf f (w),

lw|—o0
let 0 < g9 < 1 be so small that
t(1—eo) > s, (52)
and find L > 0 such that
f(x)>t forall || > L. (53)
Define
ri=fi=t N+1: [2l"
J={i=1,..., N+1}\ I

T > L for all n large} ,

We claim that there exists ¢ € J such that 6; > NE—_?_I Indeed, if this is not the
case, then 6; < <22 for all 4 € J, and so

N+1
91':17 9121*€0>0. (54)
Z Z

el ieJ
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By (53), for any i € I we have that f ((EEH)> >t for all n sufficiently large, and
so, using the fact that f > 0,

N+1

o r (o) = 3060 () = e 0l

i=1 il icl

Letting n — oo, by (51) and (54) we get

s>cof(w) 2ty 0; >t(1—e),
i€l

which contradicts (52) and proves the claim. Hence, without loss of generality,

€0 (n)

we may assume that 0%") — 0, > Nig, T — 1 €EB (0,L) as n — oo. Since

f >0 we have that

N+1

o f (o) < 300 g (2)

i=1

and so letting n — oo by (51) and using the continuity of f we get

ol @) <0f (@)= lim 07 f (") Scof (wo) <5 (55)
This shows that z; € dom, f, and thus f is differentiable at z; by assumption.
Note also that {wln)} C dom, f for all n sufficiently large.

By the convexity of co f and since for any h € RY,

h N+1
To+h= an) (mgn) + 9(R)> + Z egn)l‘gn),
1 =2

for all n sufficiently large we obtain

6"

(co f) (zo + h) — (co f) (z0) <O (co f) (zﬁ") + h)

N+1

+3 07 (o) (1) = (o) (w0)

n n h n
<6} [f <x§ )+9(n)> — £ (s} ))]
1

N+1
2078 (#7) = (o) (970)] :

where we have used the fact that {xﬁ")} C dom, f for all n sufficiently large.

Letting n — oo in the previous inequality yields

()t - 0N <t |7 (o4 5 )= Flen] 69
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for all h € RY. Since by assumption f is differentiable at x, it follows in
particular that the right-hand side is finite for all h sufficiently small, say
|[h| < r. In turn, the nonnegative convex function (co f) (g + ) is finite for
the same values of h. Since the left-hand side is a convex function in the vari-
able h, the previous lemma implies that (co f) (xo + -) is differentiable at 0 and
Y (co f) (z0) = Vf (x1).

Thus we have shown that co f is differentiable in A, and by Theorem 119(i)
it follows that V (co f) is continuous on A.
Step 3: Finally, assume that Vf is locally Hélder continuous with exponent
0 < a < 1 or locally Lipschitz in dom, f and let U be an open set compactly
contained in A. Find U CC D CC A. By the continuity of co f and the
definition of the set A we may find s,

0 < s < liminf f (x),

|z]|— o0
such that (co f) (z) < s for all z € D. Fix

s <t <liminf f (z),
|z|—o0
and let &g > 0 and L > 0 be as in (52) and (53). By the previous step, for

any r € D we may find m&“”) € dom, f N B(0,L) and 47 < 61 < 1 such that

Vicof)(x)=Vf <z§$)) and (55) and (56) hold. We claim that there exists an

open set U; compactly contained in dom, f such that chm) € U, for all z € D.

Indeed, if not, then we may find a sequence {z}} C D converging to some z € D
such that xgmk) —x1 € B(0,L) \ dom, f. But by (55),

€0

N7-|-1f (xgm’“)> < (cof)(zg) < s.

Letting £k — oo and using the continuity of f we obtain a contradiction since
x1 ¢ dom, f. Hence the claim holds.
Let U; CcC Uy CC dom, f and by hypothesis let C = C (Uz) > 0 be such
that
IVf(z) = Vf(w) < Cle—w® (57)

for all z, w € Uy. Let r > 0 be so small that w + % € Us for all |h| < r

and all w §U1-
If z € U, then by what we just proved, xﬁ‘”) € Uy, and so xgx) + 6(};) e Us
for all |h] < r. By the mean value theorem and the fact that V (co }) (x) =
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\%a <x(1x)) we obtain
(cof) (z +h) = (co f) (x) =V (cof)(z)-h

<o s (5 ) o () s () ]
! 1

—_

e @m), " _ @Y.
T FCIE (=) 9@1
1 1
| h N+1)®
;" €0
for some ng’h) on the segment of endpoints :c(lx) and :c(lw) + 9(’1), and where we
1
have used (56), (57), and the fact that 9573) € [NEJOrl , 1} . Hence also by Theorem
156,
N+1)® o
0< (co ) (24 ) — (co ) () = ¥ (co ) () - < CED gyt

0

for all |h| < r. By Remark 107(iii) applied to the convex function

g(h) = (cof)(x+h)—(cof)(x)—V(cof)(x) h
we obtain that

[V (cof) (@ +h) =V (cof)(z)] (58)
osc (g; B (0,4 1h]))

= [Vg (h)| < Lip (g; B (0,2]h[)) < 210

N+1)*
S@m@ C |n|*
2e§

for all |h| < i?‘.

Fix Z € U and let *) > 0 be so small that B (z, r(i)) C D and r® < 5 We
claim that V (co f) is Holder continuous with exponent 0 < « < 1 or Lipschitz
in B (JE, r(i)). To see this, let x, w € B (i,r(f)) and write

w=x+ h,

where h := w — x is such that

|h|:\wfx|§|wfa_c|+|scf:f|<2f<£.
By (58),
1 «
IV (co ) ()~ ¥ (co ) (@) 440 5D 0y e,
0
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which proves the claim.

Since the family of balls {B (9?, r(@) }feﬁ is an open cover for the compact
set U, we can find a finite number of balls that still cover U.

Hence V co f is locally Holder continuous with exponent 0 < a < 1 or locally
Lipschitz. =
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3.6 An Application

Theorem 191 Let E be a Borel subset of RN with finite measure, let 1 < p <
00, and let f : R™ — R be a Borel function bounded from below by an affine
Sfunction. If zy € R™, then

1
inf {/ f(u(z))dx: uwe LP (E;R™), —/ u(z) de = zo} = (co f) (20) | E|,
E \E| Jp
and the infimum is attained if and only if
209 € coM,,
where

M, :={z€R™: f(z)=(cof)(z0)+ B (2—20) forall B € (cof)(20)}

Lemma 192 Let E be a Borel subset of RN with positive finite measure, and
let v e L' (E;R™). Then
1

CN(E)/Ede cco{v(z): z € E, x is a Lebesgue point of v} .

Proof. The proof is by induction on m. Let

1
20:= ————— | vdx, G:={v(x): x € E, x a Lebesgue point of v}.
o= . (@) gue point of v}
For m =1 it is not difficult to show that co G is the (possibly infinite) interval
of endpoints essinfg v and esssupg v. If 29 ¢ coG, then either zy > esssupy v
or zg < essinfg v. Assume that 2o > esssupg v. Then zg — v (x) > 0 for LV a.e.

x € F, and so since
1

W/JE(ZO_U(x)) dz =0,

we deduce that v(z) = z for LY ae. z € E. In turn, G = {2}, which
contradicts the fact that zo ¢ coG. The case zg < essinfgv is treated in an
analogous way.

Assume that the result is true for functions with values in R™~! and let
v € L' (E;R™). If 29 ¢ coG, then by Theorem 88 (with C; = {2} and
Cy = coG) we may find a half-space

H={zeR":b-(z—2) >0}

through 2y containing co G, where b € R™, b # 0. Then from the definition of
zp and G and since G C H,

0:/b~(v(az)fzo)dx:/ b (v(z) — 2) dx
E {y€E:b-(v(y)—20)>0}

—I—/ b (v(z) — 20) du.
{y€E:b-(v(y)—2z0)<0}
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Hence

/\b~(v(w)—z0)|dx:2/ |b- (v (z) — 20)| dz =0,
E {y€E: b-(v(y)—20)<0}

since v (x) € H for LN a.e. z € E. This implies that
v(z) e{ze€R™:b-(z—2) =0}

for LN ae. z € E, and thus the function v takes values on an (m — 1)-
dimensional hyperplane. By the induction hypothesis we have that zy € coG,
which is a contradiction. m

Proof of Theorem 191. We begin by observing that by Theorem 185,

inf{/ f(s)dz: s € L? (E;R™), s simple, L/ sdx—zo}
E E| /i

:inf{ 0;f(z): neN, 0, €[0,1], z, e R, i =1,...,n,
i=1

M:

=1, Za 2z = ZO} = (co f) (z0) |E|,
and so
1
inf{/ f(u)dx : uwe LP (E;R™), —/ uds = zo} < (cof)(20) |E|.
E E| /e
To prove the opposite inequality, observe that since f is real-valued and bounded

from below by an affine function, we have that co f : R™ — R, and thus co f is
subdifferentiable at zg. Hence for all £ € 9 (co f) (20)

f(2) = (cof)(2) = (co f) (20) + & (2 = 20).-

Taking z = u (x) and integrating over E yields

@z [ o) w@))de = (eof) (o) Bl +€- [ (@) =z0) da
(59
— (o) (o) [EI.

where we have used the fact that ﬁ f pudr = 2. Hence

inf{/Ef(v)dm: UEL”(E;]R’"),;H/Evdx:zo}z(cof)(zo)m.

Suppose now that the infimum is attained at some function v € L? (E;R™) with

3 / ) dz = 2. (60)
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By (59) we have

/ f(v) de = / (cof) (v)dz = (co f) (20) | E] (61)
E E

and so f(v(x)) = (co f) (v(x)) for LY ae. v € E.
Therefore, given any 5 € 0 (co f) (z9) (recall Theorem ?7), it follows that

f(v(2)) = (co f) (v(x)) = (cof) (20) + B (v(x) = 20) ,

and the inequality must be an equality for £V a.e. € E or else, in view of
(60), (61) would be violated. We deduce that

v(z)ef{z e R™: f(2) = (cof)(z) =(cof) +5-(z—2)}

for LN a.e. x € E, which, together with (60) and Lemma 192, yields

zo €co{z e R™: f(2) = (cof)(z) =(cof)(z0)+-(2—20)}
Conversely, assume that 2y € co M, and write

m—+1

=1

where 6; € [0,1], z; € M,,, i« = 1,...,m + 1, and ZZZ’IA 0; = 1. Since the
Lebesgue measure is nonatomic, we may find a partition of F into measurable
subsets F; such that

|Ei| = 0; |E,

t=1,...,m+1, and define

m—+1

V= g XE; %i-
i=1

By (62), v is admissible, and for a fixed 8 € (co f) (z09) we have

m—+1 m+1
[ f@)de= 3" 1B £ ) = 3 B (@0 ) (20) + 6+ (2~ 20)
E i=1 i=1

— |B| (o f) (z0).

where we have used (62) and the fact that z; € M,,. =

3.7 Biconjugate Functions

Proposition 193 Let f : RN — [—00,00] be convex and lower semicontinuous.
If f takes the value —oc, then f: RN — {—o0, 00}
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Proof. Assume by contradiction that there exists o € R¥ such that
f(zo) € R and let f(z1) = —oo. Consider the function g : R — [—00, 0]
defined by

gt)=f({xo+(1—¢t)z1), teR

Then g is convex and g (0) = —oo and g (1) € R, so by convexity g (t) = —o0
for all ¢ € [0,1). But since f is lower semicontinuous, then

—oo = liminf g (t) > ¢g(1),
t—1—

which is a contradiction. m
Theorem 194 Let f : RN — [~o00,00], f # co. Then

(i) f** (z) = sup{g(z) : g affine, g < f} for all x € RN. In particular, if
¥ takes the value —oo, then f** = —oo;

(i) f** <lsc(cof)<co(lscf)<cof < f;

(iii) if, in addition, there exists an affine function below f, then f** =lsc(co f).
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Proof. Step 1: Set

F(@):=sup{g (@) : g affine, g < f}, =RV

We first prove that f = —oo, i.e., the family of admissible functions ¢ in the
definition of f is empty, if and only if f* = co. Indeed, if there exist y € RN
and a € R such that

y-rt+a< f(r)

for every x € RV, then, equivalently,

y-x—f(z) < -a

for every x € RY. Therefore
[T y) < —a. (63)

Conversely, if there exists y € RY such that f* (y) < oo, then f* (y) € R since
f # oco. In view of the definition of f* (y), it follows that

y-z—[f"(y) < f(=)

for every € RN and thus

g@)=y-z—f(y) < fla). (64)

Step 2: We prove (i). If f* = oo, then f** = —o0, and by Step 1, property (i)
holds. Suppose now that there exists y € RY such that f* (y) < oo. Taking the
supremum in (64) over all such y yields f** (z) < f (z).

Conversely, by Step 1 there is at least one admissible function g (z) = y-z+a
in the definition of f. As in (63) we obtain f* (y) < —«, and we deduce that

[T@)zy e - y) 2y rt+a

Taking the supremum over all such pairs (y, @), we conclude that f** (z) > f (z).
(ii) The last two inequalities are immediate. Since co f < f, then Isc (co f) <
Isc f, and using the fact that Isc (co f) is convex by Proposition 129, we obtain
that lsc (co f) < co(lsc f).

Since f** is lower semicontinuous, convex, and below f, we have that f** <
Isc (co f).
(iii) Since lsc (co f) is convex, lower semicontinuous, and above an affine func-
tion, then by Proposition ??, invoking (ii), it follows that

Isc (co f) (x) = sup{g (z) : g affine, g <lsc(co f) (x)} (65)
= (Isc(co f))™ (),

where in the last equality we used part (i). Since lsc(co f) < f by (65) we
conclude that lsc (co f) < f**. =
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Remark 195 (i) Note that if there is no affine function below f, then The-

(i)

(iii)

orem 194 (iii) does not hold in general. Observe that Remark 136 exhibits
an example in which f** = —co S 1sc(co f) = f.

From Theorem 19/ it follows that if there exists an affine function below
f and if co f is lower semicontinuous, then f** =lsc(co f) =co(lsc f) =
co f. In particular, if f: RN — R admits an affine function g such that
f>g, then

—00<g< f** <co(lscf) <cof < f< oo,

and so cof :' V. — R. By Theorem 77 it follows that co f is continuous,
and so f** =lsc(co f) =co(lsc f) =co f.

Note that when f : RN — R is bounded from below by an affine function
g, then co f is continuous by Corollary 108, and so by (ii) we have that
™ =lsc(cof) = co(lsc f) = cof. However, when f takes the value oo,
then by Theorem 130, f** =lsc(co f) agrees with co f except possibly on
rbag (dom, co f), and in particular, it may happen that f** < co(lsc f) on
tbag (dom, co f) as shown by the following example.

Exercise 196 Let N = 2 and consider the function

To —x1€"2 ifxo >0 and 0 < z1 < x0e™ 72,

f@)=f(z,22) =14 0 if T2 > 0 and z2e™ " <z,

00 otherwise.

Prove that

while

Note

. |0 ifx1>0and x>0,
F7 (@) = { 0o otherwise,
xo ifx1 =0 and z2 >0,
co(Isc f) (z1,22) =< 0 ifzxy >0 and z2 >0,
oo otherwise.

that co (Isc f) is convex but not lower semicontinuous.

Corollary 197 Let f : RN — [~o0,00], f # oc.

()
(i)

If f is subdifferentiable at some o € RN, then f (zo) = f** (z0).

If f(z0) € R and f** (zg) € R for some zg € RY, then 0f (z9) C
Of** (xo). Moreover, if f (zo) = f** (x0), then Of (xo) = Of** (o).

Proof. (i) If f is subdifferentiable at xg, then for every yo € 9f (zo),

f (@) > f(z0) +yo- (v — x0)

for all z € RY, and so by (i) and (ii),

f(x) > 7 (x) > f(z0) + o - (v — x0)
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for all z € RY. In particular, taking z = z gives f (x) = f** (o).
(ii) If f (w9) € R and f** (zo) € R for some zo € RY, then for any yo €
Of (xg), we have If f (z9) = f** (x0), then the previous inequality becomes

f(x) > 7 (x) > f(z0) +yo - (v — x0)
> [ (xo) +yo - (x — z0),

which implies that yo € 0f** (o). Hence 9f (xg) C 9f** (xg). On the other
hand, if f (zo) = f** (zo) and yo € Of** (z¢), then

f(x) = 7 (x) = £ (x0) + yo - (z — 20)
= f(z0) +yo - (z — z0),

and so yo € Of (ro). Hence Of (z9) = 0f* (x9). m
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3.8 An Application

Theorem 198 Let E C RY be a Lebesgue measurable set, let 1 < p < oo, and
let f: EXR™ — (—o00,00| be a Borel function. Assume that there exist a
nonnegative function v € L' (E) and a constant C' > 0 such that

f(z,2) > —C|z]° —~(z) for LY a.e. 2 € E and for all z € R™.
Then the functional
veLP(E;R™) — /Ef(a:,v(x)) dz

is sequentially lower semicontinuous with respect to weak convergence in LP (E; R™)
if and only if

(i) f(z,-) is convex in R™ for LN a.e. x € E;

(ii) there exist two functions a € L' (E) and b € L? (E;R™) such that

flz,2) >a(x)+b(x) 2
for LN a.e. x € E and all z € R™;

(iii) f (x,-) is lower semicontinuous in R™ for LN a.e. x € E.

Proof. We prove only the sufficency part. Thus, assume that (i)-(iii) hold.

Step 1: Suppose first that f is nonnegative. Let {v,} C LP (E;R™) be a
sequence weakly converging to some v € LP (E;R"™). Without loss of generality
we may assume that

liminf/ f(z,vp (x))dz = lim fz, o, (z)) de < 00
E

n—oo n—oo E

and that
sup/ fz,o, () dr < c0.
n JE

Define the measures
pn (B) = f(z,v, ())dz, Be€DB (RN) .
BNE
Then
SUp Ly (RN) < 00,

and so, passing to a subsequence if necessary, there exists a (positive) Radon

measure y such that
pn = i in M (RY;R) (66)
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as n — oo. We claim that

dp
acn
If (67) holds, then the conclusion of the theorem follows. Indeed, since by the
Radon—Nikodym and Lebesgue decomposition theorems

(z0) > xE (z0) f(z0,v(x0)) for LV a.e. zy €RY. (67)

dp
W= v

where ps > 0, by the lower semicontinuity of the norms, we have

LY + ps,

d,
lim flz,v,)de = lim p, (RN) >u (RN) > / —MNdx > / flz,v)da.
n—oo | @ n—oo RN dLl E
Thus, to conclude the proof of the theorem, it suffices to prove (67) for LV a.e.
xo € F.

By Theorem 7?7 below there exist two sequences of bounded measurable
functions

a;: E—R, b :E—R™,
such that
flz,2) = Sup {ai(z) + bi(z) - 2}
1€

for LN a.e. x € E and all z € R™.

Fix a point zy € F of density one for F that satisfies

I (o) = lim MLEDOE)

ey o e—0+ eN

and is a Lebesgue point of all the L] _ functions a; (-) xg (+) and (b;(-) - v () x& () -

Choose ¢, \, 0 such that p(9Q(zg,er)) = 0. Then

dp wQ(zo,ex) L. . pn(Q(o,Er))
dCcN (o) = Jim I A i Tim D

1
= lim lim —N/ f(z,v, (z)) dx
Q(xo,ex)NE

k—oo n—oo €1

> lim inf lim inf LN/ (a; (z) + b; (x) - v, (2)) dz
Q(Ig,sk)ﬂE

k—oo n—oo €

1
= lim inf —N/ (a; (z) +b; (z) - v(x)) do
Q(ajg,&:k)ﬂE

k—oo Ek
= a; (.’IJ()) + b; (ZL'()) - (.’L'()) s

where we have used the fact that v,, — v in L? (F; R™). By taking the supremum
over all ¢ we conclude that

dp

m(%) > f(wo,v(w0))

as desired. m
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Proof. Step 2: Since f (z,2) > a(z) +b(x) - z for all LY a.e. 29 € E and

for all z € R™, we have that the function f (x,2) — (a (x) + b(z) - z) > 0 has all
the properties of the previous step. By Step 1,

linniig.}f</Ef(:L’,vn) d:z:f/E(a+b'v) dz)
zliminf/E(f(x,vn) —(a+b-vy,)) dz

Z/Ef(m,v)dx—/E(a—l—b-v)dm.

Since v € L? (E;R™), the result follows. m
Now let’s discuss measurability and boundedness of the functions a; and b;.
We begin with the case in which f is real-valued.

Theorem 199 Let E C RY be a Lebesgue measurable set and let f : ExR™ —
R be a Borel function such that f (x,-) is convex in R™ for LN a.e. z € E.
Then there exist measurable functions a; : E — R and b; : E — R™ such that

f(x,2) = sup{a; (x) + b; () - 2}
€N

for LN a.e. x € E and for all z € R™.
Moreover, if f is nonnegative, then the functions a; and b; may be taken to
be bounded.

Proof. By De Giorgi’s theorem, for LY a.e. € E and for all z € R™ we
may write
f(z,z) =sup{a; () + b; (x) - 2},

€N
where
a; (z) = - [z, 2) (m+1) ¢ (2) + Vi (2) - 2) dz, (68)
bi (z) = — - f(z,2) Vo, (2) dz,

and the functions ¢; are of the form
¢i (2) = k"¢ (ki (@i — 2)), z€R™,

for k; € N, ¢; € Q™, and some ¢ € C} (R™) (see (33)).
To prove the measurability of a;, note that the nonnegative functions

g (@,2) = (f (2,2) (m+1) i (2) + Vi (2) - 2) T,
9~ (@,2) = (f (2, 2) (m + 1) @i (2) + Vi (2) - 2))

130



are Borel functions. Hence, by Tonelli’s theorem the functions
r € FE— gt (z,2)dz, w€Ew— g (x,2) dz
R™ R™
are measurable. In turn, so is the function

x€Ewa;(x):= / 97 (z,2) — g~ (z,2)] d=.

m

Similarly, we can prove that b; is measurable.
Finally, to prove the last part of the theorem, note that, since f is nonneg-
ative, we may write

f(@;2) = sup{a; () + bi (z) - 2}

for LN a.e. x € E and for all z € R™. For k € Ny define ¢y := 0 and

1 s<k-—1,
op(8):i=¢ —s+k k—-1<s<k,
0 s>k,

and let
bix () := o (|a; (x)] + |b; (2)]) -
Since 0 < ¢; 1, < 1, it follows that

(a; (z) +b; () - 2)" = sup {@in (x) a; (x) + dix () bs () - 2},

for £V a.e. € E and for all z € R™. Note that @i ka; and ¢; b; are measurable
and bounded. m

When f takes the value oo, to find a; and b; we used the the Moreau-Yosida
approximation of f. For every € > 0, let

@)= i {f @+ ol -7},

y€ER™

where € E and z € R™. In this case to prove the measurability of f. we need
to use the Aumann measurable selection theorem. We skip the details.
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3.9 Duality

We are interested in minimizing problems of the type

inf A
nf [f (@) + g (Az)],
where A is an N x M matrix, f : RV — (—o00, 0], g : RM® — (—o0, 00]. We will
see that the dual problem becomes

sup [—f*(A"y) —g* ()],

y/ GRM

where f* and g* are the conjugate functions of f and g and A7 is the transpose
matrix of A.
Taking a functional F : RY — [—o00,00], we consider the minimization
problem
inf F(x). P
of Fz) (P)
We will write inf P for problem P.
We consider a perturbation problem. Consider a function ® : RV x RM —
[—00, 00] such that
® (z,0) = F (x) (69)

for all z € RY. For every fixed y € R™ we consider the minimization problem

inf @ (z,y). (Py)

r€RN

Note that (P), is our original problem (P). We now consider the conjugate
function ®* : ® of ®, that is,

o (2',y)=  sup {2 -z+y -y—P(z,y)}.
xe]RN,yeR]W

The problem
sup {—®"(0,5)} (P*)

y/ERI\/I

is called the dual problem of (P). We will write sup P* for (P*).

Remark 200 Note that if we call G(y') := ®*(0,y'), then problem (P*) is
equivalent to find

inf G(y),

y/ cERM

which is again of the type we started with. In this case, the natural perturbation
is @ : RN x RM — [~o0, 00|, and so, the perturbed problem of (P*) becomes

sup {—=®" (2, y")},

y/ ERM
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for every fived ' € RYN. Hence, we may define a dual problem for (P*), the
bidual problem of (P), namely

inf ®** (z,0).
Inf (z,0)

In particular, if ® : RY x RM — (—o0,q] is proper, convex, and lower semi-
continuous, then ®** = &, and so the bidual problem of (P) becomes (P). This
fact allows us to dualize to (P*) any result proved for (P).

Proposition 201 Let F and ® be as above. Then
inf P > sup P*. (70)
Proof. Fix ¢/ € RM. Since

" (073/) = sup {y/-y—q)(x,y)},
z€RN, yeRM

for every x € RY and y € RM we have

" (0,4) =y -y — 2 (2,y).
In particular, taking y = 0, we get
®*(0,y') > —® (z,0) = —F (z)
for all z € RV, or, equivalently,
F(z) = =27 (0,¢)
for all 2 € RY. Hence

inf F(z)>—-®*(0,9).
z€RN

Taking the supremum over all ' € RM | we get the desired result. m
In general we can have strict inequality. See Exercise 214 below.
Next we define the auxiliary function

H(y):= inf ®(z,y), yeRM.
(y):= if @(z.y), y

Note that by (69),

H(0)= inf ®(z,0)= inf F(x). (71)

z€RN z€RN
Proposition 202 Let F' and ® be as above. Then
H*(y)=2"(0.y), y eRY, (72)
and

H* (0) =supP™.

133



Proof. For each 4’ € RM we have

H*(y') = sup {y -y — H(y)}

yERAf
= sup {y-y— inf @
s, {y y— inf (x,y)}
= sup sup {¢ -y—®(z,y)} =2*(0,v).
yERM gzeRN
Hence
sup {—@*(0,y")} = sup {-H" (')}
y' €ERM y' ERM
= sup {0-y' —H"(y)} = H™(0).
y/ER]W
m

Note that, by (71) and the previous proposition, the inequality (70) reads as
H(0)> H™(0).
Thus we need to find conditions under which H (0) = H**(0).

Proposition 203 Let F and ® be as above. Assume that ® : RN x RM —
[—00, 00| convex. Then H : RM — [~o0, 0] is convex.

Proof. Let y1, y» € RM and let 6 € (0,1). If H (y1) or H (y2) is infinite,
there is nothing to prove, thus assume that H (y1) < oo and H (y2) < oo (but
they could be —o0). Fix two real numbers a > H (y1) and b > H (y2) and, using
the definition of H, find z1, zo € RY such that

H(y1) <@ (z1,51) <a, H(y2) < P(w2,y2) < b
Then
H Oy +(1—0)y2) = ierﬁng D (z,0y1 + (1 —6)ya)

<@ (0z1 + (1 — 0) 22, 0y1 + (1 — 0) y2)
<O (z1,y1) + (1 — 60) 0P (2, o)
<fa+(1—-0)b.

Letting a \, H (y1) and b \, H (y2) we obtain the desired result. m
Unfortunately, even if ® is lower semicontinuous, H may not be.

Definition 204 Problem (P) is said to be

(i) normal if H (0) is finite and H is lower semicontinuous at 0;

(i) stable if H (0) is finite and H is subdifferentiable at 0.
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Roughly speaking, these conditions express the fact that the infimum changes
only gradually when (P) is perturbed. Similar notions can be defined for prob-
lem (P*).

Proposition 205 Let F' and ® be as above. Then (P) is stable if and only if
(P) is normal, inf P = sup P*, and (P*) admits a solution.

Proof. Step 1: We claim that the set of solutions of (P*) coincides with
OH** (0). Indeed, y” € RM is a solution of (P*), if and only if

27 (0,y") = =2 (0,y)
for all y' € RM, that is, by (72),
—H"(y") = -H"(y') =0y - H" (¢/)
for all ' € RM, which can be written as

—H"(y") = sup {0-y' = H"(y))} = H™ (0).
y/eRJM

Since
—H"(y")+0-y" = H™(0),

Step 2: If (P) is stable, then H (0) is finite and H is subdifferentiable at
By Corollary 197, this implies that H (0) = H** (0) € R and that 0H** (0)
OH (0) # 0. Hence by the previous step, (P*) has a solution.

Conversely, if (P) is normal, H (0) = H**(0) € R, and if (P*) admits a
solution, then by the previous step, 0H** (0) # ), which implies that 0H** (0) =
O0H (0) by Corollary 197. Hence (P) is stable. m

we have equality in Young’s inequality, and this is equivalent to y” € dH** (0).
0.

Remark 206 If ® is convex, then the condition inf P = sup P* is superfluous
in the previous proposition. Indeed, if (P) is normal and (P*) admits a solution,
then by Proposition 203, the function H is convex (so that co H = H ), and since
it is lower lower semicontinuous at 0, we have that 1sc (co H) (0) = 1sc H (0) =
H (0). On the other hand, since 9H** (0) # 0, by Theorem 194 (iv), we have
that H** =1sc (co H), and so H** (0) = H (0).
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Corollary 207 Let F and ® be as above. Then (P*) is stable if and only if
(P*) is normal and (P**) admits a solution. In particular, if ® : RNV x RM —
(—00, 0] is proper, convez, and lower semicontinuous, then (P*) is stable if and
only if (P*) is normal and (P) admits a solution.

The next result gives a sufficient condition for the stability of (P).

Proposition 208 Let F and ® be as above. Assume that ® : RN x RM —
[—00, 00] is convex, that

infP € R,
and that there exists o € RN such that y € RM s ® (x9,y) is finite and
continuous at y = 0. Then (P) is stable. In particular, (P*) admits a solution.

Proof. By Proposition 203, H is convex, and by hypothesis and (71),
H(0)= inf F eR.
(0) = inf F(z)

Since y € RM +— @ (20, y) is finite and continuous at y = 0 there exists M > 0
such that
o ($07 y) S M

for all y in a neighborhood U of 0. Hence
H(y) = inf ®(z,y) < ®(z0,y) <M
zERN

for all y € U, which implies that 0 belongs to the interior of the effective domain
of H. By Remark 99, H does not take the value —oo, and so by Theorem 142,
H is subdifferentiable at y = 0. Thus (P) is stable. m

Next we study normality.

Proposition 209 Let F and ® be as above. Assume that ® : RN x RM —
(=00, 0] is proper, convez, and lower semicontinuous. Then (P) is normal if

and only if
inf P =supP* € R. (73)

Proof. Assume that (P) is normal and consider the lower semicontinuous
envelope lsc H of H. Then

H* <lscH < H. (74)

Since H is lower semicontinuous at 0, we have that (Isc H) (0) = H (0) € R.
Since the function lsc H is convex, lower semicontinuous and finite at some
point, it never takes the value —oo. Hence by Theorem 194, H** = lsc H. In
particular,
H* (0) = (IscH) (0) = H(0) € R,

which is exactly (73).

Conversely, if (73), then H** (0) = H (0) € R. It follows by (74), that
H**(0) = (Isc H) (0) = H (0) € R, which implies that H is lower semicontinuous
at 0. Thus (P) is normal. m
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Corollary 210 Let F and ® be as above. Assume that ® : RV x RM —
(=00, 0] is proper, convex, and lower semicontinuous. Then the following three
conditions are equivalent to each other:

(i) (P) and (P*) are normal and have some solutions.
(i1) (P) and (P*) are stable.
(iii) (P) is stable and has some solutions.
We now give some extremality relations.
Theorem 211 Let F' and ® be as above. If (P) and (P*) have solutions and
inf P = sup P* € R,

then for any solution zo € RY of (P) and any solution y), € RM of (P*) we
have the extremality relation

P (20,0) + @* (0,y) =0, (75)

or, equivalently,

Conversely, if zo € RN and y), € RM satisfy (75), then zq is a solution of (P)
and y{ is a solution of (P*) and inf P = sup P* € R.

Proof. Assume that zop € RY is a solution of (P) and y} € RM is a solution
of (P*) and (73) holds. Then

P 0)=F = inf F
(40,0) = F(w) = inf F (2)
= Ssup {_(I)* (an/)} = —®* (O7y(/)) €R,
yleRI%
which can be written as

® (20,0) + " (0,59) =0=0-20+ 1y, -0

It now suffices to remark that equality in Young’s inequality is equivalent to
(0,9p) € 9% (x0,0).
Conversely, if zo € RY and y}, € RM satisfy (75), then, since

P (2,0) > —@*(0,y")
for all z € RY and all 4y’ € RM by (70), taking ¥’ = y), and using (75) gives
® (2,0) > —2" (0,5) = © (0,0)
for all z € RY, that is,

F (wo) = @ (20,0) = min & (z,0) = min F(z),
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which implies that xg is a solution of (P).
Similarly, taking = = xg gives

® (z9,0) = —0* (0,y5) > —P* (0,7)
for all z € RY and all 3 € RM, which implies that

—®*(0,y')} = —®* (0, y¢
y{%%)]%{{ (ay)} (7y0)a

that is, g is a solution of (P*).
Finally, using (70) once more,

D (20,0) = rrl]ligllv ® (2,0) > max {—®*(0,y)} = -2 (0,y;),
xe

y/ ERM

and so all inequalities are actually inequality. m
We now discuss some important special cases. Let A be an N x M matrix
and denote by AT its transpose. Assume that

F(z)=J(x,Az), (76)

where J : RV xRM — [—00, 00]. In this case the minimization problem problem
(P) becomes
inf J(z,Ax).
zERN

A natural choice for the function ® : RY x RM — [—o0, 00] is
®(z,y) == J (z, Az —y).

Note that if J is convex, then so is ®, and if .J is lower semicontinuous, then so
is @.

To calculate the dual problem, let J* be the conjugate of J. Then for all
y' € RM. Since

o (0,7) sup  {y -y—J(z,Ax —y)}
2ERN | yeRM

= sup sup {y -y —J(z, Az —y)}.
z€RN yeRM

For any fixed x € RV, set w := Az —y. Then

" (0,y') = sup sup {y'-Az—y -w—J(z,w)}
RN weRM

sup {(ATY) 2 —y w—J(z,0)}
z€RN weRM

— J* (AT /7_y/) .
Thus the problem (P*) becomes
sup —J* (ATy/,—y). (77)
y/ERM

Proposition 208 now becomes
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Proposition 212 Let L and J be as above. Assume that J : RY x RM —
[—00, 00] is convex, that
inf J(z,Ax) € R,

zERN

and that there exists xo € RY such that y € RM — J(zg,y) is finite and
continuous at L (xg). Then
inf P = sup P*

and problem (P*) has a solution.

Proof. This follows from Proposition 205. m
Theorem 211 reduces to:

Theorem 213 Let L and J be as above. If (P) and (P*) have solutions and
inf P =sup P* € R,

then for any solution o € RY of (P) and any solution y) € RM of (P*) we
have the extremality relation

J($0a A:CO) + J* (ATyE)J _y(l)) = 07 (78)

or, equivalently,
(ATy(/]v _y(/)) €aJ (xO; A(Eo) :

Conversely, if ro € RN and Y € RM satisfy (78), then xo is a solution of (P)
and y, is a solution of (P*) and inf P = sup P* € R.
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A particular case of (76) is given when J is a sum of two functions, that is

F(z) = f(x)+g(Az),
where as before A is an N x M matrix and
f:RY = [—00,00], ¢:RM = [—00,00].
In this case the minimization problem (P) becomes

nf [ (z) + g (A0)].

Since J (z,y) = f () + g (y), if f and ¢ are convex, then J is convex, and if f
and g are proper, convex, and lower semicontinuous, then so is J. Moreover,

J (@ y)= sup {2’z +y-y—f(z) -9}
zERN , ycRM

=@ +9" (),
so that the dual problem (P*) becomes
sup [—f* (A"Y) — g" (=¥)],

y’ERJW
where f* and ¢g* are the conjugate functions of f and g respectively.
Exercise 214 Find inf P and sup P* for the following:

(i) Let A be the identity matriz and let f : R?> — (—o00,00] and g : R? —
(—o00, 00].be defined by

f(x,y)::{ 0 ifz=0, g(x,y)::{ —min {1, /zy} ifz>0andy>0,

oo otherwise, 00 otherwise.
(ii) Let A be the identity matriz and let f : R? — (—o0,00] and g : R? —
(—00, 00].be defined by

f(x,y)::{o ifz =0, g(a:,y)::{_‘/@ if x>0 andy >0,

oo otherwise, o0 otherwise.

In this case Proposition 208 now becomes
Theorem 215 Let A be an N x M matriz. Consider two convex functionals
f:RY = [—00,00], g¢:RM = [—00,0q].
Assume that

inf [f (2) +9 (Az)) € B,

x€

and that there exists xo € RY such that f(x9) € R, g(L(x9)) € R and g is
continuous at L (xg). Then

inf P = sup P*,

and (P*) admits at least a solution.
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Concerning the extremality relation (78), we have
0=J(zg, Azg) + J* (ATyé, =)
= [ (w0) + g (Azo) + f* (A"yo) + 9" (~%0)
= [f (x0) + f* (ATyp) — ATyg - o)
+ g (Azo) + 9™ (—yo) — (= - Axo)]

and since the expressions in square brackets are nonnegative, we obtain the two
extremality relations

f(@o) + f* (ATy) — ATy - 20 = 0, (79)
g (Azo) + g (—yp) — (—yo - Azo) =0, (80)

which are equivalent to

AT% € df (zo), —yo € 0g(Axo).

3.10 An example

All the results done in the previous section can be extended to the infinite-
dimensional setting. It suffices to replace RY and RM with two topological
vector spaces V and Y, and the inner products 2’ - x and 3’ - y with the duality
pairings (v, v)V/y and (y/, y>Y/’Y. We present here an application.

Let Q € RY be an open bounded set with Lipschitz boundary. Let g : RN —
[0,00) be a strictly convex function such that

0<g(z) <C(1+z")

for 2 € RY and for some C' > 0 and p > 1. Given function f € L7 (), where
% + % = 1, we are interested in the following minimization problem

inf{/ﬂg(VU(m)) dx—/Qv(x)f(x) dz veW&”’(Q)}.

Note that if u € W1 (Q) is a solution of this problem, then for any ¢ € C° ()
the function

(1) = /Q 9 (Vu(z) + Vi (2)) de - /Q (u (@) + to () f () da

has a minimum in ¢ = 0, and so, if g is of class C"* (RN) by differentiating under
the integral sign (why can we do it?), we get

o:¢’<o>=/ﬂw<w<w>>w<x> dz—/m)f(z) dz.

Q
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If u and g are more regular, then we can integrate by parts to get
0=-— / div (Vg (Vu (z))) ¢ (z) dx
Q

+ [ Ve(Vu@) v (@) o (@) aH¥ 1 - / (@) f (2) de
o0 Q

_ / (div (Vg (Vu (2))) + f (@)] ¢ (z) dz,

where we have used the fact that ¢ = 0 on 0. Since this is true for all
p € C (), we get that u solves the Dirichlet problem

—div(Vg(Vu))=f inQ,
u=0 on 0.

If the function g is not of class C!, say,
g9(2) = |2|" +clzl,
then we are in trouble.
To find the dual problem, we take V = Wg’p (Q,Y =1r (Q;]RN), and

consider the linear functional

L: W' (Q) — L* (Q;RY)

v — Vv
and the convex functionals
F:W"(Q)—-R, G:LF(4RY) —[0,00)

defined by

F (v) ::f/ﬂv(x)f(z) dz G (2) ::/Qg(z) dx.

Hence, the minimization problem (P) becomes

seri ) [/QW”) dw = /Q"Uf dw} = inf [F(0)+G (L))

vEW, P (Q)
The transpose of L is
LT L7 (RY) —» Wb (Q)
The dual problem (P*) is given by
sup  [—F* (LT (z*)) — G* (=2)].

2*€L1(R2)
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It is well-known that
G ()= [ g (-7 dm,
Q

while

Frr ()= s {7 )0y g wine — F 0]

vEW, P (Q)

s {(=" L)y ra@uini — F @)
vEW, P (Q)

sup {/z*-Vvdx—/vfdx}.
vewy P (Q) \JQ Q
If z* is sufficiently regular, we can use the divergence theorem to get
/ 2" - Vudr = —/ vdivz*da:—i—/ vz*  vdHN T
Q Q a0

= —/ vdiv z* dzx,
Q

where we have used the fact that v = 0 on 9. Hence,

F*(L* (%) = sup ){/Qv(divz*Jrf) dz}

vEW P (Q
_ 0 if dive*=—fin Q,
T o otherwise.

Therefore problem (P*) reduces to

swp{ = [ g (%) dos o € L (aivi), (51
Q
divz* = —f in Q},

where
L9 (div; Q) == {2" € LT (U RY) : dive* € L9(Q)}.

Taking vg = 0 we have that such that F (0) =0 € R, G (L (0)) = g (0) LY (Q) €
R and G is continuous at 0. Hence, if inf P > —oo, then

inf P = sup P,
and (P*) admits at least a solution z{.

To see what equation is solved by zj, note that for any ¢ € Cg° (Q;RN)
with div ¢ = 0, the function

(1) = /Q g (~25 () — tp (x)) de
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has a minimum in ¢ = 0, and so, by differentiating under the integral sign (why
can we do it?), we get

0= (0) = [ V" (-5 @) ¢ @) da.

Let ¢ € C° (Q; RN) and consider

_ _9¢ _99
p(x) = (O,..., 8zcj’0""’ axi,O,...,()).

i-th Jj-th

Then divp = —% + 83252 =0, and so
0z 0z

dg* . . 0 ag* . . 9¢
0= [ |5 (-5 (@) g (@) + 5 (=55 (@) 52 (o) o

If 25 and ¢g* are more regular, then we can integrate by parts to get

o9 . . %) ag* . ¢
0= [ -5 (s @) g2 @)+ G2 (-3 ) 52 @)

€4 aZj 8$Z

[ (B @) - 5 (5 s @) [ 6 @) o

where we have used the fact that ¢ = 0 on 0. Since this is true for all
¢ € C (), we get

6?% (gg (—z2 (x>>) = aii <gg (== W) ’

curl (Vg* (—z; (z))) = 0.

which says that

If Q is simply connected, this implies that
Vg* (=2 (z)) = Vuq (2)

for some function u; € WP (Q).
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