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Monday, January 13, 2020

1 The Field of Complex Numbers

We define C, the complex numbers, to be the set of all ordered pairs z = (x, y)
of real numbers x, y with operations of addition and multiplication defined by

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2), (1)

(x1, y1)(x2, y2) := (x1x2 − y1y2, y1x2 + x1y2), (2)

for all z1 = (x1, y1), z2 = (x2, y2). It can be checked that with these two oper-
ations C is a field. This means that addition and multiplication are associative
and commutative, (0, 0) and (1, 0) are the identities for addition and multiplica-
tion, respectively, every complex number has an additive inverse, every complex
number different from zero has a multiplicative inverse, and distributivity of
multiplication over addition holds. The set of complex numbers of the form
(x, 0), x ∈ R is a subfield of C, and it is the isomorphic image of R through the
mapping

x 7→ (x, 0).

Hence, from now on we will consider R as a subset of C by identifying the pair
(x, 0) with the real number x. Using this identification, if we define i := (0, 1)
then x + iy = (x, y). From now on we will use notation. The real numbers x
and y are called the real and imaginary parts of z, and we write

Re z = x Im z = y.

Complex numbers of the form yi are called purely imaginary numbers.
Observe that using (2) we have that i2 = −1 and so the equation z2 + 1 = 0

has a root in C. Indeed, z2 + 1 = (z + i)(z − i). More generally, if z, w ∈ C we
have that

z2 + w2 = (z + iw)(z − iw).

Using the previous formula, given z = x+ iy 6= 0 we have

1

z
=

1

x+ iy
=

1

x+ iy

x− iy
x− iy =

x− iy
x2 + y2

,

which is the formula for the multiplicative inverse, or the opposite, of z.
Given a complex number z = x + iy, x, y ∈ R, we define the absolute value

of or modulus of z as
|z| =

√
x2 + y2.

Note that this is the norm of the vector (x, y) ∈ R2. Hence, we have

|z| = 0 if and only if z = 0,

|z + w| ≤ |z|+ |w| for all z, w ∈ C,
|tz| = |t||z| for all z ∈ C and t ∈ R.
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We leave as an exercise to show that

|zw| = |z||w| for all z, w ∈ C,∣∣∣ z
w

∣∣∣ =
|z|
|w| for all z, w ∈ C, with w 6= 0.

Since the absolute value of z = x + iy is the norm in R2 of (x, y), if we define
the open ball centered at z0 = x0 + iy0 ∈ C and radius r > 0 as

B(z0, r) := {z ∈ C : |z − z0| < r},

this is nothing else than the ball B((x0, y0), r) ⊂ R2. Hence, the topology in
C coincides with the topology in R2. So we will have the same open sets, the
same closed sets, the same compact sets, the same connected sets, and so on.
Given a complex number z = x + iy ∈ C, the complex conjugate of z is

defined as the complex number

z̄ := x = iy.

The following properties are left as an exercise:

|z|2 = zz, Re z =
z + z

2
, Im z =

z − z
2i

for all z ∈ C, (3)

z + w = z + w, zw = zw for all z, w ∈ C, (4)( z
w

)
=
z

w
for all z, w ∈ C, with w 6= 0. (5)

A complex number z = x+ iy ∈ C \ {0} can be written in polar form as

z = reiθ,

where r = |z| and (we will justify this later)

eiθ = cos θ + i sin θ, (6)

where θ is the angle between the positive real axis and the half-line starting at
the origin and passing through z. The number θ is called the argument of z and
is denoted arg z.
The following properties are left as an exercise:

if z = reiθ and w = seiϕ, then zw = rsei(θ+ϕ),

if z = reiθ and n ∈ N, then zn = rneinθ.

Exercise 1 Given n ∈ N, solve the equation zn = 1.
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2 Complex Functions

Definition 2 Let E ⊆ C, let z0 ∈ C be an accumulation point of E and let
f : E → C. We say that ` ∈ C is the limit of f as z approaches z0 and we write

lim
z→z0

f(z) = `

if for every ε > 0 there exists δ = δ(z0, ε) > 0 such that

|f(z)− `| < ε

for all z ∈ E with 0 < |z − z0| < δ.

Given E ⊆ C and a function f : E → C, since the absolute value in C is the
norm in R2, the the basic properties of limits (sum, composition, multiplication
by a scalar) will not change. The only additional property is the product of
limits.

Exercise 3 Let E ⊆ C, let z0 ∈ C be an accumulation point of E and let
f : E → C and g : E → C. Assume that there exist

lim
z→z0

f(z) = ` ∈ C, lim
z→z0

g(z) = L ∈ C.

Prove that

(i) there exist
lim
z→z0

(f + g)(z) = `+ L;

(ii) there exist
lim
z→z0

(fg)(z) = `L;

(iii) if L 6= 0, then z0 is an accumulation point for E0 := {z ∈ E : g(z) 6= 0},
and if we restrict f/g to E0, then there exists

lim
z→z0

(
f

g

)
(z) =

`

L
.

Exercise 4 State and prove a similar result for the limit of compositions.

Next we discuss differentiation.

Definition 5 Let E ⊆ C, let z0 ∈ E be an accumulation point of E and let
f : E → C. We say that f is differentiable at z0 if there exists the limit

lim
z→z0

f(z)− f(z0)

z − z0
= ` ∈ C.

We call the limit ` the derivative of f at z0 and we denote it by f ′(z0) or df
dz (z0).
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Definition 6 Let U ⊆ C be an open set and let f : U → C. We say that f is
holomorphic in U , if f is differentiable in U .

The following properties are left as an exercise;

Exercise 7 Let E ⊆ C, let z0 ∈ E be an accumulation point of E and let
f : E → C and g : E → C be differentiable at z0. Prove that

(i) f + g is differentiable at z0 and (f + g)′(z0) = f ′(z0) + g′(z0),

(ii) fg is differentiable at z0 and (fg)′(z0) = g(z0)f ′(z0) + f(z0)g′(z0),

(iii) if g(z0) 6= 0 then f
g : E0 → C is differentiable at z0 and(
f

g

)′
(z0) =

g(z0)f ′(z0)− f(z0)g′(z0)

(g(z0))2
,

where E0 := {z ∈ E : g(z) 6= 0}.

Exercise 8 Let E,F ⊆ C, let z0 ∈ E be an accumulation point of E , let
f : E → F be differentiable at z0, let f(z0) be an accumulation point of f(E)
and let g : F → C be differentiable at f(z0). Prove that g ◦ f is differentiable at
z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Exercise 9 Let U, V ⊆ C be open sets, let f : U → V be continuous and let
g : V → C be differentiable and such that

g(f(z)) = z for all z ∈ U.

Let z0 ∈ U be such that g′(f(z0)) 6= 0. Prove that f is differentiable at z0 and

f ′(z0) =
1

g′(f(z0))
.

Let’s discuss the relation between complex and real differentiation. Given
E ⊆ C and f : E → C, let

F := {(x, y) ∈ R2 : x+ iy ∈ E}

and define u : F → R and v : F → R by

u(x, y) := Re f(x+ iy), v(x, y) := Im f(x+ iy). (7)

The following example shows that differentiability of u and v does not imply
differentiability of f .
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Example 10 Consider the function f(z) = z. Then u(x, y) = x and v(x, y) =
−y, which are C∞ and even analytic functions. However, f is not differentiable
at 0, since

lim
z→0

f(z)− f(0)

z − 0
= lim
z→0

z̄

z

and this limit does not exist, since taking z = x+ i0 gives

lim
z→0

z̄

z
= lim
x→0

x

x
= 1,

while taking z = 0 + iy gives

lim
z→0

z̄

z
= lim
y→0

−y
y

= −1.

Wednesday, January 15, 2020
We recall that given a set F ⊆ RN , a point x0 ∈ F ∩accF , and a real-valued

function u : F → R, we say that u is differentiable at x0 if there exists a linear
function L : RN → R such that

lim
x→x0

u(x)− u(x0)− L(x− x0)

‖x− x0‖
= 0.

The linear function L is called the differential of f at x0 and is denoted df(x0).

Exercise 11 Let F ⊆ RN , let x0 ∈ F ◦, and let u : F → R be differentiable at
x0.

(i) Prove that u is continuous at x0.

(ii) Prove that there exist all partial derivatives ∂u
∂xi

(x0), all directional deriv-
atives ∂u

∂ν (x0) and that

∇u(x0) · ν =
∂u

∂ν
(x0) (8)

for all ν ∈ RN \ {0}.

Exercise 12 Let u : R2 → R be defined by

u(x, y) :=

{
x if y = x2, x 6= 0,
0 otherwise.

Prove that u is continuous at (0, 0), all partial and directional derivatives exist
at (0, 0) and that (8) holds but that u is not differentiable at (0, 0).

Next we show that differentiability of f implies the differentiability of u and
v. In what follows, given a set E ⊆ C, we denote by E◦ the set of interior points
of E.
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Theorem 13 (Cauchy—Riemann Equations) Let E ⊆ C, let z0 = x0 +
iy0 ∈ E be an accumulation point of E and let f : E → C be differentiable
at z0. Then the functions u and v defined in (7) are differentiable at (x0, y0).
Moreover if z0 is an interior point of E, then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) = Re f ′(x0 + iy0), (9)

−∂u
∂y

(x0, y0) =
∂v

∂x
(x0, y0) = Im f ′(x0 + iy0).

In particular,

det

(
∂u
∂x (x0, y0) ∂u

∂y (x0, y0)
∂v
∂x (x0, y0) ∂v

∂y (x0, y0)

)
= |f ′(z0)|2 (10)

The relations

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0), −∂u

∂y
(x0, y0) =

∂v

∂x
(x0, y0) (11)

are known as the Cauchy—Riemann equations.
Proof. We have

0 = lim
z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

z − z0

and so (since the product of a bounded function and a function going to zero
goes to zero)

0 = lim
z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

|z − z0|
.

In turn,

lim
z→z0

Re(f(z)− f(z0)− f ′(z0)(z − z0))

|z − z0|
= 0, (12)

lim
z→z0

Im(f(z)− f(z0)− f ′(z0)(z − z0))

|z − z0|
= 0. (13)

Now by (2), writing z = x+ iy and z0 = x0 + iy0,

f ′(z0)(z − z0) = Re f ′(z0)(x− x0)− Im f ′(z0)(y − y0)

+ i(Im f ′(z0)(x− x0) + Re f ′(z0)(y − y0)),

and so (12) and (13) become

lim
(x,y)→(x0,y0)

Re f(x+ iy)− Re f(x0 + iy0)− Re f ′(x0 + iy0)(x− x0) + Im f ′(x0 + iy0)(y − y0)√
(x− x0)2 + (y − y0)2

= 0,

lim
(x,y)→(x0,y0)

Im f(x+ iy)− Im f(x0 + iy0)− Im f ′(x0 + iy0)(x− x0)− Re f ′(x0 + iy0)(y − y0)√
(x− x0)2 + (y − y0)2

= 0.
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These can be written as

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− (Re f ′(x0 + iy0),− Im f ′(x0 + iy0)) · ((x− x0), (y − y0))√
(x− x0)2 + (y − y0)2

= 0,

lim
(x,y)→(x0,y0)

v(x, y)− v(x0, y0)− (Im f ′(x0 + iy0),Re f ′(x0 + iy0)) · ((x− x0), (y − y0))√
(x− x0)2 + (y − y0)2

= 0.

These implies that u and v are differentiable at (x0, y0) with

du(x0, y0)(s, t) = Re f ′(x0 + iy0)s− Im f ′(x0 + iy0)t, (s, t) ∈ R2,,

dv(x0, y0)(s, t) = Im f ′(x0 + iy0)s+ Re f ′(x0 + iy0)t, (s, t) ∈ R2.

In particular, if z0 belongs to the interior of E then ∇u(x0, y0) and ∇v(x0, y0)
exist with

∂u

∂x
(x0, y0) = Re f ′(x0 + iy0),

∂u

∂y
(x0, y0) = − Im f ′(x0 + iy0) (14)

∂v

∂x
(x0, y0) = Im f ′(x0 + iy0),

∂v

∂y
(x0, y0) = Re f ′(x0 + iy0). (15)

Comparing (14) and (15) gives the Cauchy—Riemann equations. In turn, (10)
follows by direct computation.

Corollary 14 Let U ⊆ C be an open and connected set and let f : U → C be a
differentiable function with f ′ = 0 in U . Then f is constant.

Proof. By the previous theorem the functions u and v defined in (7) are
differentiable in V = {(x, y) ∈ R2 : x + iy ∈ U}, with ∇u = ∇v ≡ (0, 0) in
V . Thus, by a result in Analysis, u and v are constant in V . Again by (7), it
follows that f is constant.

Theorem 15 Let F ⊆ R2, let (x0, y0) ∈ F be an interior point of F and let
u, v : E → R be differentiable at (x0, y0). Assume that the Cauchy—Riemann
equations (11) hold at (x0, y0). Let E := {z = x+ iy ∈ C : (x, y) ∈ F} and let
f : E → C be defined by

f(z) = u(x, y) + iv(x, y), z = x+ iy ∈ E. (16)

Then f is differentiable at z0.

Proof. Set
f ′(z0) :=

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).
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Now by (2), writing z = x+ iy and z0 = x0 + iy0,

f ′(z0)(z − z0) = Re f ′(z0)(x− x0)− Im f ′(z0)(y − y0)

+ i(Im f ′(z0)(x− x0) + Re f ′(z0)(y − y0))

=
∂u

∂x
(x0, y0)(x− x0)− ∂v

∂x
(x0, y0)(y − y0)

+ i
∂v

∂x
(x0, y0)(x− x0) + i

∂u

∂x
(x0, y0)(y − y0)

=
∂u

∂x
(x0, y0)(x− x0) +

∂u

∂y
(x0, y0)(y − y0)

+ i
∂v

∂x
(x0, y0)(x− x0) + i

∂v

∂y
(x0, y0)(y − y0),

where in the last equality we used (11) (∂u∂x (x0, y0) = ∂v
∂y (x0, y0) and−∂u∂y (x0, y0) =

∂v
∂x (x0, y0)). Hence, also by (16),

f(z)− f(z0)− f ′(z0)(z − z0) = u(x, y)− u(x0, y0)−∇u(x0, y0) · (x− x0, y − y0)

+ i(v(x, y)− v(x0, y0)−∇v(x0, y0) · (x− x0, y − y0)).

Dividing by |z − z0| =
√

(x− x0)2 + (y − y0)2 gives

f(z)− f(z0)− f ′(z0)(z − z0)

|z − z0|
=
u(x, y)− u(x0, y0)−∇u(x0, y0) · (x− x0, y − y0)√

(x− x0)2 + (y − y0)2

+ i
v(x, y)− v(x0, y0)−∇v(x0, y0) · (x− x0, y − y0)√

(x− x0)2 + (y − y0)2
.

Since u and v are differentiable at (x0, y0), it follows that

0 = lim
z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

|z − z0|
,

which implies that

0 = lim
z→z0

f(z)− f(z0)− f ′(z0)(z − z0)

z − z0
,

and the proof is complete.
The following example shows that the previous theorem fails without assum-

ing that u and v are differentiable. We refer to Section 3 for the definition of
ez.

Example 16 Let

f(z) =

{
exp(−z−4) if z 6= 0,
0 if z = 0.

Prove that the Cauchy—Riemann equations are satisfied but that f is not differ-
entiable at the origin.
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Note that the previous function is not continuous at z = 0. There is a
beautiful theorem, due to Looman and Menchoff, which we will not prove, which
says the following.

Theorem 17 (Looman—Menchoff) Let V ⊆ R2 be an open set, let u, v :
V → R be continuous functions in V . Assume that ∂u∂x ,

∂u
∂y ,

∂v
∂x , and

∂v
∂y exist in

V and satisfy the Cauchy—Riemann equations (11) in V . Let U := {z = x+iy ∈
C : (x, y) ∈ V } and let f : U → C be defined by

f(z) = u(x, y) + iv(x, y), z = x+ iy ∈ U.

Then f is differentiable in U .

3 Power Series and Some Elementary Functions

Definition 18 Given a sequence {zn}n of complex numbers, we call the n-th
partial sum the number

sn = z1 + · · ·+ zn.

The sequence {sn}n of partial sums is called infinite series or series and is
denoted

∞∑
n=1

zn.

If there exists limn→∞ sn = S ∈ C, we say that the series
∑∞
n=1 zn is conver-

gent. The number S is called sum of the series. If the limit limn→∞ sn does
not exist, we say that the series

∑∞
n=1 zn oscillates.

We say that the series
∑∞
n=1 zn converges absolutely if the series

∑∞
n=1 |zn|

converges.

Remark 19 There is nothing special about 1, we will also consider series of
the type

∑∞
n=0 zn or

∑∞
n=n0

zn, where n0 ∈ N. The only change is that in the
partial sums, one should consider sn = z0 + · · · + zn and sn = zn0 + · · · + zn,
respectively.

Theorem 20 If the series
∑∞
n=1 zn converges, then there exists

lim
n→∞

zn = 0.

Proof. Since the series
∑∞
n=1 zn converges, there exists limn→∞ sn = S ∈ C.

Hence,
zn = sn+1 − sn → S − S = 0

as n→∞. Note that here it is important that S ∈ C.

Definition 21 A power series is a series of the form
∞∑
n=0

anz
n, z ∈ C,

where an ∈ C.
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Friday, January 17, 2020
We recall that given a sequence {xn}n of real numbers, the limit superior of

{xn}n is defined as
lim sup
n→∞

xn := inf
n

sup
k≥n

xk.

Exercise 22 Given a sequence {xn}n of real numbers and ` ∈ R, prove that `
is the limit superior of the sequence {xn}n if and only if

(i) for every ε > 0 there exists nε ∈ N such that

xn ≤ `+ ε for all n ≥ nε

(ii) for every ε > 0,

xn ≥ `− ε for infinitely many n.

State and prove a similar result for the case ` =∞.

Theorem 23 Given a power series

∞∑
n=0

anz
n, z ∈ C,

let R ∈ [0,∞] be given by

1

R
:= lim sup

n→∞
|an|1/n.

Then for |z| < R the series converges absolutely, while for |z| > R the series
oscillates.

Proof. If |z| < R, then |z|/R < 1. Fix ε > 0 so small that (1/R+ ε)|z| < 1.
By the previous exercise, there exists N ∈ N such that

|an|1/n ≤ 1/R+ ε

for all n ≥ N , and so
|an| ≤ (1/R+ ε)

n

for all n ≥ N . In turn,

|anzn| = |an||z|n ≤ [(1/R+ ε) |z|]n

for all n ≥ N . Since (1/R+ ε) |z| < 1, the geometric series
∑
n=1[(1/R+ ε) |z|]n

converges. Hence, so does
∑∞
n=1 |anzn| by the comparison test.

On the other hand, if |z| > R, fix ε > 0 so small that (1/R − ε)|z| > 1. By
the previous exercise,

|an|1/n ≥ 1/R− ε > 0

12



for infinitely many n, and so

|an| ≥ (1/R− ε)n

for infinitely many n. In turn,

|anzn| = |an||z|n ≥ [(1/R− ε) |z|]n

Thus,
lim sup
n→∞

|anzn| ≥ lim sup
n→∞

[(1/R− ε) |z|]n =∞,

since (1/R− ε) |z| > 1. It follows by Theorem 20, that the series
∑∞
n=1 anz

n

oscillates.
The number R is called radius of convergence of the power series.

Exercise 24 Given {ak}nk=1 and {bk}nk=1 in C, let Bl :=
∑l
k=1 bk, B0 := 0.

Prove that

n∑
k=m

akbk = anBn − amBm−1 −
n−1∑
k=m

(ak+1 − ak)Bk.

Exercise 25 Assume that the series of complex numbers
∑∞
n=1 an converges.

Use the previous exercise to show that

lim
r→1−

∞∑
n=1

anr
n =

∞∑
n=1

an.

Exercise 26 Version of Abel’s with angles. Ahlfors.

Example 27 When |z| = R anything can happen as the two power series

∞∑
n=1

1

n
zn,

∞∑
n=1

1

n2
zn

show. Note that for a > 0,(
1

na

)1/n

=
1

na/n
=

1

elogna/n
=

1

e(a/n) logn
→ 1

e0
=

1

R
.

Exercise 28 Let {xn}n be a sequence of real numbers, with xn > 0 for all
n ∈ N. Prove that

lim inf
n→∞

xn+1

xn
≤ lim inf

n→∞
n
√
xn ≤ lim sup

n→∞
n
√
xn ≤ lim sup

n→∞

xn+1

xn
.

Show that the inequality can be strict.
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Remark 29 In view of the previous exercise, if there exists

lim
n→∞

xn+1

xn

then there exists
lim
n→∞

n
√
xn

and the two limits are the same.

Next we show that a power series is differentiable in B(0, R).

Theorem 30 Given a power series
∞∑
n=0

anz
n, z ∈ C,

let R be its radius of convergence and assume that R > 0. Then the function
f(z) :=

∑∞
n=0 anz

n is differentiable in the open set UR := {z ∈ C : |z| < R}
and

f ′(z) =

∞∑
n=0

nanz
n−1.

Moreover, the power series
∑∞
n=0 nanz

n−1 has the same radius of convergence
R.

Proof. The fact that the two power series have the same radius of conver-
gence follows from the fact that

lim sup
n→∞

|nan|1/n = lim sup
n→∞

n1/n|an|1/n = lim sup
n→∞

elogn1/n |an|1/n

= lim sup
n→∞

e(logn)/n|an|1/n = lim
n→∞

e(logn)/n lim sup
n→∞

|an|1/n = 1
1

R
.

Let z0 ∈ UR and find |z0| < r < R. Let h ∈ C be so small that |z0 + h| < r.
Define

g(z) :=

∞∑
n=0

nanz
n−1

and consider

f(z0 + h)− f(z0)

h
− g(z0) =

∞∑
n=0

an
(z0 + h)n − zn0

h
−
∞∑
n=0

nanz
n−1
0

=

N∑
n=0

an

[
(z0 + h)n − zn0

h
− nzn−1

0

]

+

∞∑
n=N+1

an
(z0 + h)n − zn0

h
−

∞∑
n=N+1

nanz
n−1
0

=: I + II + III.

14



Using the facts that an − bn = (b− a)(an−1 + an−2b+ · · ·+ abn−2 + bn−1), that
|z0| < r, and that |z0 + h| < r we have that

|(z0 + h)n − zn0 | ≤ |h|nrn−1.

In turn,

|II| ≤
∞∑

n=N+1

|an|nrn−1.

Since g has the same radius of convergence than f and r < R we have that
the right-hand side is the tail of a convergent series and thus goes to zero as
N → ∞. Hence, given ε > 0 we can find Nε ∈ N such that |II| ≤ ε for all
N ≥ Nε.
Similarly, since |z0| < R and g(z0) converges, by taking Nε larger, if neces-

sary, we have that |III| ≤ ε for all Ṅ ≥ Nε.
Fix N = Nε. Since I is the difference quotient of a finite number of differen-

tiable functions, we can find δε > 0 such that |I| ≤ ε for all h ∈ C with |h| ≤ δε.
This concludes the proof.

By repeated applications of the previous theorem we obtain the following:

Corollary 31 A power series f(z) =
∑∞
n=0 anz

n is infinitely differentiable in
UR := {z ∈ C : |z| < R}, where R is its radius of convergence. Moreover,
the higher derivatives f (k) are power series obtained by pointwise differentiation
and with the same radius of convergence. To be precise,

f (k)(z) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)anz
n−k, z ∈ UR.

Moreover,

f (k)(0) =
1

k!
ak, k ∈ N0.

Remark 32 Similarly, if we consider f(z) =
∑∞
n=0 an(z − z0)n, then f is

infinitely differentiable in UR := {z ∈ C : |z − z0| < R}, with f (k)(z0) = 1
k!ak,

k ∈ N0.

Using power series we can define ez, cos z, and sin z as follows

ez :=

∞∑
n=0

1

n!
zn, cos z :=

∞∑
n=0

(−1)n
1

(2n)!
z2n, sin z :=

∞∑
n=0

(−1)n
1

(2n+ 1)!
z2n+1.

Using Remark 29, we compute
1

(n+1)!

1
n!

=

1
n!(n+1)

1
n!

=
1

n+ 1
→ 0,

(−1)n+1 1
(2n+2)!

(−1)n 1
(2n)!

= −
1

(2n)!(2n+2)(2n+1)

1
(2n)!

= − 1

(2n+ 2)(2n+ 1)
→ 0,

(−1)n+1 1
(2n+3)!

(−1)n 1
(2n+1)!

= −
1

(2n+1)!(2n+3)(2n+2)

1
(2n+1)!

= − 1

(2n+ 3)(2n+ 2)
→ 0,
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and so all three series have radius of convergence R = ∞, so they converge in
C. For cos z we used the fact that z2n = (z2)n and for sin z we pulled out z and
used the same trick.
Note that if we differentiate ez, by Theorem 30,

(ez)′ =

∞∑
n=1

n

n!
zn−1 =

∞∑
k=1

1

k!
zk = ez,

which is the same property of the real exponential function. Similarly, by The-
orem 30,

(cos z)′ = − sin z, (sin z)′ = cos z.

Consider the function g(z) = ezea−z, where a ∈ C is fixed. By the product
rule, Exercise 8, and Theorem 30,

g′(z) = ezea−z − ezea−z = 0

and so by Corollary 14, g is constant. Since e0 = 1, taking z = 0 gives g(z) ≡ ea.
Hence,

ezea−z = ea for all z ∈ C.
Taking a = z + w we get

ezew = ez+w for all z, w ∈ C. (17)

Taking w = −z gives eze−z = 1 so ez 6= 0 for all z and

1

ez
= e−z. (18)

Observe also that by (4), 1
n!z

n = 1
n!z

n = zn and so ez = ez. In turn, by (3)
and (17),

|ez|2 = ezez = ezez = ez+z = e2 Re z. (19)

Note that

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz
2i

. (20)

These are called Euler formulas for cos z and sin z. From these formulas and
(17) we obtain

cos2 z + sin2 z =
e2iz + e−2iz + 2eize−iz

4
− e2iz + e−2iz − 2eize−iz

4
= 1

and
eiz = cos z + i sin z, (21)

which is what we used in (6).

Exercise 33 Let x+ iy ∈ C. Prove that

| cos z|2 = cos2 x+ cosh2 y, | sin z|2 = sin2 x+ sinh2 y,
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Monday, January 20, 2020
MLK Day, no classes.

Wednesday, January 22, 2020
Next we study the periodicity of ez. We say that a function f : C → C is

periodic with period w ∈ C if

f(z + w) = f(z) for all z ∈ C.

Given w ∈ C, assume that
ez = ez+w

for all z ∈ C. Then by multiplying both sides by e−z and using (17) we get
1 = ew. Taking the modulus on both sides and using 19 we get

1 = e2 Rew,

which implies that Rew = 0. Thus, w = iθ for some θ ∈ R. In turn, by (21),

1 = eiθ = cos θ + i sin θ,

and so
θ = 2πk, k ∈ Z.

This shows that the exponential function is periodic with period 2πi. This is
one of the main differences with the real exponential. In particular, this implies
that ez is not one-to-one in C. Thus, we cannot define the complex logarithmic
function as the inverse of the complex exponential function.

Definition 34 Given a connected open set U ⊆ C, a branch of the logarithm
is a continuous function f : U → C such that

z = ef(z) for all z ∈ U.

We sometimes write f = logU .

Remark 35 Note that since ez 6= 0 for all z, in order for a branch of the
logarithm to exist in U , we must have 0 /∈ U .

Exercise 36 Let

W := C \ {z ∈ C : z = x+ 0i, x ≤ 0}.

For every z ∈W , write z = reiθ, r = |z|, −π < θ < π, and define

f(z) := log r + iθ.

(i) Prove that f is branch of the logarithm in W .

(ii) Prove that for all z ∈ B(0, 1) with 1 + z ∈W ,

f(1 + z) = −
∞∑
n=1

(−1)n
zn

n
.

17



(iii) Prove that in general

f(z1z2) 6= f(z1) + f(z2).

The branch of the logarithm constructed in the previous exercise is called
the principal branch of the logarithm.

Proposition 37 Let U ⊆ C be an open connected set and let f : U → C be a
branch of of the logarithm. Then f is differentiable in U , with

f ′(z) =
1

z
for all z ∈ U.

Moreover, every other branch of the logarithm in U has the form

g(z) = f(z) + 2kπi

for some k ∈ Z.

Proof. The differentiability of f follows from Exercise 9. By the chain rule
(see Exercise 8) and the definition of f ,

1 = ef(z)f ′(z) = zf ′(z) for all z ∈ U,

which implies that f ′(z) = 1
z .

Given k ∈ Z, consider the function g(z) := f(z) + 2kπi, z ∈ U . Then the
periodicity of the exponential

eg(z) = ef(z)+2kπi = ef(z) = z,

which shows that g is a branch of log z.
Conversely, assume that g : U → C is another branch of log z. Then the

function
h(z) :=

1

2πi
(f(z)− g(z)), z ∈ U,

is continuous and since

e2πih(z) = ef(z)−g(z) = ef(z)e−g(z) = z
1

z
= 1,

by (18), we have that 2πih(z) = 2kπi for some k ∈ Z (depending on z). This
shows that h(U) ⊆ Z, but since h is continuous and U is connected, h must be
constant, and thus there is k0 ∈ Z such that h(z) = k0 for all z ∈ U , which
completes the proof.
If U ⊆ C is an open connected set and f : U → C is a branch of the logarithm

in U , then for every a ∈ C we define a branch of za as

g(z) := eaf(z), z ∈ U.

In view of the previous theorem, g is differentiable in U , since composition of
differentiable functions, and every other branch is given by

h(z) = eaf(z)+a2kπi = eaf(z)ea2kπi = g(z)ea2kπi.

18



4 Riemann-Stieltjes integrals

In what follows, given an interval [a, b] ⊆ R, a partition of [a, b] is a finite set
P := {t0, . . . , tn} ⊂ [a, b], where

a = t0 < t1 < · · · < tn = b.

Definition 38 Let g : [a, b] → C be a function. The pointwise variation of g
on the interval [a, b] is

Var g := sup

{
n∑
k=1

|g(tk)− g(tk−1)|
}
,

where the supremum is taken over all partitions P := {t0, . . . , tn} of [a, b], n ∈ N.
A function g : [a, b]→ C has finite or bounded pointwise variation if Var g <∞.

The space of all functions g : [a, b] → C of bounded pointwise variation is
denoted by BV ([a, b];C).

To highlight the dependence on the interval [a, b], we will sometimes write
Var[a,b] g.
Given a function g : [a, b] → C, we say that g is piecewise C1, if g is

continuous, and there exists a partition P := {t0 . . . , tn} ⊂ [a, b] such that
g : [tk−1, tk]→ C is of class C1 for every k = 1, . . . , n.

Exercise 39 Let g : [a, b]→ C be piecewise C1. Prove that

Var g =

∫ b

a

|g′(t)| dt.

Exercise 40 Let g : [a, b] → C be Lipschitz continuous. Prove that g ∈
BV ([a, b];C).

Exercise 41 Let g : [a, b]→ R be a monotone function. Prove that

Var g = sup
[a,b]

g − inf
[a,b]

g.

Exercise 42 Let f, g ∈ BV ([a, b] ;C). Prove the following.

(i) f ± g ∈ BV ([a, b] ;C).

(ii) fg ∈ BV ([a, b] ;C).

(iii) If |g(t)| ≥ c > 0 for all t ∈ [a, b] and for some c > 0, then f
g ∈

BV ([a, b] ;C).

Exercise 43 Let g : [a, b]→ C, and let c ∈ [a, b]. Prove that

Var[a,c] g + Var[c,b] g = Var[a,b] g.
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Exercise 44 Prove that g 7→ Var g is a seminorm in BV ([a, b];C).

Theorem 45 Let g ∈ BV ([a, b];C) and let f : [a, b] → C be a continuous
function. Then there exists ` ∈ C with the property that for every ε > 0 there
exists δε > 0 such that if P = {t0, . . . , tn} is a partition of [a, b] with tk− tk−1 ≤
δε for all k = 1, . . . , n, then∣∣∣∣∣`−

n∑
k=1

f(sk)(g(tk)− g(tk−1))

∣∣∣∣∣ ≤ ε,
for every sk ∈ [tk−1, tk], k = 1, . . . , n.

The number ` is called the Riemann-Stieltjes integral of f with respect to g
over [a, b] and is denoted

` =

∫ b

a

f dg.

Exercise 46 Let g : [a, b] → C be piecewise C1 and let f : [a, b] → C be a
continuous function. Prove that∫ b

a

f dg =

∫ b

a

f(t)g′(t) dt.

Exercise 47 Let g ∈ BV ([a, b];C), let f : [a, b]→ C be a continuous functions,
and P = {t0, . . . , tn} be a partition of [a, b] with a = t0 and b = tn. Prove that∫ b

a

f dg =

n∑
k=1

∫ tk

tk−1

f dg.

Exercise 48 Let g ∈ BV ([a, b];C), let f : [a, b]→ C be a continuous functions.
Prove that ∣∣∣∣∣

∫ b

a

f dg

∣∣∣∣∣ ≤ max
[a,b]
|f |Var g.

Exercise 49 Let g ∈ BV ([a, b];C), let f1, f2 : [a, b] → C be continuous func-
tions, and let α, β ∈ C. Prove that∫ b

a

(αf1 + βf2) dg = α

∫ b

a

f1 dg + β

∫ b

a

f2 dg.

Exercise 50 Let g1, g2 ∈ BV ([a, b];C), let f : [a, b] → C be continuous func-
tions, and let α, β ∈ C. Prove that∫ b

a

f d(αg1 + βg2) = α

∫ b

a

f dg1 + β

∫ b

a

f dg2.

20



Exercise 51 Let g ∈ BV ([a, b];C), let f : [a, b]→ C be a continuous functions,
and P = {t0, . . . , tn} be a partition of [a, b] with a = t0 and b = tn. Prove that∫ b

a

f dg =

n∑
k=1

∫ tk

tk−1

f dg.

Monday, January 20, 2020
We turn to the proof of Theorem 45.
Proof of Theorem 45. Since f is uniformly continuous, given ε = 1

m we
can find δm > 0 such that

|f(z)− f(w)| ≤ 1

m
(22)

for all z, w ∈ [a, b] with |z−w| ≤ δm. By an induction argument, we can assume
that δm ≥ δm+1 for all m ∈ N. For each m let Pm be the family of all partitions
P = {t0, . . . , tn} of [a, b] with tk − tk−1 ≤ δm for all k = 1, . . . , n. Note that
Pm+1 ⊆ Pm for every m. Let

Em := {S(P ) : P = {t0, . . . , tn} ∈ Pm, sk ∈ [tk−1, tk], k = 1, . . . , n}

where

S(P ) :=

n∑
k=1

f(sk)(g(tk)− g(tk−1)),

and let Cm = Em. Since Pm+1 ⊆ Pm, we have that Em+1 ⊆ Em, and so
Cm+1 ⊆ Cm.
Next we claim that

diamCm ≤
2

m
Var g. (23)

To see this, let P,Q ∈ Pm. Let P = {t0, . . . , tn} and assume first that Q is
obtained from P by adding a point c and let k0 be such that tk0−1 < c < tk0 .
Then

S(Q) =
∑
k 6=k0

f(τk)(g(tk)− g(tk−1)) + f(τ ′)(g(c)− g(tk0−1))

+ f(τ ′′)(g(tk0)− g(c)),

where tk−1 ≤ τk ≤ tk, tk0−1 ≤ τ ′ ≤ c, c ≤ τ ′ ≤ tk0 . In turn, by (22),

|S(Q)− S(P )| ≤
∑
k 6=k0

|f(τk)− f(sk)||g(tk)− g(tk−1)|+ |f(τ ′)− f(sk0)||g(c)− g(tk0−1)|

+ |f(τ ′′)− f(sk0)||g(tk0)− g(c)|

≤ 1

m

∑
k 6=k0

|g(tk)− g(tk−1)|+ 1

m
|g(c)− g(tk0−1)|+ 1

m
|g(tk0)− g(c)|

≤ 1

m
Var g.
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With a similar proof, we can show that if P ⊆ Q, then |S(Q)−S(P )| ≤ 1
m Var g.

Finally, if P,Q ∈ Pm, let R ∈ Pm be such that P,Q ⊆ R, then

|S(Q)− S(P )| ≤ |S(Q)− S(R)|+ |S(R)− S(P )| ≤ 1

m
Var g +

1

m
Var g.

By taking the supremum over all such partitions we conclude that diamEm ≤
2
m Var g, and in turn, (23) follows.
It now follows from Cantor’s theorem that there exists a unique ` ∈ C such

that

{`} =

∞⋂
m=1

Cm.

Given ε > 0 let m be so large that 2
ε Var g < m and take δε := δm. Since

` ∈ Cm, we have that Cm ⊆ B(`, ε), which proves the theorem.

5 Line Integrals

Definition 52 Given two functions ϕ : [a, b] → C and ψ : [c, d] → C, we say
that they are equivalent if there exists a continuous, strictly increasing, onto
function h : [a, b]→ [c, d] such that

ϕ (t) = ψ (h (t))

for all t ∈ [a, b]. We write ϕ ∼ ψ and we call ϕ and ψ parametric representations
and the function h a parameter change.

Note that in view of a theorem real analysis, h−1 : [c, d] → [a, b] is also
continuous.

Exercise 53 Prove that ∼ is an equivalence relation.

Definition 54 An oriented curve γ is an equivalence class of parametric rep-
resentations.

Remark 55 The definition of a curve is a restrictive, although it is what we
will need it in this course. More generally, given two intervals I, J ⊆ R, and
two functions ϕ : I → C and ψ : J → C, we say that they are equivalent if there
exists a continuous, strictly increasing, onto function h : I → J such that

ϕ (t) = ψ (h (t))

for all t ∈ I. We write ϕ ∼ ψ and we call ϕ and ψ parametric representations
and the function h a parameter change.

Given an oriented curve γ with parametric representation ϕ : [a, b]→ C the
multiplicity of a point z ∈ C is the (possibly infinite) number of points t ∈ [a, b]
such that ϕ (t) = z. Since every parameter change h : [a, b]→ [c, d] is bijective,
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the multiplicity of a point does not depend on the particular parametric repre-
sentation. The range of γ is the set of points of C with positive multiplicity,
that is, ϕ([a, b]).
A point in the range of γ with multiplicity one is called a simple point. If

every point of the range is simple, then γ is called a simple arc.
Given an oriented curve γ with parametric representation ϕ : [a, b]→ C, the

oriented curve γ1 with parametric representation ϕ1 : [a, b]→ C given by

ϕ1(t) := ϕ(−t+ b+ a)

is called the curve opposite to γ.

Definition 56 Given two functions ϕ : [a, b] → C and ψ : [c, d] → C of class
Ck, k ∈ N0, we say that they are equivalent if there exists a strictly increasing,
onto function h : [a, b]→ [c, d] with h and h−1 of class Ck such that

ϕ (t) = ψ (h (t))

for all t ∈ [a, b]. We write ϕ ∼k ψ and we call ϕ and ψ parametric repre-
sentations of class Ck and the function h a parameter change of class Ck. An
oriented curve γ of class Ck is an equivalence class of parametric representations
of class Ck.

Similarly we can define C∞ oriented curves, Lipschitz oriented curves, ana-
lytic oriented curves, and so on.
Given a continuous curve, the points ϕ(a) and ϕ(b) are called endpoints of

the curve. If ϕ (a) = ϕ (b), then the oriented curve γ is called a closed oriented
curve. A closed curve is called simple if every point of the range is simple, with
the exception of ϕ (a), which has multiplicity two.
The following theorem will be used in the sequel.

Theorem 57 (Jordan’s curve theorem) Given a continuous closed simple
oriented curve γ in C with range Γ, the set C \ Γ consists of two connected
components.

The bounded connected component of C \ Γ is called the interior of γ.
We are ready to define the notion of length of a curve.

Exercise 58 Let γ be an oriented curve in C. Let ϕ : [a, b]→ C and ψ : [c, d]→
C be two parametric representations of γ. Prove that Var[a,b] ϕ = Var[c,d] ψ.

We are now ready to define the length of a curve.

Definition 59 Let γ be an oriented curve in C and let ϕ : [a, b] → C be a
parametric representation of γ. We define the length of γ as

L (γ) := Varϕ.

We say that the curve γ is rectifiable if L (γ) <∞.
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Theorem 60 Given a rectifiable oriented curve γ in C with range Γ and a
continuous function f : Γ → C, let ϕ : [a, b] → C and ψ : [c, d] → C be two
parametric representations of γ. Then∫ b

a

f ◦ ϕdϕ =

∫ d

c

f ◦ ψ dψ.

24



Monday, January 27, 2020
No class

Wednesday, January 29, 2020
No class

Friday, January 31, 2020
2 hours
Proof. Since ϕ and ψ are equivalent, there exists h : [c, d]→ [a, b] continu-

ous, strictly increasing, with h(c) = a and h(d) = b, such that

ϕ(h(s)) = ψ(s) for all s ∈ [c, d]. (24)

By Theorem 45 for every ε > 0 there exists δε > 0 such that if P = {t0, . . . , tn}
is a partition of [a, b] with tk − tk−1 ≤ δε for all k = 1, . . . , n, then∣∣∣∣∣

∫ b

a

f ◦ ϕdϕ−
n∑
k=1

f(ϕ(t′k))(ϕ(tk)− ϕ(tk−1))

∣∣∣∣∣ ≤ ε, (25)

for every t′k ∈ [tk−1, tk], k = 1, . . . , n. Similarly, there exists ρε > 0 such that if
Q = {s0, . . . , sm} is a partition of [c, d] with sl − sl−1 ≤ ρε for all l = 1, . . . ,m,
then ∣∣∣∣∣

∫ d

c

f ◦ ψ dψ −
m∑
l=1

f(ψ(s′l))(ψ(sl)− ψ(sl−1))

∣∣∣∣∣ ≤ ε, (26)

for every s′l ∈ [sl−1, sl], l = 1, . . . ,m. Since h is uniformly continuous, there
exists ηε > 0 such that

|h(s)− h(s′)| ≤ δε
for all s, s′ ∈ [c, d] with |s−s′| ≤ ηε. Let Q = {s0, . . . , sm} be a partition of [c, d]
with sl − sl−1 ≤ min{ηε, ρε} for all l = 1, . . . ,m. Then P = {h(s0), . . . , h(sm)}
is a partition of [a, b] with h(sk) − h(sk−1) ≤ δε. Hence, (25) holds for this
partition,On the other hand, by (24), ϕ(h(sl)) = ψ(sl) and so

m∑
l=1

f(ϕ(h(s′l)))(ϕ(h(sl))− ϕ(h(sl−1))) =

m∑
l=1

f(ψ(s′l))(ψ(sl)− ψ(sl−1)).

Hence, by (25) and (26),∣∣∣∣∣
∫ b

a

f ◦ ϕdϕ−
∫ d

c

f ◦ ψ dψ
∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

f ◦ ϕdϕ−
m∑
l=1

f(ϕ(h(s′l)))(ϕ(h(sl))− ϕ(h(sl−1)))

∣∣∣∣∣
+

∣∣∣∣∣
∫ d

c

f ◦ ψ dψ −
m∑
l=1

f(ψ(s′l))(ψ(sl)− ψ(sl−1))

∣∣∣∣∣ ≤ 2ε.

Letting ε→ 0+ gives the result.
Given a rectifiable oriented curve γ in C parametrized by ϕ : [a, b]→ C and

a continuous function f : ϕ([a, b]) → C, the line integral of f over γ is defined
as ∫

γ

f dz :=

∫ b

a

f ◦ ϕdϕ.
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In view of the previous theorem, the integral does not depend on the particular
representation of the curve.
Note that all the properties in the exercises in the previous section continue

to hold for line integrals.

Definition 61 Let U ⊆ C be an open set and let f : U → C. We say that f
has a primitive in U if there exists a holomorphic function F : U → C such that
F ′ = f .

Remark 62 The function f(z) = azn, where a ∈ C and n ∈ N0 has a primitive
given by F (z) = a

n+1z
n+1 + c.

Theorem 63 (Fundamental theorem of calculus) Let U ⊆ C be an open
set, let f : U → C be a continuous function, which has a primitive F in U .
Then for every z1, z2 ∈ U and for every rectifiable continuous oriented curve γ
starting at z1 and ending at z2 and with range in U ,∫

γ

f dz = F (z2)− F (z1).

We begin with a preliminary result.

Lemma 64 Let U ⊆ C be an open set, let f : U → C be a continuous function,
and let γ be a rectifiable continuous oriented curve γ with range in U . Then for
every ε > 0 there exists a polygonal path γε with the same endpoints of γ and
range in U such that ∣∣∣∣∫

γ

f dz −
∫
γε

f dz

∣∣∣∣ ≤ ε
Proof. Step 1: Assume first that U = B(z0, r). Let ϕ : [a, b] → C

be a parametric representation of γ. Since ϕ([a, b]) is compact, we have that
dist(ϕ([a, b]), ∂U) = ρ > 0. Hence, ϕ([a, b]) ⊆ B(z0, r − ρ) =: K. Since f is
uniformly continuous on K, given ε > 0, there exists δε > 0 such that

|f(z)− f(w)| ≤ ε (27)

for all z, w ∈ K with |z − w| ≤ δε.
Since ϕ : [a, b]→ C is uniformly continuous, there exists ηε > 0 such that

|ϕ(t)− ϕ(s)| ≤ δε (28)

for all s, t ∈ [a, b] with |s − t| ≤ ηε. Moreover, by Theorem 45, there exists
ρε > 0 such that if P = {t0, . . . , tn} is a partition of [a, b] with tk − tk−1 ≤ ρε
for all k = 1, . . . , n, then∣∣∣∣∣

∫
γ

f dz −
n∑
k=1

f(ϕ(sk))(ϕ(tk)− ϕ(tk−1))

∣∣∣∣∣ ≤ ε, (29)
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for every sk ∈ [tk−1, tk], k = 1, . . . , n. Consider a partition P = {t0, . . . , tn} is
a partition of [a, b] with tk − tk−1 ≤ min{ρε, ηε}. Let ϕε be the polygonal path
joining ϕ(t0), . . . , ϕ(tn). To be precise

ϕε(t) :=
1

tk − tk−1
[(t−tk−1)ϕ(tk)+(tk−t)ϕ(tk−1)], t ∈ [tk−1, tk], k = 1, . . . , n.

Note that

ϕ′ε(t) =
ϕ(tk)− ϕ(tk−1)

tk − tk−1
, t ∈ (tk−1, tk), k = 1, . . . , n.

Hence, by Exercise 46,∫
γε

f dz =

∫ b

a

f(ϕε(t))ϕ
′
ε(t) dt =

n∑
k=1

ϕ(tk)− ϕ(tk−1)

tk − tk−1

∫ tk

tk−1

f(ϕε(t)) dt.

Hence, by (29),∣∣∣∣∫
γ

f dz −
∫
γε

f dz

∣∣∣∣ ≤
∣∣∣∣∣
∫
γ

f dz −
n∑
k=1

f(ϕ(sk))(ϕ(tk)− ϕ(tk−1))

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=1

f(ϕ(sk))(ϕ(tk)− ϕ(tk−1))−
n∑
k=1

ϕ(tk)− ϕ(tk−1)

tk − tk−1

∫ tk

tk−1

f(ϕε(t)) dt

∣∣∣∣∣
≤ ε+

∣∣∣∣∣
n∑
k=1

ϕ(tk)− ϕ(tk−1)

tk − tk−1

∫ tk

tk−1

f(ϕε(sk)) dt−
n∑
k=1

ϕ(tk)− ϕ(tk−1)

tk − tk−1

∫ tk

tk−1

f(ϕε(t)) dt

∣∣∣∣∣
≤ ε+

n∑
k=1

|ϕ(tk)− ϕ(tk−1)|
tk − tk−1

∫ tk

tk−1

|f(ϕ(sk))− f(ϕε(t))| dt.

For t ∈ [tk−1, tk] we have

ϕ(sk)− ϕε(t) =
1

tk − tk−1
[(t− tk−1)(ϕ(sk)− ϕ(tk)) + (tk − t)(ϕ(sk)− ϕ(tk−1)]

and so by (28),

|ϕ(sk)−ϕε(t)| ≤
1

tk − tk−1
[(t−tk−1)|ϕ(sk)−ϕ(tk)|+(tk−t)|ϕ(sk)−ϕ(tk−1)|] ≤ δε

In turn, by (27), |f(ϕ(sk))− f(ϕε(t))| ≤ ε. Using this inequality we have that∣∣∣∣∫
γ

f dz −
∫
γε

f dz

∣∣∣∣ ≤ ε+

n∑
k=1

|ϕ(tk)− ϕ(tk−1)|
tk − tk−1

ε(tk − tk−1) ≤ ε+ ε

n∑
k=1

|ϕ(tk)− ϕ(tk−1)|

≤ ε+ εL(γ).

Step 2: For a generic open set, since ϕ([a, b]) is compact, as before dist(ϕ([a, b]), ∂U) >
0. Let 0 < ρ < dist(ϕ([a, b]), ∂U). Since ϕ is uniformly continuous, there exists
δ > 0 such that

|ϕ(t)− ϕ(s)| < ρ
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for all s, t ∈ [a, b] with |s − t| ≤ δ. Consider a partition P = {t0, . . . , tn} of
[a, b] with tk − tk−1 ≤ δ for all k = 1, . . . , n. It follows that ϕ([tk−1, tk]) ⊂
B(ϕ(tk−1), ρ) and so we may apply the previous step to the curve γk parame-
trized by ϕ : [tk−1, tk]→ C to find a polygonal path Γk with endpoints ϕ(tk−1)
and ϕ(tk) such that ∣∣∣∣∫

γk

f dz −
∫

Γk

f dz

∣∣∣∣ ≤ ε/n.
By joining Γ1, . . . , Γn we get a polygonal path joining ϕ(a) and ϕ(b). The result
now follows from the previous inequality and Exercise 47.

We turn to the proof of the fundamental theorem of calculus.
Proof. In view of the previous lemma, for every ε > 0 there exists a

polygonal path γε with endpoints z1 and z2 such that∣∣∣∣∫
γ

f dz −
∫
γε

f dz

∣∣∣∣ ≤ ε.
Let ϕε : [a, b]→ C be a parametric representation of γε. By Exercise 46,∫

γε

f dz =

∫ b

a

f(ϕε(t))ϕ
′
ε(t) dt =

∫ b

a

F ′(ϕε(t))ϕ
′
ε(t) dt =

∫ b

a

(F ◦ ϕε)′(t) dt

= F ◦ ϕε(b)− F ◦ ϕε(a) = F (z2)− F (z1).

Hence, ∣∣∣∣∫
γ

f dz − (F (z2)− F (z1))

∣∣∣∣ ≤ ε.
Letting ε→ 0+ completes the proof.

Corollary 65 Let U ⊆ C be an open set, let f : U → C be a continuous
function, which has a primitive F in U . Then∫

γ

f dz = 0

for every closed rectifiable continuous oriented curve with range in U .

Exercise 66 Given a rectifiable oriented curve γ in C with range Γ and a con-
tinuous function f : Γ→ C, let γ1 be the curve opposite to γ. Prove that∫

γ1

f dz = −
∫
γ

f dz.

6 Cauchy’s Theorem in a Ball

Theorem 67 (Goursat) Let U ⊆ C be an open set and let f : U → C be a
holomorphic function. Then for every closed triangle T ⊂ U ,∫

∂T

f dz = 0.
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Proof. Set T0 := T , bisect each side of T0 and connect the middle points.
This creates four triangles T1,1, T1,2, T1,3, and T1,4. By choosing an orientation
for these triangles consistent with the one of T0 and by canceling the sides which
are integrated in two opposite directions (see Exercises 47 and 66), we get∫

∂T0

f dz =

∫
∂T1,1

f dz +

∫
∂T1,2

f dz +

∫
∂T1,3

f dz +

∫
∂T1,4

f dz.

Hence, for some j ∈ {1, 2, 3, 4},∣∣∣∣∫
∂T0

f dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
∂T1,j

f dz

∣∣∣∣∣ .
Let T1 := T1,j . Note that L (∂T1) = 1

2L(∂T0) and diamT1 = 1
2 diamT0. We

now bisect the sides of T1 and connect the middle points. Inductively we obtain
a decreasing sequence of closed triangles Tn such that∣∣∣∣∫

∂T0

f dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f dz

∣∣∣∣ , (30)

L (∂Tn) = 1
2nL(∂T0) and diamTn = 1

2n diamT0. By Cantor’s theorem there
exists z0 ∈ Tn for all n. Since f is differentiable, we can write

f(z) = f(z0) + f ′(z0)(z − z0) +R(z),

where

lim
z→z0

R(z)

z − z0
= 0.

Since a constant function and a linear function az have a primitive, by the
fundamental theorem of calculus,∫

∂Tn

f dz =

∫
∂Tn

Rdz.

Since z0 ∈ Tn and z ∈ ∂Tn, we have

|R(z)| ≤ εn|z − z0| ≤ εn diamTn,

where εn → 0+. Hence,∣∣∣∣∫
∂Tn

f dz

∣∣∣∣ =

∣∣∣∣∫
∂Tn

Rdz

∣∣∣∣ ≤ εn(diamTn)L (∂Tn)

≤ εn
1

4n
L(∂T0) diamT0.

Using (30) we get∣∣∣∣∫
∂T0

f dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f dz

∣∣∣∣ ≤ εnL(∂T0) diamT0 → 0

as n→∞.
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Exercise 68 Let U ⊆ C be an open set, let z0 ∈ U , and let f : U → C be
a continuous function, which is holomorphic in U \ {z0}. Prove that for every
closed triangle T ⊂ U , ∫

∂T

f dz = 0.

Hint: Consider first the case in which z0 is a vertex of T .

Saturday, February 1, 2020
Make-up class.
As a corollary we get

Corollary 69 Let U ⊆ C be an open set and let f : U → C be a holomorphic
function. Then for every closed rectangle R ⊂ U ,∫

∂R

f dz = 0.

Proof. Divide R into two triangles and one side of the triangles is in common
and are integrated in two opposite directions.

Theorem 70 Let B ⊂ C be an open ball and let f : B → C be holomorphic.
Then f has a primitive in B.

Proof. Without loss of generality assume that B is centered at the origin.
Given z = x+ iy ∈ B, with x, y ∈ R, we connect the origin to x+ 0i and then
x + 0i to z and let γz be this polygonal path in B. We choose the orientation
starting at 0 and ending at z. Define

F (z) :=

∫
γz

f dζ.

We claim that F ′ = f . Let z + h ∈ B. Then

F (z + h)− F (z) =

∫
γz+h

f dζ −
∫
γz

f dζ.

Using Goursat’s theorem for triangles and rectangles we are left with the seg-
ment Sz,h going from z to z+h. Given ζ ∈ Sz,h write f(ζ) = f(z)+r(ζ), where
by continuity

lim
ζ→z

r(ζ) = 0.

Then

F (z + h)− F (z) =

∫
Sz,h

f dζ = f(z)

∫
Sz,h

1 dζ +

∫
Sz,h

r dζ

= f(z)h+

∫
Sz,h

r dζ,
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where we used the fact that the constant 1 has a primitive. Hence,

F (z + h)− F (z)

h
− f(z) =

1

h

∫
Sz,h

r dζ

and ∣∣∣∣∣ 1h
∫
Sz,h

r dζ

∣∣∣∣∣ ≤ max
Sz,h
|r| |h||h| = max

Sz,h
|r| → 0

as h→ 0.

Remark 71 In the previous proof we only used the fact that f is continuous
and for every closed triangle T ⊂ B,∫

∂T

f = 0. (31)

Hence, if we assume that f : B → C is a continuous function which is holomor-
phic in B \ {z0} for some z0 ∈ B, then by Exercise 68, (31) holds, and so f has
a primitive in B.

Corollary 72 (Cauchy) Let B be an open ball, let f : B → C be holomorphic.
Then ∫

γ

f dz = 0

for every closed oriented curve γ with range in B.

Proof. This follows from the previous theorem and Corollary 72.
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Remark 73 In view of Remark 71, Corollary 72 continues to hold if we assume
that f : B → C is a continuous function which is holomorphic in B \ {z0} for
some z0 ∈ B.

Exercise 74 Let z0 = x0 + iy0 ∈ B(0, 1), let U ⊂ C be the open set obtained
from B(0, 1) by removing the segment {x0 + yi : y ≥ y0}, and let f : U → C be
holomorphic. Prove that f has a primitive in U .

Exercise 75 Let U ⊆ C be a star-shaped set and let f : U → C be holomorphic.
Prove that ∫

γ

f dz = 0

for every closed oriented curve γ with range in U .

We are now ready to prove Cauchy’s integral formula.

Theorem 76 (Cauchy’s integral formula) Let U ⊆ C be an open set, let
f : U → C be holomorphic. Then for every open ball B with B ⊂ U and every
z ∈ B,

f(z) =
1

2πi

∫
∂B

f(ζ)

ζ − z dζ,

where ∂B is oriented counterclockwise.

Proof. Fix z ∈ B and consider the closed curve Γδ,ε given in the picture
below, where ε is the radius of the small circle centered at z and δ is the width
of the corridor. Since the function g(ζ) := f(ζ)

ζ−z is holomorphic in U \ {z}, by
considering V := B′ \ S′, where B′ is a concentric ball contained in U and
containing B, S is the segment obtained when ε → 0 and δ → 0, and S′ is a
slightly larger segment we can apply Exercise 74, to obtain that g has a primitive
in V . Since the range of Γδ,ε is contained in V , it follows from Corollary 65 that∫

Γδ,ε

f(ζ)

ζ − z dζ = 0.

If we let δ → 0+ and use the fact that g is continuous, we get that the two seg-
ments converge to a segment which is integrated in opposite directions. Hence,
we obtain ∫

∂B

f(ζ)

ζ − z dζ −
∫
∂B(z,ε)

f(ζ)

ζ − z dζ = 0.

Write
f(ζ)

ζ − z =
f(ζ)− f(z)

ζ − z +
f(z)

ζ − z .

Since f is holomorphic, f(ζ)−f(z)
ζ−z → f ′(z) as ζ → z and so∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣ ≤M
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Figure 1: Figure 1: Keyhole contour

for all ζ ∈ ∂B(z, ε). It follows that∫
∂B(z,ε)

f(ζ)

ζ − z dζ =

∫
∂B(z,ε)

f(ζ)− f(z)

ζ − z dζ + f(z)

∫
∂B(z,ε)

1

ζ − z dζ

= I + II.

Then |I| ≤ M(2πε) → 0 as ε → 0+. On the other hand, if we use the parame-
trization ϕ(t) = z + εeit, t ∈ [0, 2π]. Then∫

∂B(z,ε)

1

ζ − z dζ =

∫ 2π

0

iεeit

εeit
dt = 2πi.

Hence, ∫
∂B

f(ζ)

ζ − z dζ = f(z)2πi,

which proves the result.

Exercise 77 Use Remark 73 to give an alternative proof of the previous theo-
rem, which does not make use of Γδ,ε.

Exercise 78 Use contour integration to show that for ξ ∈ R,

e−πξ
2

=

∫
R
e−πx

2

e−2πixξdx.

Exercise 79 Use contour integration to show that for ξ ∈ R,
π

2
=

∫ ∞
0

1− cosx

x2
dx.
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Exercise 80 Use contour integration to show that

π

2
=

∫ ∞
0

sinx

x
dx.
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Corollary 81 Let U ⊆ C be an open set and let f : U → C be holomorphic.
Then f is analytic and for every open ball B with B ⊂ U , every z ∈ B, and
every k ∈ N,

f (k)(z) =
k!

2πi

∫
∂B

f(ζ)

(ζ − z)k+1
dζ, (32)

where ∂B is oriented counterclockwise.

Proof. Let B = B(z0, r). Fix z ∈ B. For ζ ∈ ∂B write

1

ζ − z =
1

ζ − z0 − (z − z0)
=

1

ζ − z0

1

1− z−z0
ζ−z0

.

Then ∣∣∣∣z − z0

ζ − z0

∣∣∣∣ =
|z − z0|

r
=: δ < 1

and so we can use geometric power series to write

1

1− z−z0
ζ−z0

=

∞∑
n=0

(
z − z0

ζ − z0

)n
.

Note that the series converges uniformly for all ζ ∈ ∂B, and so (using Lebesgue
dominated convergence theorem or any equivalent theorem for Riemann inte-
gration) we can interchange the integral and the series in Cauchy’s formula to
get

f(z) =
1

2πi

∫
∂B

f(ζ)

ζ − z dζ =
1

2πi

∫
∂B

f(ζ)

ζ − z0

1

1− z−z0
ζ−z0

dζ

=
1

2πi

∫
∂B

f(ζ)

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
dζ

=

∞∑
n=0

(z − z0)n
1

2πi

∫
∂B

f(ζ)

(ζ − z0)n+1
dζ =:

∞∑
n=0

an(z − z0)n.

The formula for the derivatives now follows by differentiating the power series.
To see this, we use Corollary 31 to get

f (k)(z) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k

=
1

2πi

∞∑
n=k

n(n− 1) · · · (n− k + 1)(z − z0)n−k
∫
∂B

f(ζ)

(ζ − z0)n+1
dζ

=
1

2πi

∞∑
n=k

∫
∂B

f(ζ)

(ζ − z0)k+1
n(n− 1) · · · (n− k + 1)

(z − z0)n−k

(ζ − z0)n−k
dζ

=
1

2πi

∫
∂B

f(ζ)

(ζ − z0)k+1

∞∑
n=k

n(n− 1) · · · (n− k + 1)
(z − z0)n−k

(ζ − z0)n−k
dζ.
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Let w = z−z0
ζ−z0 . Then

∞∑
n=k

n(n− 1) · · · (n− k + 1)wn−k =
d(k)

dwk

∞∑
n=0

wn

=
d(k)

dwk
(1− w)−1 = k!(1− w)−k−1

and so (using again the uniform convergence of the power series and its deriva-
tives)

f (k)(z) =
1

2πi

∫
∂B

f(ζ)

(ζ − z0)k+1

∞∑
n=k

n(n− 1) · · · (n− k + 1)
(z − z0)n−k

(ζ − z0)n−k
dζ

=
1

2πi

∫
∂B

f(ζ)

(ζ − z0)k+1
k!

1(
1− z−z0

ζ−z0

)k+1
dζ =

k!

2πi

∫
∂B

f(ζ)

(ζ − z)k+1
dζ,

which completes the proof.

Remark 82 Note that we have proved that for every open ball B(z0, r) with
B(z0, r) ⊂ U , we can write

f(z) =

∞∑
n=0

an(z − z0)n, z ∈ B(z0, r),

where

an :=
f (n)(z0)

n!
.

Moreover, if we denote by R the radius of convergence R of the power series,
then

R ≥ dist(z0, ∂U) = sup{r > 0 : B(z0, r) ⊂ U}.

Hence, if U = C then R =∞.

Corollary 83 Let U ⊆ C be an open set and let f : U → C be holomorphic.
Given a closed ball B(z0, r) ⊂ U , let M ≥ max

B(z0,r)
|f |. Then for every n ∈ N,

|f (n)(z0)| ≤ n!M

rn
.

Proof. In view of (32),

|f (n)(z0)| ≤ n!

2π

∫
∂B(z0,r)

|f(ζ)|
|ζ − z0|n+1

dζ ≤ n!M

2π

∫
∂B(z0,r)

1

|ζ − z0|n+1
dζ

=
n!M

2πrn+1
2πr =

n!M

rn
,

which concludes the proof.
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Definition 84 Given an open connected set U ⊂ C and a holomorphic function
f : U → C, a point z0 ∈ ∂U is called a regular point if there exist r > 0 and a
holomorphic function g : B(z0, r)→ C such that f = g on U ∩B(z0, r). A point
z0 ∈ ∂U is called a singular point if it is not a regular point. We say that ∂U
is the natural boundary of f if every point on ∂U is a singular point.

Exercise 85 Let f : B(z0, r) → C be holomorphic and assume that the power
series

f(z) =

∞∑
n=0

an(z − z0)n

has radius of convergence exactly r. Then there is at least one singular point on
∂B(z0, r).

Exercise 86 Given the function

f(z) =

∞∑
n=0

z2n ,

find its natural boundary.

Next we discuss some important consequences of Cauchy’s formula.

Corollary 87 (Liouville) Let f : C → C be holomorphic and bounded. Then
f is constant.

Proof. Let M > 0 be such that |f(z)| ≤ M for all z ∈ C. By the previous
corollary,

|f ′(z)| ≤ M

r

for every r > 0. Hence, letting r → ∞ we get f ′(z) = 0 for all z. We can now
apply Corollary 14.

Theorem 88 (Fundamental theorem of algebra) Every polynomial P : C→
C of degree n ≥ 1 has precisely n roots in C.

Proof. Step 1: Write

P (z) = anz
n + · · ·+ a1z + a0,

where an 6= 0. We claim that P has at least one root. Assume by contradiction
that this is not the case, that is, that P (z) 6= 0 for all z ∈ C. Then the function
1/P is well-defined and holomorphic. Let’s prove that it is bounded. We have

P (z)

zn
= an +

an−1

z
+ · · ·+ a0

zn
→ an + 0

as |z| → ∞. Hence, taking ε = 1
2 |an| > 0 we can find R > 0 such that

1

2
|an| ≤

∣∣∣∣P (z)

zn

∣∣∣∣ ≤ 3

2
|an| for all |z| ≥ R.
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In particular,

1

|P (z)| ≤
2

|an||z|n
≤ 2

|an|Rn
for all |z| ≥ R.

Since 1
|P | is continuous on the compact set B(0, R), there exists M ≥ 0 such

that 1
|P (z)| ≤ M for all |z| ≤ R, which, together with the previous inequality,

proves the claim. It now follows from Liouville’s theorem that 1
P is constant,

which is a contradiction since P has degree at least one.
Wednesday, February 5, 2020

Proof. Step 2: In view of the previous step there exists w1 ∈ C such that
P (w1) = 0. Let z = (z − w1) + w1. Then

P (z) = an[(z − w1) + w1]n + · · ·+ a1[(z − w1) + w1] + a0.

Using the binomial theorem

(a+ b)k =

k∑
j=0

(
k

j

)
ajbk−j

with a = z − w1 and b = w1, we can rewrite P (z) as

P (z) = bn(z − w1)n + · · ·+ b1(z − w1) + b0,

where bn = an. Since P (w1) = 0, we get that b0 = 0. Hence,

P (z) = (z − w1)[bn(z − w1)n−1 + · · ·+ b1] =: (z − w1)P1(z),

where P1 is a polynomial of degree n − 1. If n ≥ 2, we can apply the previous
step to P1 to find a second root w2.
Inductively, we can find w1, . . . , wn ∈ C such that

P (z) = an(z − w1) · · · (z − wn) for all z ∈ C.

This concludes the proof.
Another corollary of Cauchy’s theorem is the following.

Corollary 89 (Morera) Let B ⊂ C be an open ball, let f : B → C a continu-
ous function such that for every closed triangle T ⊂ B,∫

∂T

f = 0.

Then f is holomorphic in B.

Proof. In view of Remark 71 we have that f has a primitive F : B → C.
Hence, F is holomorphic. In turn, by the previous corollary, F is infinitely
differentiable. Since F ′ = f , it follows that f is also holomorphic.
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Let’s see how to use Morera’s theorem. Let U ⊆ C be an open set. Define

U+ := {z = x+ iy ∈ U : y > 0},
U− := {z = x+ iy ∈ U : y < 0},
S := {z = x+ i0 ∈ U},

so that U = U+ ∪ U− ∪ S.

Theorem 90 Let U ⊆ C be an open set, let f+ : U+ ∪ S → C be a continuous
function which is holomorphic in U+ and let f− : U− ∪ S → C be a continuous
function which is holomorphic in U+. Assume that f+ = f− in S. Then the
function f : U → C, defined by

f(z) :=

{
f+(z) if z ∈ U+ ∪ S,
f−(z) if z ∈ U−,

is holomorphic in U .

Proof. We only need to prove differentiability at points in S. Fix z0 ∈ S
and let B(z0, r) ⊆ U . Since f is continuous, we can use Morera’s theorem to
prove that f is holomorphic in B(z0, r). Let T ⊂ B(z0, r) be a closed triangle.
If T does not intersect S, then it is contained either in U+ or in U− and so∫
∂T
f dz = 0 by Exercise 75 since f+ and f+ are holomorphic in U+ and U−,

respectively. If T ◦ ⊆ U+ and one of its sides lies in S, for ε > 0 small consider
the triangle Tε := T ∩ {z = x + yi : y ≥ ε}. Then again by Exercise 75,∫
∂Tε

f+ dz = 0. Since f is continuous, letting ε → 0 and using the Lebesgue
dominated convergence theorem (or Arzelá’s convergence theorem for Riemann’s
integration) we get

∫
∂T
f dz = 0. The case in which T ◦ ⊆ U− and one of its

sides lies in S is similar.
If T has a vertex in S and is contained in U+ (or U−) we either raise (lower)

T so that it is contained in U+ (U−) and reason as above.
If the interior of T intersects S, we split T using S into three triangles whose

interior is contained in U+ or U− and which have one side or a vertex in S. We
then apply the previous cases and Exercise 66 to conclude that

∫
∂T
f dz = 0.

Hence, the hypotheses of Morera’s theorem are satisfied and so f is holomorphic
in B(z0, r).

We are ready to prove Schwarz’s reflection principle

Theorem 91 (Schwarz reflection principle) Let U ⊆ C be an open set which
is symmetric with respect to the real line, that is,

z ∈ U if and only if z ∈ U.

and let f+ : U+ ∪ S → C be a continuous function which is holomorphic in U+

and real-valued on S. Then the function f : U → C, defined by

f(z) :=

{
f+(z) if z ∈ U+ ∪ S,
f+(z̄) if z ∈ U−,

is holomorphic in U .
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Proof. Given z0 ∈ U−, we have that z̄0 ∈ U+. By Corollary 81 we can
write

f+(w) =

∞∑
n=0

an(w − z̄0)n

for all w ∈ B(z̄0, r) ⊂ U+ and for some r > 0. By symmetry B(z0, r) ⊂ U− and
for every z ∈ B(z0, r) we have that z̄ ∈ B(z̄0, r) and so

f+(z̄) =

∞∑
n=0

an(z̄ − z̄0)n.

Taking the conjugate in the partial sums and then passing to the limit we have
that

f(z) = f+(z̄) =
∞∑
n=0

ān(z̄ − z̄0)n =
∞∑
n=0

ān(z − z0)n.

Since the radius of convergence of
∑∞
n=0 ān(z− z0)n is the same as

∑∞
n=0 anξ

n,
we conclude that f is holomorphic in B(z0, r).
To conclude observe that since f+ is real-valued on S,

f+(x) = f+(x)

for all x ∈ S. Hence, f is continuous at points of S. Thus, by the previous
theorem we conclude that f is holomorphic in U .

7 Cauchy’s Theorem, General Case

In this section we extend Corollary 72 to simply connected domains.
In what follows, given the unit square Q = [0, 1] × [0, 1], we consider the

oriented closed simple curve obtained by moving along ∂Q counterclockwise
starting from (0, 0). Denote by ϕ0 : [0, 4] → ∂Q the parametric representation
obtained by using arclength.

Theorem 92 Let U ⊆ C be an open set, let h : Q→ U be Lipschitz continuous,
let γ be the Lipschitz continuous oriented closed curve parametrized by h ◦ ϕ0 :
[0, 4]→ U , and let f : U → C be holomorphic. Then∫

γ

f dz = 0.

Friday, February 7, 2020
Proof. Assume by contradiction that∫

γ

f dz = c 6= 0.

By replacing f with f/c, without loss of generality, we may assume that c = 1.
Divide Q into four squares Q1,1, Q1,2, Q1,3, Q1,4 of side-length 1

2 and para-
metrize their boundaries as we did for ∂Q. Let ϕ1,1, ϕ1,2, ϕ1,3, ϕ1,4 be the
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corresponding parametric representations and let γ1,1, γ1,2, γ1,3, γ1,4 be the
oriented closed curve parametrized by h ◦ ϕ1,k : [0, 4/21] → U , k = 1, . . . , 4,
respectively. Using Exercise 66 we have that

1 =

∫
γ1,1

f dz +

∫
γ1,2

f dz +

∫
γ1,3

f dz +

∫
γ1,4

f dz

and thus there exists k1 ∈ {1, . . . , 4} such that∣∣∣∣∣
∫
γ1,k

f dz

∣∣∣∣∣ ≥ 1

4
.

Let Q1 := Q1,k1 and γ1 := γ1,k1 . We now divide Q1 into four squares Q2,1, Q2,2,
Q2,3, Q2,4 of side-length 1

16 . Proceeding as before we find k2 ∈ {1, . . . , 4} such
that ∣∣∣∣∣

∫
γ2,k2

f dz

∣∣∣∣∣ ≥ 1

16
.

Inductively we obtain a decreasing sequence of closed squares Qn of side-length
1

2n such that ∣∣∣∣∫
γn

f dz

∣∣∣∣ ≥ 1

4n
. (33)

where γn is the oriented closed curve parametrized by h ◦ ϕn : [0, 4
2n ]→ U and

ϕn : [0, 4
2n ] → ∂Qn. By Cantor’s theorem there exists (x0, y0) ∈ Qn for all n.

Let z0 = h((x0, y0)). Since f is differentiable, we can write

f(z) = f(z0) + f ′(z0)(z − z0) +R(z),

where

lim
z→z0

R(z)

z − z0
= 0. (34)

Since a constant function and a linear function az have a primitive, by the
fundamental theorem of calculus,∫

γn

f dz =

∫
γn

Rdz.

Let Γn be the range of γn. If z ∈ Γn = h(ϕn([0, 4
2n ])), we can find (x, y) ∈ ∂Qn

such that z = h(x, y). Hence, if L > 0 is the Lipschitz constant of h, we have
that

|z−z0| = |h(x, y)−h(x0, y0)| ≤ L
√

(x− x0)2 + (y − y0)2 ≤ LdiamQn = L

√
2

2n
.

In turn, by (34),

|R(z)| ≤ εn|z − z0| ≤ εnL
√

2

2n
,
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where εn → 0+. Hence,∣∣∣∣∫
γn

f dz

∣∣∣∣ =

∣∣∣∣∫
γn

Rdz

∣∣∣∣ ≤ εnL√2

2n
L (γn)

≤ εn
4L2

4n
,

where we used the fact that

L (γn) =

∫ 4
2n

0

|(h ◦ ϕn)′(s)| ds ≤ L
∫ 4

2n

0

|ϕ′n(s)| ds = L

∫ 4
2n

0

1 ds =
4L

2n

Using (34) we get
1

4n
≤
∣∣∣∣∫
γn

f dz

∣∣∣∣ ≤ εn 4L2

4n

as n→∞, which is a contradiction.
Next we consider the case in which h is only continuous.

Theorem 93 Let U ⊆ C be an open set, let h : Q→ U be continuous, let γ be
the oriented closed curve parametrized by h ◦ ϕ0 : [0, 4]→ U , and let f : U → C
be holomorphic. If γ is rectifiable, then∫

γ

f dz = 0.

Proof. Since Q is compact and h is continuous, h(Q) is compact. Hence,
d := dist(h(Q), ∂U) > 0. For every n consider a partition t0 = 0 < t1 < · · · <
tn = 1 with tk − tk−1 ≤ δn for every k = 1, . . . , n (for example δn = 1

n and tk =
k/n, k = 0, . . . , n). We construct hn : Q→ U by defining hn(tj , tk) := h(tj , tk)
for each j, k = 0, . . . , n and by interpolating linearly in each subrectangle

hn(rtj + (1− r)tj−1, stk + (1− s)tk−1) := (1− r)(1− s)hn(tj−1, tk−1)

+ r(1− s)hn(tj , tk−1) + (1− r)shn(tj−1, tk) + rshn(tj , tk)

for r, s ∈ [0, 1]. Then hn : Q → C is Lipschitz continuous. Using the uniform
continuity of h we have that hn → h uniformly in Q as n → ∞. In particular,
dist(hn(Q), ∂U) ≥ d/2 for all n suffi ciently large. Hence, hn : Q → U for n
large. By the previous theorem ∫

γn

f dz = 0.

Since γn is parametrized by hn ◦ ϕ0 : [0, 4]→ U we have that hn ◦ ϕ0 → h ◦ ϕ0

uniformly, and since f is continuous and h ◦ϕ0 has finite length, it follows that
(Exercise, see the proof of Lemma 64)

0 = lim
n→∞

∫
γn

f dz =

∫
γ

f dz,

which concludes the proof.
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Corollary 94 Let U ⊆ C be an open set, let h : Q → U be continuous and
such that h(s, 0) = h(s, 1) for all s ∈ [0, 1], let γ be the oriented closed curve
parametrized by h ◦ ϕ0 : [0, 4]→ U , and let f : U → C be holomorphic. Assume
that the curves γ1 and γ2 parametrized by h◦ϕ0 : [1, 2]→ U and h◦ϕ0 : [3, 4]→
U are rectifiable, then ∫

γ1

f dz +

∫
γ2

f dz = 0.

Proof. Since h(s, 0) = h(s, 1) for all s ∈ [0, 1], in the previous proof we
will have hn(s, 0) = hn(s, 1) for all s ∈ [0, 1]. Hence, the Lipschitz curves
parametrized by h ◦ ϕ0 : [0, 1]→ U and h ◦ ϕ0 : [2, 3]→ U are one the opposite
of the other and so their corresponding integrals will cancel each other. In turn,∫

γ1,n

f dz +

∫
γ2,n

f dz = 0.

Letting n→∞ will give the desired result.

Definition 95 Given a set E ⊆ C, two continuous oriented closed curves γ1

and γ2 with range in E and parametric representations ϕ1 : [a, b] → C and
ϕ2 : [a, b] → C, respectively, are homotopic in E if there exists a continuous
function h : [0, 1]× [a, b]→ C such that h ([0, 1]× [a, b]) ⊆ E,

h (0, t) = ϕ1(t) for all t ∈ [a, b] , h (1, t) = ϕ2(t) for all t ∈ [a, b] ,

h (s, a) = h (s, b) for all s ∈ [0, 1] .

The function h is called a homotopy in E between the two curves.

Roughly speaking, two curves are homotopic in E if it is possible to deform
the first continuously until it becomes the second without leaving the set E.

Definition 96 A set E ⊆ C is simply connected if it is pathwise connected and
if every continuous closed curve with range in E is homotopic in E to a point
in E (that is, to a curve with parametric representation a constant function).

Example 97 A star-shaped set is simply connected. Indeed, let E ⊆ C be star-
shaped with respect to some point z0 ∈ E and consider a continuous closed curve
γ with parametric representation ϕ : [a, b] → C such that ϕ ([a, b]) ⊆ E. Then
the function

h (s, t) := sϕ(t) + (1− s) z0

is an homotopy between γ and the point z0.
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Monday, February 10, 2020

Theorem 98 (Cauchy) Let U ⊆ C be an open set, let γ1 and γ2 be two ori-
ented closed rectifiable curves which are homotopic in U and let f : U → C be
holomorphic. Then ∫

γ1

f dz =

∫
γ2

f dz.

In particular, if U is simply connected, then∫
γ

f dz = 0

for every rectifiable closed oriented curve γ with range in U .

Proof. Let ϕ1 : [0, 1]→ U and ϕ2 : [0, 1]→ U be parametric representations
of γ1 and γ2, respectively, and let h : [0, 1]× [0, 1] be a corresponding homotopy.
Then h ◦ϕ0 is composed of four curves: first s ∈ [0, 1]→ h(s, 0) followed by γ1,
then the opposite of s ∈ [0, 1] → h(s, 1) and finally the opposite of γ2. Since
the first and the third of these four curves are the opposite to each other, the
corresponding integrals will cancel out. Hence, in view of Corollary 94,∫

γ1

f dz +

∫
−γ2

f dz = 0.

The result now follows from 66.

Exercise 99 Let U ⊆ C be a simply connected open set and let f : U → C be
holomorphic. Prove that f has a primitive in U .

Using the previous exercise we can show that in a simply connected open
set which does not contain the origin there is a branch of the logarithm. More
generally, we have the following important result.

Corollary 100 Let U ⊆ C be a simply connected open set and let f : U → C
be a holomorphic function such that f(z) 6= 0 for all z ∈ U . Then there exists a
holomorphic function g : U → C such that

f(z) = eg(z) for all z ∈ U.

If z0 ∈ U and f(z0) = ew0 for w0 ∈ C, then we can choose g in such a way that
g(z0) = w0.

Proof. Fix z0 ∈ U and use polar coordinates to write f(z0) = reiθ. Taking
w0 := log r + iθ, we have that f(z0) = ew0 . Since f(z) 6= 0 for all z ∈ U , the
function f ′/f is well-defined and holomorphic in U . By the previous exercise,
f ′/f has a primitive F1, that is, F ′1 = f ′/f in U . By adding a constant, we can
assume that F1(z0) = w0. Then h(z) := eF1(z) is holomorphic in U and never
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vanishes (since the exponential never does). In turn, f/h is holomorphic. Let’s
compute its derivative(

f

h

)′
(z) =

f ′(z)h(z)− f(z)h′(z)

h2(z)
=
f ′(z)eF1(z) − f(z)F ′1(z)eF1(z)

e2F1(z)

=
f ′(z)eF1(z) − f(z) f

′(z)
f(z) e

F1(z)

e2F1(z)
= 0.

Since U is connected, it follows from Corollary 14 that f/h is a constant function.
Hence, there is c ∈ C \ {0} such that

f(z) = ch(z) = ceF1(z).

Taking z = z0 we get

ew0 = f(z0) = ceF1(z0) = cew0

and so c = 1. This completes the proof.

Exercise 101 Let U ⊂ C be a simply connected open set with 0 /∈ U . Prove
that in U there exists a branch logU of the logarithm. Prove also that if 1 ∈ U ,
then we can assume that logU r = log r whenever r is a real number suffi ciently
close to 1.

Exercise 102 Prove that the previous exercise continues to hold if in place of
U simply connected we assume that∫

γ

f ds = 0

for every holomorphic function f : U → C and for every closed oriented Lip-
schitz continuous curve with range contained in U .

Remark 103 In view of Exercise 101, if U ⊂ C is a simply connected open set
with 0 /∈ U and a ∈ C, then in U there is a branch of za, defined as usual by

za := ea logU z.

Definition 104 Given a set E ⊆ C, two continuous oriented curves, with para-
metric representations ϕ : [a, b]→ C and ψ : [a, b]→ C such that ϕ ([a, b]) ⊆ E,
ψ ([a, b]) ⊆ E, ϕ(a) = ψ(a) = α, ϕ(b) = ψ(b) = β are fixed-endpoint homo-
topic in E if there exists a continuous function h : [0, 1] × [a, b] → C such that
h ([0, 1]× [a, b]) ⊆ E,

h (0, t) = ϕ(t) for all t ∈ [a, b] , h (1, t) = ψ(t) for all t ∈ [a, b] ,

h (s, a) = α, h (s, b) = β for all s ∈ [0, 1] .

The function h is called a fixed-endpoint homotopy in E between the two curves.
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Exercise 105 Let U ⊆ C be an open set, let γ1 and γ1 be two oriented recti-
fiable continuous curves with the same endpoints and which are fixed-endpoint
homotopic in U , and let f : U → C be holomorphic. Prove that∫

γ1

f dz =

∫
γ2

f dz.

8 Harmonic Functions

Given an open set Ω ⊆ RN , a function u : Ω→ R of class C2 is called harmonic
in Ω if it satisfies

∆u(x) = 0 for all x ∈ Ω,

where we recall that ∆ is the Laplace operator defined by

∆ :=

N∑
k=1

∂2

∂x2
k

.

As a consequence of Cauchy’s integral formula we have the following important
result.

Theorem 106 Let U ⊆ C be an open set, let f : U → C be a holomorphic
function. Then the real-valued functions

u(x, y) := Re f(x+ iy), v(x, y) := Im f(x+ iy)

are harmonic in Ω := {(x, y) ∈ R2 : x+ iy ∈ U}.

Proof. In what follows given a function g : U → C we define Rg : Ω → R
and Ig : Ω→ R via

Rg(x, y) = Re g(x+ iy), Ig(x, y) := Im g(x+ iy).

Recall that by (9),

∂u

∂x
(x, y) =

∂v

∂y
(x, y) = Re f ′(x+ iy),

−∂u
∂y

(x, y) =
∂v

∂x
(x, y) = Im f ′(x+ iy).

This shows that Rf ′ = ∂u
∂x , If ′ = −∂u∂y . By Corollary 81, the function f is

analytic. In particular, it is of class C∞(U). In particular, f ′ is holomorphic,
and so we can apply Theorem 13 to f ′ to conclude that Rf ′ = ∂u

∂x , If ′ = −∂u∂y
are differentiable, with

∂

∂x

(
∂u

∂x

)
(x, y) =

∂

∂y

(
−∂u
∂y

)
(x, y) = Re f ′′(x+ iy), (35)

− ∂

∂y

(
∂u

∂x

)
(x, y) =

∂

∂x

(
−∂u
∂y

)
(x, y) = Im f ′′(x+ iy).
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This implies that all second order partial derivatives of u exist and since f ′′ is
continuous, so are they. Thus, u ∈ C2(Ω). Moreover, from the first equation in
(35) we get that u is harmonic.
We can repeat a similar argument for v since Rf ′ = ∂v

∂y , If ′ = ∂v
∂x or use the

Cauchy-Riemann equations, to obtain that v ∈ C2(Ω) and is harmonic.
We also have the converse of this theorem.

Theorem 107 Let Ω ⊆ R2 be an open set and let u, v : Ω→ R be two harmonic
functions satisfying the Cauchy—Riemann equations

∂u

∂x
=
∂v

∂y
, −∂u

∂y
=
∂v

∂x
in Ω. (36)

Then the function f : U → C defined by

f(z) = u(x, y) + iv(x, y), z = x+ iy ∈ U,

where U := {z = x+ iy : (x, y) ∈ Ω}, is holomorphic in U .

Proof. This follows from Theorem 15.
An interesting problem is, given an open set Ω ⊆ R2 and an harmonic

function u : Ω→ R, to find another harmonic function v : Ω→ R in such a way
that the Cauchy—Riemann equations hold in Ω. If such a function v exists, it is
called complex conjugate of u.

Exercise 108 Let Ω = R2\{(0, 0)}. Prove that the function u(x, y) := log(x2+
y2), (x, y) ∈ Ω, is harmonic but does not have a complex conjugate v.

Theorem 109 Let Ω ⊆ R2 be simply connected and let u : Ω → R be an
harmonic function. Then u admits a complex conjugate v : Ω→ R.

Proof. Define

g(z) =
∂u

∂x
(x, y)− ∂u

∂y
(x, y)i, z = x+ iy ∈ U,

where as before U := {z = x + iy : (x, y) ∈ Ω}. Since u is of class C2 and
harmonic ,

∂

∂x

(
∂u

∂x

)
(x, y) =

∂

∂y

(
−∂u
∂y

)
(x, y) in Ω,

− ∂

∂y

(
∂u

∂x

)
(x, y) =

∂

∂x

(
−∂u
∂y

)
(x, y) in Ω,

and so ∂u
∂x and −

∂u
∂y satisfy the Cauchy—Riemann equations. In turn, by the pre-

vious theorem the function g is holomorphic in U . Since Ω is simply connected,
so is U , and so we can apply Exercise 99 to conclude that g has a primitive,
that is, there exists a holomorphic function f : U → C such that f ′ = g.
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Let
u1(x, y) := Re f(x+ iy), v(x, y) := Im f(x+ iy).

By (9),

∂u1

∂x
(x, y) =

∂v

∂y
(x, y) = Re f ′(x+ iy) = Re g(x+ iy) =

∂u

∂x
(x, y),

−∂u1

∂y
(x, y) =

∂v

∂x
(x, y) = Im f ′(x+ iy) = Im g(x+ iy) = −∂u

∂y
(x, y)

and so
∂u1

∂x
(x, y) =

∂u

∂x
(x, y),

∂u1

∂y
(x, y) =

∂u

∂y
(x, y).

Since U is connected, this implies that u − u1 must be constant. Since v is a
complex conjugate of u1, it follows that it is also a complex conjugate to u, and
the proof is complete.

Wednesday, February 12, 2020
As a corollary of Cauchy’s integral form we obtain the mean value theorem.

Theorem 110 (Mean value theorem) Let Ω ⊆ R2 be an open set and let
u : Ω→ R be an harmonic function. Then for every closed ball B((x0, y0), r) ⊂
Ω we have

u(x0, y0) =

∫ 2π

0

u(x0 + r cos θ, y0 + r sin θ) dθ.

Proof. Let z0 = x0 + iy0. By applying the previous theorem in a larger
open ball B containing z0 we can find a function v which is conjugate to u in
B. In turn, the function

f(z) = u(x, y) + iv(x, y), z = x+ iy ∈ B,

is holomorphic and so by Cauchy’s formula,

f(z0) =
1

2πi

∫
∂B(z0,r)

f(z)

z − z0
dz.

Taking as parametric representation of ∂B(z0, r) the function ϕ(θ) = z0 + reiθ,
θ ∈ [0, 2π], we get

f(z0) =
1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
rieiθdθ =

1

2π

∫ 2π

0

f(z0 + reiθ) dθ

where we used the fact that ϕ′(θ) = rieiθ. In particular, taking the real part on
both sides

Re f(z0) =
1

2π
Re

(∫ 2π

0

f(z0 + reiθ) dθ

)
=

∫ 2π

0

(Re f)(z0 + reiθ) dθ, (37)

which gives the result.
Using this formula, one can show as in Corollary 81 that u is analytic in Ω.

We leave this as an exercise.
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9 Zeros and Isolated Singularities

In this section we study zeros and isolated singularities of holomorphic functions.
We begin by showing that zeros of holomorphic functions are isolated.

Theorem 111 Let U ⊆ C be an open connected set and let f : U → C be
holomorphic. Assume that there exists a sequence {zk}k in U with zk 6= zm for
k 6= m such that zk → z0 ∈ U as n→∞ and f(zk) = 0 for all k. Then f = 0.

Proof. Since f is analytic by Corollary 81, there exists r > 0 such that
B(z0, r) ⊆ U such that

f(z) =

∞∑
n=0

an(z − z0)n

for all z ∈ B(z0, r). If f 6= 0 in B(z0, r), at least one of an must be different
from 0. Let m be the first integer such that am 6= 0. Let m ∈ N be the smallest
integer such that am 6= 0. Then as in the proof of Theorem 111 we can write

f(z) =

∞∑
n=m

an(z − z0)n = (z − z0)m
∞∑
n=m

an(z − z0)n−m

= (z − z0)m
∞∑
k=0

ak+m(z − z0)k

=: (z − z0)mg(z).

Now

g(z) = am +

∞∑
k=1

ak+m(z − z0)k,

where the power series is convergent. Hence g(z)→ am 6= 0 as z → z0. Hence,
taking ε = 1

2 |am|, there exists 0 < δ < r such that

|g(z)− am| ≤
1

2
|am|

for all z with |z − z0| ≤ δ, and so |g(z)| ≥ |am| − |g(z) − am| ≥ 1
2 |am|, and in

turn,

|f(z)| ≥ 1

2
|am||z − z0|m

for all z with |z−z0| ≤ δ. Since zk → z0 we have that |zk−z0| ≤ δ for all k large.
In particular, there are infinitely many zk such that zk 6= z0 and |zk − z0| ≤ δ.
But

0 = |f(zk)| ≥ 1

2
|am||zk − z0|m > 0,

which is a contradiction. This shows that f = 0 in B(z0, r).
Let

V := {z ∈ U : f(z) = 0}◦.

49



The set V is open by definition and B(z0, r) ⊆ V . The set V is also closed in
U , since if wk ∈ V and wk → w0 ∈ U , then either wk = w0 for some k and so
w0 ∈ V or wk 6= w0 for all k, in which case the sequence must have infinitely
many distinct elements. Hence, by the previous argument we can find a ball
centered at w0 where f is zero. This shows that w0 ∈ V . Hence, V is closed in
U . Hence, U = V ∪ (U \ V ), with U \ V open. Since U is connected, it follows
that U \ V must be empty.
Observe that in the previous proof we actually showed that each zero of a

holomorphic function f is isolated and has finite multiplicity, unless f = 0.

Corollary 112 Let U ⊆ C be an open connected set and let f : U → C be
holomorphic and not identically zero. Assume that there exists z0 ∈ U such that
f(z0) = 0. Then there exists m ∈ N such that

f(z) = (z − z0)mg(z),

where g : U → C is holomorphic and g(z0) 6= 0. Moreover, there exists r > 0
such that f(z) 6= 0 for all z ∈ B(z0, r) \ {z0} ⊂ U

Proof. Writing f as a power series centered at z0,

f(z) =

∞∑
n=0

an(z − z0)n,

If an = 0 for all n ∈ N0, then f = 0 by Theorem 111. Let m ∈ N be the smallest
integer such that am 6= 0. Then as in the proof of Theorem 111 we can write

f(z) =

∞∑
n=m

an(z − z0)n = (z − z0)m
∞∑
n=m

an(z − z0)n−m

= (z − z0)m
∞∑
k=0

ak+m(z − z0)k

=: (z − z0)mg(z).

Then g(z0) = am + 0 + · · · + 0 = am 6= 0. The function g is holomorphic in
B(z0, R), where R is its radius of convergence. On the other hand, in U\B(z0, R)
the function

g(z) :=
f(z)

(z − z0)m

is holomorphic, since quotient of two holomorphic functions.
The last statement follows from Theorem 111.
The number m is called multiplicity of z0. We say that f has a zero of order

m or of multiplicity m.

Example 113 Consider the function

f(z) = cos
1 + z

1− z , z ∈ B(0, 1).
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The function f is holomorphic and has infinitely many zeros when 1+z
1−z = π

2 +nπ,
that is, 1 + z = (π2 + nπ)(1− z), or

z =
−1 + π

2 + nπ

1 + π
2 + nπ

→ 1

as n → ∞. Note that 1 ∈ ∂B(0, 1), and so this does not contradict Theorem
111.

Corollary 114 Let U ⊆ C be an open connected set and let f : U → C be
holomorphic. Assume that there exists z0 ∈ U such that f (n)(z0) = 0 for all
n ∈ N0. Then f = 0.

Proof. Writing f as a power series centered at z0 we get that f = 0 in
B(z0, r) ⊆ U . But then we can apply the previous theorem to conclude that
f = 0 in U .

Corollary 115 Let U ⊆ C be an open connected set and let f, g : U → C be
holomorphic. Assume that there exists a sequence {zk}k in U with zk 6= zm for
k 6= m such that zk → z0 ∈ U as n → ∞ and f(zk) = g(zk) for all k. Then
f = g in U .

Next we study isolated singularities.

Definition 116 Let U ⊂ C be an open set and let f : U → C be a holomorphic
function. We say that z0 ∈ C \ U is a point singularity or isolated singularity
of f if there exists r > 0 such that B(z0, r) \ {z0} ⊆ U .

Example 117 If we take U = C \ {0} then the holomorphic function f(z) = z
has an isolated singularity at 0. In this case we can extend f to 0 as a holomor-
phic function by setting f(0) := 0. This is called a removable singularity. The
functions f(z) = 1

z and g(z) = e1/z have an isolated singularity at z = 0.

We will show that isolated singularities are of three types;

1. removable singularities;

2. poles;

3. essential singularities

Definition 118 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \U be an isolated singularity of f . We say that z0 is a
removable singularity if we can define f at z0 in such a way that the resulting
function is homomorphic in U ∪ {z0}.

Theorem 119 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \ U be an isolated singularity of f . Then z0 is a
removable singularity if and only if

lim
z→z0

(z − z0)f(z) = 0. (38)

In particular, if f is bounded near z0, then z0 is a removable singularity.
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Proof. If z0 is a removable singularity for f then f is continuous at z0 and

so
lim
z→z0

(z − z0)f(z) = 0f(z0) = 0.

Conversely, assume that (38) holds. Define g : U ∪ {z0} → C via

g(z) :=

{
(z − z0)f(z) if z 6= z0,
0 if z = z0.

In view of (38), the function g is holomorphic in U and continuous at z0. In
view of Remark 71, g has a primitive G in B(z0, r) ⊆ U ∪ {z0}, and so G is
holomorphic. By Corollary 81, G is analytic. Since G′ = g, we have that g is
holomorphic. Since g(z0) = 0, by Corollary 112, there exists m ∈ N such that

g(z) = (z − z0)mh(z),

where h : U ∪ {z0} → C is holomorphic and h(z0) 6= 0. Set f1(z) = (z −
z0)m−1h(z). Then f1 is holomorphic in U ∪ {z0}. Since B(z0, r) \ {z0} is
connected, it follows that f and f1 must coincide in B(z0, r)\{z0} by Corollary
115. Thus, f1 extends f to z0 as an holomorphic function.

Definition 120 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \U be an isolated singularity of f . We say that z0 is a
pole if

lim
z→z0

|f(z)| =∞. (39)

Theorem 121 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \U be a pole of f . Then there exist m ∈ N, r > 0, and
a holomorphic function g : B(z0, r)→ C such that B(z0, r) ⊆ U \{z0}, g(z) 6= 0
for all z ∈ B(z0, r) and

f(z) =
g(z)

(z − z0)m
for all z ∈ B(z0, r) \ {z0}.

Proof. By the definition of limit there exists r > 0 such that B(z0, r) ⊆
U \ {z0} and |f(z)| ≥ 1 for all z ∈ B(z0, r) \ {z0}. Hence, the function 1

f is
well-defined and holomorphic in B(z0, r) ⊆ U \ {z0}. Moreover, by (39),

lim
z→z0

1

f(z)
= 0.

Thus, if we define

h(z) :=

{ 1
f(z) if z 6= z0,

0 if z = z0.

Then h is holomorphic in B(z0, r) by the previous theorem. Since h(z0) = 0, by
by Corollary 112, there exists m ∈ N such that

h(z) = (z − z0)mq(z),
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where q : B(z0, r)→ C is holomorphic and q(z0) 6= 0. By continuity and taking
r smaller, if necessary, we can assume that q(z) 6= 0 for all z ∈ B(z0, r). Then

1

f(z)
= (z − z0)mq(z)

for all z ∈ B(z0, r) \ {z0}, that is,

f(z) =
1

(z − z0)mq(z)
=:

g(z)

(z − z0)m
,

where g(z) := 1/q(z).
The number m is called multiplicity of z0. We say that f has a pole of order

m or of multiplicity m. When m = 1, we say that f has a simple pole at z0.

Theorem 122 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \ U be a pole of f or order m. Then there exist b1,
. . . , bm ∈ C, r > 0, and a holomorphic function h : B(z0, r) → C such that
B(z0, r) ⊆ U \ {z0}, and

f(z) =
b1

z − z0
+ · · ·+ bm

(z − z0)m
+ h(z) for all z ∈ B(z0, r) \ {z0}. (40)

Proof. By the previous theorem, there exist m ∈ N, r > 0, and a holomor-
phic function g : B(z0, r) → C such that B(z0, r) ⊆ U \ {z0}, g(z) 6= 0 for all
z ∈ B(z0, r) and

f(z) =
g(z)

(z − z0)m
for all z ∈ B(z0, r) \ {z0}.

Since g is analytic, by taking r smaller, if necessary, we can write

g(z) = a0 + a1(z − z0) + · · ·+ am−1(z − z0)m−1 +

∞∑
n=m

an(z − z0)n

and so

f(z) =
g(z)

(z − z0)m
=

a0

(z − z0)m
+

a1

(z − z0)m−1
+· · ·+ am−1

(z − z0)
+

∞∑
n=m

an(z−z0)n−m.

It suffi ces to define

h(z) :=

∞∑
n=m

an(z − z0)n−m,

which is holomorphic.
The sum

b1
z − z0

+ · · ·+ bm
(z − z0)m

is called the principal part of f at the pole z0 and the number b1 is the residue
of f at z0. We write

resz0 f = b1.
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Theorem 123 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \ U be a pole of f or order m. Then

resz0 f = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)mf(z)).

In particular, if f has a simple pole at z0, then

resz0 f = lim
z→z0

(z − z0)f(z).

Proof. By (40),

(z − z0)mf(z) = b1(z − z0)m−1 + b2(z − z0)m−2 + · · ·+ bm + (z − z0)mh(z).

Hence

dm−1

dzm−1
((z − z0)mf(z)) = b1(m− 1)! + 0 + · · ·+ 0 +

dm−1

dzm−1
((z − z0)mh(z)).

To conclude observe that

lim
z→z0

dm−1

dzm−1
((z − z0)mh(z)) = 0

since we are differentiating m − 1 times and so by the product rule each term
in dm−1

dzm−1 ((z − z0)mh(z)) will have some power of z − z0.
Next we prove the residue formula. We begin with a simple case.

Theorem 124 (Residue formula) Let U ⊆ C be an open set, let z0 ∈ U , and
let f : U \ {z0} → C be a holomorphic function having a pole at z0. Then for
closed ball B ⊂ U having z0 in its interior,∫

∂B

f dz = 2πi resz0 f.

Proof. Consider the closed curve Γδ,ε given in Figure 1, where ε is the
radius of the small circle centered at z0 and δ is the width of the corridor. Since
the function f is holomorphic in U \ {z0}, by considering V := B \ S , where S
is the segment obtained when ε → 0 and δ → 0, we can apply Exercise 74, to
obtain that f has a primitive in V . Since the range of Γδ,ε is contained in V , it
follows from Corollary 65 that ∫

Γδ,ε

f dz = 0.

If we let δ → 0+ and use the fact that f is continuous, we get that the two seg-
ments converge to a segment which is integrated in opposite directions. Hence,
we obtain ∫

∂B

f dz −
∫
∂B(z0,ε)

f dz = 0. (41)
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Thus to prove the theorem it suffi ces to show that∫
∂B(z0,ε)

f dz = 2πi resz0 f. (42)

By Theorem 122 there exist b1, . . . , bm ∈ C, r > 0, and a holomorphic function
h : B(z0, r)→ C such that B(z0, r) ⊆ U \ {z0}, and

f(z) =
b1

z − z0
+ · · ·+ bm

(z − z0)m
+ h(z) for all z ∈ B(z0, r) \ {z0}.

Hence,∫
∂B(z0,ε)

f dz =

∫
∂B(z0,ε)

b1
z − z0

dz+ · · ·+
∫
∂B(z0,ε)

bm
(z − z0)m

dz+

∫
∂B(z0,ε)

h dz.

(43)
By Cauchy’s integral formula applied to the constant function b1 we have that

b1 =
1

2πi

∫
∂B(z0,ε)

b1
z − z0

dz, (44)

while by Corollary 81 applied to the constant functions bk ,

0 =
dk−1

dzk−1
(bk) =

(k − 1)!

2πi

∫
∂B(z0,ε)

bk
(z − z0)k

dz. (45)

Since h is holomorphic in B(z0, r), taking ε < r we have that∫
∂B(z0,ε)

h dz = 0 (46)

by Corollary 72. Formula (42) follows by combining (43)—(46).

Remark 125 Note that since ∂B and ∂B(z0, ε) are homotopic in U , we could
have used Theorem 98 to obtain (41).
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Exercise 126 Let U ⊆ C be an open set, let z1, . . . , zn ∈ U , and let f : U \
{z1, . . . , zn} → C be a holomorphic function having poles at z1, . . . , zn. Prove
that for every closed ball B ⊂ U having z1, . . . , zn in its interior,∫

∂B

f dz = 2πi

n∑
k=1

reszk f.

Exercise 127 (Residue formula) Let U ⊆ C be an open set, let z1, . . . , zn ∈
U , and let f : U \ {z1, . . . , zn} → C be a holomorphic function having poles
at z1, . . . , zn. Prove that for every continuous rectifiable closed simple curve γ
homotopic to 0 in U and having z1, . . . , zn in its interior,∫

γ

f dz = 2πi

n∑
k=1

reszk f.

Note that in the previous exercise we are using Jordan’s curve theorem (see
Theorem 57).
The calculus of residues can be used to compute many interesting improper

integrals.

Example 128 Let’s prove that for 0 < a < 1,∫
R

eax

1 + ex
dx =

π

sin(πa)
.

Consider the function

f(z) =
eaz

1 + ez
.

Note that 1 + ez = 0 for z = iπ + 2iπk, k ∈ Z. Given ` > 0 consider the
rectangle R` = {z = x+ iy : x ∈ (−`, `), 0 < y < 2π} and let γ` be the oriented
closed curve which parametrizes ∂R` using arclength and going counterclockwise
starting from −` + 0iy. The only point at which the denominator vanishes in
R` is πi. Note that

(z − πi)f(z) = eaz
z − πi
1 + ez

= eaz
z − πi
ez − eπi .

Since d
dz e

z = ez, we have that

lim
z→πi

ez − eπi
z − πi = eπi = −1

and so
lim
z→πi

(z − πi)f(z) = −eaπi.

In turn, by (40),
resπi f = −eaπi.
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It follows by the residue formula that∫
γ`

f dz = 2πi

n∑
k=1

resπi f = −2πieaπi. (47)

Set

I` :=

∫ `

−`
f(x) dx =

∫ `

−`

eax

1 + ex
dx. (48)

On the other hand, to parametrize the top we consider curve γ`,3 parametrized
by ϕ3(t) = 3`+ 2π − t+ 2πi, where t ∈ [2`+ 2π, 4`+ 2π]. Then by the change
of variables s = 3`+ 2π − t,∫

γ`,3

f dz =

∫ 4`++2π

2`+2π

f(ϕ3(t))ϕ′3(t) dt =

∫ −`
`

f(s+ 2πi) ds (49)

= −
∫ `

−`

ease2πia

1 + es+2πi
ds = −

∫ `

−`

ease2πia

1 + es
ds = −e2πiaI`.

Next to parametrize the right vertical side we consider curve γ`,2 parametrized
by ϕ2(t) = `+ i(t− 2`), where t ∈ [2`, 2`+ 2π]. Then by the change of variables
s = t− 2`, ∫

γ`,2

f dz =

∫ 2`++2π

2`

f(ϕ(t))ϕ′(t) dt =

∫ 2π

0

if(`+ is) ds

=

∫ 2π

0

ea(`+is)

1 + e`+is
ds =

ea`

e`

∫ 2π

0

eais

e−` + eis
ds.

Since |e−` + eis| ≥ |eis| − e−` = 1− e−`, we have∣∣∣∣∣
∫
γ`,2

f dz

∣∣∣∣∣ ≤ 1

e`(1−a)

∫ 2π

0

|eais|
|e−` + eis| ds (50)

≤ 1

e`(1−a)

2π

1− e−` → 0

as `→∞. A similar computation holds for the left vertical side, whose integral
can be bound in modulus by ce−`a. It follows from (47)—(50) that

−2πieaπi = lim
`→∞

∫
γ`

f dz = (1− e2πia)

∫
R

eax

1 + ex
dx,

that is,∫
R

eax

1 + ex
dx =

−2πieaπi

1− e2πia
=

2πieaπi

e2πia − 1
=

2πi

eπia − e−πia =
π

sin(πa)
,

where we used (6).
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Exercise 129 Use the calculus of residues to prove that∫
R

1

1 + x2
dx = π.

Exercise 130 Use the calculus of residues to prove that for all ξ ∈ R,∫
R

e−2πixξ

cosh(πx)
dx =

1

cosh(πξ)
.

We now the notion of meromorphic functions. Consider the extended complex
plane C∞ obtained by adding to C a point not in C called ∞,

C∞ := C ∪ {∞}.

Given an open set U ⊆ C and z0 ∈ U , if a holomorphic function f : U \{z0} → C
has a pole at z0, we can extend f to z0 by setting

f(z0) :=∞,

so that f : U → C∞.

Definition 131 Let U ⊆ C and let f : U → C∞. We say that f is meromorphic
if there exists a sequence {zn}n of complex numbers such that the set {zn :
n ∈ N} has no accumulation points in U , f has poles at zn for every n, and
f : U \ {zn : n ∈ N} → C is holomorphic.

Let U ⊆ C be an open set which contains C \ B(0, R) for some R > 0 and
let f : U → C be a holomorphic function. We say that f has a removable
singularity, a pole, or an essential singularity at infinity if the function F (z) :=
f(1/z) has a removable singularity, a pole, or an essential singularity at 0,
respectively, In the first case we say that f is holomorphic at infinity. We say
that f is meromorphic in the extended complex plane if it is meromorphic in
the complex plane and either has a pole at infinity or is holomorphic at infinity.

Exercise 132 Prove that a holomorphic function f : C → C has a removable
singularity at infinity iff it is constant.

Exercise 133 Prove that a holomorphic function f : C → C has a pole at
infinity of order m iff it is polynomial of degree m.

Exercise 134 Characterize those rational functions which have a removable
singularity at infinity.

Exercise 135 Characterize those rational functions which have a pole of order
m at infinity.
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Next we prove the argument principle. We have seen that in general for a
branch logV of the logarithm, the formula

logV (z1z2) = logV z1 + logV z2.

Hence, we cannot expect the formula

logV (f1f2) = logV f1 + logV f2

to holds for holomorphic functions f1, f2 : U → V . However, the formula holds
for derivatives since

(f1f2)′

f1f2
=
f ′1f2 + f1f

′
2

f1f2
=
f ′1
f1

+
f ′2
f2
.

More generally, (
n∏
k=1

fk

)′
n∏
k=1

fk

=

n∑
k=1

f ′k
fk
. (51)

Wednesday, February 19, 2020
We will use this observation to prove the argument principle. Given a set

E, we denote by cardE its cardinality.

Theorem 136 (Argument principle) Let U ⊆ C be an open set and let f :
U → C∞ be a meromorphic function. Then for every for closed ball B ⊂ U
such that f has no poles or zeros on ∂B, we have

1

2πi

∫
∂B

f ′

f
dz = (number of zeros of f in B) minus (number of poles of f in B),

where the zeros and poles are counted with multiplicity.

Proof. Let z1, . . . , zn be the zeros of f insideB and let p1, . . . , p` be the poles
of f inside B. For every k = 1, . . . , n, let mk be the order of zk. By Corollary
112 we can find rk > 0 and a holomorphic function gk : B(zk, rk) → C such
that gk 6= 0 in B(zk, rk) ⊂ B and

f(z) = (z − zk)mkgk(z) for all z ∈ B(zk, rk).

It follows from (51) that

f ′(z)

f(z)
=

mk

z − zk
+
g′k(z)

gk(z)
.

The function g′k
gk
is holomorphic in B(zk, rk). This shows that f ′

f has a simple
pole with residue mk at zk, that is, reszk f

′/f = mk.
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Similarly, for every k = 1, . . . , `, let nk be the order of pk. by Theorem 121
we can find tk > 0 and a holomorphic function hk : B(pk, tk) → C such that
hk 6= 0 in B(pk, tk) ⊂ B and

f(z) =
hk(z)

(z − pk)nk
for all z ∈ B(pk, tk). (52)

Since
d

dz

(
1

z − pk

)
= − 1

(z − pk)2
,

we have
d
dz

(
1

z−pk

)
1

z−pk
=
− 1

(z−pk)2

1
z−pk

= − 1

z − pk
,

and so, using (51) and (52) we get

f ′(z)

f(z)
= − nk

z − pk
+
h′k(z)

hk(z)
.

The function h′k
hk
is holomorphic in B(pk, tk). This shows that f ′

f has a simple
pole with residue −nk at pk, that is, respk f

′/f = −nk.
The conclusion now follows by applying the residue formula (Theorem 124)

to f ′/f .

Exercise 137 Let U ⊆ C be an open set and let f : U → C∞ be a meromor-
phic function. Prove that for every continuous rectifiable closed simple curve γ
homotopic to 0 in U and whose range contains no zero or pole of f , we have

1

2πi

∫
γ

f ′

f
dz = (number of zeros of f in the interior of γ) minus

(number of poles of f in the interior of γ),

where the zeros and poles are counted with multiplicity.

Next we discuss the last type of isolated singularities.

Definition 138 Let U ⊂ C be an open set, let f : U → C be a holomorphic
function, and let z0 ∈ C \ U be an isolated singularity of f . We say that z0 is
an essential singularity for f if z0 is not a removable singularity or a pole.

Example 139 The function f(z) = e1/z has an essential singularity at 0. In-
deed, if we take z = iy we have that

|f(iy)| = |e1/(iy)| = |e−i/y| = 1,

so z is not a pole. On the other hand,

lim
x→0+

xe1/x =∞

and so by Theorem 119, z = 0 is not a removable singularity.
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10 The Maximum Modulus Principle

In this section we prove some important theorems of holomorphic functions.

Theorem 140 (Rouché) Let U ⊆ C be an open set and let f : U → C and
g : U → C be holomorphic functions. Assume that there exists a closed ball
B ⊂ U such that

|f(z)| > |g(z)| for all z ∈ ∂B. (53)

Then f and f + g have the same number of zeros inside B.

Proof. For t ∈ [0, 1] consider the function

ft(z) := f(z) + tg(z), z ∈ U.

Then f0 = f and f1 = f + g. Moreover ft is holomorphic in U . Let nt ∈ N0 be
the number of zeros of ft inside B counted with multiplicity. The hypothesis
(53) guarantees that ft has no zeros on ∂B. Hence, by the argument principle

nt =
1

2πi

∫
∂B

f ′t
ft
dz.

Again by (53) we have that the function

g(t, z) =
f ′t(z)

ft(z)
=
f ′(z) + tg′(z)

f(z) + tg(z)
, t ∈ [0, 1], z ∈ ∂B

is continuous in the compact set [0, 1] × ∂B. Hence, it is bounded. Using the
Lebesgue dominated convergence theorem (or Ascoli’s convergence theorem for
Riemann integrals), we have that nt is a continuous function of t. But since it is
integer-valued and [0, 1] is connected, it follows that nt must be constant. This
concludes the proof.

Using Rouché’s theorem we can prove that non-constant holomorphic func-
tions are open.

Theorem 141 (Open mapping) Let U ⊆ C be an open set and let f : U → C
be a non-constant holomorphic function. Then for every V ⊆ U open, f(V ) is
open.

Proof. Let z0 ∈ V and let w0 = f(z0). We must find ε > 0 such that
B(w0, ε) ⊆ f(V ). Since the zeros of f − w0 are isolated by Theorem 111 (or
Corollary 112), there exists δ > 0 such that B(z0, δ) ⊂ V and f − w0 6= 0 on
∂B(z0, δ). By uniform continuity, we can find ε > 0 such that

|f(z)− w0| > ε for all z ∈ ∂B(z0, δ).

Let w ∈ B(w0, ε) and define

g(z) := f(z)− w = (f(z)− w0) + (w0 − w0) =: F (z) +G(z).
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By the previous inequality we have that |F (z)| > |G(z)| for all z ∈ ∂B(z0, δ).
Hence, by Rouché’s theorem F and F +G = g have the same number of zeros in
B(z0, δ). Since F has one zero in B(z0, δ), so must g. Hence, there is z ∈ B(z0, δ)
such that f(z) = w. This shows that B(w0, ε) ⊆ f(B(z0, δ)) ⊆ f(V ). This
concludes the proof.

Corollary 142 Let U ⊆ C be open and let f : U → C be injective and holo-
morphic. Then f−1 : f(U)→ C is holomorphic and

(f−1)′(w) =
1

f ′(f−1(w))
, w ∈ f(U).

Proof. By the open mapping theorem, f−1 is continuous and f(U) is open.
Hence, we can apply Exercise 9 to conclude that f−1 is differentiable.

Theorem 143 (Maximum modulus principle) Let U ⊆ C be an open con-
nected set and let f : U → C be a nonconstant holomorphic function. Then |f |
cannot attains a maximum in U .

Proof. Assume that |f | assumes a maximum at some point z0 ∈ U . Let
B(z0, r) ⊆ U . By the open mapping theorem, f(B(z0, r)) is open and so there
exists B(f(z0), δ) ⊆ f(B(z0, r)). This implies that there exists points in U with
modulus bigger that |f(z0)|, which is a contradiction.

Exercise 144 Let U ⊆ C be an open connected set and let f : U → C be a
non-constant holomorphic function such that f(z) 6= 0 for all z ∈ U . Prove that
|f | cannot attain its minimum on U .

Corollary 145 Let U ⊂ C be an open bounded set and let f : U → C be a
continuous function which is holomorphic in U . Then

sup
U
|f | ≤ max

∂U
|f |.

Proof. Since |f | is continuous on the compact set U , it admits a maximum.
By the maximum principle, this maximum must be attained at the boundary
of U .

The previous corollary fails in general in unbounded domains.

Example 146 Let U := {z = x + iy : x > 0, y > 0} be the first quadrant
and let f(z) = e−iz

2

. Then f is holomorphic in U and continuous on U . If
z = x ≥ 0, then |f(x)| = |e−ix2 | = 1, while if z = iy with y ≥ 0, then |f(iy)| =
|eiy2 | = 1. However, f is unbounded. To see this take z = r

√
i = reiπ/4. Then

f(z) = er →∞ as r →∞.

Friday, February 21, 2020
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11 Essential Singularities

Next we study the behavior of a holomorphic function near an essential singu-
larity.

Theorem 147 (Casorati—Weierstrass) Let z0 ∈ C, r > 0, and let f : B(z0, r)\
{z0} → C be a holomorphic function having an essential singularity at z0. Then
f(B(z0, r) \ {z0}) is dense in C.

Proof. Assume by contradiction that f(B(z0, r) \ {z0}) is not dense in C.
Then there exist w0 ∈ C and δ > 0 such that

|f(z)− w0| ≥ δ for all z ∈ B(z0, r) \ {z0}.

It follows that the function

g(z) :=
1

f(z)− w0
, z ∈ B(z0, r) \ {z0},

is well-defined and holomorphic. Moreover, it is bounded by 1/δ. Hence, by
Theorem 119 it has a removable singularity at z0. Extend g to z0 as a holomor-
phic function. There are now two cases. If g(z0) 6= 0, then g 6= 0 in B(z0, r),
and so f − w0 has a removable singularity at z0, which is a contradiction. If
g(z0) = 0, then

lim
z→z0

1

f(z)− w0
= 0,

which implies that
lim
z→z0

|f(z)− w0| =∞,

and so f has a pole at z0, which is again a contradiction. This concludes the
proof.
There is actually a much stronger result.

Theorem 148 (Picard Big Theorem) Let z0 ∈ C, r > 0, and let f : B(z0, r)\
{z0} → C be a holomorphic function having an essential singularity at z0. Then
f takes all possible values of C with at most a single exception.

Exercise 149 Prove that

π cot(πz) = lim
`→∞

∑̀
k=−`

1

z + k
=

1

z
+

∞∑
n=1

2z

z2 − n2
.

The proof relies on several preliminary results. We begin with another im-
portant theorem.

Theorem 150 (Bloch) Let U ⊆ C be an open set which contains B(0, 1) and
f : U → C be a holomorphic function such that f ′(0) = 1. Then f(B(0, 1))
contains a ball of radius 3

2 −
√

2.
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We begin with some lemmas.

Exercise 151 Let V ⊂ C be an open bounded set, let f : V → C be a continuous
function such that f : V → C is open. Let w0 ∈ V be such that

R := min
z∈∂V

|f(z)− f(w0)| > 0.

Prove that f(V ) contains B(f(w0), R).

Lemma 152 Let U ⊆ C be an open set which contains B(z0, r) and f : U → C
be a holomorphic function which is non-constant in B(z0, r) and such that

|f ′(z)| ≤ 2|f ′(z0)| for all z ∈ B(z0, r). (54)

Then f(B(z0, r)) contains B(f(z0), r0), where r0 = (3− 2
√

2)|f ′(z0)|r.
Proof. Without loss of generality we may assume that z0 = 0 and f(0) = 0.

Define g(z) = f(z)− f ′(0)z. By the fundamental theorem of calculus,

g(z) =

∫
[0,z]

[f ′(ζ)− f ′(0)] dζ.

Consider the parametric representation ϕ(t) = tz, t ∈ [0, 1]. Then

|g(z)| ≤ |z|
∫ 1

0

|f ′(tz)− f ′(0)| dt. (55)

Let w ∈ B(0, r). By Cauchy’s formula applied to the holomorphic function f ′,

f ′(w) =
1

2πi

∫
∂B(0,r)

f ′(ζ)

ζ − wdζ, f ′(0) =
1

2πi

∫
∂B(0,r)

f ′(ζ)

ζ
dζ.

Subtracting these identities gives

f ′(w)− f ′(0) =
1

2πi

∫
∂B(0,r)

[
1

ζ − w −
1

ζ

]
f ′(ζ) dζ

=
1

2πi

∫
∂B(0,r)

w

ζ(ζ − w)
f ′(ζ) dζ

and so using the the parametric representation ψ(θ) = reiθ and the fact that
|ζ − w| ≥ |ζ| − |w| = r − |w|, we get

|f ′(w)− f ′(0)| ≤ |w| sup
∂B(0,r)

|f ′| 1

r − |w| .

Taking w = tz and using this inequality in (55) gives

|g(z)| ≤ |z|
∫ 1

0

|f ′(tz)− f ′(0)| dt ≤ |z| sup
∂B(0,r)

|f ′|
∫ 1

0

t|z|
r − t|z| dt

≤ |z|2 sup
∂B(0,r)

|f ′| 1

r − |z|

∫ 1

0

t dt =
1

2

|z|2
r − |z| sup

∂B(0,r)

|f ′| (56)

≤ |z|2
r − |z| |f

′(0)|,
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where in the last inequality we used (54). Now let 0 < ρ < r and take z with
|z| = ρ. Then

|g(z)| = |f(z)− f ′(0)z| ≥ |f ′(0)|ρ− |f(z)|

Combining this inequality with (56) gives

ρ2

r − ρ |f
′(0)| ≥ |f ′(0)|ρ− |f(z)|,

or, equivalently,

|f(z)| ≥ |f ′(0)|
(
ρ− ρ2

r − ρ

)
=: |f ′(0)|h(ρ).

We have

h′(ρ) =
d

dρ

(
ρ− ρ2

r − ρ

)
=
r2 − 4rρ+ 2ρ2

(r − ρ)
2 ≥ 0

for ρ ≥ r
(√

2
2 + 1

)
and ρ ≤ r

(
1−

√
2

2

)
, so h has a maximum at ρ0 = r

(
1−

√
2

2

)
.

Hence,

|f(z)| ≥ |f ′(0)|h(ρ0) = |f ′(0)|r
(

3− 2
√

2
)

for all z ∈ ∂B(0, ρ0).

We now apply the previous exercise with w0 = 0 and V = B(0, ρ0) to obtain
that

f(B(0, r)) ⊇ f(B(0, ρ0)) ⊇ B(0, R),

where R := min∂B(0,ρ0) |f | ≥ |f ′(0)|r
(
3− 2

√
2
)

= r0. This concludes the proof.

We now turn to the proof of Bloch’s theorem.
Proof. Step 1: Let U ⊆ C be an open set which contains B(0, 1) and

f : U → C be a holomorphic function which is non-constant in B(0, 1). Since
the function

g(z) = |f ′(z)|(1− |z|)

is continuous in B(0, 1), it assumes a maximum at some point z0. We claim
that f(B(0, 1)) ⊇ B(f(z0), r0), where r0 := ( 3

2 −
√

2)g(z0).
To see this, take t = 1

2 (1− |z0|). Then

g(z0) = |f ′(z0)|(1− |z0|) = 2t|f ′(z0)|. (57)

Moreover, B(z0, t) ⊆ B(0, 1), since if z ∈ B(z0, t), then

|z| ≤ |z − z0|+ |z0| < t+ |z0| =
1

2
(1− |z0|) + |z0| =

1

2
+

1

2
|z0| ≤ 1.

Note that the previous inequality also implies that

1− |z| ≥ t. (58)
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Indeed, the previous inequality can be written 1 ≥ t+ |z| = 1
2 (1− |z0|) + |z|,or,

equivalently, 1
2 + 1

2 |z0| ≥ |z|, which is what we just proved.
Using (57) and (58) and the fact that g has a maximum at z0, we have

|f ′(z)|(1− |z|) = g(z) ≤ g(z0) = 2t|f ′(z0)| ≤ (1− |z|)|f ′(z0)|,

which gives |f ′(z)| ≤ |f ′(z0)|. It now follows from the previous lemma and the
fact that B(z0, t) ⊆ B(0, 1), that

f(B(0, 1)) ⊇ f(B(z0, t)) ⊇ B(f(z0), r0),

where r0 = (3− 2
√

2)|f ′(z0)|t = ( 3
2 −
√

2)g(z0), again by (57).
Step 2: To conclude the proof of the theorem, observe that if f ′(0) = 1,

then g(0) = 1 ≤ g(z0) and so r0 ≥ 3
2 −
√

2.
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Corollary 153 Let U ⊆ C be an open set and let f : U → C be a holomorphic
function. If z0 ∈ U is such that f ′(z0) 6= 0, then f(U) contains balls of every
radius 1

12r|f
′(z0)|, where 0 < r < dist(z0, ∂U).

Proof. Assume that z0 = 0. If 0 < r < dist(0, ∂U), then B(0, r) ⊂ U .
Consider the function

g(z) :=
f(rz)

rf ′(0)
, z ∈ 1

r
U.

Since B(0, 1) ⊂ 1
rU and g

′(0) = 1, by Bloch’s theorem g(B(0, 1)) contains a ball
of radius 3

2 −
√

2 > 1
12 . In turn, f(B(0, r)) contains a ball of radius 1

12r|f
′(0)|.

Corollary 154 Let f : C → C be a non-constant entire function. Then f(C)
contains balls of every radius.

Exercise 155 Let f : C→ C. Prove that f ◦f : C→ C has a fixed point unless
f is of the form f(z) = z + w for all z ∈ C and for some w ∈ C.

In this subsection we prove the following theorem.

Theorem 156 (Picard Little Theorem) Every non-constant entire function
f : C→ C takes every value except at most one.

We begin with some preliminary results.

Lemma 157 Let U ⊆ C be a simply connected open set and let f : U → C be
a holomorphic function which does not take value −1 and 1. Then there exists
a holomorphic function h : U → C such that

f(z) = cosh(z), z ∈ U.

Proof. Since f does not take values −1 and 1, 1−f2 is never equal to 0 and
so by by Remark 103 there exists a branch of

√
1− f2, that is a holomorphic

function g : U → C such that g2 = 1−f2 in U . Write 1 = f2 +g2 = (f+ig)(f−
ig). Then f+ig has no zeros in U and so by Corollary 100, f+ig = eih for some
holomorphic function h : U → C. In turn, 1 = (f + ig)(f − ig) = eih(f − ig)
and so f − ig = e−ih. Using Euler’s formula (20) we get

f =
eih + e−ih

2
= cosh in U,

which concludes the proof.

Lemma 158 Let U ⊆ C be a simply connected open set and let f : U → C be
a holomorphic function which does not take value 0 and 1. Then there exists a
holomorphic function g : U → C such that

f(z) =
1

2
[1 + cos(π cos(πg(z)))], z ∈ U.

Moreover, g(U) does not contain any ball of radius 1.
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Proof. The function 2f − 1 does not take the values −1 and 1, and so by
the previous lemma, there exists a holomorphic function h : U → C such that
2f − 1 = cos(πh) in U . Note that by periodicity, the function h does not take
any integer values. In particular, it does not take the values −1 and 1. Hence,
by the previous lemma again, there exists a holomorphic function g : U → C
such that we can write h = cos(πg).
To prove the second part of the statement, consider the set

E = {k ± iπ−1 log(n+
√
n2 − 1) : k ∈ Z, n ∈ N}.

We claim that g(U) ∩ E = ∅. To see this, let w ∈ E. Then by Euler’s formula
(20),

cos(πw) =
eiπw + e−iπw

2
=

1

2
(eiπke∓ log(n+

√
n2−1) + e−iπke± log(n+

√
n2−1))

=
1

2
(−1)k

[
1

n+
√
n2 − 1

+ n+
√
n2 − 1

]
=

1

2
(−1)k2n = (−1)kn.

Hence, cos(π cos(πw)) = cos(π(−1)kn) ∈ {−1, 1}. In turn. 1
2 [1+cos(π cos(πw))] ∈

{0, 1}. Since f does not take values 0 and 1, g cannot take value w. This proves
the claim.
The points in E are the vertices of a rectangular grid. Consider the rec-

tangle of vertices k + iπ−1 log(n +
√
n2 − 1), k + 1 + iπ−1 log(n +

√
n2 − 1),

k+ iπ−1 log(n+1+
√

(n+ 1)2 − 1), and k+1+ iπ−1 log(n+1+
√

(n+ 1)2 − 1).
The base has length 1 and the height has length

log(n+ 1 +
√

(n+ 1)2 − 1)− log(n+
√
n2 − 1)

= log
n+ 1 +

√
(n+ 1)2 − 1

n+
√
n2 − 1

= log
1 + 1

n +
√

1 + 2
n

1 +
√

1− 1
n2

< log(1 +
1

n
+

√
1 +

2

n
) ≤ log(2 +

√
3) ∼ 1.317 < π,

where we factor out n and used the monotonicity of the logarithm. Hence, the
height of the rectangle is less than 1. Thus for every w ∈ C we can find z ∈ E
such that |Rew−Re z| ≤ 1

2 , | Imw− Im z| < 1
2 , which implies that |w− z| < 1.

This shows that every ball of radius 1 intersects E. Since g(U) does not intersect
E, it cannot intersect any ball of radius 1.

Wednesday, February 26, 2020
We are now ready to prove Picard’s little theorem.
Proof of Theorem 156. Assume by contradiction that there exist a, b ∈ C

with a 6= b such that f : C→ C does not takes value a and b. The the function

h(z) =
f(z)− a
b− a , z ∈ C,
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does not take the values 0 and 1. Hence, by the previous lemma there exists an
entire function g : C→ C such that

h(z) =
1

2
[1 + cos(π cos(πg(z)))].

Moreover, g(C) does not contain any ball of radius 1. However, since g is not
constant, by Corollary 154 we have a contradiction.
Another important theorem is the following.

Theorem 159 (Schottky) Let U ⊆ C be an open set which contains B(0, 1),
let α > 0, 0 < r < 1, and let f : U → C be a holomorphic function which does
not take values 0 and 1 and such that |f(0)| ≤ α. Then

|f(z)| ≤ exp(π exp(π(3 + α+ 12r/(1− r)))) for all z ∈ B(0, r). (59)

Proof. Since U contains B(0, 1), we can find R > 1 such that contains
B(0, 1) ⊂ B(0, R) ⊆ U . In the remaining of the proof we take U = B(0, R), so
that U is simply connected. As in the proof of Lemma 158, since f does not
take the values 0 and 1, the function 2f − 1 does not take the values −1 and 1
and so by Lemma 157 there exists a holomorphic function h : U → C such that
2f − 1 = cos(πh) in U . By periodicity, we can add to h any integer multiple of
2. Hence, without loss of generality, we may assume that

−1 ≤ Reh(0) ≤ 1.

By Exercise 33, for every w = x+ iy we have that

|y| ≤ cosh y ≤ | cosw| (60)

and so
π| Imh(0)| ≤ | cos(πh(0))| = |2f(0)− 1| ≤ 2|f(0)|+ 1.

Hence,

|h(0)| ≤ 1 +
2

π
|f(0)|+ 1

π
< 2 + |f(0)|. (61)

Since 2f − 1 does not take the values −1 and 1, the function h omits all integer
values. In particular, it omits the values −1 and 1 and so by Lemma 158 there
exists a holomorphic function g : U → C such that h = cos(πg). Moreover,
g(U) does not contain any ball of radius 1.
Reasoning as in the first part of the proof, by periodicity we can add to g

any integer multiple of 2 and so we can assume that −1 ≤ Re g(0) ≤ 1. By (60)
and (61),

π| Im g(0)| ≤ | cos(πg(0))| = |h(0)| ≤ 2 + |f(0)|,

and so
|g(0)| ≤ 1 +

2

π
|f(0)|+ 2

π
≤ 3 + |f(0)|. (62)
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If |z| ≤ r < 1, then dist(z, ∂B(0, 1)) ≥ 1 − r. On one hand, g(U) does not
contain any ball of radius 1. On the other hand, by Corollary 153, if g′(z) 6= 0,
then g(U) contains balls of every radius 1

12 (1− r)|g′(z)|. Hence,

1

12
(1− r)|g′(z)| < 1

for all z ∈ B(0, r). By the fundamental theorem of calculus,

g(z)− g(0) =

∫
[0,z]

g′(ζ) dζ

and so by the previous inequality, (62), and the fact that |f(0)| ≤ α,

|g(z)| ≤ |g(0)|+ 12|z|/(1− r) ≤ 3 + α+ 12r/(1− r). (63)

Since | cosw| ≤ e|w| and 1
2 |1 + cosw| ≤ e|w|, it follows that

|f(z)| ≤ 1

2
|1 + cos(π cos(πg(z)))| ≤ exp(π| cos(πg(z))|)

≤ exp(π exp(π|g(z)|)) ≤ exp(π exp(π(3 + α+ 12r/(1− r)))),

where in the last inequality we used (63).
The beauty of Schottky’s theorem is that the right-hand side of (59) depends

only on α and r. Hence, we have a universal bound.

12 Sequences of Holomorphic Functions

Theorem 160 Let U ⊆ C be an open set and let fn : U → C be holomorphic
functions which converge uniformly on compact sets of U to a function f : U →
C. Then f is holomorphic and {f ′n}n converges uniformly to f ′ on compact sets
of U .

Proof. By Goursat’s theorem,∫
∂T

fn = 0

for every n and for every closed triangle T ⊂ U . Letting n → ∞ and using
uniform convergence we get ∫

∂T

f = 0

and so by the previous corollary f is holomorphic in every open ball contained
in U , which implies that f is holomorphic in U .

To prove the second part of the statement, we use (32) to get

f ′n(z) =
1

2πi

∫
∂B(z0,r)

fn(ζ)

(ζ − z)2
dζ,

70



for every B(z0, r) ⊂ U and every z ∈ B(z0, r). If z ∈ B(z0, ρ), where 0 < ρ < r,
since |ζ − z| ≥ |ζ − z0| − |z0 − z| ≥ r − ρ,

|f ′(z)− f ′n(z)| =
∣∣∣∣∣
∫
∂B(z0,r)

f(ζ)− fn(ζ)

(ζ − z)2
dζ

∣∣∣∣∣ ≤ 2πr

(r − ρ)2
‖f − fn‖C(∂B(z0,r))

and so there is uniform convergence in B(z0, ρ). Since any compact set K ⊂ U
can be covered by a finite number of these balls, we have uniform convergence
of {f ′n}n on compact sets of U .

Definition 161 A metric space (X, d) is separable if there exists a countable
subset that is dense in X.

Definition 162 Let (X, dX) and (Y, dY ) be metric spaces. A family F of func-
tions f : X → Y is said to be equicontinuous at a point x0 ∈ X if for every
ε > 0 there exists δ = δ (x0, ε) > 0 such that

dY (f(x), f(x0)) ≤ ε

for all f ∈ F and for all x ∈ X with d (x, x0) ≤ δ. The family F of functions
f : X → Y is said to be uniformly equicontinuous if for every ε > 0 there exists
δ > 0 such that

dY (f(x), f (y)) ≤ ε
for all f ∈ F and for all x, y ∈ X with d(x, y) ≤ δ.

Theorem 163 (Ascoli—Arzelà) Let (X, d) be a separable metric space and let
F ⊆ Cb (X) be a family of functions. Assume that F is bounded and equicon-
tinuous at every point x ∈ X. Then every sequence in F has a subsequence that
converges pointwise to a function g ∈ Cb(X) and uniformly on every compact
subset of X.

Friday, February 28, 2020

Theorem 164 (Montel) Let U ⊆ C be an open set and let F be a family of
holomorphic functions defined on U . Assume that for every K ⊂ U there exists
a constant MK > 0 such that

|f(z)| ≤MK

for all f ∈ F and for all z ∈ K. Then the family F is equicontinuous on K
and for every sequence in F there is a subsequence which converges uniformly
on compact sets to a holomorphic function f : U → C.

Proof. Fix a compact set K ⊂ U and let dK := dist(K, ∂U) > 0 and let
0 < r < 1

3dK . Then for z ∈ K, B(z, 3r) ⊂ U . Hence, for z, w ∈ K with
|z − w| < r we can apply the Cauchy’s theorem to get

f(z)− f(w) =
1

2πi

∫
∂B(w,2r)

(
f(ζ)

ζ − z −
f(ζ)

ζ − w

)
dζ.
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For ζ ∈ ∂B(w, 2r) we have |ζ −w| = 2r and |ζ − z| ≥ |ζ −w| − |z−w| ≥ 2r− r.
Then ∣∣∣∣ 1

ζ − z −
1

ζ − w

∣∣∣∣ =

∣∣∣∣ z − w
(ζ − z)(ζ − w)

∣∣∣∣ ≤ |z − w|2r2
.

Hence,

|f(z)− f(w)| ≤ 2MK

2π

|z − w|
2r2

(4πr)

for all z, w ∈ K with |z − w| < r and for all f ∈ F . This shows that the family
F is equicontinuous in K. We can now apply the Ascoli—Arzelà to get that for
every sequence in F there a subsequence converging uniformly on compact sets
to a continuous function. By the previous theorem, the function is holomorphic.

Exercise 165 Let U ⊆ RN be an open connected set and let f : U → R be
an analytic function such that f is constant in a ball B ⊆ U . Prove that f is
constant in U .

Theorem 166 (Hurwitz) Let U ⊆ C be an open set, let fn : U → C be a
sequence of functions converging uniformly on compact set to a holomorphic
function f : U → C. Assume that there exists B(z0, r) ⊂ U such that f(z) 6= 0
for all z ∈ ∂B(z0, r). Then there exists n1 such that fn and f have the same
number of zeros in B(z0, r) for all n ≥ n1.

Proof. By continuity

δ := min
∂B(z0,r)

|f | > 0.

In turn, by uniform convergence on compact sets, there is n∗ such that |fn(z)| ≥
δ/2 for all z ∈ ∂B(z0, r) and all n ≥ n∗. It follows that∣∣∣∣ 1

fn(z)
− 1

f(z)

∣∣∣∣ =
|f(z)− fn(z)|
|f(z)||fn(z)| ≤

2

δ2
|f(z)− fn(z)|,

and so {1/fn} converges uniformly to 1/f on ∂B(z0, r). Moreover, since f ′n → f ′

uniformly on compact sets by Theorem 160 it follows that f ′n
fn
→ f ′

f uniformly
on ∂B(z0, r), and so

lim
n→∞

∫
∂B(z0,r)

f ′n(z)

fn(z)
dz =

∫
∂B(z0,r)

f ′(z)

f(z)
dz.

But by the argument principle (see Theorem 136) the integrals
∫
∂B(z0,r)

f ′n
fn
dz

and
∫
∂B(z0,r)

f ′

f dz are the numbers of zeros of fn and f inside B(z0, r), and
these numbers are finite. Since the limit exists, for n large these values must
coincide.

The following corollary will be useful to prove the Riemann mapping theo-
rem.
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Theorem 167 Let U ⊆ C be an open connected set and let fn : U → C be
a sequence of injective holomorphic functions converging uniformly on compact
set to a holomorphic function f : U → C. Then either f is injective or constant.

Proof. Let z0 ∈ U . Define gn(z) = fn(z)− fn(z0) and g(z) := f(z)− f(z0).
Assume that there exists z1 6= z0 such that f(z1) = f(z0). Then g has a zero at
z1. If g is not constant, then since the zeros of g are isolated, we can find r > 0
such that B(z1, r) ⊂ U and g(z) 6= 0 for all z ∈ B(z1, r) \ {z1}. In particular,
we are in a position to apply Hurwitz theorem to conclude that for all n large
all functions gn have a zero in B(z1, r). But by taking r > 0 we can assume
that z0 /∈ B(z1, r). Since the functions fn are injective, they cannot have a zero
at z1, which is a contradiction.

An important application of Schottky’s theorem is a sharpened version of
Montel’s theorem. In what follows, given an open set and fn : U → C, we say
that the sequence {fn}n converges uniformly to ∞ on compact sets if for every
compact set K ⊂ U and every M > 0 there exists nK,M such that

|fn(z)| ≥M for all z ∈ K

and all n ≥ nK,M .

Theorem 168 Let U ⊆ C be an open connected set and let F be the family
of holomorphic functions f : U → C which do not take the values 0 and 1.
Then for every sequence {fn}n in F there is a subsequence {fnk}k such that
{fnk}k converges uniformly on compact sets either to a holomorphic function
f : U → C or to ∞.

Proof. Step 1: Let z0 ∈ U and α > 0 and let

Fz0,δ := {f ∈ F : |f(z0)| ≤ α}.

We claim that there exist δ > 0 and M > 0 such that

|f(z)| ≤M

for all z ∈ B(z0, δ) and all f ∈ Fz0,δ. To see this, let r > 0 be so small that
B(z0, 2r) ⊂ U . By a dilation and a translation, without loss of generality, we
may assume that z0 = 0 and 2r = 1. Then by Schottky’s theorem with r = 1/2,

|f(z)| ≤ exp(π exp(π(3 + α+ 12)))

for all z ∈ B(0, 1/2) and all f ∈ Fz0,r.
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Proof. Step 2: Fix z1 ∈ U and let

Fz1,1 := {f ∈ F : |f(z1)| ≤ 1}.

Consider the set V := {z ∈ U : Fz1,1 is equibounded in a neighborhood of z}.
The set V is open, since if w ∈ V , then there are B(w, r) ⊂ U and L > 0 such
that |f(z)| ≤ L for all z ∈ B(w, r) and all f ∈ Fz1,1. But since B(z, r−|z−w|) ⊂
B(w, r), it follows that w is an interior point of V , and so V is open. Moreover,
V is nonempty in view of Step 1. We claim that V = U . If not, then using the
previous step there exists z2 ∈ ∂V ∩ U and a sequence of functions {fn}n in
Fz1,1 such that

lim
n→∞

|fn(z2)| =∞. (64)

Define gn := 1/fn. Then gn is holomorphic in U and does not take values 0 and
1. Hence, gn ∈ F . In view of (64),

lim
n→∞

gn(z2) = 0 (65)

and so there is α > 0 such that |gn(z2)| ≤ α for all n. In turn, by Step 1, the
sequence {gn}n is equibounded in a neighborhood B(z2, r) of z2. It follows by
Montel’s theorem (Theorem 164) that there exist a subsequence {gnk}k and a
holomorphic function g : B(z2, r)→ C such that gnk → g uniformly on compact
sets of B(z2, r). In view of (65), g(z2) = 0, but since gn does not vanish in U , it
follows from Hurwitz’s theorem (see Theorem 166) that g ≡ 0 in B(z2, r). This
implies that limn→∞ |fn(z)| =∞ for all z ∈ B(z2, r). But since z2 ∈ ∂V ∩U , this
implies that there exist points z ∈ B(z2, r) ∩ V such that limn→∞ |fn(z)| =∞,
which is a contradiction by the definition of V . Hence, the claim holds and so
V = U .
Step 3: Let {fn}n be a sequence of functions in F . If there exists countably

many n such that fn ∈ Fz1,1, say fnk ∈ Fz1,1, then by the previous step,
the sequence {fnk}k is locally bounded on compact sets, and thus by Montel’s
theorem there exists a further subsequence converging uniformly on compact
set to a holomorphic function. On the other hand, if only finitely many fn
belong to Fz1,1, then |fn(z1)| > 1 for all n suffi ciently large. In turn, 1

fn
∈ Fz1,1

for all n suffi ciently large. By the previous step and Montel’s theorem, there
exists a subsequence {fnk}k and a holomorphic function g : U → C such that
{1/fnk}k converges uniformly on compact set to g. If g never vanishes, then
{fnk}k converges uniformly to the holomorphic function 1/g : U → C. If g
vanishes at some point, then by Hurwitz’s theorem, g ≡ 0 (since 1/fnk never
vanishes). In turn, {fnk}k converges uniformly on compact set to ∞.

13 Picard’s Big Theorem

In this section we prove Picard’s big theorem.
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Theorem 169 (Picard Big Theorem) Let z0 ∈ C, r > 0, and let f : B(z0, r)\
{z0} → C be a holomorphic function having an essential singularity at z0. Then
f takes all possible values of C with at most a single exception.

Proof. Without loss of generality we assume that z0 = 0, that r = 1. As-
sume by contradiction that f does not assume two values a and b. By composing
f with a linear function, we can assume that f does not take values 0 and 1.
Consider the sequences of functions

fn(z) := f(z/n), z ∈ B(0, 1) \ {0}.

In view of the previous theorem, taking K = ∂B(0, 1/2), we can find a sub-
sequence {fnk}k such that {fnk}k is equibounded in ∂B(0, 1/2) or {1/fnk}k is
equibounded in ∂B(0, 1/2). In the first case, there exists M > 0 such that

|f(z/nk)| ≤M for all z ∈ ∂B(0, 1/2)

and all k. In turn,

|f(w)| ≤M for all w ∈ ∂B(0, 1/(2nk))

and all k. It follows by the maximum modulus principle that

|f(w)| ≤M for all 1/(2nk + 1) < |z| < 1/(2nk)

and for all k. But this implies that f is bounded in a neighborhood of z0, and so
it has a removable singularity at z0 by Theorem 119, which is a contradiction.

Similarly, if {1/fnk}k is equibounded in ∂B(0, 1/2), then 1/f is bounded in
a neighborhood of z0, which implies that 1/f has a removable at z0, again, by
Theorem 119, that is, there exists

lim
z→z0

1

f(z)
= ` ∈ C.

If ` 6= 0 then f has a removable singularity at z0, while if ` = 0, then f has a
pole at z0. This is again a contradiction.

Wednesday, March 4, 2020

14 Entire Functions

We begin by reviewing infinite products.

14.1 Infinite Products

Definition 170 Given a sequence {zn}n of complex numbers, we say that the
infinite product

∞∏
n=1

(1 + zn)

75



converges if there exists

lim
k→∞

k∏
n=1

(1 + zn) = ` ∈ C.

The following theorem gives a necessary condition for the convergence of an
infinite product.

Theorem 171 Given a sequence {zn}n of complex numbers, if the series
∞∑
n=1

|zn|

converges, then the infinite product
∞∏
n=1

(1+zn) converges. Moreover, the product

converges to 0 if and only if 1 + an = 0 for some n.

Proof. By Theorem 20, limn→∞ zn = 0, and so there exists n1 ∈ N such
that |zn| < 1

2 for all n ≥ n1. By Exercise 36, for z ∈W ∩B(0, 1),

logW (1 + z) = −
∞∑
n=1

(−1)n
zn

n
, (66)

where W = C \ {z ∈ C : z = x+ 0i, x ≤ 0} and logW is the principal branch of
the logarithm. In particular, if |z| < 1

2 ,

| logW (1 + z)| ≤
∞∑
n=1

|z|n
n
≤
∞∑
n=1

|z|n =
|z|

1− |z| ≤ 2|z|. (67)

For k ≥ n1 we use (66) to write

k∏
n=n1

(1 + zn) =

k∏
n=n1

elogW (1+zn) = exp

(
n∑

n=n1

logW (1 + zn)

)
.

By (67), | logW (1 + zn)| ≤ 2|zn| and since
∞∑
n=1

|zn| converges, by the com-

parison test, the series
∑∞
n=n1

| logW (1 + zn)| converges. Hence, the series∑∞
n=n1

logW (1 + zn) converges absolutely. In particular, there exists

lim
k→∞

n∑
n=n1

logW (1 + zn) = ` ∈ C.

By the continuity of the exponential function, there exists

lim
k→∞

k∏
n=n1

(1 + zn) = lim
k→∞

exp

(
n∑

n=n1

logW (1 + zn)

)
= e`.
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In turn,

k∏
n=1

(1 + zn) =

n1∏
n=1

(1 + zn)

k∏
n=n1

(1 + zn)→
n1∏
n=1

(1 + zn)e`.

This concludes the first part of the proof.

If 1 + zm = 0 for some m, then
k∏

n=1

(1 + zn) = 0 for all k ≥ m and so the

infinite product converges to zero. On the other hand, if 1 + zn 6= 0 for all n,

then by the previous part we have that
k∏

n=1

(1+zn)→
n1∏
n=1

(1+zn)e` =: `1. Since

e` 6= 0, it follows that `1 6= 0.
As a corollary of the previous theorem we have the following result.

Theorem 172 Let U ⊆ C be an open set and let fn : U → C be holomorphic
functions, n ∈ N. Assume that for each n ∈ N there exists an > 0, such that

|fn(z)− 1| ≤ an for all z ∈ U. (68)

If
∞∑
n=1

an converges, then the infinite product
∞∏
n=1

fn(z) converges uniformly to a

holomorphic function P : U → C. Moreover, if fn(z) 6= 0 for all z ∈ U and all
n ∈ N, then P (z) 6= 0 for all z ∈ U and

P ′(z)

P (z)
=

∞∑
n=1

f ′n(z)

fn(z)
for all z ∈ U.

Proof. Let n1 ∈ N be such that an < 1
2 for all n ≥ n1. In view of (67) and

(68),
| logW fn(z)| = | logW (1 + (fn(z)− 1))| ≤ 2|fn(z)− 1| ≤ 2an

for all n ≥ n1. Taking the supremum over all z ∈ U gives

sup
U
| logW fn(z)| ≤ 2an

and so the series
∞∑

n=n1

sup
U
| logW fn(z)| ≤

∞∑
n=n1

2an = R :<∞.

This implies that the series of functions
∑∞
n=n1

logW fn converges uniformly in

U and that
∑k
n=n1

logW fn(z) ∈ B(0, R) for all k ≥ n1 and all z ∈ U . Since
w 7→ ew is continuous, it follows that

gk(z) :=

k∏
n=n1

fn(z) = exp

(
k∑

n=n1

logW fn(z)

)
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converges uniformly in U to some function g : U → C, with

g(z) = exp

( ∞∑
n=n1

logW fn(z)

)
. (69)

By Theorem 160, g is holomorphic and g′k → g′ uniformly on compact sets of
U .
Define

P (z) := g(z)h(z), h(z) :=

n1∏
n=1

fn(z),

Pk(z) :=

k∏
n=1

fn(z) = gk(z)h(z)

Then

sup
U
|Pk(z)− P (z)| = sup

U
|h(z) (gk(z)− g(z))|

= sup
U
|h(z)| |gk(z)− g(z)|

≤ L sup
U
|gk(z)− g(z)| → 0

as k →∞, where we used the fact that |h(z)| ≤ L for all z ∈ U by (68), with

L :=

n1∏
n=1

(1 + an).

Next, assume that fn(z) 6= 0 for all z ∈ U and all n ∈ N and fix a compact
set K ⊂ U . Since g is the exponential of a holomorphic function g(z) 6= 0 for
all z ∈ U . In particular, |g(z)| ≥ δ0 for all z ∈ K. Moreover, by assumption
h(z) 6= 0 for all z ∈ U and so |h(z)| ≥ δ1 for all z ∈ K. This implies that
|f(z)| ≥ δ1δ0 =: δ2 for all z ∈ K. By uniform convergence we have that

|Pk(z)| ≥ 1

2
δ1 for all z ∈ K and all k ≥ k1, (70)

where k1 depends only on K. Since g′k → g′ uniformly on compact sets and
Pk = hgk then P ′k = h′gk + hg′k converges uniformly on compact sets to P

′. In
turn, by (70), P ′k/Pk → P ′/P uniformly in K. Using (51), we get

P ′k(x)

Pk(x)
=

k∑
n=1

f ′n(x)

fn(x)
→ P ′(z)

P (z)

uniformly in K. In particular,

P ′(z)

P (z)
=

∞∑
n=1

f ′n(x)

fn(x)

for all z ∈ K. Since this holds for every compact set K ⊂ U , this concludes the
proof.
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Exercise 173 Prove that

sin(πz)

π
= z

∞∏
n=1

(
1− z2

n2

)
Hint: Use Exercise 149.

14.2 Entire Functions of Finite Order

We begin by proving Jensen’s formula.

Theorem 174 (Jensen formula) Let U ⊆ C be an open set containing 0 and
let f : U → C be a holomorphic function such that f(0) 6= 0. Then for every for
closed ball B(0, r) ⊂ U such that f has no zeros on ∂B(0, r), we have

log |f(0)| =
n∑
k=1

log

(
|zk|
r

)
+

1

2π

∫ 2π

0

log |f(reiθ)| dθ, (71)

where z1, . . . , zn are the zeros (if any) of f inside B(0, r) counted with multi-
plicities. Here, if n = 0, we take

∑0
k=1 := 0.

Proof. Step 1: Assume first that f has no zeros inside B(0, r). We claim
that

log |f(0)| = 1

2π

∫ 2π

0

log |f(reiθ)| dθ. (72)

Consider an open ball B ⊆ U containing B(0, r). Since B is simply connected,
by Corollary 100 there exists a holomorphic function g : B → C such that

f(z) = eg(z) for all z ∈ B.

Taking the modulus on both sides we have

|f(z)| = |eg(z)| = |eRe g(z)+i Im g(z)| = |eRe g(z)ei Im g(z)|
= |eRe g(z)||ei Im g(z)| = eRe g(z)

and so log |f(z)| = Re g(z). We now apply the mean value formula (37) (see
Theorem 110) to Re g, to get (72).
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Proof. Step 2: Next assume that f(z) = z−w0 for some w0 ∈ B(0, r)\{0}.

We claim that

log |w0| = log

(
|w0|
r

)
+

1

2π

∫ 2π

0

log |reiθ − w0| dθ. (73)

Writing log
(
|w0|
r

)
= log |w0| − log r and

log |reiθ − w0| = log(r|eiθ − w0/r|) = log r + log |eiθ − w0/r|,

we have that formula (73) is equivalent to

0 =

∫ 2π

0

log |eiθ − ζ0| dθ =

∫ 2π

0

log |e−is − ζ0| ds

=

∫ 2π

0

log |e−is − e−iseisζ0| ds =

∫ 2π

0

log(|e−is||1− eisζ0|) ds (74)

=

∫ 2π

0

log |1− eisζ0| ds,

where |ζ0| < 1 and we have made the change of variables θ = −s. Since the
holomorphic function h(z) = 1 − zζ0 does not vanish in B(0, 1), we can apply
Step 1 together with the fact that h(0) = 1, to get

0 = log |h(0)| = 1

2π

∫ 2π

0

log |1− eisζ0| ds,

which proves (73) in view of (74).
Step 3: Let f1 : U → C and f2 : U → C be holomorphic function such that
f1(0) 6= 0 and f2(0) 6= 0, and f1 and f2 have no zeros on ∂B(0, r). We claim that
if f1 and f2 satisfy Jensen’s formula (71), then so does their product f1f2. Let
z1, . . . , zn1 and w1, . . . , wn2 be the zeros of f1 and f2 inside B(0, r), respectively.
Then f1f2 has zeros z1, . . . , zn1 and w1, . . . , wn2 . Moreover,

log |(f1f2)(0)| = log(|f1(0)||f2(0)|) = log |f1(0)|+ log |f2(0)|

=

n1∑
k=1

log

(
|zk|
r

)
+

1

2π

∫ 2π

0

log |f1(reiθ)| dθ

+

n2∑
k=1

log

(
|wk|
r

)
+

1

2π

∫ 2π

0

log |f2(reiθ)| dθ

=

n1∑
k=1

log

(
|zk|
r

)
+

n2∑
k=1

log

(
|wk|
r

)
+

1

2π

∫ 2π

0

log |(f1f2)(reiθ)| dθ.
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Step 4: We are finally ready to prove the general case. Let f : U → C be a
holomorphic function such that f(0) 6= 0 and f has no zeros on ∂B(0, r). Let
z1, . . . , zn be the zeros of f inside B(0, r) counted with multiplicities. Since the
zeros are counted with their multiplicity and are isolated, by Corollary 112 the
function

q(z) =
f(z)

(z − z1) · · · (z − zn)

is defined in U , holomorphic, and does not vanish in B(0, r). Hence, Jensen’s
formula (71) holds for q by Step 1. On the other hand, by Step 2 it holds for
each function z 7→ z − zk. Since

f(z) = q(z)(z − z1) · · · (z − zn),

the conclusion follows from Step 3 and an induction argument.
We now define functions of finite order.

Definition 175 Given an entire function f : C → C and a > 0, we say that
f has an order of growth less than or equal a if there exist constants A,B > 0
such that

|f(z)| ≤ AeB|z|
a

for all z ∈ C. (75)

We define the order of growth of f as af = inf a, where the infimum is taken
over all a > 0 such that f has an order of growth less than or equal to a.

The function f(z) = ez
2

has order of growth 2.

Theorem 176 Let f : C→ C be an entire function that has an order of growth
less than or equal to a > 0. For every r > 0 let n(r) be the number of zeros
counted with their multiplicity inside B(0, r). Then

n(r) ≤ Cra for all r ≥ 1 (76)

and for some constant C > 0. Moreover, if {zn}n are the zeros of f different
from zero and counted with their multiplicity, then for every b > a,∑

n

1

|zn|b
<∞. (77)

When needed, we write nf for n to highlight the dependence on f .
Proof. Step 1: We first show that if f(0) 6= 0 and if f does not vanish on

∂B(0, r), then ∫ r

0

n(s)

s
ds =

1

2π

∫ 2π

0

log |f(reiθ)| dθ − log |f(0)|.

In view of Jensen’s formula, it is enough to show that∫ r

0

n(s)

s
ds =

n∑
k=1

log

(
|zk|
r

)
,
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where z1, . . . , zn are the zeros of f inside B(0, r) counted with their multiplicity.
To see this, observe that

n∑
k=1

log

(
|zk|
r

)
=

n∑
k=1

∫ r

|zk|

1

s
ds.

Write

n(s) =

n∑
k=1

χ(|zk|,∞)(s).

Then

n∑
k=1

∫ r

|zk|

1

s
ds =

n∑
k=1

∫ r

0

χ(|zk|,∞)(s)
1

s
ds =

∫ r

0

n∑
k=1

χ(|zk|,∞)(s)
1

s
ds =

∫ r

0

n(s)

s
ds,

which completes the proof of this step.
Step 2: To prove (76), we first assume that f(0) 6= 0. Take r > 0 such that

f does not vanish on ∂B(0, 2r). Since n is increasing,

n(r) log 2 = n(r) log
2r

r
= n(r)

∫ 2r

r

1

s
ds ≤

∫ 2r

r

n(s)

s
ds.

≤
∫ 2r

0

n(s)

s
ds =

1

2π

∫ 2π

0

log |f(2reiθ)| dθ − log |f(0)|,

where we used the previous step with r replaced by 2r. On the other hand by
(75),

1

2π

∫ 2π

0

log |f(2reiθ)| dθ ≤ 1

2π

∫ 2π

0

log(AeB2ara) dθ

=
1

2π

∫ 2π

0

[logA+ log(eB2ara)] dθ

= logA+B2ara.

Combining these inequalities gives

n(r) log 2 ≤ logA+B2ara.

Taking r ≥ 1 and C = (logA + B2a)/ log 2, we obtain (76) for all r such
that f does not vanish on ∂B(0, 2r). Fix r ≥ 1. Since the number of zeros in
B(0, 2r+1) is finite, we have that f does not vanish on ∂B(0, 2r+2s) for all but
finitely many s ∈ (0, 1). Consider a sequence sk → 0+ such f does not vanish
on ∂B(0, 2r + 2sk). By what we just proved and the fact that n is increasing,

n(r) ≤ n(r + sk) ≤ C(r + sk)a

for all k. It suffi ces to send k →∞.
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Step 3: Next we prove (76), in the case f(0) = 0. Assume that ` is the
multiplicity of 0. Then the function g(z) := f(z)/z` is holomorphic, ng differs
from nf by `. Moreover, for |z| ≥ 1,

|g(z)| ≤ |f(z)|
|z|` ≤ Ae

B|z|a .

On the other hand, since g is holomorphic, there exists A1 > 0 such that

|g(z)| ≤ A1 ≤ A1e
B|z|a

for all |z| ≤ 1. Hence, by replacing A with max{A,A1}, we have that g also has
an order of growth less than or equal to a. By applying Step 2 to g we get

ng(r) ≤ Cra for all r suffi ciently large,

say for r ≥ 1 and for some constant C ≥ 1. In turn,

nf (r) = ng(r) + ` ≤ Cra + ` ≤ (C + `)ra.

Step 4: We prove (77). If the number of zeros is finite, there is nothing to
prove. Thus, we assume that there are infinitely many zeros. Then by (76),∑
|zn|≥1

1

|zn|b
=

∞∑
j=0

∑
2j≤|zn|<2j+1

1

|zn|b
≤
∞∑
j=0

∑
2j≤|zn|<2j+1

1

2jb
=

∞∑
j=0

nf (2j+1)
1

2jb

≤ C
∞∑
j=0

2(j+1)a

2jb
= C2a

∞∑
j=0

1

2j(b−a)
<∞.

Since there are only finitely many zeros in B(0, 1), (77)
The next example shows that we cannot take b to be the order of growth of

f .

Example 177 Let f(z) = sin(πz). By Euler’s identity

f(z) =
eiπz − e−iπz

2i
.

Hence,
|f(z)| ≤ eπ|z|,

so f has an order of growth less than or equal to 1. Taking z = −ix gives

f(ix) =
eπx − e−πx

2i
,

which shows that the order of growth is 1. Note that f(n) = sin(πn) = 0 and

∞∑
n=1

1

n
=∞.

Friday, March 20, 2020
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14.3 Weierstrass Theorem

In this section we show that given a sequence {zn}n of complex numbers whose
moduli converge to infinity, we can construct an entire function which vanishes
exactly at each zn.

Theorem 178 (Weierstrass) Let {zn}n be a sequence of complex numbers
such that |zn| → ∞ as n→∞. Then there exists an entire function f : C→ C
such that f(zn) = 0 for all n and f 6= 0 otherwise. Moreover, any other entire
function with the same property is of the form f(z)eg(z), where g : C→ C is an
entire function.

The natural choice of f would be

f(z) =

∞∏
n=1

(1− z/zn).

However, in general the infinite product will not converge.
Proof. Step 1: Define

E0(z) = 1− z, En(z) = (1− z) exp(z +
1

2
z2 + · · ·+ 1

n
zn). (78)

We claim that if |z| ≤ 1/2, then

|1− En(z)| ≤ 2e|z|n+1.

By Exercise 36, for z ∈W ∩B(0, 1),

logW (1− z) = −
∞∑
k=1

zk

k
,

where W = C \ {z ∈ C : z = x+ 0i, x ≤ 0} and logW is the principal branch of
the logarithm. Writing 1− z = elogW (1−z), we have

En(z) = exp

(
logW (1− z) + z +

1

2
z2 + · · ·+ 1

n
zn
)

(79)

= exp

(
−

∞∑
k=n+1

zk

k

)
=: ew.

In particular, if |z| ≤ 1
2 ,

|w| =
∣∣∣∣∣
∞∑

k=n+1

zk

k

∣∣∣∣∣ ≤ |z|n+1
∞∑

k=n+1

|z|k−n−1

k
≤ |z|n+1

∞∑
j=0

|z|j ≤ |z|n+1
∞∑
j=0

1

2j
= 2|z|n+1 ≤ 1.

(80)
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Hence,

|1− En(z)| = |1− ew| =
∣∣∣∣∣
∞∑
k=1

wk

k!

∣∣∣∣∣ ≤
∞∑
k=1

|w|k
k!

= |w|
∞∑
k=1

|w|k−1

k!

≤ |w|
∞∑
k=1

1

k!
= |w|(e− 1) ≤ 2(e− 1)|z|n+1,

which proves the claim for z ∈W ∩B(0, 1/2). For z ∈ B(0, 1/2) we can use the
fact that En and |z|n+1 are continuous functions.

Step 2: We are now ready to construct the function f . Since |zn| → ∞, by
relabelling the sequence, we can assume that

|z1| ≤ |z2| ≤ · · · ≤ |zn| ≤ |zn+1|

for all n. If 0 is one of the numbers zn with multiplicity ` we define

f(z) = z`
∞∏
n=1

En(z/zn),

while if zero is not, we take ` = 0 and set z0 := 1 in the previous definition.
Fix r > 0 and consider z ∈ B(0, r). Let n1 > 1 be such that |zn| ≥ 2r for all
n ≥ n1. Then |z/zn| ≤ 1/2 and so by the previous step

|1− En(z/zn)| ≤ 2e|z/zn|n+1 ≤ 2e/2n+1.

Since the series
∑∞
n=n1

e
2n converges, by Theorem 172, the infinite product

∞∏
n=n1

En(z/zn) converges uniformly to a holomorphic function P : B(0, r) → C.

Moreover, since En(z/zn) vanishes only at zn, we have that if En(z/zn) 6= 0 for
all z ∈ B(0, r) and all n ≥ n1. Thus, again by Theorem 172, P (z) 6= 0 for all
z ∈ B(0, r). Since

f(z) = z`
n1−1∏
n=1

En(z/zn)P (z),

we have that f is holomorphic in B(0, r). Moreover, since P 6= 0 in B(0, R),
En(z/zn) vanishes only at zn, we have that f vanishes only at those zn, n =
1, . . . , n1 − 1, which are inside B(0, r). By the arbitrariness of r > 0 this
concludes the first part of the proof.
Step 3: Let h : C → C be an entire function such that h(zn) = 0 for all

n and h(z) 6= 0 otherwise. If wk is a zero of h and f with multiplicity mk, by
Corollary 112 applied f and h we can write

h(z) = (z − wk)mkh1(z), f(z) = (z − wk)mkf1(z),

where h1 and f1 are holomorphic functions in some ball B(wk, rk) which do not
vanish in B(wk, rk). Hence,

h(z)

f(z)
=
h1(z)

f1(z)
for all z ∈ B(wk, rk) \ {wk}.
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This shows that h/f has a removable singularity at wk and does not vanishes
in B(wk, rk). By the arbitrariness of the zero wk and the fact that the zeros
are isolated, we have shown that h/f can be extended to C as a holomorphic
function which vanishes nowhere. We now apply Corollary 100 to write h/f = eg

for some entire function g : C→ C. This concludes the proof.
The functions En are called canonical factors and n the degree of the canon-

ical factor.

Corollary 179 Let f : C→ C be an entire function. Then the following hold:

(i) if f(z) 6= 0 for all z ∈ C, then there exists an entire function g : C → C
such that f(z) = eg(z) for all z ∈ C,

(ii) if f has finitely many zeros z1, . . . , zn counted with their multiplicity, then
there exists an entire function g : C→ C such that

f(z) = (z − z1) · · · (z − zn)eg(z)

for all z ∈ C,

(iii) if f has infinitely many zeros {zn}n counted with their multiplicity, then
there exists an entire function g : C→ C such that

f(z) = z`
∞∏
n=1

En(z/zn)eg(z)

for all z ∈ C.

Proof. Item (i) is Corollary 100. Items (ii) and (iii) follow as in Step 3 of
the previous proof.
Note that Weierstrass theorem shows that any entire function with infinitely

many zeros can be written as the product of the function constructed by Weier-
strass and an exponential function. Thus, it provides a way to represent entire
functions. This is why this theorem is calledWeierstras representation theorem.
The next theorem shows that if f has finite order of growth, then the function

g in the exponential is a polynomial.

Theorem 180 (Hadamard) Let f : C → C be an entire function which has
growth order a and infinitely many zeros zn. Then

f(z) = ep(z)z`
∏
n

En(z/zn),

where p is a polynomial of degree less than or equal to bac, ` ∈ N0 is the order
of the zero of f at z = 0.
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15 Prime Number Theorem

Throughout this section p denotes a prime number.

Theorem 181 (Prime Number Theorem) Given x ∈ R, let π(x) be the
number of prime numbers which are less than or equal to x. Then

π(x) ∼ x

log x
as x→∞.

Consider the

ζ(z) :=

∞∑
n=1

1

nz
, z ∈ C, Re z > 1. (81)

This function is called the Riemann zeta function.

Lemma 182 The function ζ converges absolutely and uniformly on compact
sets of U := {z ∈ C : Re z > 1}. Moreover,

ζ(z) =
∏

p prime

1

1− p−z , z ∈ U.

In particular, ζ has no zeros in U .

Proof. We have

|nz| = |ez logn| = e(Re z) logn = nRe z

and so if Re z ≥ 1 + ε, with ε > 0, then

∞∑
n=1

1

|nz| ≤
∞∑
n=1

1

n1+ε
<∞,

which implies that there is uniform and absolute convergence in the set {z ∈
C : Re z ≥ 1 + ε}. In particular, there is absolute convergence in U . Hence, we
can rearrange terms in the series.

87



Monday, March 23, 2020
Proof. Let {pn}n be the ordered sequence of prime numbers. For each

` ∈ N let S` be the set of all natural numbers which are not divisible by p1, . . . ,
p`. We claim that

ξ(z)
∏̀
l=1

(
1− 1

pzl

)
=
∑
n∈S`

1

nz
. (82)

For ` = 1 we have p1 = 2 and so

ξ(z)

(
1− 1

2z

)
=

∞∑
n=1

1

nz
−
∞∑
n=1

1

(2n)z
=
∑
n∈S1

1

nz
,

since we removed all the even natural numbers. Hence, the base case ` = 1 is
true. Next assume that the claim holds for ` and let’s prove it for `+ 1. By the
induction hypothesis,

ξ(z)
∏̀
l=1

(
1− 1

pzl

)
=
∑
n∈S`

1

nz
.

Multiply both sides by 1− 1
pz`+1

to get

ξ(z)

`+1∏
l=1

(
1− 1

pzl

)
=

(
1− 1

pz`+1

) ∞∑
n∈S`

1

nz

=
∑
n∈S`

1

nz
−
∑
n∈S`

1

(p`+1nz)
=

∑
n∈S`+1

1

nz
,

which proves the claim.
Letting `→∞ in (82) gives

ξ(z)

∞∏
l=1

(
1− 1

pzl

)
= lim
`→∞

∑
n∈S`

1

nz
= 1,

where we used the fact that S`+1 ⊂ S` and
⋂∞
`=1 S` = {1}.

The last part of the statement follows from Theorem 172 and the fact that
1

1−p−z 6= 0 for all z ∈ U .

Exercise 183 Let z ∈ C with Re z > 1. Prove that∫ ∞
1

1

tz
dt =

1

z − 1
,

∫ x

n

z

tz+1
dt =

1

nz
− 1

xz

for every n ∈ N.

Lemma 184 The function z 7→ ζ(z)− 1
z−1 can be extended as an holomorphic

function to the half-plane {z ∈ C : Re z > 0}.
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Proof. By the previous exercise

ζ(z)− 1

z − 1
=

∞∑
n=1

1

nz
−
∫ ∞

1

1

tz
dt =

∞∑
n=1

∫ n+1

n

(
1

nz
− 1

tz

)
dt

=

∞∑
n=1

∫ n+1

n

∫ x

n

z

sz+1
dsdt.

Note that ∣∣∣∣∫ n+1

n

∫ x

n

z

sz+1
dsdt

∣∣∣∣ ≤ ∫ n+1

n

∫ n+1

n

∣∣∣ z

sz+1

∣∣∣ dsdt
≤ |z| max

s∈[n,n+1]

1

|s|Re z+1
= |z| 1

nRe z+1
.

Hence, the series
∑∞
n=1

∫ n+1

n

∫ x
n

z
sz+1 dsdt is absolutely convergent for every z ∈

C with Re z > 0.
In view of the previous lemma, the Riemann zeta function can be extended

as a meromorphic function to {z ∈ C : Re z > 0} with a simple pole in z = 1
and no other poles. Next we study the zeros of ζ. The Riemann hypothesis is
the conjecture that all zeros of ζ lie on the line Re z = 1

2 .
The following lemma shows that there are no zeros for Re z ≥ 1.

Lemma 185 The Riemann zeta ζ has no zeros in {z ∈ C : Re z = 1}.

Proof. Step 1: Let U := {z ∈ C : Re z > 1}. Since ζ has no zeros in U ,
using Lemma 182 and Theorem 172,

ζ ′(z)

ζ(z)
=

∑
p prime

(
1

1−p−z

)′
1

1−p−z
= −

∑
p prime

p−z log p
(1−p−z)2

1
1−p−z

= −
∑

p prime

p−z log p

1− p−z , (83)

where we used the fact that pz = ez log p and so (pz)′ = ez log p log p = pz log p.
Using the geometric series we have that

1

1− p−z =

∞∑
k=0

p−kz.

Hence,

ζ ′(z)

ζ(z)
= −

∑
p prime

∞∑
k=0

p−(k+1)z log p = −
∑

p prime

∞∑
n=1

p−nz log p.

Step 2: Assume that ζ(1 + iy) = 0 and consider the function

g(z) := (ζ(z))3(ζ(z + iy))4ζ(z + 2iy).
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Note that ζ has a simple pole at z = 1, so (ζ(z))3 ∼ c0
(z−1)3 , while ζ1(z) :=

ζ(z + iy) has a zero of order n ∈ N at z = 1 so (ζ(z + iy))4 ∼ c1(z − 1)4, and
ζ2(z) := ζ(z + 2iy) may have a zero of order m ∈ N0 at z = 1, so ζ(z + 2iy) ∼
c2(z − 1)m. It follows that

g(z) ∼ c

(z − 1)3
(z − 1)4n(z − 1)m = c(z − 1)4n+m−3

as z → 1. Thus g has a zero at z = 1 of order 4n+m− 3 ≥ 1. Hence,

g(z) = (z − 1)4n+m−3h(z),

where h is holomorphic near z = 1 and h(1) 6= 0. In turn, by (51),

g′(z)

g(z)
=

(4n+m− 3)(z − 1)4n+m−4

(z − 1)4n+m−3
+
h′(z)

h(z)

=
4n+m− 3

z − 1
+
h′(z)

h(z)

and so

lim
z→1

(z − 1)
g′(z)

g(z)
= 4n+m− 3 > 0. (84)

On the other hand, for z ∈ C with Re z > 1, by (51) and the previous step,

g′(z)

g(z)
= 3

(ζ(z))2ζ ′(z)

(ζ(z))3
+ 4

(ζ(z + iy))3ζ ′(z + iy)

(ζ(z + iy))4
+
ζ ′(z + 2iy)

ζ(z + 2iy)

= 3
ζ ′(z)

ζ(z)
+ 4

ζ ′(z + iy)

ζ(z + iy)
+
ζ ′(z + 2iy)

ζ(z + 2iy)

= −3
∑

p prime

∞∑
n=1

p−nz log p− 4
∑

p prime

∞∑
n=1

p−nzp−nyi log p−
∑

p prime

∞∑
n=1

p−kzp−2nyi log p

= −
∑

p prime

∞∑
n=1

(3 + 4p−nyi + p−2nyi)p−nz log p.

Taking z = x > 1 we have that

Re
g′(x)

g(x)
= −

∑
p prime

∞∑
n=1

(Re(3 + 4p−nyi + p−2nyi))p−nx log p.

= −
∑

p prime

∞∑
n=1

(3 + 4 cos(ny) + cos(2ny))p−nx log p.

Since cos(2θ) = 2 cos2 θ − 1 we have that

3+4 cos θ+cos(2θ) = 3+4 cos θ+2 cos2 θ−1 = 2(1+2 cos θ+cos2 θ) = 2(1+cos θ)2.
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Hence,

lim
x→1+

(x− 1) Re
g′(x)

g(x)
≤ 0,

which contradicts (84).
Wednesday, March 25, 2020

The following theorem is of independent interest.

Theorem 186 Let f : [0,∞)→ C be bounded and locally integrable and let

g(z) :=

∫ ∞
0

f(t)e−tzdt, Re z > 0.

Assume that for every z ∈ C with Re z = 0 there exists rz > 0 such that g can
be extended holomorphically to B(z, rz). Then the generalized Riemann integral∫ ∞

0

f(t) dt (85)

is well-defined and equals g(0).

Proof. Using Corollary 115 and a compactness argument for every R >
1 we can find δ = δ(R) ∈ (0, 1

2 ) and M = M(R) > 0 such that g can be
extended to a holomorphic function g in an open set UR containing the set
CR := B(0, R) ∩ {z ∈ C : Re z ≥ −δ} and |g(z)| ≤ M for every z ∈ CR.
Consider the counterclockwise contour γ given by the intersection of ∂B(0, R)
and the segment Re z = −δ, |z| ≤ R. Also denote by γ+ and γ− the parts of γ
in the right half-plane Re z ≥ 0 and in the left half-plane Re z ≤ 0, respectively.
Let Γ+ and Γ− be their ranges. Let T > 0 and consider the function

hT (z) := g(z)ezT
(

1

z
+

z

R2

)
, z ∈ UR \ {0}.

If g(0) 6= 0, the function hT has only one pole at 0 with residue res0 hT = g(0),
while if g(0) = 0, then hT is holomorphic in UR. It follows by the residue’s
formula

2πig(0) = 2πi res0 hT =

∫
γ

hT dz =

∫
γ

g(z)ezT
(

1

z
+

z

R2

)
dz (86)

=

∫
γ+

g(z)ezT
(

1

z
+

z

R2

)
dz +

∫
γ−

g(z)ezT
(

1

z
+

z

R2

)
dz.

If z belongs to the range of γ+, then by (85), we can write

g(z) =

∫ T

0

f(t)e−tzdt+

∫ ∞
T

f(t)e−tzdt =: ST (z) +RT (z). (87)

Consider the function

qT (z) := ST (z)ezT
(

1

z
+

z

R2

)
, z ∈ B(0, R+ 1) \ {0}.
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Again by the residue’s formula

2πiST (0) = 2πi res0 qT =

∫
∂B(0,R)

qT dz =

∫
∂B(0,R)

ST (z)ezT
(

1

z
+

z

R2

)
dz

=

∫
γ+

ST (z)ezT
(

1

z
+

z

R2

)
dz +

∫
∂B(0,R)\Γ+

ST (z)ezT
(

1

z
+

z

R2

)
dz

(88)

=

∫
γ+

ST (z)ezT
(

1

z
+

z

R2

)
dz +

∫
γ+

ST (−w)e−wT
(

1

w
+

w

R2

)
dw

where we have made the change of variable z = −w. Subtracting (88) from
(86), and using (87) gives

2πi(g(0)− ST (0)) =

∫
γ+

RT (z)ezT
(

1

z
+

z

R2

)
dz

−
∫
γ+

ST (−z) 1

ezT

(
1

z
+

z

R2

)
dz (89)

+

∫
γ−

g(z)ezT
(

1

z
+

z

R2

)
dz =: I + II + III.

We now estimate I, II, and II. Let z = x+ iy with x > 0. Since f is bounded,
say, |f(t)| ≤ L for all t ∈ [0,∞), we have

|RT (z)| ≤
∫ ∞
T

|f(t)||e−tz|dt ≤ C
∫ ∞
T

e−txdt =

[
− 1

x
e−tx

]t→∞
t=T

=
e−Tx

x
.

On the other hand, for z ∈ ∂B(0, R), we have that

1

z
+

z

R2
=

z̄

zz̄
+

z

R2
(90)

=
z̄

R2
+

z

R2
=

Re z

R2
=

x

R2

In turn, for z ∈ Γ+,∣∣RT (z)ezT
∣∣ ∣∣∣∣1z +

z

R2

∣∣∣∣ ≤ e−Tx

x
exT

x

R2
=

1

R2
.

Hence,

|I| ≤ 1

R2
πR =

π

R
. (91)

Similarly,

|ST (−z)| ≤
∫ T

0

|f(t)||etz|dt ≤ C
∫ T

0

etxdt =

[
1

x
etx
]t=T
t=0

=
eTx − 1

x
≤ eTx

x
.
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In turn, for z ∈ Γ+,∣∣∣∣ST (−z) 1

ezT

∣∣∣∣ ∣∣∣∣1z +
z

R2

∣∣∣∣ ≤ eTx

x

1

eTx
x

R2
=

1

R2
.

It follows that

|II| ≤ πR

R2
=
π

R
. (92)

It remains to estimate III. Along the segment Σ given by Re z = −δ, |z| ≤ R
we have z = −δ + iy and so∣∣∣∣1z +

z

R2

∣∣∣∣ ≤ 1

|z| +
|z|
R2
≤ 1

δ
+

1

R
.

Since |g(z)| ≤M for all z ∈ CR, In turn,∣∣g(z)ezT
∣∣ ∣∣∣∣1z +

z

R2

∣∣∣∣ ≤Me−δT
(

1

δ
+

1

R

)
and so ∣∣∣∣∫

Σ

g(z)ezT
(

1

z
+

z

R2

)
dz

∣∣∣∣ ≤Me−δT
(

1

δ
+

1

R

)∫ R

−R
1 dy (93)

= Me−δT
(

2R

δ
+ 2

)
.

Friday, March 27, 2020
Proof. On the other hand, on γ− \ Σ, we have x = Re z ≤ 0 and |z| = R.

Using (90) we have

∣∣g(z)ezT
∣∣ ∣∣∣∣1z +

z

R2

∣∣∣∣ ≤MexT
|x|
R2

.

Since −δ ≤ x ≤ 0 we can parametrize these two arcs by ϕ(x) = x+±i
√
R2 − x2.

Then

|ϕ′(x)| =
√

1 +
x2

R2 − x2
=

R√
R2 − x2

≤ R√
R2 − δ2

≤ 1

2

since R2 ≥ 1 > 1
4 ≥ δ

2. Hence,∣∣∣∣∣
∫
γ−\Σ

g(z)ezT
(

1

z
+

z

R2

)
dz

∣∣∣∣∣ ≤
∫ 0

−δ
MexT

|x|
R2

dx

=
M

R2

∫ δ

0

e−tT t dt =
M

R2

[
− 1

T 2
e−Tt (Tt+ 1)

]t=δ
t=0

≤ M

R2

(
1

T 2
− 1

T 2
e−Tδ (Tδ + 1)

)
.
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Together with (93) this shows that

|III| ≤MT−δ
(

2R

δ
+ 2

)
+

M

R2T 2
.

Combining this inequality with (91) and (92), it follows from (89) that

|2πi(g(0)− ST (0))| ≤ π

R
+
π

T
+
π

R
+Me−δT

(
2R

δ
+ 2

)
+

M

R2T 2
.

We now choose R = 1
ε . This determines δ = δ(ε) and M = M(ε). Since

lim
T→∞

[
π

T
+Me−δT

(
2R

δ
+ 2

)
+

M

R2T 2

]
= 0,

taking T suffi ciently large, we have that

|2πi(g(0)− ST (0))| ≤ 2πε+ ε,

which proves that ST (0)→ g(0) as T →∞.
Define

θ(x) :=
∑

p prime≤x
log p, x ∈ R.

Theorem 187 The generalized Riemann integral∫ ∞
1

θ(x)− x
x2

dx

converges. In turn,

lim
x→∞

θ(x)

x
= 1. (94)

Proof. Step 1: We claim that there exists a constant C > 0 such that

|θ(x)| ≤ Cx

for all x > 0 suffi ciently large. For n ∈ N, by the binomial theorem

22n = (1 + 1)2n =

(
2n

0

)
+ · · ·+

(
2n

n

)
≥
(

2n

n

)
=

(2n)!

(n!)2

=

n−1∏
k=0

(2n− k)

n!
≥

∏
n<p≤2n

p = exp log

 ∏
n<p≤2n

p

 = exp log

∏
p≤2n p∏
p≤n p

= exp

∑
p≤2n

log p−
∑
p≤n

log p

 = eθ(2n)−θ(n),
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where in the last inequality we used the fact that
(

2n
n

)
is an integer (this can be

proved by induction). Taking logarithms on both sides gives

2n log 2 ≥ θ(2n)− θ(n).

Hence for m ∈ N,

θ(2m) =

m∑
n=1

(θ(2n)− θ(2n−1)) ≤ log 2

m∑
n=1

2n = (2m+1 − 2) log 2 < 2m+1 log 2.

Given x > 1 find m ∈ N such that 2m−1 ≤ x < 2m. Since θ is increasing,

θ(x) ≤ θ(2m) ≤ 2m+1 log 2 ≤ x4 log 2,

which proves the claim.
Step 2: Observe that in view of the previous step, for Re z > −1 the integral∫∞

0
e−(z+1)tθ(et) dt is well-defined. Indeed,

|e−(z+1)t| = e−t(Re z+1).

Let pn be the n-th prime number. If pn < et < pn+1, then

θ(et) =
∑

p prime≤et
log p = θ(pn),

or equivalently, θ(et) = θ(pn) for all log pn < t < log pn+1. Also θ(et) = 0 for
0 < t < log 2 = log p1. Hence, for Re z > −1,∫ ∞

0

e−(z+1)tθ(et) dt =

∞∑
n=1

∫ log pn+1

log pn

e−(z+1)tθ(et) dt =

∞∑
n=1

θ(pn)

∫ log pn+1

log pn

e−(z+1)tdt

=

∞∑
n=1

θ(pn)

[
−e
−(z+1)t

z + 1

]t=log pn+1

t=log pn

=
1

z + 1

∞∑
n=1

θ(pn)
[
p−(z+1)
n − p−(z+1)

n+1

]
=

1

z + 1

∞∑
n=1

θ(pn)p−(z+1)
n − 1

z + 1

∞∑
k=2

θ(pk−1)p
−(z+1)
k

=
1

z + 1
2−(z+1) log 2 +

1

z + 1

∞∑
n=2

(θ(pn)− θ(pn−1))p−(z+1)
n

=
1

z + 1
2−(z+1) log 2 +

1

z + 1

∞∑
n=2

p−(z+1)
n log pn =

Φ(z + 1)

z + 1
,

where in the second to last equality we used the fact that θ(pn)−θ(pn−1) = log pn
and we set k = n+ 1 and where

Φ(z) :=
∑

p prime

log p

pz
, z ∈ C, Re z > 1.
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Proof. Step 3: We prove that the function z 7→ Φ(z) − 1

z−1 can be
extended as a meromorphic function to the half-plane {z ∈ C : Re z > 1/2} and
is holomorphic for all z ∈ C with Re z ≥ 1. Using the identity

1

pz − 1
=

1

pz
+

1

pz(pz − 1)

by (83) we can write

−ζ
′(z)

ζ(z)
=

∑
p prime

log p

pz − 1
=

∑
p prime

log p

pz
+

∑
p prime

log p

pz(pz − 1)

= Φ(z) +
∑

p prime

log p

pz(pz − 1)
.

Note that for Re z > 1
2 , and p > 4,

|pz − 1| ≥ |pz| − 1 ≥ pRe z − 1 ≥ 1

2
pRe z

and so ∣∣∣∣ log p

pz(pz − 1)

∣∣∣∣ ≤ 2 log p

p2 Re z
.

Since the series
∞∑
n=1

log n

n2 Re z

converges, the series
∑
p prime

log p
pz(pz−1) is absolutely convergent for Re z > 1

2 .

Moreover, by Lemma 184, ζ
′(z)
ζ(z) is a meromorphic function for Re z > 0. Hence,

Φ(z) = −ζ
′(z)

ζ(z)
−

∑
p prime

log p

pz(pz − 1)

can be extended as a meromorphic function to Re z > 1
2 with poles at z = 1

and at the zeros of ζ.
Step 4: Consider the continuous bounded function

f(t) = e−tθ(et)− 1.

By Step 2 for Re z > 0, we have that∫ ∞
0

f(t)e−tzdt =

∫ ∞
0

e−t(z+1)θ(et) dt−
∫ ∞

0

e−tz dt =
Φ(z + 1)

z + 1
− 1

z
.

It follows from Step 3 that Φ(z+1)
z+1 −

1
z can be extended to a meromorphic function

g for Re z > − 1
2 , which is holomorphic for Re z ≥ 0. Hence, we are in a position
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to apply Theorem 186 to conclude that the integral
∫∞

0
f(t) dt is well-defined

and ∫ ∞
0

(e−tθ(et)− 1) dt =

∫ ∞
0

f(t)dt = g(0).

By considering the change of variables x = et, that is log x = t, so that 1
xdx = dt

we have that ∫ ∞
1

θ(x)− x
x2

dx =

∫ ∞
0

(e−tθ(et)− 1) dt = g(0),

which proves the first part of the statement.
Step 5: We prove (94). Assume by contradiction that

lim sup
x→∞

θ(x)

x
> 1.

There there exists an increasing sequence xn →∞ such that θ(xn) > (1 + ε)xn
for all n ∈ N and for some 0 < ε < 1. Since θ is increasing, if x > xn,
θ(x) ≥ θ(xn) > (1 + ε)xn, and so∫ (1+ε)xn

xn

θ(x)− x
x2

dx ≥
∫ (1+ε)xn

xn

(1 + ε)xn − x
x2

dx

=

∫ (1+ε)

1

(1 + ε)− s
s2

ds > 0

where we made the change of variables x = xns so dx = xnds.
On the other hand, since

lim
T→∞

∫ T

1

θ(x)− x
x2

dx = ` ∈ R

there exists Tε > 0 such that∣∣∣∣∣
∫ S

T

θ(x)− x
x2

dx

∣∣∣∣∣ <
∫ (1+ε)

1

(1 + ε)− s
s2

ds

for all S, T ≥ Tε. Hence, by taking n so large that xn ≥ Tε we obtain a
contradiction.
Similarly, if

lim inf
x→∞

θ(x)

x
< 1,

There there exists an increasing sequence yn →∞ such that θ(yn) < (1− ε)yn
for all n ∈ N and for some 0 < ε < 1. Since θ is increasing, if yn > x,
θ(x) ≤ θ(yn) ≤ (1− ε)yn, and so∫ yn

(1−ε)yn

θ(x)− x
x2

dx ≤
∫ yn

(1−ε)yn

(1− ε)xn − x
x2

dx

=

∫ 1

1−ε

(1− ε)− s
s2

ds < 0
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where we made the change of variables x = yns. On the other hand, there exists
Sε > 0 such that ∣∣∣∣∣

∫ S

T

θ(x)− x
x2

dx

∣∣∣∣∣ < −
∫ 1

1−ε

(1− ε)− s
s2

ds

for all S, T ≥ Sε. Hence, by taking n so large that (1 − ε)yn ≥ Sε we obtain a
contradiction. This shows that

lim inf
x→∞

θ(x)

x
≥ 1,

which would complete the proof.
We turn to the proof of the prime number theorem.
Proof of Theorem 181. For every ε ∈ (0, 1) and x > 1 we have

θ(x) =
∑

p prime≤x
log p ≤

∑
p prime≤x

log x = π(x) log x

while

θ(x) =
∑

p prime≤x
log p ≥

∑
x1−ε≤p prime≤x

log p

≥
∑

x1−ε≤p prime≤x

log x1−ε = (1− ε)
∑

x1−ε≤p prime≤x

log x

= (1− ε) log x(π(x)− π(x1−ε))

≥ (1− ε) log x(π(x)− x1−ε).

Hence,
π(x)
x

log x

≥ θ(x)

x
≥ (1− ε)π(x)

x
log x

− C log x

xε
.

Letting x→∞ gives

lim inf
x→∞

π(x)
x

log x

≥ lim
x→∞

θ(x)

x
≥ (1− ε) lim sup

x→∞

π(x)
x

log x

.

It suffi ces to let ε→ 1−.
Wednesday, April 1, 2020

16 Conformal Mappings

Definition 188 Given two open set U, V ⊆ C, a bijective holomorphic function
f : U → V is called a conformal map. If such a map exists, the sets U and V
are said to be conformally equivalent.
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We have seen in Corollary 142 that the inverse function of a injective holo-
morphic function is also holomorphic. Hence, the inverse of a conformal mapping
is still a conformal mapping.

Exercise 189 Consider the upper half-plane

H := {z ∈ C : Im z > 0}

and let

f(z) =
i− z
i+ z

, z ∈ H.

Prove that f : H → B(0, 1) is a conformal map.

Mappings of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ C are called fractional linear transformations.

Example 190 Given n ∈ N, the function f(z) = zn is a conformal mapping
from the sector S = {z ∈ C : 0 < arg z < π/n} to the upper half-plane H.
Its inverse is f−1(w) = w1/n, defined in terms of the principal branch of the
logarithm.

Exercise 191 Let 0 < α < 2. Prove that the sector S = {z ∈ C : 0 < arg z <
απ} and the upper half-plane are conformally equivalent.

The Riemann mapping theorem proves that any simply connected open set
which is not the entire space is conformally equivalent to the open unit ball. To
prove the Riemann mapping theorem we will need the following auxiliary result.

Theorem 192 (Schwarz’s lemma) Let f : B(0, 1) → C be a holomorphic
function such that f(0) = 0 and |f(z)| ≤ 1 for all z ∈ B(0, 1). Then |f(z)| ≤ |z|
for all z ∈ B(0, 1) and |f ′(0)| ≤ 1. Moreover, if |f(z0)| = |z0| for some z0 ∈
B(0, 1) or |f ′(0)| = 1, then f(z) = az for all z ∈ B(0, 1) and for some a ∈ C
with |a| = 1.

Proof. Since f(0) = 0, we can write

f(z) =

∞∑
n=1

anz
n, z ∈ B(0, 1).

Hence the function

h(z) :=

∞∑
n=1

anz
n−1, z ∈ B(0, 1)

is analytic in B(0, 1), since the radius of convergence is the same. In turn,

g(z) :=

{
f(z)
z z ∈ B(0, 1), z 6= 0,

f ′(0) z = 0,

99



is holomorphic (since g = h near 0). For every r ∈ (0, 1) and every z ∈ ∂B(0, r),
|g(z)| ≤ 1/r, and so by the maximum modulus principle |g(z)| ≤ 1/r for all
z ∈ B(0, r). Letting r → 1+, it follows that |g(z)| ≤ 1 in B(0, 1). Moreover, if
|g(z0)| = 1 for some z0 ∈ B(0, 1), then g must be constant, which shows that
f(z) = az for all z ∈ B(0, 1) and for some a ∈ C with |a| = 1.

Exercise 193 Let z, α ∈ C be such that 1− αz 6= 0.

(i) Prove that ∣∣∣∣ α− z1− αz

∣∣∣∣ < 1

if |z| < 1 and |α| < 1 and that∣∣∣∣ α− z1− αz

∣∣∣∣ = 1

if |z| = 1 or |α| < 1.

(ii) Given α ∈ B(0, 1), the function ψα : B(0, 1)→ B(0, 1) given by

ψα(z) :=
α− z
1− αz .

Prove that ψα is a bijection.

We turn to the proof of the Riemann mapping theorem.

Theorem 194 (Riemann mapping) Let U ⊂ C be an open simply connected
set. Then U is comformally equivalent to a sphere.

Proof. Step 1: Since U is strictly contained in C there exists α ∈ C \ U .
Hence the function z 7→ z−α never vanishes on the simply connected set U and
so by Exercise 101 we may define the holomorphic function f(z) := logU (z−α).
Since ef(z) = z − α, we have that f is injective. Fix z0 ∈ U . We claim that

f(z) 6= f(z0) + 2πi for all z ∈ U. (95)

Indeed, if f(z) = f(z0) + 2πi then by taking the exponential on both sides we
get

z − α = ef(z) = ef(z0)+2πi = ef(z0)e2πi = (z0 − α)1,

which implies that z = z0 and in turn that f(z) = f(z0). This contradicts the
fact that f(z) = f(z0) + 2πi. Hence, the claim (95) holds.
We claim that there exists r > 0 small such that B(f(z0)+2πi, r)∩f(U) = ∅.

Indeed, if not then taking r = 1
n we could find zn ∈ U such that f(zn) →

f(z0) + 2πi. Again by exponentiation

zn − α = ef(zn) → ef(z0)+2πi = ef(z0)e2πi = (z0 − α)1,
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which implies that zn → z0, and in turn that f(z0) = f(z0) + 2πi, which
contradicts (95). It follows that the function

F (z) :=
1

f(z)− (f(z0) + 2πi)
, z ∈ U

is holomorphic. Moreover, since |f(z)− (f(z0) + 2πi)| ≥ r > 0 for all z ∈ U , we
have that F is bounded. By a translation and a rescaling we can assume that

F : U → B(0, 1)

and that 0 ∈ F (U). By the open mapping theorem the set F (U) is open. Since
F : U → F (U) is a homeomorphism and U is simply connected, it follows that
F (U) is also simply connected.
Since U and F (U) are conformally equivalent, it suffi ces to prove that F (U)

and B(0, 1) are conformally equivalent.
Friday, April 4, 2020

Proof. Step 2: In view of Step 1, by replacing U with F (U), without loss
of generality we may assume that U ⊆ B(0, 1) and that 0 ∈ U . Let

G := {g : U → B(0, 1) holomorphic, injective, g(0) = 0}.

The family G is nonempty since the identity belongs to G. Since, |g(z)| ≤ 1 for
all z ∈ U and 0 ∈ U , by (32),

|g′(0)| ≤ 1

2π

∫
∂B(0,r)

|g(ζ)|
ζ2

dζ ≤ 2πr

2πr2

for all g ∈ G and for r > 0 such that B(0, r) ⊂ U . Let

s := sup{|g′(0)| : g ∈ G}.

Consider a sequence {gn}n in G such that |g′n(0)| → s. Since the family G
is equibounded, by Montel’s theorem there exists a subsequence {gnk}k which
converges uniformly on compact sets to a holomorphic function g : U → C.
By uniform convergence, g(0) = 0 and g : U → B(0, 1). By Theorem 70,
|g′n(0)| → |g′(0)| = s. Since s ≥ 1 (since the identity has derivative with
modulus one), the function g cannot be constant and thus by Theorem 167 it
must be injective. Since g(U) is open, it follows that g : U → B(0, 1). It follows
that g belongs to G.
Step 3: It remains to show that g is onto. Assume by contradiction that

there is α ∈ B(0, 1) \ g(U). Consider the diffeomorphism ψα : B(0, 1)→ B(0, 1)
given by

ψα(z) :=
α− z
1− αz .

Note that ψα interchanges 0 with α, since ψα(α) = 0 and ψα(0) = α. The
set V := (ψα ◦ g)(U) ⊆ B(0, 1) is open and simply connected and 0 does not
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belong to V since α ∈ B(0, 1) \ g(U) and ψα(α) = 0. Hence, by Exercise 101
the function h1 : V → C given by

h1(w) := e
1
2 logV w =

√
w

is holomorphic and injective and h1 : V → B(0, 1). It follows that the function

g1 := ψh1(α) ◦ h1 ◦ ψα ◦ g

is injective, holomorphic, and

g1(0) = ψh1(α)(h1(ψα(g(0)))) = ψh1(α)(h1(ψα(0)))

= ψh1(α)(h1(α)) = 0.

Hence, g1 ∈ G.
Next consider the function h2(w) := w2 and φ := ψ−1

α ◦ h2 ◦ ψ−1
h1(α). Then

φ ◦ g1 := ψ−1
α ◦ h2 ◦ ψ−1

h1(α) ◦ ψh1(α) ◦ h1 ◦ ψα ◦ g

= ψ−1
α ◦ h2 ◦ h1 ◦ ψα ◦ g = ψ−1

α ◦ ψα ◦ g = g

and
g′(0) = (φ ◦ g1)′(0) = φ′(0)g′1(0)

and so
s = |g′(0)| = |φ′(0)||g′1(0)|.

The function φ : B(0, 1) → C satisfies all the hypotheses of Schwarz’s lemma,
but it is not injective since h2 is not injective. Hence |φ′(0)| < 1, which implies
that |g′1(0)| > s and contradicts the maximality of s. Hence, g is onto and the
proof is complete.

Remark 195 In view of Exercise 102, the Riemann mapping theorem continues
to hold is instead of assuming U simply connected, we assume that∫

γ

f ds = 0

for every holomorphic function f : U → C and for every closed oriented Lip-
schitz continuous curve with range contained in U .

An important consequence of the Riemann mapping theorem is the following
characterization of simply connected open sets.

Theorem 196 Let U ⊂ C be an open connected set. Then the following are
equivalent:

(i) U is homeomorphic to an open ball,

(ii) U is simply connected,
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(iii)
∫
γ
f dz = 0 for every holomorphic function f : U → C and for every

rectifiable closed oriented curve γ with range contained in U .

Proof. Assume that U is homeomorphic to an open ball, say B(0, 1). Then
there exists an invertible function Ψ : U → B(0, 1), which is continuous to-
gether with its inverse and consider a continuous closed curve, with parametric
representation ϕ : [a, b] → C such that ϕ ([a, b]) ⊆ U . Define the function
h : [a, b]× [0, 1]→ C by

h (t, s) = Ψ−1 (sΨ (ϕ (t))) .

Then h ([a, b]× [0, 1]) ⊆ U ,

h (t, 0) = Ψ−1 (0) for all t ∈ [a, b] , h (t, 1) = ϕ (t) for all t ∈ [a, b] ,

h (a, s) = Ψ−1 (sΨ (ϕ (a))) = Ψ−1 (sΨ (ϕ (b))) = h (b, s) for all s ∈ [0, 1] .

Hence, U is simply connected. Hence (ii) holds.
Conversely, assume that U is simply connected. Then by the Riemann map-

ping theorem U is homeomorphic to a ball. This shows that (i) and (ii) are
equivalent.
To show that (ii) and (iii) are equivalent, note that if U is simply connected,

then (iii) holds in view of Theorem 98. Conversely, if (iii) holds then by Remark
195, U is homeomorphic to a ball and so it is simply connected by the equivalence
between (i) and (ii).

Next we study the behavior of conformal mappings at the boundary.

Definition 197 A set E ⊆ C is locally connected if for every ε > 0 there exists
δ > 0 such that for all z, w ∈ E with 0 < |z − w| < δ there exists a compact
connected set F ⊆ E such that z, w ∈ F and diamF < ε.

The range of a continuous curve is locally connected.
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Exercise 198 Let E1, . . . , En be locally connected. Prove that their union is
locally connected.

Exercise 199 Let

E = {x+ iy : |x| < 1, 0 < y < 1} \
∞⋃
n=1

[
i

n
,
i

n
+ 1

]
.

Prove that ∂E is not locally connected.

Theorem 200 Let U ⊂ C be an open bounded simply connected set and and let
f map conformally B(0, 1) onto U . Then the following conditions are equivalent

(i) f can be extended continuously to B(0, 1),

(ii) ∂U is the range of an oriented closed curve,

(iii) ∂U is locally connected,

(iv) C \ U is locally connected.

In general the extension of f to ∂B(0, 1) will not be injective.

Example 201 An example of a simply connected domain whose boundary is not
the range of an oriented simple closed curve is U = B(0, 1) \ {x : 0 ≤ x < 1}.

Indeed, we have the following result:

Theorem 202 (Carathéodory) Let U ⊂ C be an open bounded simply con-
nected set and let f map conformally B(0, 1) onto U . Then f has a continuous
and injective extension to B(0, 1) if and only if ∂U is the range of an oriented
simple closed curve.

17 Runge’s Theorem

Next we proof another important theorem. There is a more general statement
but we will prove first a simpler version.

Theorem 203 (Runge) Let U ⊆ C be an open set, let K ⊂ U be a compact
set with C \K connected, and let f : U → C be a holomorphic function. Then
there exists a sequence of polynomials pn : C → C such that pn → f uniformly
in K.

Exercise 204 Let K ⊂ C be a compact set.

(i) Let B be an open ball such that K ⊂ B and let z1 ∈ C \ B. Let f(z) :=
1

z−z1 . Prove that there exists a sequence of polynomials which converges
to f uniformly in K.
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(ii) Assume that C \ K is connected and let z0 ∈ C \ K. Let g(z) := 1
z−z0 .

Prove that there exists a sequence of polynomials which converges to g
uniformly in K.

Lemma 205 Let U ⊆ C be an open set and let f : U → C be a holomorphic
function. Then there exist finitely many oriented segments γ1, . . . , γn with
range in U \K such that

f(z) =

n∑
k=1

1

2πi

∫
γk

f(ζ)

ζ − z dζ

for all z ∈ K.

Proof. Let d := dist(K, ∂U) and partition C into squares of side-length less
than 1√

2
d. Let Q1, . . . , Q` be the closed cubes which intersects K with ∂Qk

oriented counterclockwise. Since K ∩Qk 6= ∅ and Qk has diameter less than d,
each Qk is contained in U . Let γ1, . . . , γn be the oriented sides of these cubes
which do not belong to two adjacent squares. Then each γk does not intersect
K since otherwise γk would belong to two adjacent cubes intersecting K. Let
z ∈ K and assume that z is not on the boundary of one of the cubes. Then
there exists a unique j such that z ∈ Qj . It follows by Cauchy’s theorem and
Theorem 98 that

f(z) =
1

2πi

∫
∂Qj

f(ζ)

ζ − z dζ.

On the other hand for all k 6= j,

1

2πi

∫
∂Qj

f(ζ)

ζ − z dζ = 0.

Hence, if we sum these equalities we get

f(z) =

n∑
k=1

1

2πi

∫
∂Qk

f(ζ)

ζ − z dζ =

n∑
k=1

1

2πi

∫
γk

f(ζ)

ζ − z dζ,

where in the second equality we used the fact that integrals over the sides of
adjacent cubes cancel out. This proves the result for all z ∈ K not on the
boundary of a cube Qk. Now if z ∈ K and z belongs to the boundary of a cube,
then z does not belong to any of the segments γk and so by continuity we have
that the formula

f(z) =

n∑
k=1

1

2πi

∫
γk

f(ζ)

ζ − z dζ

holds for all z ∈ K.

Lemma 206 Let γ be a Lipschitz continuous oriented curve in C parametrized
by ϕ : [a, b]→ C, let f : ϕ([a, b])→ C be a continuous function, and let K ⊂ C
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be a compact set with K ∩ ϕ([a, b]) = ∅. Then for every ε > 0 there exists a
rational function R : C \

⋃n
j=1{zj} → C, where zj ∈ ϕ([a, b]) such that∣∣∣∣∫

γ

f(ζ)

ζ − z dζ −R(z)

∣∣∣∣ ≤ ε for all z ∈ K.

Proof. The function

g(z, t) :=
f(ϕ(t))

ϕ(t)− z , (t, z) ∈ [a, b]×K

is uniformly continuous, therefore we can find a partition a = t0 < t1 < · · · <
tn = b such that∣∣∣∣ f(ϕ(t))

ϕ(t)− z −
f(ϕ(tj))

ϕ(tj)− z

∣∣∣∣ ≤ ε

M(b− a)
for all (t, z) ∈ [tj−1, tj ]×K,

where ‖ϕ′‖∞ ≤M . Define

R(z) :=

n∑
j=1

f(ϕ(tj))

ϕ(tj)− z
(ϕ(tj)− ϕ(tj−1)).

Then∫
γ

f(ζ)

ζ − z dζ −R(z) =

n∑
j=1

∫ tj

tj−1

f(ϕ(t))

ϕ(t)− zϕ
′(t) dt−

n∑
j=1

f(ϕ(tj))

ϕ(tj)− z

∫ tj

tj−1

ϕ′(t) dt

=

n∑
j=1

∫ tj

tj−1

(
f(ϕ(t))

ϕ(t)− z −
f(ϕ(tj))

ϕ(tj)− z

)
ϕ′(t) dt

and so ∣∣∣∣∫
γ

f(ζ)

ζ − z dζ −R(z)

∣∣∣∣ ≤ n∑
j=1

∫ tj

tj−1

∣∣∣∣ f(ϕ(t))

ϕ(t)− z −
f(ϕ(tj))

ϕ(tj)− z

∣∣∣∣ |ϕ′(t)| dt
≤

n∑
j=1

∫ tj

tj−1

ε

M(b− a)
M dt = ε.

This concludes the proof.
Wednesday, April 8, 2020

Lemma 207 Let G ⊆ C be a set and let F(G) be the family of functions f :
G → C for which there exists a sequence of polynomials pn such that pn → f
uniformly in G as n → ∞. If fk ∈ F(G) and fk → f uniformly in G, then
f ∈ F(G).

Proof. The proof uses a diagonal argument. Since fk ∈ F(G) there exists
a sequence of polynomials pn,k such that pn,k → fk uniformly in G as n→∞.
Hence we can find nk ≥ k such that

sup
z∈K
|pn,k(z)− fk(k)| ≤ 1

k
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for all n ≥ nk. Define
qk(z) := pnk,k(z).

Then

|f(z)− qk(z)| = |f(z)− pnk,k(z)| ≤ |f(z)− fk(z)|+ |fk(z)− pnk,k(z)|

≤ |f(z)− fk(z)|+ 1

k
.

Taking the supremum over all z ∈ G, we have that the right-hand side converges
uniformly to zero in G as k →∞.

Lemma 208 Let K ⊂ C be a compact set such that C \K is connected. Given
z0 ∈ C \ K, let gz0(z) := 1

z−z0 . Then there exists a sequence of polynomials
which converges to gz0 uniformly in K.

Proof. Let F(K) be the space of all functions f : K → C such that there
exists a sequence of polynomials pn : C→ C such that pn → f uniformly in K.
Note that if f, g ∈ F(K), then fg and f + g ∈ F(K). Moreover, if fk ∈ F(K)
and fk → f uniformly in K, then by the previous lemma, f ∈ F(K).
Step 1: Let R > 0 be so large that K ⊂ B(0, R), let z1 ∈ C \ B(0, R),

and let gz1(z) := 1
z−z1 . We claim that gz1 ∈ F(K). Find 0 < r < R such that

K ⊂ B(0, r). For z ∈ K, write
1

z − z1
= − 1

z1

1

1− z
z1

.

Then ∣∣∣∣ zz1

∣∣∣∣ ≤ r

R
=: δ < 1

and so we can use geometric power series to write

1

z − z1
= − 1

z1

1

1− z
z1

= − 1

z1

∞∑
k=0

(
1− z

z1

)k
.

Since this geometric series converges uniformly in K (since the number δ is inde-

pendent of z), we have that and the polynomials − 1
z1

∑`
k=0

(
1− z

z1

)k
converge

uniformly to gz1 in K.
Step 2: Let w1 ∈ C \ K and assume that gw1 ∈ F(K). Let 0 < δ <

1
4 dist(w1,K). We claim that for every w2 ∈ C with |w1 −w2| < δ we have that
gw2 ∈ F(K) in K. To see this we proceed as in the previous step to write for
z ∈ K,

gw2(z) =
1

z − w2
=

1

z − w1 − (w1 − w2)
=

1

z − w1

1

1− w1−w2
z−w1

.

Then |z − w1| ≥ 4δ and so ∣∣∣∣w1 − w2

z − w1

∣∣∣∣ ≤ δ

4δ
=

1

4
< 1
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and so we can use geometric power series to write

gw2(z) =
1

z − w1

1

1− w1−w2
z−w1

=
1

z − w1

∞∑
k=0

(
w1 − w2

z − w1

)k
,

where this geometric series converges uniformly in K. Hence, the sequence of
functions ∑̀

k=0

(
w1 − w2

z − w1

)k
converges uniformly in K as ` → ∞. Since gw1 ∈ F(K) we have that gkw1 ∈
F(K). In turn, (w1 − w2)

k
gkw1 ∈ F(K) and so

∑̀
k=0

(w1 − w2)
k
gkw1 ∈ F(K).

Hence,
∑∞
k=0

(
w1−w2
z−w1

)k
∈ F(K) since the series converges uniformly in K. It

follows that gw2 ∈ F(K), since it is the product of gw1 and this series.
Step 3: Let R > 0 be so large that K ⊂ B(0, R). Let z1 ∈ C \ B(0, R).

Given z0 ∈ C\K, since C\K is connected, we can find a polygonal path γ that
joins z0 and z1 with range Γ in C\K. Let 0 < δ < 1

4 dist(Γ,K). Without loss of
generality we can assume that the endpoints of the segments of γ have distance
less than δ. Hence, we can apply Step 2 starting from z1 until we reach z0.

We turn to the proof of the theorem.
Proof of Runge’s theorem. By Lemma 205 there exist finitely many

oriented segments γ1, . . . , γn with range in U \K such that

f(z) =

n∑
k=1

1

2πi

∫
γk

f(ζ)

ζ − z dζ

for all z ∈ K. By Lemma 205 for each ε > 0 there exists a rational function Rk
such that ∣∣∣∣ 1

2πi

∫
γk

f(ζ)

ζ − z dζ −Rk(z)

∣∣∣∣ ≤ ε/n for all z ∈ K.

Hence, ∣∣∣∣∣f(z)−
n∑
k=1

Rk(z)

∣∣∣∣∣ ≤ ε for all z ∈ K.

Now each Rk is a sum of rational functions whose denominator has the form
1

z−z0 for some z0 ∈ U \K. We now apply Lemma 208.
Friday, April 10, 2020

We now present a more general version. Let S2 := ∂B((0, 0, 0), 1) be the
unit sphere in R3. We can view the complex plane as the plane the plane
{(x, y, 0) : x, y ∈ R} inside R3. Let N = (0, 0, 1) ∈ S2 be the north pole. Given
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a point z = x+ iy there is a unique line passing through N and (x, y, 0) which
intersects S2 at a point S(z) ∈ S2 \ {N}. The map S gives a bijection between
C and S2 \ {N}. Indeed, given (X,Y, Z) ∈ S2 \ {N} consider

x =
X

1− Z , y =
Y

1− Z .

Conversely, given z = x+ iy ∈ C we have that

S(z) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
=

1

1 + |z|2 (2 Re z, 2 Im z, |z|2 − 1).

If we set S(∞) := N we have a bijection between C∞ and S2. Note that
S(z)→ N in R3 if and only if |z| → ∞ in C.
Hence, we can regard C∞ as a subset of R3. In turn, the metric in R3 induces

a metric on C∞. We leave as an exercise to show that this metric is given by

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
, d(z,∞) =

2√
1 + |z|2

for z, w ∈ C and that this metric induces the same topology in C. Note that
since S2 is compact, so is C∞.

Theorem 209 (Runge) Let U ⊆ C be an open set, let K ⊂ U be a compact
set, let E ⊆ C∞\U be such that E contains at least one point in each component
of C∞ \K, and let f : U → C be a holomorphic function. Then there exists a
sequence of rational functions rn : C \E → C with poles in E such that rn → f
uniformly in K.

We will need two more lemmas.

Lemma 210 Let V,W ⊆ C be two open sets with V ⊆W and ∂V ∩W = ∅. If
H is any component of W and H ∩ V 6= ∅, then H ⊆ V .

Proof. Let H be as in the statement and let z0 ∈ H ∩V . Then there exists
a connected component G of V such that z0 ∈ G. To conclude the proof, it is
enough to show that H = G.

We have that G ⊆ H, since G is a connected subset of V (and so of W )
containing z0 and H is the union of all connected subsets of W containing z0.
Write

H = G ∪ (H \G) = G ∪ ((H ∩ ∂G) ∪ (H \G)).

But H ∩∂G ⊆W ∩∂G ⊆W ∩∂V = ∅. Hence, the connected set H is the union
of two disjoint open sets. Since G is nonempty, it follows that H \G = ∅, which
shows that H = G.
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Lemma 211 Let K ⊂ C be a compact set, let z0 ∈ C\K, let g(z) := 1
z−z0 , and

let E ⊆ C∞ \K be such that E contains at least one point in each component
of C∞ \K. Then there exists a sequence of rational functions Rn : C \ E → C
with poles in E such that Rn → g uniformly in K.

Proof. Step 1: Let B(E) be the space of all functions f : K → C such
that there exists a sequence of rational functions Rn : C \ E → C with poles in
E such that Rn → f uniformly in K. Note that if f, g ∈ B(E), then fg and
f + g ∈ B(E). Moreover, if fk ∈ B(E) and fk → f uniformly in K, then by
Lemma 207 (which continues to hold if we replace polynomials with rational
functions), f ∈ B(E).
Step 2: Assume that E ⊂ C\K . LetW := C\K and let V be the set of all

w ∈W such that gw ∈ B(E), where gw(z) = 1
z−w , z ∈ K. We claim that V is an

open set. To see this, let w0 ∈ V and w ∈ B(w0, r), where r := dist(w0,K) > 0.
For z ∈ K, write

1

z − w =
1

z − w0 − (w − w0)
=

1

z − w0

1

1− w−w0
z−w0

.

Then |z − w0| ≥ r and so∣∣∣∣w − w0

z − w0

∣∣∣∣ ≤ |w − w0|
r

=: δ < 1

and so we can use geometric power series to write

1

1− w−w0
z−w0

=

∞∑
k=0

(
w − w0

z − w0

)k
.

Since this geometric series converges uniformly in K (since the number δ is

independent of z), and
∑`
k=0

(
w−w0
z−w0

)k
belongs to B(E), because is it given by

products and sums of functions in B(E), by Step 1, 1

1−w−w0z−w0

∈ B(E), and so

also gw ∈ B(E). This shows that B(w0, r) ⊆ V . Thus, V is open.
Next we claim that ∂V ∩W = ∅. Let w ∈ ∂V and find wn ∈ V such that

wn → w. By what we just proved, if |wn−w| < dist(wn,K), then w ∈ V . Since
w /∈ V , it must be that

|wn − w| ≥ dist(wn,K) ≥ dist(w,K)− |wn − w|.

Letting n → ∞ gives dist(w,K) = 0, which implies that w ∈ K, since K is
compact. Recalling that W := C \K, it follows that w /∈W .

This proves that all the hypotheses of the previous lemma are satisfied. Let
H be any component of W = C \ K. By hypothesis there exists w ∈ E ∩ H.
Moreover gw is a rational function itself with pole in E. Hence, w belongs to
V . By the previous lemma, it follows that H ⊆ V . This shows that V = C \K,
that is, that for every w ∈ C \K there exists a sequence of rational functions
Rn : C \ E → C with poles in E such that Rn → gw uniformly in K.
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Monday, April 13, 2020
Proof. Step 3: Assume that ∞ ∈ E ⊂ C∞ \K. Since K is bounded, there

exists a unique unbounded connected component H of C \K. If w0 ∈ H and
|w0| is very large, then the Taylor series of gw0 converges uniformly in K (see
Lemma 208). Thus, w0 ∈ B(S).
By applying Step 2 to (E∪{w0})\{∞}, we conclude that for every w ∈ C\K

there exists a sequence of rational functions Rn : C \ ((E ∪ {w0}) \ {∞}) → C
with poles in (E ∪ {w0}) \ {∞} such that Rn → gw uniformly in K. Write

Rn = Qn + Sn,

where the poles of Qn are in E \ {∞} and Sn is either zero or has only a pole
in w0. Since Sn can be approximated uniformly in K by polynomials, by a
diagonal argument, we can find a sequence of rational functions with poles in
E \ {∞} converging uniformly to gw0 in K. This concludes the proof.
We turn to the proof of Runge’s theorem.
Proof. We proceed as in the proof of Theorem 203 with the only difference

that in place of Lemma 208 we apply the previous lemma.

17.1 Mittag-Leffl er Theorem

This is the analog of Weierstrass representation theorem for meromorphic func-
tions. In the statement we will use the fact that if U ⊆ C is an open set and
E ⊂ U is a set with no accumulation points in U , then E is countable.

Theorem 212 Let U ⊆ C be an open set, let E = {wn : n ∈ I} ⊂ U be a set
with no accumulation points in U , where I ⊆ N and let

Sn(z) =
an,1
z − wn

+ · · ·+ an,`k
(z − wn)`k

.

Then there exists a meromorphic function f : U \ E → C whose only poles are
at E and whose principal part at wn is Sn.

Proof. Step 1: Let K0 := ∅ and

Kj := B(0, j) ∩ {z ∈ C : dist(z,C \ U) ≥ 1/j}.

Then Kj ⊂ K◦j+1 and
⋃∞
j=1Kj = U .

Note that

C∞\Kj = (C∞\B(0, j))∪(B(0, j)\U)∪{z ∈ U∩B(0, j) : dist(z,C\U) < 1/j}.
(96)

We claim that each component of C∞ \ Kj contains a component of C∞ \ U .
Indeed, since C∞ \ U ⊂ C∞ \Kj , if we consider the component G of C∞ \Kj

which contains ∞, it must contain the component H of C∞ \U which contains
∞ (since H is connected, ∞ ∈ H and H ⊆ C∞ \ Kj). On the other hand,
since Kj ⊆ B(0, j), we have that G contains C∞ \ B(0, j), since the latter is
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a connected set contained in C∞ \ Kj . It follows that if D is a component
of C∞ \ Kj which does not contain ∞, then D ⊆ B(0, j) and so by (96), D
contains a point z0 ∈ C with dist(z0,C\U) < 1/j. It follows from the definition
of distance that there exists w0 ∈ C\U ⊂ C∞ \Kj with |z0−w0| < 1/j. Hence,
z0 ∈ B(w0, 1/j). But B(w0, 1/j) ⊆ C∞ \ Kj . Indeed, let w ∈ B(w0, 1/j). If
w ∈ (C∞ \ B(0, j)) ∪ (B(0, j) \ U) there is nothing to prove, so assume that
w ∈ U and |w| ≤ j. Since w0 ∈ C \ U ,

dist(w,C \ U) ≤ |w − w0| < 1/j,

and so by the definition of Kj , w /∈ Kj .
Thus, z0 ∈ B(w0, 1/j) ⊆ C∞\Kj . SinceD and B(w0, 1/j) are connected and

contain z0, D∪B(w0, 1/j) is connected. But D is maximal, so B(w0, 1/j) ⊆ D.
Let D1 be the component of C \ U which contains w0. Then D ⊆ D1 again
because D ⊆ C \ U ⊂ C∞ \Kj and w0 ∈ D. This proves the claim.

Step 2: Let
Ij := {n ∈ I : wn ∈ Kj \Kj−1}.

The sets Ij are disjoint and each Ij has only finitely many elements, since E
has no accumulation points in U . Define

Qj :=
∑
n∈Ij

Sn,

if Ij is nonempty and Qj = 0 otherwise. Then Qj is a rational functions with
poles in Kj \Kj−1. By Runge’s theorem with E = C\U , there exists a rational
functions Rj with poles in C \ U such that

|Qj(z)−Rj(z)| ≤ 1/2j for all z ∈ Kj−1.

We claim that the function

f(z) = Q1(z) +

∞∑
j=2

(Qj(z)−Rj(z))

is well-defined and has all the desired property of the theorem. To see this let
we beging by showing that f is holomorphic in U \E. Note that since each wn
is isolated and don’t accumulate at points of U , U \ E is open. Let K ⊂ U \ E
be a compact set. Then there exists m such that K ⊂ Km. If j ≥ m+ 1, then
K ⊂ Kj−1 and so

|Qj(z)−Rj(z)| ≤ 1/2j for all z ∈ K.

It follows that the series
∑∞
j=m+1(Qj(z)−Rj(z)) is uniformly convergent in K.

Since Q1(z) +
∑m
j=2(Qj(z)− Rj(z)) have poles in E or in C \ U , we have that

f is holomorphic in K◦. By considering an increasing sequence of compact sets
Tl, with Tl ⊂ T ◦l+1 and

⋃
j Tl = U \E, we have that f is holomorphic in U \E.
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Wednesday, April 15, 2020
Proof. It remains to show that f has poles at each wn and that its principal

part is Qn. Since wn is isolated, there exists r > 0 such that |wn − wj | > r for
all j 6= n. For z ∈ U ∩B(wn, r) \ {wn} we can write

f(z) = Sn(z) + f(z)− Sn(z),

and the function f − Sn is holomorphic in U ∩ B(wn, r) since the poles of Rj
are in C \U for all j and Qj has poles in wj /∈ B(wn, r) for all j 6= n. Thus, Sn
is the principal part of f at wn.

18 Simply Connected Domains

Using Runge’s theorem we can give another characterization of simply connected
sets. Given z ∈ C and a Lipschitz continuous closed oriented curve γ with range
not containing z the winding number of γ around z is defined as

indγ(z) :=
1

2πi

∫
γ

dζ

ζ − z . (97)

It is also called the index of z with respect to γ.

Theorem 213 Let γ be a rectifiable closed oriented curve in C with range Γ.
Then

(i) for every z ∈ C \ Γ, indγ(z) is an integer,

(ii) if z, w belong to the same connected component of C \ Γ, then indγ(z) =
indγ(w),

(iii) indγ(z) = 0 for all z in the unbounded connected component of C \ Γ.

Proof. (i) Fiz z ∈ C\Γ. Assume that γ is a polygonal path. Let ϕ : [0, 1]→
C be a parametrization of γ and consider the function

g(t) :=

∫ t

0

ϕ′(r)

ϕ(r)− z dr.

Then g is absolutely continuous and g′(t) = ϕ′(t)
ϕ(t)−z for L

1-a.e. t ∈ [0, 1]. Define

h(t) = (ϕ(t)− z)e−g(t).

By the chain rule,

h′(t) = ϕ′(t)e−g(t) − (ϕ(t)− z)e−g(t)g′(t)

= ϕ′(t)e−g(t) − (ϕ(t)− z)e−g(t) ϕ′(t)

ϕ(t)− z = 0
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for L1-a.e. t ∈ [0, 1] and since h is absolutely continuous, it follows that h is
constant,say h ≡ 1

c . Since ϕ(0) = ϕ(1) we get

1 = eg(0) = c(ϕ(0)− z) = c(ϕ(1)− z) = eg(1)

and so
1 = e

∫
γ

dζ
ζ−z ,

which implies that
∫
γ

dζ
ζ−z is a multiple of 2πi. Hence, indγ(z) is an integer.

On the other hand, if γ is only rectifiable, by Lemma 64 for every 0 < ε < 1
2

there exists a polygonal path γε with the same endpoints of γ such that

|indγ(z)− indγε(z)| ≤ ε.

Since indγε(z) is an integer, letting ε→ 0+ we conclude that indγ(z) is also an
integer.
(ii) Since the function indγ : C\Γ→ Z is continuous and it is integer-valued,

it must be constant in any connected component of C \ Γ.
(iii) Let C > 0 be such that |ϕ (t) | ≤ C for all t ∈ [0, 1]. Hence, for

|z| > R > C, we have that

|ϕ(t)− z| ≥ |z| − |ϕ(t)| ≥ |z| − C > 0,

and so ∣∣∣∣ ϕ′(t)

ϕ(t)− z

∣∣∣∣ ≤ M

|ϕ(t)− z| ≤
M

|z| − C < π

provided R is suffi ciently large. It follows that for |z| > R,

|indγ (z)| ≤ 1

2
,

and since indγ takes only integer values, indγ(z) = 0. The result now follows
from part (ii).
Another important application of Theorem ?? is the following.

Theorem 214 Let U ⊆ C be an open set and let γ1 and γ2 be two continuous,
closed, oriented curves that are homotopic in U . Then

indγ1 (z) = indγ2 (z)

for all z ∈ C \ U . In particular, if U is simply connected, then indγ (z) = 0
for every continuous closed oriented curve γ with range contained in U and for
every z ∈ C \ U .

Proof. Fix z0 ∈ C \ U and let γ1 and γ2 be as in the statement. Since the
the function f(z) = 1

z−z0 is holomorphic in U , it follows by Theorem 98, that∫
γ1

dζ
ζ−z0 =

∫
γ2

dζ
ζ−z0 , and so indγ1 (z0) = indγ2 (z0). On the other hand, if U is

simply connected, then every continuous closed oriented curve g1 is homotopic
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to a point. But for a curve γ2 with constant parametric representation we have
that

∫
γ2

dζ
ζ−z0 = 0, and so by the first part of the theorem, indγ1 (z0) = 0.

Given n closed continuous oriented curves γ1, . . . , γn, the family Ξ :=
{γ1, . . . , γn} is called a cycle. The range of Ξ is given by the union of the
ranges of γ1, . . . , γn. Given a point z ∈ C not contained in the range of Ξ, we
define the winding number of Ξ around z to be the integer

indΞ (z) :=

n∑
k=1

indγk (z) .

Theorem 215 Let U ⊆ C be an open set and let K ⊂ U be a compact set.
Then there exists a cycle Ξ with range contained in U \K such that

indΞ (z) =

{
1 if z ∈ K,
0 if z ∈ C \ U.

Proof. Let 0 < δ < 1
2 dist(K, ∂U) and consider a grid of squares of diameter

less than δ. Since K is compact, only finitely many closed squares Q1, . . . , Qn
intersect K. If z ∈ Qj for some j, then dist(z,K) < δ. Hence, Qj ⊂ U . Also if
Qj and Qk have a side S in common, then if we consider the closed curves ∂Qj
and ∂Qk oriented counterclockwise, then S will be traversed in both directions
and so the integrals of any continuous function over S+ and S− will cancel out.
Let S1, . . . , Sn be the segments which are the sides of only one the rectangles.

Note that if one of these segments Sj intersects K then necessarily there must
be two rectangles which intersect K, which contradicts the definition of Sj . It
follows that Sk ⊆ U \K.

If z ∈ K, then there exists j ∈ {1, . . . ,m} such that z ∈ Rj . If z ∈ R◦j , then

ind∂Rj (z) =
1

2πi

∫
∂Rj

dζ

ζ − z = 1,

ind∂Rk(z) =
1

2πi

∫
∂Rk

dζ

ζ − z = 0, k 6= j.

Hence, summing these two identities

indΞ (z) =

n∑
k=1

ind∂Rk (z) .

If z belongs to ∂Rj , then either z is a vertex, in which case it belongs to four
rectangles, say Rj1 , Rj2 , Rj3 , Rj4 . Then, setting R =

⋃4
l=1Rjl ,

4∑
l=1

ind∂Rjl (z) =

4∑
l=1

1

2πi

∫
∂Rjl

dζ

ζ − z =
1

2πi

∫
∂R

dζ

ζ − z = 1

since all the integral along common edges cancel out. On the other hand,

ind∂Rk(z) =
1

2πi

∫
∂Rk

dζ

ζ − z = 0, k /∈ {j1, j2, j3, j4}.
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Hence, as before indΞ (z) = 1. Finally if z belongs to ∂Rj but it is not a
vertex, in which case it belongs to two rectangles, say Rj1 , Rj2 Then, setting
R =

⋃2
l=1Rjl , as before

2∑
l=1

ind∂Rjl (z) =

2∑
l=1

1

2πi

∫
∂Rjl

dζ

ζ − z =
1

2πi

∫
∂R

dζ

ζ − z = 1.

Also, On the other hand,

ind∂Rk(z) =
1

2πi

∫
∂Rk

dζ

ζ − z = 0, k /∈ {j1, j2}.

This shows that indΞ (z) = 1.
If z ∈ C \ U , then z /∈ Rk for any k and since z belongs to the unbounded

component of C \ ∂Rk, ind∂Rk(z) = 0 for all k, which shows that indΞ (z) = 0.
This completes the proof.

Friday, April 17, 2020

Theorem 216 Let U ⊂ C be an open connected set. Then the following are
equivalent:

(i) C∞ \ U is connected,

(ii) U is simply connected,

(iii) indγ(z) = 0 for every continuous closed oriented curve γ with range con-
tained in U and for every z ∈ C \ U .

Proof. Step 1: We prove that (i) implies (ii). Assume that C∞ \ U is
connected. Fix an holomorphic function f : U → C and a rectifiable closed
oriented curve γ with range Γ contained in U . Taking E = {∞} in Runge’s
theorem there exists a sequence of rational functions rn : C → C with poles
in ∞ such that rn → f uniformly in Γ. But this implies that these rational
functions are polynomials. Since each polynomial has a primitive, by Remark
??, ∫

γ

rn dz = 0.

Letting n→∞ and using uniform convergence in Γ, it follows that
∫
γ
f ds = 0.

Thus (ii) holds. In view of Theorem 196 it follows that U is simply connected.
Step 2: That (ii) implies (iii) follows from Theorem 214.
Step 3: Assume that (iii) holds but that C∞ \ U is not connected. Since

C∞ \ U is closed, its connected components are also closed. Moreover, since
C∞ is compact, so is any closed subset of C∞. Hence, we can find two disjoint
nonempty compact sets C and K (with respect to the metric in C∞) such that

C∞ \ U = C ∪K.
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Moreover, since U ⊆ C we have that ∞ ∈ C∞ \U , so ∞ ∈ C ∪K. Assume that
∞ ∈ C. Then ∞ /∈ K and so K must be bounded, since otherwise we could
find a sequence {zn}n in K such that |zn| → ∞. This would imply that∞ is an
accumulation point of K and so it would belong to K since K is closed. Thus
K is compact in C.

Let V := C \ C. Then V is open and contains K. By Theorem 215 there
exists a cycle Ξ with range contained in V \K such that

indΞ (z) =

{
1 if z ∈ K,
0 if z ∈ C \ V.

But V \ K = (C \ C) \ K = C \ (C ∪K) = C \ (C \ U) = U . Hence, the
range of Ξ is contained in U but indΞ (z) = 1 for all z ∈ K ⊂ C \ U , which
contradicts hypothesis (iii), since the winding number of each closed curve in
the cycle should be zero.

Remark 217 Note that saying that C∞ \ U is connected is not equivalent to
saying that C \ U is connected. Indeed, consider the set E = {z = x+ iy : y ∈
(0, 1)}. Then its complement is not connected in C \ U but it is connected in
C∞ \ U .

Corollary 218 Let U ⊂ C be an open bounded connected set. Then U is con-
nected if and only if C \ U is connected.

Exercise 219 Let U ⊆ C be an open set. Prove that C∞ \ U is connected if
and only if every component of C \ U is unbounded.

19 Proof of Caratheodory’s Theorem

Given an open set U ⊆ C an oriented continuous half-open curve γ in U is an
equivalence class of continuous equivalent functions ϕ : [a, b) → U . We define
the length of γ as

L(γ) := lim
r→b−

Var
[a,r]

ϕ.

We say that the curve γ ends at b if there exists

lim
t→b−

ϕ(t) = b ∈ U.

Exercise 220 Let γ be an oriented continuous half-curve with range in some
open set U ⊆ C. Prove that if γ has finite length, then it ends at some point
b ∈ U .

We begin with a preliminary result.

Lemma 221 Let V ⊆ C be an open set and assume that f : V → f(V ) be a
conformal map with f(V ) ⊆ B(0, R) for some R > 0. If z0 ∈ C and

C(r) := V ∩ ∂B(z0, r),
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then

inf
ρ<r<

√
ρ
L (f(C(r))) ≤ 2πR√

log(1/ρ)
, 0 < ρ < 1.

In particular, there exists rn ↘ 0+ such that L (f(C(rn)))→ 0 as n→∞.

Proof. Let Dr := {t ∈ [0, 2π] : z0 + reit ∈ V } and define ϕ(t) = z0 + reit,
t ∈ Dr. The set Dr is the union of disjoint intervals, Let I be one of these
intervals and consider [a, b] ⊆ I. Then f ◦ ϕ : [a, b]→ C is a curve of class C∞
and so

L(f(ϕ([a, b])) =

∫ b

a

|f ′(ϕ(t))||ϕ′(t)| dt.

Letting [a, b]↗ I if needed, we get

L(f(ϕ(I)) =

∫
I

|f ′(ϕ(t))||ϕ′(t)| dt.

Summing over all disjoint intervals in Dr we obtain

g(r) := L (f(C(r))) = L(f(ϕ(Dr)) =

∫
Dr

|f ′(ϕ(t))||ϕ′(t)| dt.

In turn, by Hölder’s inequality

(g(r))2 =

(∫
D

|f ′(ϕ(t))||ϕ′(t)|1/2|ϕ′(t)|1/2 dt
)2

≤
∫
Dr

|ϕ′(t)| dt
∫
Dr

|f ′(ϕ(t))|2|ϕ′(t)| dt

≤ 2πr

∫
Dr

|f ′(ϕ(t))|2|ϕ′(t)| dt = 2πr

∫
Dr

|f ′(z0 + reit)|2r dt.

It follows that ∫ ∞
0

(g(r))2 dr

r
≤ 2π

∫ ∞
0

∫
Dr

|f ′(z0 + reit)|2r dtdr

= 2π

∫
U

|f ′(x+ iy)|2dxdy

where we used polar coordinates. Recalling that

|f ′(x+ iy)|2 = det

(
∂u
∂x (x, y) ∂u

∂y (x, y)
∂v
∂x (x, y) ∂v

∂y (x, y)

)
(see (10)), using the theorem on change of variables for Lebesgue (or Riemann)
integration we get∫ ∞

0

(g(r))2 dr

r
≤ 2π

∫
V

|f ′(x+ iy)|2dxdy = 2πL2(f(V )).

Since f(V ) ⊆ B(0, R) we obtain

1

2
log

1

ρ
inf

ρ<r<
√
ρ
(g(r))2 ≤

∫ √ρ
ρ

(g(r))2 dr

r
≤ 2π2R2.
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Dividing by log 1
ρ proves the first part of the theorem, while to prove the second

part of the statement it suffi ce to observe that 1
log 1

ρ

→ 0 as ρ→ 0+.

Exercise 222 Let U, V ⊆ C be open sets and let f : U → V be continuous,
one-to-one, onto, with f−1 : V → U continuous.

(i) Let {zn}n be a sequence of points in U such that zn → z0 ∈ ∂U . Assume
that there exists

lim
n→∞

f(zn) = w0 ∈ C.

Prove that w0 ∈ ∂V .

(ii) Assume that U = B(0, 1) and that f can be extended continuously to
B(0, 1). Prove that f(∂U) = ∂V .
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Monday, April 20, 2020
Given a closed set C ⊂ X, whereX is a metric space and x, y ∈ X\C. We say

that x, y are separated by C if they belong to different connected components of
X \C. We say that are not separated by C if they belong to the same connected
component of X \ C.

Lemma 223 ( Janiszweski) Let C1, C2 ⊂ C∞ be two closed sets such that
C1 ∩ C2 is connected. If the points a, b ∈ C∞ \ (C1 ∪ C2) are not separated by
either C1 or C2, then they are not separated by C1 ∪ C2.

Proof. Assume that a = 0 and b = ∞ (the other cases are similar). Since
∞ /∈ Ck, we have that Ck is bounded, since otherwise we could find a sequence
{zn}n in Ck such that |zn| → ∞. This would imply that ∞ is an accumulation
point of Ck and so it would belong to Ck since Ck is closed. Hence, Ck is
compact. Note that 0 and ∞ belong to the same connected component U of
C∞\Ck which is open and connected. Since Ck is bounded, with Ck ⊆ B(0, Rk)
we have that the connected set C \B(0, Rk) is contained in U . Thus, U \ {∞}
is open and connected in C and so pathwise connected. Thus we can find a
simple infinite polygonal path γk joining 0 with ∞ (we can take it to be the
union of a half line and a simple polygonal path of finite length). Since the
range of Γk is connected and C \ Γk is connected, by Theorem 216, C \ Γk is
simply connected and does not contain 0 and ∞. Hence, by Theorem 100 we
can define a branch fk of the logarithm in C \ Γk. The connected set C1 ∩ C2

lies in one connected component F of C \ (Γ1 ∪ Γ2). If C1 ∩ C2 is empty we
take F to be any connected component of C \ (Γ1 ∪ Γ2). In the first case, by
adding a constant we can assume that f1 = f2 in F . Since the compact sets
C1 \ F and C2 \ F are disjoint, we can find disjoint open sets V1 and V2 such
that Ck \ F ⊂ Vk ⊂ C \ Γk, k = 1, 2. Define

f(z) :=

{
fk(z) z ∈ Vk, k = 1, 2,
f1(z) = f2(z) z ∈ F.

Then f is holomorphic in the open set V := V1 ∪V2 ∪F which contains C1 ∪C2

and ef(z) = z for all z ∈ V .
Assume by contradiction that C1 ∪ C2 separates 0 and ∞. Then the con-

nected component G of C∞ \ (C1 ∪C2) which contains 0 is bounded. Note that
∂G ⊆ ∂(C1 ∪C2) and since V contains C1 ∪C2 we have that ∂V ∩ ∂G = ∅. Let
0 < δ < 1

2 dist(∂V, ∂G) and consider a grid of closed squares with diameter less
than δ and such that 0 lies in the interior of one of these squares, say 0 ∈ Q◦1.
Note that Q1 is contained in G. Let Q1, . . . , Qn be the closed squares contained
in G. Since ∂G ⊂ V and 0 < δ < 1

2 dist(∂V, ∂G), we have that the sides of
Q1, . . . , Qn which are not counted twice are contained in V . Since f ′(z) = 1

z for
z ∈ V , we have that

indΞ (0) =

n∑
k=1

ind∂Qk (0) =

n∑
k=1

1

2πi

∫
∂Qk

dζ

ζ
=

∫
∂Ξ

f ′(ζ) dζ = 0.
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On the other hand,

ind∂Q1(0) =
1

2πi

∫
∂Q1

dζ

ζ
= 1,

ind∂Qk(0) =
1

2πi

∫
∂Qk

dζ

ζ
= 0, k ≥ 2.

Hence, summing these two identities indΞ (0) = 1, which gives a contradiction.

We turn to the proof of Theorem 200.
Proof. (i) =⇒ (ii). Assume that f can be extended continuously to

B(0, 1) and still denote by f the extension. Then by the previous exercise,
f(∂B(0, 1)) = ∂U . It follows that we can parametrize ∂U as

ϕ(t) = f(eit), t ∈ [0, 2π],

and so ∂U is the range of an oriented closed curve.
(ii) =⇒ (iii) This implication follows from that fact that the range of a

continuous curve is locally connected.
(iii) =⇒ (iv) Assume that ∂U is locally connected. For every ε > 0 let

0 < δ < ε be such that if z, w ∈ ∂U with 0 < |z−w| < δ there exists a compact
connected set F ⊆ ∂U such that z, w ∈ F and diamF < ε. Let z, w ∈ C \ U
with |z − w| < δ. If the closed segment [z, w] does not intersect ∂U , then we
take F = [z, w]. If [z, w] ∩ ∂U 6= ∅, let z′ and w′ be the first and last points
of [z, w] where [z, w] intersects ∂U . Since |z′ − w′| < δ and z′, w′ ∈ ∂U , there
exists a compact connected set F ⊆ ∂U such that z′, w′ ∈ F and diamF < ε.
But then [z, z′]∪ F ∪ [w′, w] is a compact connected set in C \U with diameter
less than 3ε which contains z, w. Hence, C \ U is locally connected.

Wednesday, April 22, 2020
Proof. (iv) =⇒ (i) Assume that C \ U is locally connected. Without loss

of generality we may assume that f(0) = 0. Since U is bounded, there exist
R0 < R such that

B(0, R0) ⊆ U ⊆ B(0, R). (98)

We claim that f is uniformly continuous in B(0, 1) \B(0, 1/2). Fix 0 < ε < R0.
Since C\U is locally connected we can find 0 < δ < ε such that if z1, z2 ∈ C\U
with 0 < |z1− z2| < δ there exists a compact connected set F ⊆ C\U such that
z1, z2 ∈ F and diamF < ε. Let 0 < ρ < 1/4 be such that 2πR(log(1/ρ))−1/2 <
δ.
Let z, w ∈ B(0, 1) \B(0, 1/2) with |z − w| < ρ. We claim that

|f(z)− f(w)| < 2ε. (99)

Assume by contradiction that

|f(z)− f(w)| ≥ 2ε.
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By applying Lemma 221 with V = B(0, 1) and z0 = z we can find r ∈ (ρ,
√
ρ)

such that
L (f(C(r))) < δ < ε, (100)

where C(r) := B(0, 1) ∩ ∂B(z, r). There are two cases. If B(z, r) ⊂ B(0, 1).
Then C(r) = ∂B(z, r) and f(∂B(z, r)) is the boundary of the simply connected
open set f(B(z, r)) which contains f(z) and f(w). Since |z − w| < ρ < r, we
have that z, w ∈ B(z, ρ) ⊂ B(z, r), and so f(z) with f(w) belong to the interior
of the closed curve f(∂B(z, r)). Consider the segment S joining f(z) with f(w)
and extend it on both sides until it meets f(∂B(z, r)). The resulting segment has
length bigger than 2ε, which contradicts the fact that L (f(C(r))) < δ < ε (the
length is the supremum of the length of all polygonal paths made of segments
with endpoints on f(C(r))).
Assume next that B(z, r)∩ ∂B(0, 1) 6= ∅. In view of (100) and Exercise 220,

the continuous rectifiable curve f(C(r)) has endpoints a and b ∈ ∂U ⊂ C \ U .
In view of (100), |b − a| ≤ L (f(C(r))) < δ, and so, since C \ U is locally
connected there exists a compact connected set F ⊆ C \ U such that a, b ∈ F
and diamF < ε. Then F ∪ f(C(r)) is a connected set and

F ∪ f(C(r)) ⊆ B(a, ε). (101)

On the other hand, by (98), the fact that a ∈ ∂U and ε < R0, we have that
0 /∈ B(a, ε). Since |f(z) − f(w)| ≥ 2ε, it follows that either f(z) or f(w) does
not belong to B(a, ε). Denote this point by c, so c /∈ B(a, ε). Using the fact
that 0 /∈ B(a, ε) in view of (101) we have that c and 0 are not separated by the
connected set F ∪ f(C(r)). On the other hand c ∈ U and f(0) = 0 ∈ U and so
c and 0 are also not separated by C\U . Note that (F ∪ f(C(r)))∩ (C\U) = F ,
which is connected. Hence, by Janiszweski’s theorem c and 0 are not separated
by F ∪f(C(r))∪(C\U). Since the C\(F ∪f(C(r))∪(C\U)) = U \(F ∪f(C(r))
is open, its connected components are open, and so pathwise connected. Hence,
there exists a polygonal path in U \ (F ∪ f(C(r)) which joins c and 0. Let
γ = [ϕ]. Since f is a conformal map, f−1 ◦ ϕ is a curve joining f−1(c) ∈ {z, w}
and 0. Moreover, its range its contained in B(0, 1) \ C(r) = B(0, 1) \ ∂B(z, r).

Since z, w ∈ B(0, 1) \ B(0, 1/2) with |z − w| < ρ < r, we have that z, w ∈
B(z, ρ) ⊂ B(z, r), while dist(0, B(0, 1) \ B(0, 1/2)) = 1

2 >
√
ρ > r. Hence,

0 /∈ B(z, r). In turn, any curve joining 0 and either z or w would intersect
∂B(z, r), and so we have a contradiction.
Let E ⊂ C be a connected set and let z ∈ E. We say that z is a cut point of

E is E \ {z} is no longer connected. If we have a continuous simple arc, then
every point except the endpoints is a cut point. If we have a closed simple curve
then no point is a cut point.

Theorem 224 Let U ⊂ C be an open bounded simply connected set and let f
map conformally B(0, 1) onto U . Assume that ∂U is a closed oriented curve
and denote by f the continuous extension of f to B(0, 1) given by Theorem 200.
Then z ∈ ∂U is a cut point of ∂U if and only if the set f−1({z}) has more
than one element and the components of ∂U \ {z} are f(Ik), where Ik are the
components of ∂B(0, 1) \ f−1({z}).
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Proof. Let m = card f−1({z}) ∈ N ∪ {∞}. Since f : B(0, 1) → U is

continuous, the set f−1({z}) is closed and so ∂B(0, 1) \ f−1({z}) is relatively
open and thus it can be written as a countable union of disjoint open maximal
arcs Ik. In turn, we may write

∂U \ {z} = f(∂B(0, 1) \ f−1({z})) = f

(
m⋃
k=1

Ik

)
=

m⋃
k=1

f(Ik).

Since f is continuous and the sets Ik are connected we have that the sets f(Ik)
are connected. Note that if f−1({z}) is a singleton, then ∂U \ {z} = f(I1),
which is connected, and so z is not a cut point of ∂U .
Conversely, assume that m ≥ 2. Then the endpoints a and b of I1 are

distinct. Consider the oriented closed segment
−→
ab and let ϕ(t) = tb + (1 − t)a,

t ∈ [0, 1]. Consider the continuous curve γ parametrized by f ◦ ϕ. Since f is
injective in B(0, 1) and f(a) = f(b) = z, we have that γ is a continuous simple
closed curve with range in U ∪ {z}. Let Σ = f(ϕ([0, 1)) be its range. By the
Jordan’s curve theorem, C \ Σ has two connected components Vb and Vu, with
Vb bounded and Vu unbounded, and with ∂Vb = ∂Vu = Σ = f(ϕ([0, 1)).
Note that B(0, 1) \ (

−→
ab ∪ f−1({z})) has two connected components E1 and

E2. Since f is continuous and f(B(0, 1) \ −→ab) ⊆ C \ Σ = Vb ∪ Vu, and since f
maps connected sets into connected sets, we must have that f(E1) and f(E2)
are contained in Vb or in Vu. But since f : B(0, 1) → U is open, if we take
z0 ∈

−→
ab \ {a, b}, we can find a small ball B(z0, r) such that f(B(z0,r)) is open

and so there exists B(f(z0), δ) ⊆ f(B(z0, r)). Since f(z0) ∈ Σ = ∂Vb = ∂Vu,
there must be points of B(z0, r) which end up in Vb and points which end up in
Vu. Thus f(E1) and f(E2) are contained one in Vb and the other in Vu. Thus
f(I1) and

⋃m
k=2 f(Ik) are not connected. In turn, z is a cut point of ∂U .

There are examples in which f−1({z}) has countably many elements.
We are now ready to prove Carathéodory’s theorem.
Proof. Let U ⊂ C be an open bounded simply connected set and let f

map conformally B(0, 1) onto U . If f has a continuous and injective extension
to B(0, 1) then ∂U is parametrized by f(eit), t ∈ [0, 2π], which is an oriented
simple closed curve. Conversely assume that ∂U is the range of an oriented
simple closed curve. In particular, ∂U is locally connected and it has no cut
points. Then by Theorem 200, f can be extended continuously to B(0, 1). By
the previous theorem the set f−1({z}) is a singleton for every z ∈ ∂U , which
implies that f is injective on ∂B(0, 1). This concludes the proof.

Remark 225 Note that we actually proved that f has a continuous and injec-
tive extension to B(0, 1) if and only if ∂U is locally connected and it has no cut
points.
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20 Elliptic Functions

We are interested in meromorphic functions f : C → C∞ which have two peri-
ods, that is, there exist ω1, ω2 ∈ C \ {0} such that

f(z + ω1) = f(z), f(z + ω2) = f(z)

for all z ∈ C. A function with these properties is called doubly periodic.

Exercise 226 Let f : C→ C∞ be a doubly periodic meromorphic function with
periods ω1, ω2 ∈ C \ {0}. Assume that τ := ω1/ω2 ∈ R. Prove that f is either
periodic with simple period or constant.,

In view of the previous exercise, we can assume that Im τ 6= 0. Since τ and
1
τ have imaginary parts of opposite sign, by interchanging ω1 and ω2, in what
follows we can assume that Im τ > 0.
Consider the function

g(z) := f(ω1z), z ∈ C.

Then

g(z + 1) = f(ω1z + ω1) = f(ω1z) = g(z),

g(z + τ) = f(ω1z + ω1τ) = f(ω1z + ω2) = f(ω1z) = g(z).

Moreover, g is meromorphic if and only if f is and it has the same number of
zeros and of poles. Any other property of f can be deduced by the analogous
property of g. Thus, in what follows we assume that f has periods 1 and τ ,
where Im τ > 0. By induction we have that

f(z + j + kτ) = f(z) for all z ∈ C and j, k ∈ Z. (102)

Consider the lattice
Λ := {j + kτ : j, k ∈ Z}. (103)

We will show that Λ partitions C into pairwise disjoint parallelograms congruent
to

P0 := {z ∈ C : z = x+ yτ, 0 ≤ x < 1, 0 ≤ y < 1}. (104)

To be precise,
C =

⋃
j,k∈Z

(j + kτ + P0).

We say that 1 and τ generate the lattice Λ and we call P0 the fundamental
parallelogram of f .
We say that z, w ∈ C are congruent modulo Λ if

z = w + j + kτ

for some j, k ∈ Z and we write z ∼ w. Note that z − w ∈ Λ.
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Remark 227 If f : C→ C∞ is be a doubly periodic meromorphic function with
periods ω1, ω2 ∈ C \ {0} such that ω1/ω2 /∈ R, then we define

P0 = {z ∈ C : z = xω1 + yω2, 0 ≤ x < 1, 0 ≤ y < 1}

the fundamental parallelogram of f .

Theorem 228 Let f : C → C∞ be a doubly periodic meromorphic function
with periods 1 and τ , where Im τ > 0. Then

(i) every point in C is congruent modulo Λ to a unique point in the funda-
mental parallelogram P0,

(ii) given j, k ∈ Z, every point in C is congruent modulo Λ to a unique point
in the parallelogram j + kτ + P0,

(iii) we have
C =

⋃
j,k∈Z

(j + kτ + P0),

where the interiors of the parallelograms are parwise disjoint,

(iv) the function f is completely determined by its values in P0.

Proof. (i) Since the vectors 1 and τ form a basis over the reals of the two-
dimensional vector space C, given z ∈ C, we can write z = x + τy, for some
x, y ∈ R. Let j, k ∈ Z be such that j ≤ x < j + 1 and k ≤ y < k + 1. Then

w := z − j − kτ = (x− j) + (y − k)τ

is congruent to z modulo Λ. Moreover, 0 ≤ x − j < 1 and 0 ≤ y − k < 1, and
so w ∈ P0.
To prove uniqueness, let w1, w2 ∈ P0 be congruent modulo Λ. Then wl =

xl+yjτ , where 0 ≤ xl < 1 and 0 ≤ yl < 1, l = 1, 2. Since w1 ∼ w2 we have that

x1 + y1τ − x2 − y2τ = w1 − w2 = j + kτ

for some j, k ∈ Z. But since 0 ≤ x1, x2 < 1, we have that −1 < x1 − x2 < 1
and so j = x1 − x2 = 0. Similarly, k = y1 − y2 ∈ (−1, 1) and so k = 0. Thus
w1 = w2.
(ii) Let P := j0 + k0τ + P0, where j0, k0 ∈ Z. Given z ∈ C by item (i)

there exists a unique w ∈ P0 with z ∼ w. In turn, j0 + k0τ + w ∈ P and
z ∼ j0 + k0τ + w. By the uniqueness in part (i), it follows that j0 + k0τ + w is
the unique point in P which is congruent to z modulo Λ.

(iii) By part (i) each z ∈ C is congruent to some w ∈ P0 modulo Λ, which
means that z = j + kτ + w for some w ∈ P0. Hence, z ∈ j + kτ + P0.
On the other hand, if P1 = j1 + k1τ + P0 and P2 = j2 + k2τ + P0, and

z ∈ P1 ∩ P2, then
z = j1 + k1τ + w1 = j2 + k2τ + w2
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with w1, w2 ∈ P0. This means that z ∼ w1 and z ∼ w2. Again by the uniqueness
in item (i), w1 = w2. In turn, j1 + k1τ = j2 + k2τ , which implies that j1 = j2
and k1 = k2.

(iv) In view of (102),

f(z) = f(w) if z ∼ w.

The result now follows from item (i).
Next we show why we are taking meromorphic functions instead of holomor-

phic functions.

Corollary 229 Let f : C→ C be holomorphic and doubly periodic with periods
1 and τ , where Im τ > 0. Then f is constant.

Proof. Let M := maxP0 |f |. By item (iv) of the previous theorem for every
z ∈ C there exists w ∈ P0 such that f(z) = f(w). Hence, |f(z)| = |f(w)| ≤M .
It follows by Liouville’s theorem that f is constant.

Definition 230 An elliptic function is a meromorphic function which is doubly
periodic with periods w1, w2 ∈ C \ {0} such that w1/w2 /∈ R.

We begin by showing that an elliptic function must have more than one pole.

Theorem 231 Let f : C → C∞ be an elliptic function. Then f must have at
least two poles.

Proof. Without loss of generality we may assume that the periods are 1
and τ with Im τ > 0.
Step 1: Assume that f has no poles on ∂P0. Then by the residue theorem∫

∂P0

f dz = 2πi

n∑
k=1

reszk f,

where z1, . . . , zn are the poles of f inside P0. Note that there must be at least
one in view of the previous two theorems. With a slight abuse of notation we
write ∫

∂P0

f dz =

∫ 1

0

f dz +

∫ 1+τ

1

f dz +

∫ τ

1+τ

f dz +

∫ 0

τ

f dz.

Note that by (102),∫ 1

0

f dz +

∫ τ

1+τ

f dz =

∫ 1

0

f dz +

∫ 0

1

f(τ + w) dw

=

∫ 1

0

f dz +

∫ 0

1

f(w) dw =

∫ 1

0

f dz −
∫ 1

0

f(z) dz = 0,

and similarly, ∫ 1+τ

1

f dz +

∫ 0

τ

f dz = 0.
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Hence,

0 =

∫
∂P0

f dz = 2πi

n∑
k=1

reszk f.

If n were 1, we would have 0 = resz1 f , which would impliy that f has a remov-
able singularity at z1 by Theorems and . This would contradict the previous
corollary. Hence, n ≥ 2.
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Proof. Step 2: Since poles do no accumulate in the interior, it follows that

f has a finite number of poles in P0. Hence, if B(0, R) contains P0 then by
periodicity f has a finite number of poles in B(0, R). In turn, for ε > 0 the
function fε(z) := f(z + ε(1 + τ)) has no poles on ∂P0. By the previous step we
find that fε has at least two poles in P0 for every ε small. Letting ε → 0 we
conclude that f has at least two poles.
The number of poles of an elliptic function in its fundamental parallelogram

counted with their multiplicity is called its order. Next we show that the number
of zeros of an elliptic function equals the number of poles.

Theorem 232 Let f : C→ C∞ be an elliptic function of order `. Then f has
` zeros in its fundamental parallelogram counted with their multiplicity.

Proof. Without loss of generality we may assume that the periods are 1
and τ with Im τ > 0. Since zeros and poles do no accumulate in the interior, it
follows that f has a finite number of poles and zeros in P0.

Step 1: Assume that f has no poles and no zeros on ∂P0. By the argument
principle,

1

2πi

∫
∂P0

f ′

f
dz = (number of zeros of f in P0) minus (number of poles of f in P0)

=: nz − `.

Since f ′

f is doubly periodic with periods 1 and τ , reasoning as in the previous

theorem, we can show that 1
2πi

∫
∂P0

f ′

f dz = 0. Hence, nz = `.
Step 2: Since poles and zeros do no accumulate in the interior, it follows

that f has a finite number of poles and zeros in P0. Hence, if B(0, R) contains
P0 then by periodicity f has a finite number of poles and zeros in B(0, R). In
turn, for ε > 0 the function fε(z) := f(z + ε(1 + τ)) has no poles or zeros on
∂P0. By previous step we find that the number of zeros of fε in P0 is the same
as the number of poles of fε in P0 for every ε small. Letting ε→ 0 we conclude
that the number of zeros of f in P0 is the same as the number of poles of f in
P0.

The next natural question is the existence of elliptic functions. We will
construct an elliptic function of order two. The idea is to consider the function∑

ω∈Λ

1

(z + ω)2

but the problem is that this double series does not converge absolutely. Indeed
we will see below that for a double series to converge we need the exponent to
be bigger than 2. To fix this problem, we follow the approach in your homework
for cot and we define the function

℘(z) :=
1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
,
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where Λ∗ := Λ \ {0}. This function is called Weierstrass ℘ function. Note that

1

(z + ω)2
− 1

ω2
=
ω2 − z2 − 2zω − ω2

ω2(z + ω)2
=
−z2 − 2zω

ω2(z + ω)2
∼ − 2z

ω3

as |ω| → ∞.

Theorem 233 The Weierstrass ℘ function is an elliptic function of order two.

We begin with a preliminary result.

Lemma 234 The double series∑
(j,k)∈Z2\{(0,0)}

1

(|j|+ |k|)r ,
∑

j+kτ∈Λ∗

1

|j + kτ |r

converge if and only if r > 2.

Proof. Step 1: Assume that r > 2. For every j 6= 0 we have∑
k∈Z

1

(|j|+ |k|)r =
1

|j|r +
∑

k∈Z\{0}

1

(|j|+ |k|)r =
1

|j|r + 2
∑
k∈N

1

(|j|+ k)r

=
1

|j|r + 2
∑

n=|j|+1

1

nr
≤ 1

|j|r + 2

∫ ∞
|j|

dx

xr
=

1

|j|r +
2

r − 1

1

|j|r−1
.

Hence, ∑
(j,k)∈Z2\{(0,0)}

1

(|j|+ |k|)r =
∑

k∈Z\{0}

1

(0 + |k|)r +
∑

j∈Z\{0}

∑
k∈Z

1

(|j|+ |k|)r

≤ 2
∑
k∈N

1

kr
+

∑
j∈Z\{0}

(
1

|j|r +
2

r − 1

1

|j|r−1

)
<∞

since r > 2.
To prove that the second series converges, it suffi ces to show that there exists

a constant c > 0 such that

|j + kτ | ≥ c(|j|+ |k|)

for all (j, k) ∈ Z2 \ {(0, 0)}. Write τ = x+ iy, where x ∈ R and y > 0. Then

|j + kτ | =
√

(j + kx)2 + k2y2 ≥ 1

2
(|j + kx|+ |ky|).

If x = 0, then
1

2
(|j|+ |ky|) ≥ min{1, y}

2
(|j|+ |k|).

129



Assume that x 6= 0. If |j| ≤ 2|kx|, then

|j + kx|+ |ky| ≥ |ky| = 1

2
|kx| |y||x| +

1

2
|ky| ≥ 1

4

|y|
|x| |j|+

1

2
|ky|

≥ |y|min{1/|x|, 1}
4

(|j|+ |k|).

If |j| ≥ 2|kx|, then

|j + kx|+ |ky| ≥ |j| − |kx|+ |ky| ≥ 1

2
|j|+ |ky| ≥ min{1, y}

2
(|j|+ |k|).

This concludes the proof of the case r > 2.
Step 2: Assume that r ≤ 2. If 1 ≤ k ≤ j then j + k ≤ 2j and so 1

j+k ≥
1
2j .

Then

∑
(j,k)∈Z2\{(0,0)}

1

(|j|+ |k|)r ≥
∞∑
j=1

j∑
k=1

1

(j + k)r
≥
∞∑
j=1

j∑
k=1

1

(2j)r
=

∞∑
j=1

j

(2j)r
=∞.

To prove that the second series diverges, it suffi ces to show that there exists a
constant c > 0 such that

|j + kτ | ≤ c(|j|+ |k|)

for all (j, k) ∈ Z2 \ {(0, 0)}. We have

|j + kτ | ≤ |j|+ |kτ | = |j|+ |k||τ | ≤ max{1, |τ |}(|j|+ |k|),

which concludes the proof.
We turn to the proof of Weierstrass theorem.
Proof. Let R > 0 and let |z| < R. Write

℘(z) =
1

z2
+

∑
|ω|≤2R

[
1

(z + ω)2
− 1

ω2

]
+

∑
|ω|>2R

[
1

(z + ω)2
− 1

ω2

]
=: I + II + III.

To estimate III observe that for |z| < R and |ω| > 2R,

|z + ω| ≥ |ω| − |z| ≥ 1

2
|ω|+R− |z| ≥ 1

2
|ω|,

and so ∣∣∣∣ 1

(z + ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣−z2 − 2zω

ω2(z + ω)2

∣∣∣∣ ≤ 2
R2 + 2R|ω|
|ω|4

≤ 2
4R|ω|
|ω|4 = 8R

1

|ω|3 .
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Hence
|III| ≤ 8R

∑
j+kτ∈Λ∗

1

(|j + kτ |)3

which converges by the previous lemma.
The term II is a finite sum and so it is a meromorphic function in B(0, R)

with double poles at those ω ∈ Λ∗ inside B(0, R).
This shows that ℘ is well-defined and meromorphic with double poles at each

point of the lattice Λ. To prove that ℘ is doubly periodic with periods 1 and τ
we compute the derivative of ℘. We have

℘′(z) = − 2

z3
−
∑
ω∈Λ∗

2

(z + ω)3
= −

∑
ω∈Λ

2

(z + ω)3
.

Note that by the previous lemma the series converges absolutely whenever z /∈ Λ.
Let’s prove that ℘′ has periods 1 and τ . Since ω+1 ∈ Λ and ω+τ ∈ Λ whenever
ω ∈ Λ, we have

℘′(z + 1) = −
∑
ω∈Λ

2

(z + 1 + ω)3
= −

∑
ζ∈Λ

2

(z + ξ)3
= ℘′(z),

℘′(z + τ) = −
∑
ω∈Λ

2

(z + τ + ω)3
= −

∑
ζ∈Λ

2

(z + ξ)3
= ℘′(z).

Hence, there exist a, b ∈ C such that

℘(z + 1) = ℘(z) + a, ℘(z + τ) = ℘(z) + b (105)

for all z ∈ C \ Λ.
Using the fact that ω ∈ Λ if and only if −ω ∈ Λ we have that

℘(−z) =
1

(−z)2
+
∑
ω∈Λ∗

[
1

(−z + ω)2
− 1

ω2

]
=

1

z2
+
∑
ω∈Λ∗

[
1

(z − ω)2
− 1

(−ω)2

]
= ℘(z).

This shows that ℘ is even. Taking z = − 1
2 and z = − τ2 in (105) gives a = 0 and

b = 0. We have proved that ℘ is doubly periodic with periods 1 and τ . Since
the only element of Λ inside the fundamental parallelogram is 0, ℘ has order 2.

Wednesday, April 29, 2020
Next we show some important properties of the function ℘.

Theorem 235 The function ℘ satisfies the equality

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where
e1 := ℘(1/2), e2 := ℘(τ/2), e3 := ℘((1 + τ)/2). (106)
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Proof. Since ℘ is even, ℘′ is odd, and so using also the fact that ℘′ is
periodic of period 1,

℘′(1/2) = −℘′(−1/2) = −℘′(−1/2 + 1) = −℘′(1/2),

which implies that ℘′(1/2) = 0. Similalrly,

℘′(τ/2) = −℘′(−τ/2) = −℘′(−τ/2 + τ) = −℘′(τ/2),

and so ℘′(τ/2) = 0. Finally,

℘′((1 + τ)/2) = −℘′(−(1 + τ)/2) = −℘′(−(1 + τ)/2 + 1 + τ) = −℘′((1 + τ)/2),

which implies that ℘′((1 + τ)/2). Since ℘′ is an elliptic function of order 3, it
follows from Theorem 232, that it has three zeros in the fundamental parallel-
ogram P0 (already counted with their multiplicity). Hence, 1

2 ,
τ
2 , and

1+τ
2 are

simple zeros of ℘′ and they are the only ones in P0.
Since the function ℘ − e1 is elliptic of order two, and it has a double zero

at 1
2 (since its derivative has a simple zero), it follows from Theorem 232 that

℘− e1 has no other zeros in P0. Similarly, ℘− e2 and ℘− e3 have a double zero
at τ2 and

1+τ
2 , respectively, and no other zeros in P0.

Consider the function

g(z) = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

The only zeros of g in P0 are at 1
2 ,

τ
2 , and

1+τ
2 and they have multiplicity 2.

Moreover, g is an elliptic function of with poles at Λ. Since 0 is the only pole in
P0, it has multiplicity 6 by Theorem 232. Thus, every pole in Λ has multiplicity
6.
On the other hand, since ℘′ has poles of multiplicity 3 at Λ, (℘′)2 has poles of

multiplicity 6 at Λ. Also, by what we did before it only has zeros of multiplicity
2 at 1

2 ,
τ
2 , and

1+τ
2 . Thus, if we consider the function (℘′)2/g, we have that

it has removable singularities at each point of Λ and at 1
2 ,

τ
2 , and

1+τ
2 (and

their periodic translates). Hence, (℘′)2/g can be extended to an entire function.
Since it is doubly periodic with periods 1 and τ , by Corollary 229, (℘′)2/g is
constant.
We have seen in the proof of Theorem 233 that if we take R > 0 so

small that B(0, 2R) ∩ Λ = {0}, then the function
∑
|ω|>2R

[
1

(z+ω)2 −
1
ω2

]
=∑

ω∈Λ∗

[
1

(z+ω)2 −
1
ω2

]
is holomorphic in B(0, R). Hence,

lim
z→0

z2℘(z) = 1.

Similarly,
lim
z→0

z3℘′(z) = −2.

It follows that

c = lim
z→0

z6(℘′)2

z6g(z)
=

4

1
.

This completes the proof.
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Remark 236 The numbers 1
2 ,

τ
2 , and

1+τ
2 are called half-periods. It follows

from the previous proof that ℘′ restricted to P0 has three simple zeros at the
half-periods and no other zeros. Hence, for every a ∈ P0, the function ℘− ℘(a)
has a double zero at a if a is a half-period and otherwise a simple zero at a and
−a since ℘ is even.

We now demonstrate the importance of the function ℘.

Theorem 237 Every elliptic function f : C→ C∞ with periods 1 and τ , where
Im τ > 0, is a rational function of ℘ and ℘′.

Proof. We want to construct a doubly periodic elliptic function g using ℘
which has the same zeros and poles of f .
Step 1: Assume that f is even. Then if f has a zero or a pole at some

a ∈ P0 \ {0}, then it also has a zero or a pole at −a. Note that −a is congruent
to a modulo Λ if and only if a is a half-period. Indeed, if

a = −a+ j + kτ

for some j, k ∈ Z, then a = 1
2j+

1
2kτ ∈ P0, which can happen only if j, k ∈ {0, 1}.

Substep 1: Assume that f has no zeros or poles at the origin and at the
half-periods. We recall that by Theorem 232, if f has order `, then it has `
zeros. Let a1, . . . , a` ∈ P0 \ {0} be the zeros of f in P0 counted with their
multiplicity and let b1, . . . , b` ∈ P0 \ {0} be the poles of f in P0 counted with
their multiplicity. We claim that

f(z) = f(0)
∏̀
n=1

℘(z)− ℘(an)

℘(z)− ℘(bn)
.

Indeed, let g denote the function on the right-hand side. In view of the previous
remark ℘ − ℘(an) has a simple zero at an while the function 1

℘−℘(bn) has a
simple pole at bn. Thus, the function g has the same zeros and poles in P0 as
f . It follows that f/g has removable singularities at an and at bn, n = 1, . . . , `.
Thus f/g can be extended to a doubly periodic entire function, and so it must
be constant in view of Corollary 229. Using the fact that

lim
z→0

z2℘(z) = 1,

we obtain that the constant must be f(0).
Substep 2: If f has a zero at at a half-period a, then the zero must have

even multiplicity. Indeed f (2n+1) is odd and we can reason as in the proof of
Theorem 235 to show that f (2n+1) vanishes at all the half-periods. Similarly,
if f has a pole at a half-period a, then 1

f is still an even elliptic function with
the same periods and so the pole must have even multiplicity. Recalling that
℘ − ℘(a) has a double zero if a is a half-period and a pole of multiplicity two
at the origin we can find integers k0, . . . , k3 ∈ Z such that ℘k0 behaves like f
near z = 0 and (℘(z) − ej)kj , j = 1, 2, 3, behaves like f near 1

2 ,
τ
2 , and

1+τ
2 ,
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respectively. Let a1, . . . , an ∈ P0 \ {0, 1
2 ,

τ
2 ,

1+τ
2 } be the other zeros of f in P0

counted with their multiplicity and let b1, . . . , bm ∈ P0 \ {0, 1
2 ,

τ
2 ,

1+τ
2 } be the

other poles of f in P0 counted with their multiplicity. Consider the function

g(z) := ℘k0(z)

3∏
j=1

(℘(z)− ej)kj
n∏
j=1

(℘(z)− ℘(aj))

m∏
j=1

1

℘(z)− ℘(bj)
,

where
2(k0 + k1 + k2 + k2) + n−m = 0

by Theorem 232. The function g has the same zeros and poles in P0 as f . It
follows that f/g has removable singularities at 0, 0, 1

2 ,
τ
2 ,

1+τ
2 , and at all the aj

and bk. Thus f/g can be extended to a doubly periodic entire function, and so
it must be constant in view of Corollary 229.
Step 2: If f is odd, then f/℘′ is an even elliptic function and so by the

previous step it can be written as a rational function of ℘. Finally, in the general
case we can write f as the sum of an even function and an odd function, to be
precise,

f(z) =
1

2
[f(z) + f(−z)] +

1

2
[f(z)− f(−z)].

This concludes the proof.
Friday, May 1, 2020

No class.
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