Contents

1 The Field of Complex Numbers 3
2 Complex Functions 5
3 Power Series and Some Elementary Functions 11
4 Riemann-Stieltjes integrals 19
5 Line Integrals 22
6 Cauchy's Theorem in a Ball 28
7 Cauchy's Theorem, General Case 40
8 Harmonic Functions 46
9 Zeros and Isolated Singularities 49
10 The Maximum Modulus Principle 61
11 Essential Singularities 63
12 Sequences of Holomorphic Functions 70
13 Picard's Big Theorem 74
14 Entire Functions 75
14.1 Infinite Products . 75
14.2 Entire Functions of Finite Order 79
14.3 Weierstrass Theorem . 84

15 Prime Number Theorem 87
16 Conformal Mappings 98
17 Runge's Theorem 104
17.1 Mittag-Leffler Theorem . 111

18 Simply Connected Domains 113
19 Proof of Caratheodory's Theorem 117
20 Elliptic Functions 124
21 Proof of Hadamard Theorem 135
22 Runge 137
23 Picard 137
24 Caratheodory 137
25 Old stuff 137
26 Prime 138

1 The Field of Complex Numbers

We define \mathbb{C}, the complex numbers, to be the set of all ordered pairs $z=(x, y)$ of real numbers x, y with operations of addition and multiplication defined by

$$
\begin{align*}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & :=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \tag{1}\\
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) & :=\left(x_{1} x_{2}-y_{1} y_{2}, y_{1} x_{2}+x_{1} y_{2}\right) \tag{2}
\end{align*}
$$

for all $z_{1}=\left(x_{1}, y_{1}\right), z_{2}=\left(x_{2}, y_{2}\right)$. It can be checked that with these two operations \mathbb{C} is a field. This means that addition and multiplication are associative and commutative, $(0,0)$ and $(1,0)$ are the identities for addition and multiplication, respectively, every complex number has an additive inverse, every complex number different from zero has a multiplicative inverse, and distributivity of multiplication over addition holds. The set of complex numbers of the form $(x, 0), x \in \mathbb{R}$ is a subfield of \mathbb{C}, and it is the isomorphic image of \mathbb{R} through the mapping

$$
x \mapsto(x, 0)
$$

Hence, from now on we will consider \mathbb{R} as a subset of \mathbb{C} by identifying the pair $(x, 0)$ with the real number x. Using this identification, if we define $i:=(0,1)$ then $x+i y=(x, y)$. From now on we will use notation. The real numbers x and y are called the real and imaginary parts of z, and we write

$$
\operatorname{Re} z=x \quad \operatorname{Im} z=y
$$

Complex numbers of the form yi are called purely imaginary numbers.
Observe that using (2) we have that $i^{2}=-1$ and so the equation $z^{2}+1=0$ has a root in \mathbb{C}. Indeed, $z^{2}+1=(z+i)(z-i)$. More generally, if $z, w \in \mathbb{C}$ we have that

$$
z^{2}+w^{2}=(z+i w)(z-i w)
$$

Using the previous formula, given $z=x+i y \neq 0$ we have

$$
\frac{1}{z}=\frac{1}{x+i y}=\frac{1}{x+i y} \frac{x-i y}{x-i y}=\frac{x-i y}{x^{2}+y^{2}}
$$

which is the formula for the multiplicative inverse, or the opposite, of z.
Given a complex number $z=x+i y, x, y \in \mathbb{R}$, we define the absolute value of or modulus of z as

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

Note that this is the norm of the vector $(x, y) \in \mathbb{R}^{2}$. Hence, we have

$$
\begin{aligned}
|z| & =0 \quad \text { if and only if } z=0 \\
|z+w| & \leq|z|+|w| \quad \text { for all } z, w \in \mathbb{C} \\
|t z| & =|t||z| \quad \text { for all } z \in \mathbb{C} \text { and } t \in \mathbb{R} .
\end{aligned}
$$

We leave as an exercise to show that

$$
\begin{aligned}
& |z w|=|z||w| \quad \text { for all } z, w \in \mathbb{C} \\
& \left|\frac{z}{w}\right|=\frac{|z|}{|w|} \quad \text { for all } z, w \in \mathbb{C}, \text { with } w \neq 0 .
\end{aligned}
$$

Since the absolute value of $z=x+i y$ is the norm in \mathbb{R}^{2} of (x, y), if we define the open ball centered at $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$ and radius $r>0$ as

$$
B\left(z_{0}, r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\},
$$

this is nothing else than the ball $B\left(\left(x_{0}, y_{0}\right), r\right) \subset \mathbb{R}^{2}$. Hence, the topology in \mathbb{C} coincides with the topology in \mathbb{R}^{2}. So we will have the same open sets, the same closed sets, the same compact sets, the same connected sets, and so on.

Given a complex number $z=x+i y \in \mathbb{C}$, the complex conjugate of z is defined as the complex number

$$
\bar{z}:=x=i y .
$$

The following properties are left as an exercise:

$$
\begin{align*}
|z|^{2} & =z \bar{z}, \quad \operatorname{Re} z=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i} \quad \text { for all } z \in \mathbb{C}, \tag{3}\\
\overline{z+w} & =\bar{z}+\bar{w}, \quad \overline{z w}=\overline{z w} \quad \text { for all } z, w \in \mathbb{C} \tag{4}\\
\overline{\left(\frac{z}{w}\right)} & =\frac{\bar{z}}{\bar{w}} \quad \text { for all } z, w \in \mathbb{C}, \text { with } w \neq 0 . \tag{5}
\end{align*}
$$

A complex number $z=x+i y \in \mathbb{C} \backslash\{0\}$ can be written in polar form as

$$
z=r e^{i \theta}
$$

where $r=|z|$ and (we will justify this later)

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta, \tag{6}
\end{equation*}
$$

where θ is the angle between the positive real axis and the half-line starting at the origin and passing through z. The number θ is called the argument of z and is denoted $\arg z$.

The following properties are left as an exercise:

$$
\begin{aligned}
& \text { if } z=r e^{i \theta} \text { and } w=s e^{i \varphi} \text {, then } z w=r s e^{i(\theta+\varphi)}, \\
& \text { if } z=r e^{i \theta} \text { and } n \in \mathbb{N} \text {, then } z^{n}=r^{n} e^{i n \theta} .
\end{aligned}
$$

Exercise 1 Given $n \in \mathbb{N}$, solve the equation $z^{n}=1$.

2 Complex Functions

Definition 2 Let $E \subseteq \mathbb{C}$, let $z_{0} \in \mathbb{C}$ be an accumulation point of E and let $f: E \rightarrow \mathbb{C}$. We say that $\ell \in \mathbb{C}$ is the limit of f as z approaches z_{0} and we write

$$
\lim _{z \rightarrow z_{0}} f(z)=\ell
$$

if for every $\varepsilon>0$ there exists $\delta=\delta\left(z_{0}, \varepsilon\right)>0$ such that

$$
|f(z)-\ell|<\varepsilon
$$

for all $z \in E$ with $0<\left|z-z_{0}\right|<\delta$.
Given $E \subseteq \mathbb{C}$ and a function $f: E \rightarrow \mathbb{C}$, since the absolute value in \mathbb{C} is the norm in \mathbb{R}^{2}, the the basic properties of limits (sum, composition, multiplication by a scalar) will not change. The only additional property is the product of limits.

Exercise 3 Let $E \subseteq \mathbb{C}$, let $z_{0} \in \mathbb{C}$ be an accumulation point of E and let $f: E \rightarrow \mathbb{C}$ and $g: E \rightarrow \mathbb{C}$. Assume that there exist

$$
\lim _{z \rightarrow z_{0}} f(z)=\ell \in \mathbb{C}, \quad \lim _{z \rightarrow z_{0}} g(z)=L \in \mathbb{C} .
$$

Prove that
(i) there exist

$$
\lim _{z \rightarrow z_{0}}(f+g)(z)=\ell+L
$$

(ii) there exist

$$
\lim _{z \rightarrow z_{0}}(f g)(z)=\ell L
$$

(iii) if $L \neq 0$, then z_{0} is an accumulation point for $E_{0}:=\{z \in E: g(z) \neq 0\}$, and if we restrict f / g to E_{0}, then there exists

$$
\lim _{z \rightarrow z_{0}}\left(\frac{f}{g}\right)(z)=\frac{\ell}{L}
$$

Exercise 4 State and prove a similar result for the limit of compositions.
Next we discuss differentiation.
Definition 5 Let $E \subseteq \mathbb{C}$, let $z_{0} \in E$ be an accumulation point of E and let $f: E \rightarrow \mathbb{C}$. We say that f is differentiable at z_{0} if there exists the limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\ell \in \mathbb{C}
$$

We call the limit ℓ the derivative of f at z_{0} and we denote it by $f^{\prime}\left(z_{0}\right)$ or $\frac{d f}{d z}\left(z_{0}\right)$.

Definition 6 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$. We say that f is holomorphic in U, if f is differentiable in U.

The following properties are left as an exercise;
Exercise 7 Let $E \subseteq \mathbb{C}$, let $z_{0} \in E$ be an accumulation point of E and let $f: E \rightarrow \mathbb{C}$ and $g: E \rightarrow \mathbb{C}$ be differentiable at z_{0}. Prove that
(i) $f+g$ is differentiable at z_{0} and $(f+g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)+g^{\prime}\left(z_{0}\right)$,
(ii) $f g$ is differentiable at z_{0} and $(f g)^{\prime}\left(z_{0}\right)=g\left(z_{0}\right) f^{\prime}\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$,
(iii) if $g\left(z_{0}\right) \neq 0$ then $\frac{f}{g}: E_{0} \rightarrow \mathbb{C}$ is differentiable at z_{0} and

$$
\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right)=\frac{g\left(z_{0}\right) f^{\prime}\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{\left(g\left(z_{0}\right)\right)^{2}}
$$

where $E_{0}:=\{z \in E: g(z) \neq 0\}$.
Exercise 8 Let $E, F \subseteq \mathbb{C}$, let $z_{0} \in E$ be an accumulation point of E, let $f: E \rightarrow F$ be differentiable at z_{0}, let $f\left(z_{0}\right)$ be an accumulation point of $f(E)$ and let $g: F \rightarrow \mathbb{C}$ be differentiable at $f\left(z_{0}\right)$. Prove that $g \circ f$ is differentiable at z_{0} and

$$
(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)
$$

Exercise 9 Let $U, V \subseteq \mathbb{C}$ be open sets, let $f: U \rightarrow V$ be continuous and let $g: V \rightarrow \mathbb{C}$ be differentiable and such that

$$
g(f(z))=z \quad \text { for all } z \in U
$$

Let $z_{0} \in U$ be such that $g^{\prime}\left(f\left(z_{0}\right)\right) \neq 0$. Prove that f is differentiable at z_{0} and

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{g^{\prime}\left(f\left(z_{0}\right)\right)}
$$

Let's discuss the relation between complex and real differentiation. Given $E \subseteq \mathbb{C}$ and $f: E \rightarrow \mathbb{C}$, let

$$
F:=\left\{(x, y) \in \mathbb{R}^{2}: x+i y \in E\right\}
$$

and define $u: F \rightarrow \mathbb{R}$ and $v: F \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u(x, y):=\operatorname{Re} f(x+i y), \quad v(x, y):=\operatorname{Im} f(x+i y) \tag{7}
\end{equation*}
$$

The following example shows that differentiability of u and v does not imply differentiability of f.

Example 10 Consider the function $f(z)=\bar{z}$. Then $u(x, y)=x$ and $v(x, y)=$ $-y$, which are C^{∞} and even analytic functions. However, f is not differentiable at 0 , since

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=\lim _{z \rightarrow 0} \frac{\bar{z}}{z}
$$

and this limit does not exist, since taking $z=x+i 0$ gives

$$
\lim _{z \rightarrow 0} \frac{\bar{z}}{z}=\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

while taking $z=0+i y$ gives

$$
\lim _{z \rightarrow 0} \frac{\bar{z}}{z}=\lim _{y \rightarrow 0} \frac{-y}{y}=-1
$$

Wednesday, January 15, 2020
We recall that given a set $F \subseteq \mathbb{R}^{N}$, a point $\boldsymbol{x}_{0} \in F \cap \operatorname{acc} F$, and a real-valued function $u: F \rightarrow \mathbb{R}$, we say that u is differentiable at \boldsymbol{x}_{0} if there exists a linear function $L: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{x}_{0}} \frac{u(\boldsymbol{x})-u\left(\boldsymbol{x}_{0}\right)-L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}=0
$$

The linear function L is called the differential of f at \boldsymbol{x}_{0} and is denoted $d f\left(\boldsymbol{x}_{0}\right)$.
Exercise 11 Let $F \subseteq \mathbb{R}^{N}$, let $\boldsymbol{x}_{0} \in F^{\circ}$, and let $u: F \rightarrow \mathbb{R}$ be differentiable at x_{0}.
(i) Prove that u is continuous at \boldsymbol{x}_{0}.
(ii) Prove that there exist all partial derivatives $\frac{\partial u}{\partial x_{i}}\left(\boldsymbol{x}_{0}\right)$, all directional derivatives $\frac{\partial u}{\partial \boldsymbol{\nu}}\left(\boldsymbol{x}_{0}\right)$ and that

$$
\begin{equation*}
\nabla u\left(\boldsymbol{x}_{0}\right) \cdot \boldsymbol{\nu}=\frac{\partial u}{\partial \boldsymbol{\nu}}\left(\boldsymbol{x}_{0}\right) \tag{8}
\end{equation*}
$$

$$
\text { for all } \boldsymbol{\nu} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\} .
$$

Exercise 12 Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
u(x, y):= \begin{cases}x & \text { if } y=x^{2}, x \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that u is continuous at $(0,0)$, all partial and directional derivatives exist at $(0,0)$ and that (8) holds but that u is not differentiable at $(0,0)$.

Next we show that differentiability of f implies the differentiability of u and v. In what follows, given a set $E \subseteq \mathbb{C}$, we denote by E° the set of interior points of E.

Theorem 13 (Cauchy-Riemann Equations) Let $E \subseteq \mathbb{C}$, let $z_{0}=x_{0}+$ iy $y_{0} \in E$ be an accumulation point of E and let $f: E \rightarrow \mathbb{C}$ be differentiable at z_{0}. Then the functions u and v defined in (7) are differentiable at $\left(x_{0}, y_{0}\right)$. Moreover if z_{0} is an interior point of E, then

$$
\begin{align*}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right) & =\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)=\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) \tag{9}\\
-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) & =\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right)
\end{align*}
$$

In particular,

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) \tag{10}\\
\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)
\end{array}\right)=\left|f^{\prime}\left(z_{0}\right)\right|^{2}
$$

The relations

$$
\begin{equation*}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right), \quad-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) \tag{11}
\end{equation*}
$$

are known as the Cauchy-Riemann equations.
Proof. We have

$$
0=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{z-z_{0}}
$$

and so (since the product of a bounded function and a function going to zero goes to zero)

$$
0=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{\left|z-z_{0}\right|}
$$

In turn,

$$
\begin{align*}
& \lim _{z \rightarrow z_{0}} \frac{\operatorname{Re}\left(f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right)}{\left|z-z_{0}\right|}=0 \tag{12}\\
& \lim _{z \rightarrow z_{0}} \frac{\operatorname{Im}\left(f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right)}{\left|z-z_{0}\right|}=0 \tag{13}
\end{align*}
$$

Now by (2), writing $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$,

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)= & \operatorname{Re} f^{\prime}\left(z_{0}\right)\left(x-x_{0}\right)-\operatorname{Im} f^{\prime}\left(z_{0}\right)\left(y-y_{0}\right) \\
& +i\left(\operatorname{Im} f^{\prime}\left(z_{0}\right)\left(x-x_{0}\right)+\operatorname{Re} f^{\prime}\left(z_{0}\right)\left(y-y_{0}\right)\right)
\end{aligned}
$$

and so 12 and 13 become

$$
\begin{aligned}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\operatorname{Re} f(x+i y)-\operatorname{Re} f\left(x_{0}+i y_{0}\right)-\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right)\left(x-x_{0}\right)+\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right)\left(y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0, \\
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\operatorname{Im} f(x+i y)-\operatorname{Im} f\left(x_{0}+i y_{0}\right)-\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right)\left(x-x_{0}\right)-\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right)\left(y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0 .
\end{aligned}
$$

These can be written as

$$
\begin{aligned}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{u(x, y)-u\left(x_{0}, y_{0}\right)-\left(\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right),-\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right)\right) \cdot\left(\left(x-x_{0}\right),\left(y-y_{0}\right)\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} & =0 \\
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{v(x, y)-v\left(x_{0}, y_{0}\right)-\left(\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right), \operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right)\right) \cdot\left(\left(x-x_{0}\right),\left(y-y_{0}\right)\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} & =0 .
\end{aligned}
$$

These implies that u and v are differentiable at $\left(x_{0}, y_{0}\right)$ with

$$
\begin{aligned}
d u\left(x_{0}, y_{0}\right)(s, t) & =\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) s-\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right) t, & (s, t) \in \mathbb{R}^{2,} \\
d v\left(x_{0}, y_{0}\right)(s, t) & =\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right) s+\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) t, & (s, t) \in \mathbb{R}^{2}
\end{aligned}
$$

In particular, if z_{0} belongs to the interior of E then $\nabla u\left(x_{0}, y_{0}\right)$ and $\nabla v\left(x_{0}, y_{0}\right)$ exist with

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right), & \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right) \\
\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=\operatorname{Im} f^{\prime}\left(x_{0}+i y_{0}\right), & \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)=\operatorname{Re} f^{\prime}\left(x_{0}+i y_{0}\right) \tag{15}
\end{array}
$$

Comparing (14) and gives the Cauchy-Riemann equations. In turn, 10 follows by direct computation.

Corollary 14 Let $U \subseteq \mathbb{C}$ be an open and connected set and let $f: U \rightarrow \mathbb{C}$ be a differentiable function with $f^{\prime}=0$ in U. Then f is constant.

Proof. By the previous theorem the functions u and v defined in 7 are differentiable in $V=\left\{(x, y) \in \mathbb{R}^{2}: x+i y \in U\right\}$, with $\nabla u=\nabla v \equiv(0,0)$ in V. Thus, by a result in Analysis, u and v are constant in V. Again by (7), it follows that f is constant.

Theorem 15 Let $F \subseteq \mathbb{R}^{2}$, let $\left(x_{0}, y_{0}\right) \in F$ be an interior point of F and let $u, v: E \rightarrow \mathbb{R}$ be differentiable at $\left(x_{0}, y_{0}\right)$. Assume that the Cauchy-Riemann equations (11) hold at $\left(x_{0}, y_{0}\right)$. Let $E:=\{z=x+i y \in \mathbb{C}:(x, y) \in F\}$ and let $f: E \rightarrow \mathbb{C}$ be defined by

$$
\begin{equation*}
f(z)=u(x, y)+i v(x, y), \quad z=x+i y \in E \tag{16}
\end{equation*}
$$

Then f is differentiable at z_{0}.
Proof. Set

$$
f^{\prime}\left(z_{0}\right):=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
$$

Now by (2), writing $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$,

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)= & \operatorname{Re} f^{\prime}\left(z_{0}\right)\left(x-x_{0}\right)-\operatorname{Im} f^{\prime}\left(z_{0}\right)\left(y-y_{0}\right) \\
& +i\left(\operatorname{Im} f^{\prime}\left(z_{0}\right)\left(x-x_{0}\right)+\operatorname{Re} f^{\prime}\left(z_{0}\right)\left(y-y_{0}\right)\right) \\
= & \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+i \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
= & \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+i \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

where in the last equality we used $11\left(\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)\right.$ and $-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=$ $\left.\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\right)$. Hence, also by 16,

$$
\begin{aligned}
f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)= & u(x, y)-u\left(x_{0}, y_{0}\right)-\nabla u\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right) \\
& +i\left(v(x, y)-v\left(x_{0}, y_{0}\right)-\nabla v\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right)\right) .
\end{aligned}
$$

Dividing by $\left|z-z_{0}\right|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}$ gives

$$
\begin{aligned}
\frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{\left|z-z_{0}\right|}= & \frac{u(x, y)-u\left(x_{0}, y_{0}\right)-\nabla u\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} \\
& +i \frac{v(x, y)-v\left(x_{0}, y_{0}\right)-\nabla v\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} .
\end{aligned}
$$

Since u and v are differentiable at $\left(x_{0}, y_{0}\right)$, it follows that

$$
0=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{\left|z-z_{0}\right|}
$$

which implies that

$$
0=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{z-z_{0}}
$$

and the proof is complete.
The following example shows that the previous theorem fails without assuming that u and v are differentiable. We refer to Section 3 for the definition of e^{z}.

Example 16 Let

$$
f(z)= \begin{cases}\exp \left(-z^{-4}\right) & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

Prove that the Cauchy-Riemann equations are satisfied but that f is not differentiable at the origin.

Note that the previous function is not continuous at $z=0$. There is a beautiful theorem, due to Looman and Menchoff, which we will not prove, which says the following.

Theorem 17 (Looman-Menchoff) Let $V \subseteq \mathbb{R}^{2}$ be an open set, let u, v : $V \rightarrow \mathbb{R}$ be continuous functions in V. Assume that $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$ exist in V and satisfy the Cauchy-Riemann equations 11) in V. Let $U:=\{z=x+i y \in$ $\mathbb{C}:(x, y) \in V\}$ and let $f: U \rightarrow \mathbb{C}$ be defined by

$$
f(z)=u(x, y)+i v(x, y), \quad z=x+i y \in U
$$

Then f is differentiable in U.

3 Power Series and Some Elementary Functions

Definition 18 Given a sequence $\left\{z_{n}\right\}_{n}$ of complex numbers, we call the n-th partial sum the number

$$
s_{n}=z_{1}+\cdots+z_{n}
$$

The sequence $\left\{s_{n}\right\}_{n}$ of partial sums is called infinite series or series and is denoted

$$
\sum_{n=1}^{\infty} z_{n}
$$

If there exists $\lim _{n \rightarrow \infty} s_{n}=S \in \mathbb{C}$, we say that the series $\sum_{n=1}^{\infty} z_{n}$ is convergent. The number S is called sum of the series. If the limit $\lim _{n \rightarrow \infty} s_{n}$ does not exist, we say that the series $\sum_{n=1}^{\infty} z_{n}$ oscillates.

We say that the series $\sum_{n=1}^{\infty} z_{n}$ converges absolutely if the series $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges.

Remark 19 There is nothing special about 1, we will also consider series of the type $\sum_{n=0}^{\infty} z_{n}$ or $\sum_{n=n_{0}}^{\infty} z_{n}$, where $n_{0} \in \mathbb{N}$. The only change is that in the partial sums, one should consider $s_{n}=z_{0}+\cdots+z_{n}$ and $s_{n}=z_{n_{0}}+\cdots+z_{n}$, respectively.

Theorem 20 If the series $\sum_{n=1}^{\infty} z_{n}$ converges, then there exists

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

Proof. Since the series $\sum_{n=1}^{\infty} z_{n}$ converges, there exists $\lim _{n \rightarrow \infty} s_{n}=S \in \mathbb{C}$. Hence,

$$
z_{n}=s_{n+1}-s_{n} \rightarrow S-S=0
$$

as $n \rightarrow \infty$. Note that here it is important that $S \in \mathbb{C}$.
Definition 21 a power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{C}
$$

where $a_{n} \in \mathbb{C}$.

Friday, January 17, 2020
We recall that given a sequence $\left\{x_{n}\right\}_{n}$ of real numbers, the limit superior of $\left\{x_{n}\right\}_{n}$ is defined as

$$
\limsup _{n \rightarrow \infty} x_{n}:=\inf _{n} \sup _{k \geq n} x_{k} .
$$

Exercise 22 Given a sequence $\left\{x_{n}\right\}_{n}$ of real numbers and $\ell \in \mathbb{R}$, prove that ℓ is the limit superior of the sequence $\left\{x_{n}\right\}_{n}$ if and only if
(i) for every $\varepsilon>0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$
x_{n} \leq \ell+\varepsilon \quad \text { for all } n \geq n_{\varepsilon}
$$

(ii) for every $\varepsilon>0$,

$$
x_{n} \geq \ell-\varepsilon \quad \text { for infinitely many } n .
$$

State and prove a similar result for the case $\ell=\infty$.
Theorem 23 Given a power series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{C}
$$

let $R \in[0, \infty]$ be given by

$$
\frac{1}{R}:=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} .
$$

Then for $|z|<R$ the series converges absolutely, while for $|z|>R$ the series oscillates.

Proof. If $|z|<R$, then $|z| / R<1$. Fix $\varepsilon>0$ so small that $(1 / R+\varepsilon)|z|<1$. By the previous exercise, there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}\right|^{1 / n} \leq 1 / R+\varepsilon
$$

for all $n \geq N$, and so

$$
\left|a_{n}\right| \leq(1 / R+\varepsilon)^{n}
$$

for all $n \geq N$. In turn,

$$
\left|a_{n} z^{n}\right|=\left|a_{n}\right||z|^{n} \leq[(1 / R+\varepsilon)|z|]^{n}
$$

for all $n \geq N$. Since $(1 / R+\varepsilon)|z|<1$, the geometric series $\sum_{n=1}[(1 / R+\varepsilon)|z|]^{n}$ converges. Hence, so does $\sum_{n=1}^{\infty}\left|a_{n} z^{n}\right|$ by the comparison test.

On the other hand, if $|z|>R$, fix $\varepsilon>0$ so small that $(1 / R-\varepsilon)|z|>1$. By the previous exercise,

$$
\left|a_{n}\right|^{1 / n} \geq 1 / R-\varepsilon>0
$$

for infinitely many n, and so

$$
\left|a_{n}\right| \geq(1 / R-\varepsilon)^{n}
$$

for infinitely many n. In turn,

$$
\left|a_{n} z^{n}\right|=\left|a_{n}\right||z|^{n} \geq[(1 / R-\varepsilon)|z|]^{n}
$$

Thus,

$$
\limsup _{n \rightarrow \infty}\left|a_{n} z^{n}\right| \geq \limsup _{n \rightarrow \infty}[(1 / R-\varepsilon)|z|]^{n}=\infty
$$

since $(1 / R-\varepsilon)|z|>1$. It follows by Theorem 20, that the series $\sum_{n=1}^{\infty} a_{n} z^{n}$ oscillates.

The number R is called radius of convergence of the power series.
Exercise 24 Given $\left\{a_{k}\right\}_{k=1}^{n}$ and $\left\{b_{k}\right\}_{k=1}^{n}$ in \mathbb{C}, let $B_{l}:=\sum_{k=1}^{l} b_{k}, B_{0}:=0$. Prove that

$$
\sum_{k=m}^{n} a_{k} b_{k}=a_{n} B_{n}-a_{m} B_{m-1}-\sum_{k=m}^{n-1}\left(a_{k+1}-a_{k}\right) B_{k}
$$

Exercise 25 Assume that the series of complex numbers $\sum_{n=1}^{\infty} a_{n}$ converges. Use the previous exercise to show that

$$
\lim _{r \rightarrow 1^{-}} \sum_{n=1}^{\infty} a_{n} r^{n}=\sum_{n=1}^{\infty} a_{n}
$$

Exercise 26 Version of Abel's with angles. Ahlfors.
Example 27 When $|z|=R$ anything can happen as the two power series

$$
\sum_{n=1}^{\infty} \frac{1}{n} z^{n}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}} z^{n}
$$

show. Note that for $a>0$,

$$
\left(\frac{1}{n^{a}}\right)^{1 / n}=\frac{1}{n^{a / n}}=\frac{1}{e^{\log n^{a / n}}}=\frac{1}{e^{(a / n) \log n}} \rightarrow \frac{1}{e^{0}}=\frac{1}{R}
$$

Exercise 28 Let $\left\{x_{n}\right\}_{n}$ be a sequence of real numbers, with $x_{n}>0$ for all $n \in \mathbb{N}$. Prove that

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}
$$

Show that the inequality can be strict.

Remark 29 In view of the previous exercise, if there exists

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}
$$

then there exists

$$
\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}
$$

and the two limits are the same.
Next we show that a power series is differentiable in $B(0, R)$.
Theorem 30 Given a power series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{C}
$$

let R be its radius of convergence and assume that $R>0$. Then the function $f(z):=\sum_{n=0}^{\infty} a_{n} z^{n}$ is differentiable in the open set $U_{R}:=\{z \in \mathbb{C}:|z|<R\}$ and

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

Moreover, the power series $\sum_{n=0}^{\infty} n a_{n} z^{n-1}$ has the same radius of convergence R.

Proof. The fact that the two power series have the same radius of convergence follows from the fact that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|n a_{n}\right|^{1 / n} & =\limsup _{n \rightarrow \infty} n^{1 / n}\left|a_{n}\right|^{1 / n}=\limsup _{n \rightarrow \infty} e^{\log n^{1 / n}}\left|a_{n}\right|^{1 / n} \\
& =\limsup _{n \rightarrow \infty} e^{(\log n) / n}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} e^{(\log n) / n} \limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1 \frac{1}{R} .
\end{aligned}
$$

Let $z_{0} \in U_{R}$ and find $\left|z_{0}\right|<r<R$. Let $h \in \mathbb{C}$ be so small that $\left|z_{0}+h\right|<r$. Define

$$
g(z):=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

and consider

$$
\begin{aligned}
\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-g\left(z_{0}\right)= & \sum_{n=0}^{\infty} a_{n} \frac{\left(z_{0}+h\right)^{n}-z_{0}^{n}}{h}-\sum_{n=0}^{\infty} n a_{n} z_{0}^{n-1} \\
= & \sum_{n=0}^{N} a_{n}\left[\frac{\left(z_{0}+h\right)^{n}-z_{0}^{n}}{h}-n z_{0}^{n-1}\right] \\
& +\sum_{n=N+1}^{\infty} a_{n} \frac{\left(z_{0}+h\right)^{n}-z_{0}^{n}}{h}-\sum_{n=N+1}^{\infty} n a_{n} z_{0}^{n-1} \\
= & : I+I I+I I I .
\end{aligned}
$$

Using the facts that $a^{n}-b^{n}=(b-a)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)$, that $\left|z_{0}\right|<r$, and that $\left|z_{0}+h\right|<r$ we have that

$$
\left|\left(z_{0}+h\right)^{n}-z_{0}^{n}\right| \leq|h| n r^{n-1}
$$

In turn,

$$
|I I| \leq \sum_{n=N+1}^{\infty}\left|a_{n}\right| n r^{n-1}
$$

Since g has the same radius of convergence than f and $r<R$ we have that the right-hand side is the tail of a convergent series and thus goes to zero as $N \rightarrow \infty$. Hence, given $\varepsilon>0$ we can find $N_{\varepsilon} \in \mathbb{N}$ such that $|I I| \leq \varepsilon$ for all $N \geq N_{\varepsilon}$.

Similarly, since $\left|z_{0}\right|<R$ and $g\left(z_{0}\right)$ converges, by taking N_{ε} larger, if necessary, we have that $|I I I| \leq \varepsilon$ for all $\dot{N} \geq N_{\varepsilon}$.

Fix $N=N_{\varepsilon}$. Since I is the difference quotient of a finite number of differentiable functions, we can find $\delta_{\varepsilon}>0$ such that $|I| \leq \varepsilon$ for all $h \in \mathbb{C}$ with $|h| \leq \delta_{\varepsilon}$. This concludes the proof.

By repeated applications of the previous theorem we obtain the following:
Corollary 31 A power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is infinitely differentiable in $U_{R}:=\{z \in \mathbb{C}:|z|<R\}$, where R is its radius of convergence. Moreover, the higher derivatives $f^{(k)}$ are power series obtained by pointwise differentiation and with the same radius of convergence. To be precise,

$$
f^{(k)}(z)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n} z^{n-k}, \quad z \in U_{R}
$$

Moreover,

$$
f^{(k)}(0)=\frac{1}{k!} a_{k}, \quad k \in \mathbb{N}_{0}
$$

Remark 32 Similarly, if we consider $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then f is infinitely differentiable in $U_{R}:=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$, with $f^{(k)}\left(z_{0}\right)=\frac{1}{k!} a_{k}$, $k \in \mathbb{N}_{0}$.

Using power series we can define $e^{z}, \cos z$, and $\sin z$ as follows

$$
e^{z}:=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}, \quad \cos z:=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} z^{2 n}, \quad \sin z:=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} z^{2 n+1} .
$$

Using Remark 29, we compute

$$
\begin{aligned}
\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} & =\frac{\frac{1}{n!(n+1)}}{\frac{1}{n!}}=\frac{1}{n+1} \rightarrow 0, \\
\frac{(-1)^{n+1} \frac{1}{(2 n+2)!}}{(-1)^{n} \frac{1}{(2 n)!}} & =-\frac{\frac{1}{(2 n)!(2 n+2)(2 n+1)}}{\frac{1}{(2 n)!}}=-\frac{1}{(2 n+2)(2 n+1)} \rightarrow 0, \\
\frac{(-1)^{n+1} \frac{1}{(2 n+3)!}}{(-1)^{n} \frac{1}{(2 n+1)!}} & =-\frac{\frac{1}{(2 n+1)!(2 n+3)(2 n+2)}}{\frac{1}{(2 n+1)!}}=-\frac{1}{(2 n+3)(2 n+2)} \rightarrow 0,
\end{aligned}
$$

and so all three series have radius of convergence $R=\infty$, so they converge in \mathbb{C}. For $\cos z$ we used the fact that $z^{2 n}=\left(z^{2}\right)^{n}$ and for $\sin z$ we pulled out z and used the same trick.

Note that if we differentiate e^{z}, by Theorem 30 .

$$
\left(e^{z}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1}=\sum_{k=1}^{\infty} \frac{1}{k!} z^{k}=e^{z}
$$

which is the same property of the real exponential function. Similarly, by Theorem 30 .

$$
(\cos z)^{\prime}=-\sin z, \quad(\sin z)^{\prime}=\cos z
$$

Consider the function $g(z)=e^{z} e^{a-z}$, where $a \in \mathbb{C}$ is fixed. By the product rule, Exercise 8, and Theorem 30 .

$$
g^{\prime}(z)=e^{z} e^{a-z}-e^{z} e^{a-z}=0
$$

and so by Corollary $14, g$ is constant. Since $e^{0}=1$, taking $z=0$ gives $g(z) \equiv e^{a}$. Hence,

$$
e^{z} e^{a-z}=e^{a} \quad \text { for all } z \in \mathbb{C}
$$

Taking $a=z+w$ we get

$$
\begin{equation*}
e^{z} e^{w}=e^{z+w} \quad \text { for all } z, w \in \mathbb{C} \tag{17}
\end{equation*}
$$

Taking $w=-z$ gives $e^{z} e^{-z}=1$ so $e^{z} \neq 0$ for all z and

$$
\begin{equation*}
\frac{1}{e^{z}}=e^{-z} \tag{18}
\end{equation*}
$$

Observe also that by (4), $\frac{1}{n!} z^{n}=\frac{1}{n!} \overline{z^{n}}=\bar{z}^{n}$ and so $\overline{e^{z}}=e^{\bar{z}}$. In turn, by (3) and (17),

$$
\begin{equation*}
\left|e^{z}\right|^{2}=e^{z} \overline{e^{z}}=e^{z} e^{\bar{z}}=e^{z+\bar{z}}=e^{2 \operatorname{Re} z} \tag{19}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i} \tag{20}
\end{equation*}
$$

These are called Euler formulas for $\cos z$ and $\sin z$. From these formulas and (17) we obtain

$$
\cos ^{2} z+\sin ^{2} z=\frac{e^{2 i z}+e^{-2 i z}+2 e^{i z} e^{-i z}}{4}-\frac{e^{2 i z}+e^{-2 i z}-2 e^{i z} e^{-i z}}{4}=1
$$

and

$$
\begin{equation*}
e^{i z}=\cos z+i \sin z \tag{21}
\end{equation*}
$$

which is what we used in (6).
Exercise 33 Let $x+i y \in \mathbb{C}$. Prove that

$$
|\cos z|^{2}=\cos ^{2} x+\cosh ^{2} y, \quad|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y
$$

MLK Day, no classes.
Wednesday, January 22, 2020
Next we study the periodicity of e^{z}. We say that a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is periodic with period $w \in \mathbb{C}$ if

$$
f(z+w)=f(z) \quad \text { for all } z \in \mathbb{C}
$$

Given $w \in \mathbb{C}$, assume that

$$
e^{z}=e^{z+w}
$$

for all $z \in \mathbb{C}$. Then by multiplying both sides by e^{-z} and using 17 we get $1=e^{w}$. Taking the modulus on both sides and using 19 we get

$$
1=e^{2 \operatorname{Re} w}
$$

which implies that $\operatorname{Re} w=0$. Thus, $w=i \theta$ for some $\theta \in \mathbb{R}$. In turn, by 21,

$$
1=e^{i \theta}=\cos \theta+i \sin \theta
$$

and so

$$
\theta=2 \pi k, \quad k \in \mathbb{Z}
$$

This shows that the exponential function is periodic with period $2 \pi i$. This is one of the main differences with the real exponential. In particular, this implies that e^{z} is not one-to-one in \mathbb{C}. Thus, we cannot define the complex logarithmic function as the inverse of the complex exponential function.

Definition 34 Given a connected open set $U \subseteq \mathbb{C}$, a branch of the logarithm is a continuous function $f: U \rightarrow \mathbb{C}$ such that

$$
z=e^{f(z)} \quad \text { for all } z \in U
$$

We sometimes write $f=\log _{U}$.
Remark 35 Note that since $e^{z} \neq 0$ for all z, in order for a branch of the logarithm to exist in U, we must have $0 \notin U$.

Exercise 36 Let

$$
W:=\mathbb{C} \backslash\{z \in \mathbb{C}: z=x+0 i, x \leq 0\}
$$

For every $z \in W$, write $z=r e^{i \theta}, r=|z|,-\pi<\theta<\pi$, and define

$$
f(z):=\log r+i \theta
$$

(i) Prove that f is branch of the logarithm in W.
(ii) Prove that for all $z \in B(0,1)$ with $1+z \in W$,

$$
f(1+z)=-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{n}}{n}
$$

(iii) Prove that in general

$$
f\left(z_{1} z_{2}\right) \neq f\left(z_{1}\right)+f\left(z_{2}\right)
$$

The branch of the logarithm constructed in the previous exercise is called the principal branch of the logarithm.

Proposition 37 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be a branch of of the logarithm. Then f is differentiable in U, with

$$
f^{\prime}(z)=\frac{1}{z} \quad \text { for all } z \in U
$$

Moreover, every other branch of the logarithm in U has the form

$$
g(z)=f(z)+2 k \pi i
$$

for some $k \in \mathbb{Z}$.
Proof. The differentiability of f follows from Exercise 9. By the chain rule (see Exercise 8) and the definition of f,

$$
1=e^{f(z)} f^{\prime}(z)=z f^{\prime}(z) \quad \text { for all } z \in U
$$

which implies that $f^{\prime}(z)=\frac{1}{z}$.
Given $k \in \mathbb{Z}$, consider the function $g(z):=f(z)+2 k \pi i, z \in U$. Then the periodicity of the exponential

$$
e^{g(z)}=e^{f(z)+2 k \pi i}=e^{f(z)}=z
$$

which shows that g is a branch of $\log z$.
Conversely, assume that $g: U \rightarrow \mathbb{C}$ is another branch of $\log z$. Then the function

$$
h(z):=\frac{1}{2 \pi i}(f(z)-g(z)), \quad z \in U
$$

is continuous and since

$$
e^{2 \pi i h(z)}=e^{f(z)-g(z)}=e^{f(z)} e^{-g(z)}=z \frac{1}{z}=1
$$

by (18), we have that $2 \pi i h(z)=2 k \pi i$ for some $k \in \mathbb{Z}$ (depending on z). This shows that $h(U) \subseteq \mathbb{Z}$, but since h is continuous and U is connected, h must be constant, and thus there is $k_{0} \in \mathbb{Z}$ such that $h(z)=k_{0}$ for all $z \in U$, which completes the proof.

If $U \subseteq \mathbb{C}$ is an open connected set and $f: U \rightarrow \mathbb{C}$ is a branch of the logarithm in U, then for every $a \in \mathbb{C}$ we define a branch of z^{a} as

$$
g(z):=e^{a f(z)}, \quad z \in U
$$

In view of the previous theorem, g is differentiable in U, since composition of differentiable functions, and every other branch is given by

$$
h(z)=e^{a f(z)+a 2 k \pi i}=e^{a f(z)} e^{a 2 k \pi i}=g(z) e^{a 2 k \pi i}
$$

4 Riemann-Stieltjes integrals

In what follows, given an interval $[a, b] \subseteq \mathbb{R}$, a partition of $[a, b]$ is a finite set $P:=\left\{t_{0}, \ldots, t_{n}\right\} \subset[a, b]$, where

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b .
$$

Definition 38 Let $g:[a, b] \rightarrow \mathbb{C}$ be a function. The pointwise variation of g on the interval $[a, b]$ is

$$
\operatorname{Var} g:=\sup \left\{\sum_{k=1}^{n}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right|\right\},
$$

where the supremum is taken over all partitions $P:=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[a, b], n \in \mathbb{N}$. A function $g:[a, b] \rightarrow \mathbb{C}$ has finite or bounded pointwise variation if $\operatorname{Var} g<\infty$.

The space of all functions $g:[a, b] \rightarrow \mathbb{C}$ of bounded pointwise variation is denoted by $B V([a, b] ; \mathbb{C})$.

To highlight the dependence on the interval $[a, b]$, we will sometimes write $\operatorname{Var}_{[a, b]} g$.

Given a function $g:[a, b] \rightarrow \mathbb{C}$, we say that g is piecewise C^{1}, if g is continuous, and there exists a partition $P:=\left\{t_{0} \ldots, t_{n}\right\} \subset[a, b]$ such that $g:\left[t_{k-1}, t_{k}\right] \rightarrow \mathbb{C}$ is of class C^{1} for every $k=1, \ldots, n$.

Exercise 39 Let $g:[a, b] \rightarrow \mathbb{C}$ be piecewise C^{1}. Prove that

$$
\operatorname{Var} g=\int_{a}^{b}\left|g^{\prime}(t)\right| d t
$$

Exercise 40 Let $g:[a, b] \rightarrow \mathbb{C}$ be Lipschitz continuous. Prove that $g \in$ $B V([a, b] ; \mathbb{C})$.

Exercise 41 Let $g:[a, b] \rightarrow \mathbb{R}$ be a monotone function. Prove that

$$
\operatorname{Var} g=\sup _{[a, b]} g-\inf _{[a, b]} g .
$$

Exercise 42 Let $f, g \in B V([a, b] ; \mathbb{C})$. Prove the following.
(i) $f \pm g \in B V([a, b]$; $\mathbb{C})$.
(ii) $f g \in B V([a, b] ; \mathbb{C})$.
(iii) If $|g(t)| \geq c>0$ for all $t \in[a, b]$ and for some $c>0$, then $\frac{f}{g} \in$ $B V([a, b] ; \mathbb{C})$.

Exercise 43 Let $g:[a, b] \rightarrow \mathbb{C}$, and let $c \in[a, b]$. Prove that

$$
\operatorname{Var}_{[a, c]} g+\operatorname{Var}_{[c, b]} g=\operatorname{Var}_{[a, b]} g
$$

Exercise 44 Prove that $g \mapsto \operatorname{Var} g$ is a seminorm in $B V([a, b] ; \mathbb{C})$.
Theorem 45 Let $g \in B V([a, b] ; \mathbb{C})$ and let $f:[a, b] \rightarrow \mathbb{C}$ be a continuous function. Then there exists $\ell \in \mathbb{C}$ with the property that for every $\varepsilon>0$ there exists $\delta_{\varepsilon}>0$ such that if $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $t_{k}-t_{k-1} \leq$ δ_{ε} for all $k=1, \ldots, n$, then

$$
\left|\ell-\sum_{k=1}^{n} f\left(s_{k}\right)\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right)\right| \leq \varepsilon
$$

for every $s_{k} \in\left[t_{k-1}, t_{k}\right], k=1, \ldots, n$.
The number ℓ is called the Riemann-Stieltjes integral of f with respect to g over $[a, b]$ and is denoted

$$
\ell=\int_{a}^{b} f d g
$$

Exercise 46 Let $g:[a, b] \rightarrow \mathbb{C}$ be piecewise C^{1} and let $f:[a, b] \rightarrow \mathbb{C}$ be a continuous function. Prove that

$$
\int_{a}^{b} f d g=\int_{a}^{b} f(t) g^{\prime}(t) d t
$$

Exercise 47 Let $g \in B V([a, b] ; \mathbb{C})$, let $f:[a, b] \rightarrow \mathbb{C}$ be a continuous functions, and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$ with $a=t_{0}$ and $b=t_{n}$. Prove that

$$
\int_{a}^{b} f d g=\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f d g
$$

Exercise 48 Let $g \in B V([a, b] ; \mathbb{C})$, let $f:[a, b] \rightarrow \mathbb{C}$ be a continuous functions. Prove that

$$
\left|\int_{a}^{b} f d g\right| \leq \max _{[a, b]}|f| \operatorname{Var} g .
$$

Exercise 49 Let $g \in B V([a, b] ; \mathbb{C})$, let $f_{1}, f_{2}:[a, b] \rightarrow \mathbb{C}$ be continuous functions, and let $\alpha, \beta \in \mathbb{C}$. Prove that

$$
\int_{a}^{b}\left(\alpha f_{1}+\beta f_{2}\right) d g=\alpha \int_{a}^{b} f_{1} d g+\beta \int_{a}^{b} f_{2} d g
$$

Exercise 50 Let $g_{1}, g_{2} \in B V([a, b] ; \mathbb{C})$, let $f:[a, b] \rightarrow \mathbb{C}$ be continuous functions, and let $\alpha, \beta \in \mathbb{C}$. Prove that

$$
\int_{a}^{b} f d\left(\alpha g_{1}+\beta g_{2}\right)=\alpha \int_{a}^{b} f d g_{1}+\beta \int_{a}^{b} f d g_{2}
$$

Exercise 51 Let $g \in B V([a, b] ; \mathbb{C})$, let $f:[a, b] \rightarrow \mathbb{C}$ be a continuous functions, and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$ with $a=t_{0}$ and $b=t_{n}$. Prove that

$$
\int_{a}^{b} f d g=\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f d g
$$

Monday, January 20, 2020
We turn to the proof of Theorem 45 .
Proof of Theorem 45. Since f is uniformly continuous, given $\varepsilon=\frac{1}{m}$ we can find $\delta_{m}>0$ such that

$$
\begin{equation*}
|f(z)-f(w)| \leq \frac{1}{m} \tag{22}
\end{equation*}
$$

for all $z, w \in[a, b]$ with $|z-w| \leq \delta_{m}$. By an induction argument, we can assume that $\delta_{m} \geq \delta_{m+1}$ for all $m \in \mathbb{N}$. For each m let \mathcal{P}_{m} be the family of all partitions $P=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[a, b]$ with $t_{k}-t_{k-1} \leq \delta_{m}$ for all $k=1, \ldots, n$. Note that $\mathcal{P}_{m+1} \subseteq \mathcal{P}_{m}$ for every m. Let

$$
E_{m}:=\left\{S(P): P=\left\{t_{0}, \ldots, t_{n}\right\} \in \mathcal{P}_{m}, s_{k} \in\left[t_{k-1}, t_{k}\right], k=1, \ldots, n\right\}
$$

where

$$
S(P):=\sum_{k=1}^{n} f\left(s_{k}\right)\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right)
$$

and let $C_{m}=\bar{E}_{m}$. Since $\mathcal{P}_{m+1} \subseteq \mathcal{P}_{m}$, we have that $E_{m+1} \subseteq E_{m}$, and so $C_{m+1} \subseteq C_{m}$.

Next we claim that

$$
\begin{equation*}
\operatorname{diam} C_{m} \leq \frac{2}{m} \operatorname{Var} g \tag{23}
\end{equation*}
$$

To see this, let $P, Q \in \mathcal{P}_{m}$. Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ and assume first that Q is obtained from P by adding a point c and let k_{0} be such that $t_{k_{0}-1}<c<t_{k_{0}}$. Then

$$
\begin{aligned}
S(Q)= & \sum_{k \neq k_{0}} f\left(\tau_{k}\right)\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right)+f\left(\tau^{\prime}\right)\left(g(c)-g\left(t_{k_{0}-1}\right)\right) \\
& +f\left(\tau^{\prime \prime}\right)\left(g\left(t_{k_{0}}\right)-g(c)\right)
\end{aligned}
$$

where $t_{k-1} \leq \tau_{k} \leq t_{k}, t_{k_{0}-1} \leq \tau^{\prime} \leq c, c \leq \tau^{\prime} \leq t_{k_{0}}$. In turn, by 22, ,

$$
\begin{aligned}
|S(Q)-S(P)| \leq & \sum_{k \neq k_{0}}\left|f\left(\tau_{k}\right)-f\left(s_{k}\right)\right|\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right|+\left|f\left(\tau^{\prime}\right)-f\left(s_{k_{0}}\right)\right|\left|g(c)-g\left(t_{k_{0}-1}\right)\right| \\
& +\left|f\left(\tau^{\prime \prime}\right)-f\left(s_{k_{0}}\right)\right|\left|g\left(t_{k_{0}}\right)-g(c)\right| \\
\leq & \frac{1}{m} \sum_{k \neq k_{0}}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right|+\frac{1}{m}\left|g(c)-g\left(t_{k_{0}-1}\right)\right|+\frac{1}{m}\left|g\left(t_{k_{0}}\right)-g(c)\right| \\
\leq & \frac{1}{m} \operatorname{Var} g
\end{aligned}
$$

With a similar proof, we can show that if $P \subseteq Q$, then $|S(Q)-S(P)| \leq \frac{1}{m} \operatorname{Var} g$. Finally, if $P, Q \in \mathcal{P}_{m}$, let $R \in \mathcal{P}_{m}$ be such that $P, Q \subseteq R$, then

$$
|S(Q)-S(P)| \leq|S(Q)-S(R)|+|S(R)-S(P)| \leq \frac{1}{m} \operatorname{Var} g+\frac{1}{m} \operatorname{Var} g
$$

By taking the supremum over all such partitions we conclude that diam $E_{m} \leq$ $\frac{2}{m} \operatorname{Var} g$, and in turn, 23 follows.

It now follows from Cantor's theorem that there exists a unique $\ell \in \mathbb{C}$ such that

$$
\{\ell\}=\bigcap_{m=1}^{\infty} C_{m} .
$$

Given $\varepsilon>0$ let m be so large that $\frac{2}{\varepsilon} \operatorname{Var} g<m$ and take $\delta_{\varepsilon}:=\delta_{m}$. Since $\ell \in C_{m}$, we have that $C_{m} \subseteq B(\ell, \varepsilon)$, which proves the theorem.

5 Line Integrals

Definition 52 Given two functions $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[c, d] \rightarrow \mathbb{C}$, we say that they are equivalent if there exists a continuous, strictly increasing, onto function $h:[a, b] \rightarrow[c, d]$ such that

$$
\varphi(t)=\psi(h(t))
$$

for all $t \in[a, b]$. We write $\varphi \sim \psi$ and we call φ and ψ parametric representations and the function h a parameter change.

Note that in view of a theorem real analysis, $h^{-1}:[c, d] \rightarrow[a, b]$ is also continuous.

Exercise 53 Prove that \sim is an equivalence relation.
Definition 54 An oriented curve γ is an equivalence class of parametric representations.

Remark 55 The definition of a curve is a restrictive, although it is what we will need it in this course. More generally, given two intervals $I, J \subseteq \mathbb{R}$, and two functions $\varphi: I \rightarrow \mathbb{C}$ and $\psi: J \rightarrow \mathbb{C}$, we say that they are equivalent if there exists a continuous, strictly increasing, onto function $h: I \rightarrow J$ such that

$$
\varphi(t)=\psi(h(t))
$$

for all $t \in I$. We write $\varphi \sim \psi$ and we call φ and ψ parametric representations and the function h a parameter change.

Given an oriented curve γ with parametric representation $\varphi:[a, b] \rightarrow \mathbb{C}$ the multiplicity of a point $z \in \mathbb{C}$ is the (possibly infinite) number of points $t \in[a, b]$ such that $\varphi(t)=z$. Since every parameter change $h:[a, b] \rightarrow[c, d]$ is bijective,
the multiplicity of a point does not depend on the particular parametric representation. The range of γ is the set of points of \mathbb{C} with positive multiplicity, that is, $\varphi([a, b])$.

A point in the range of γ with multiplicity one is called a simple point. If every point of the range is simple, then γ is called a simple arc.

Given an oriented curve γ with parametric representation $\varphi:[a, b] \rightarrow \mathbb{C}$, the oriented curve γ_{1} with parametric representation $\varphi_{1}:[a, b] \rightarrow \mathbb{C}$ given by

$$
\varphi_{1}(t):=\varphi(-t+b+a)
$$

is called the curve opposite to γ.
Definition 56 Given two functions $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[c, d] \rightarrow \mathbb{C}$ of class $C^{k}, k \in \mathbb{N}_{0}$, we say that they are equivalent if there exists a strictly increasing, onto function $h:[a, b] \rightarrow[c, d]$ with h and h^{-1} of class C^{k} such that

$$
\varphi(t)=\psi(h(t))
$$

for all $t \in[a, b]$. We write $\varphi \sim_{k} \psi$ and we call φ and ψ parametric representations of class C^{k} and the function h a parameter change of class C^{k}. An oriented curve γ of class C^{k} is an equivalence class of parametric representations of class C^{k}.

Similarly we can define C^{∞} oriented curves, Lipschitz oriented curves, analytic oriented curves, and so on.

Given a continuous curve, the points $\varphi(a)$ and $\varphi(b)$ are called endpoints of the curve. If $\varphi(a)=\varphi(b)$, then the oriented curve γ is called a closed oriented curve. A closed curve is called simple if every point of the range is simple, with the exception of $\varphi(a)$, which has multiplicity two.

The following theorem will be used in the sequel.
Theorem 57 (Jordan's curve theorem) Given a continuous closed simple oriented curve γ in \mathbb{C} with range Γ, the set $\mathbb{C} \backslash \Gamma$ consists of two connected components.

The bounded connected component of $\mathbb{C} \backslash \Gamma$ is called the interior of γ.
We are ready to define the notion of length of a curve.
Exercise 58 Let γ be an oriented curve in \mathbb{C}. Let $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[c, d] \rightarrow$ \mathbb{C} be two parametric representations of γ. Prove that $\operatorname{Var}_{[a, b]} \varphi=\operatorname{Var}_{[c, d]} \psi$.

We are now ready to define the length of a curve.
Definition 59 Let γ be an oriented curve in \mathbb{C} and let $\varphi:[a, b] \rightarrow \mathbb{C}$ be a parametric representation of γ. We define the length of γ as

$$
L(\gamma):=\operatorname{Var} \varphi
$$

We say that the curve γ is rectifiable if $L(\gamma)<\infty$.

Theorem 60 Given a rectifiable oriented curve γ in \mathbb{C} with range Γ and a continuous function $f: \Gamma \rightarrow \mathbb{C}$, let $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[c, d] \rightarrow \mathbb{C}$ be two parametric representations of γ. Then

$$
\int_{a}^{b} f \circ \varphi d \varphi=\int_{c}^{d} f \circ \psi d \psi
$$

No class
Wednesday, January 29, 2020
No class
Friday, January 31, 2020
2 hours
Proof. Since φ and ψ are equivalent, there exists $h:[c, d] \rightarrow[a, b]$ continuous, strictly increasing, with $h(c)=a$ and $h(d)=b$, such that

$$
\begin{equation*}
\varphi(h(s))=\psi(s) \quad \text { for all } s \in[c, d] . \tag{24}
\end{equation*}
$$

By Theorem 45 for every $\varepsilon>0$ there exists $\delta_{\varepsilon}>0$ such that if $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $t_{k}-t_{k-1} \leq \delta_{\varepsilon}$ for all $k=1, \ldots, n$, then

$$
\begin{equation*}
\left|\int_{a}^{b} f \circ \varphi d \varphi-\sum_{k=1}^{n} f\left(\varphi\left(t_{k}^{\prime}\right)\right)\left(\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right)\right| \leq \varepsilon \tag{25}
\end{equation*}
$$

for every $t_{k}^{\prime} \in\left[t_{k-1}, t_{k}\right], k=1, \ldots, n$. Similarly, there exists $\rho_{\varepsilon}>0$ such that if $Q=\left\{s_{0}, \ldots, s_{m}\right\}$ is a partition of $[c, d]$ with $s_{l}-s_{l-1} \leq \rho_{\varepsilon}$ for all $l=1, \ldots, m$, then

$$
\begin{equation*}
\left|\int_{c}^{d} f \circ \psi d \psi-\sum_{l=1}^{m} f\left(\psi\left(s_{l}^{\prime}\right)\right)\left(\psi\left(s_{l}\right)-\psi\left(s_{l-1}\right)\right)\right| \leq \varepsilon \tag{26}
\end{equation*}
$$

for every $s_{l}^{\prime} \in\left[s_{l-1}, s_{l}\right], l=1, \ldots, m$. Since h is uniformly continuous, there exists $\eta_{\varepsilon}>0$ such that

$$
\left|h(s)-h\left(s^{\prime}\right)\right| \leq \delta_{\varepsilon}
$$

for all $s, s^{\prime} \in[c, d]$ with $\left|s-s^{\prime}\right| \leq \eta_{\varepsilon}$. Let $Q=\left\{s_{0}, \ldots, s_{m}\right\}$ be a partition of $[c, d]$ with $s_{l}-s_{l-1} \leq \min \left\{\eta_{\varepsilon}, \rho_{\varepsilon}\right\}$ for all $l=1, \ldots, m$. Then $P=\left\{h\left(s_{0}\right), \ldots, h\left(s_{m}\right)\right\}$ is a partition of $[a, b]$ with $h\left(s_{k}\right)-h\left(s_{k-1}\right) \leq \delta_{\varepsilon}$. Hence, 25 holds for this partition, On the other hand, by $\underline{24}, \varphi\left(h\left(s_{l}\right)\right)=\psi\left(s_{l}\right)$ and so

$$
\sum_{l=1}^{m} f\left(\varphi\left(h\left(s_{l}^{\prime}\right)\right)\right)\left(\varphi\left(h\left(s_{l}\right)\right)-\varphi\left(h\left(s_{l-1}\right)\right)\right)=\sum_{l=1}^{m} f\left(\psi\left(s_{l}^{\prime}\right)\right)\left(\psi\left(s_{l}\right)-\psi\left(s_{l-1}\right)\right)
$$

Hence, by 25) and 26,

$$
\begin{aligned}
\left|\int_{a}^{b} f \circ \varphi d \varphi-\int_{c}^{d} f \circ \psi d \psi\right| \leq & \left|\int_{a}^{b} f \circ \varphi d \varphi-\sum_{l=1}^{m} f\left(\varphi\left(h\left(s_{l}^{\prime}\right)\right)\right)\left(\varphi\left(h\left(s_{l}\right)\right)-\varphi\left(h\left(s_{l-1}\right)\right)\right)\right| \\
& +\left|\int_{c}^{d} f \circ \psi d \psi-\sum_{l=1}^{m} f\left(\psi\left(s_{l}^{\prime}\right)\right)\left(\psi\left(s_{l}\right)-\psi\left(s_{l-1}\right)\right)\right| \leq 2 \varepsilon
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0^{+}$gives the result.
Given a rectifiable oriented curve γ in \mathbb{C} parametrized by $\varphi:[a, b] \rightarrow \mathbb{C}$ and a continuous function $f: \varphi([a, b]) \rightarrow \mathbb{C}$, the line integral of f over γ is defined as

$$
\int_{\gamma} f d z:=\int_{a}^{b} f \circ \varphi d \varphi
$$

In view of the previous theorem, the integral does not depend on the particular representation of the curve.

Note that all the properties in the exercises in the previous section continue to hold for line integrals.

Definition 61 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$. We say that f has a primitive in U if there exists a holomorphic function $F: U \rightarrow \mathbb{C}$ such that $F^{\prime}=f$.

Remark 62 The function $f(z)=a z^{n}$, where $a \in \mathbb{C}$ and $n \in \mathbb{N}_{0}$ has a primitive given by $F(z)=\frac{a}{n+1} z^{n+1}+c$.

Theorem 63 (Fundamental theorem of calculus) Let $U \subseteq \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a continuous function, which has a primitive F in U. Then for every $z_{1}, z_{2} \in U$ and for every rectifiable continuous oriented curve γ starting at z_{1} and ending at z_{2} and with range in U,

$$
\int_{\gamma} f d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

We begin with a preliminary result.
Lemma 64 Let $U \subseteq \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a continuous function, and let γ be a rectifiable continuous oriented curve γ with range in U. Then for every $\varepsilon>0$ there exists a polygonal path γ_{ε} with the same endpoints of γ and range in U such that

$$
\left|\int_{\gamma} f d z-\int_{\gamma_{\varepsilon}} f d z\right| \leq \varepsilon
$$

Proof. Step 1: Assume first that $U=B\left(z_{0}, r\right)$. Let $\varphi:[a, b] \rightarrow \mathbb{C}$ be a parametric representation of γ. Since $\varphi([a, b])$ is compact, we have that $\operatorname{dist}(\varphi([a, b]), \partial U)=\rho>0$. Hence, $\varphi([a, b]) \subseteq \overline{B\left(z_{0}, r-\rho\right)}=: K$. Since f is uniformly continuous on K, given $\varepsilon>0$, there exists $\delta_{\varepsilon}>0$ such that

$$
\begin{equation*}
|f(z)-f(w)| \leq \varepsilon \tag{27}
\end{equation*}
$$

for all $z, w \in K$ with $|z-w| \leq \delta_{\varepsilon}$.
Since $\varphi:[a, b] \rightarrow \mathbb{C}$ is uniformly continuous, there exists $\eta_{\varepsilon}>0$ such that

$$
\begin{equation*}
|\varphi(t)-\varphi(s)| \leq \delta_{\varepsilon} \tag{28}
\end{equation*}
$$

for all $s, t \in[a, b]$ with $|s-t| \leq \eta_{\varepsilon}$. Moreover, by Theorem 45, there exists $\rho_{\varepsilon}>0$ such that if $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $t_{k}-t_{k-1} \leq \rho_{\varepsilon}$ for all $k=1, \ldots, n$, then

$$
\begin{equation*}
\left|\int_{\gamma} f d z-\sum_{k=1}^{n} f\left(\varphi\left(s_{k}\right)\right)\left(\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right)\right| \leq \varepsilon \tag{29}
\end{equation*}
$$

for every $s_{k} \in\left[t_{k-1}, t_{k}\right], k=1, \ldots, n$. Consider a partition $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$ with $t_{k}-t_{k-1} \leq \min \left\{\rho_{\varepsilon}, \eta_{\varepsilon}\right\}$. Let φ_{ε} be the polygonal path joining $\varphi\left(t_{0}\right), \ldots, \varphi\left(t_{n}\right)$. To be precise
$\varphi_{\varepsilon}(t):=\frac{1}{t_{k}-t_{k-1}}\left[\left(t-t_{k-1}\right) \varphi\left(t_{k}\right)+\left(t_{k}-t\right) \varphi\left(t_{k-1}\right)\right], \quad t \in\left[t_{k-1}, t_{k}\right], k=1, \ldots, n$.
Note that

$$
\varphi_{\varepsilon}^{\prime}(t)=\frac{\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)}{t_{k}-t_{k-1}}, \quad t \in\left(t_{k-1}, t_{k}\right), k=1, \ldots, n
$$

Hence, by Exercise 46 ,

$$
\int_{\gamma_{\varepsilon}} f d z=\int_{a}^{b} f\left(\varphi_{\varepsilon}(t)\right) \varphi_{\varepsilon}^{\prime}(t) d t=\sum_{k=1}^{n} \frac{\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}} f\left(\varphi_{\varepsilon}(t)\right) d t
$$

Hence, by 29),

$$
\begin{aligned}
& \left|\int_{\gamma} f d z-\int_{\gamma_{\varepsilon}} f d z\right| \leq\left|\int_{\gamma} f d z-\sum_{k=1}^{n} f\left(\varphi\left(s_{k}\right)\right)\left(\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right)\right| \\
& \quad+\left|\sum_{k=1}^{n} f\left(\varphi\left(s_{k}\right)\right)\left(\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right)-\sum_{k=1}^{n} \frac{\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}} f\left(\varphi_{\varepsilon}(t)\right) d t\right| \\
& \leq \varepsilon+\left|\sum_{k=1}^{n} \frac{\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}} f\left(\varphi_{\varepsilon}\left(s_{k}\right)\right) d t-\sum_{k=1}^{n} \frac{\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}} f\left(\varphi_{\varepsilon}(t)\right) d t\right| \\
& \leq \varepsilon+\sum_{k=1}^{n} \frac{\left|\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right|}{t_{k}-t_{k-1}} \int_{t_{k-1}}^{t_{k}}\left|f\left(\varphi\left(s_{k}\right)\right)-f\left(\varphi_{\varepsilon}(t)\right)\right| d t
\end{aligned}
$$

For $t \in\left[t_{k-1}, t_{k}\right]$ we have
$\varphi\left(s_{k}\right)-\varphi_{\varepsilon}(t)=\frac{1}{t_{k}-t_{k-1}}\left[\left(t-t_{k-1}\right)\left(\varphi\left(s_{k}\right)-\varphi\left(t_{k}\right)\right)+\left(t_{k}-t\right)\left(\varphi\left(s_{k}\right)-\varphi\left(t_{k-1}\right)\right]\right.$
and so by 28),
$\left|\varphi\left(s_{k}\right)-\varphi_{\varepsilon}(t)\right| \leq \frac{1}{t_{k}-t_{k-1}}\left[\left(t-t_{k-1}\right)\left|\varphi\left(s_{k}\right)-\varphi\left(t_{k}\right)\right|+\left(t_{k}-t\right)\left|\varphi\left(s_{k}\right)-\varphi\left(t_{k-1}\right)\right|\right] \leq \delta_{\varepsilon}$
In turn, by 27), $\left|f\left(\varphi_{(}\left(s_{k}\right)\right)-f\left(\varphi_{\varepsilon}(t)\right)\right| \leq \varepsilon$. Using this inequality we have that

$$
\begin{aligned}
\left|\int_{\gamma} f d z-\int_{\gamma_{\varepsilon}} f d z\right| & \leq \varepsilon+\sum_{k=1}^{n} \frac{\left|\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right|}{t_{k}-t_{k-1}} \varepsilon\left(t_{k}-t_{k-1}\right) \leq \varepsilon+\varepsilon \sum_{k=1}^{n}\left|\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right| \\
& \leq \varepsilon+\varepsilon L(\gamma)
\end{aligned}
$$

Step 2: For a generic open set, since $\varphi([a, b])$ is compact, as before $\operatorname{dist}(\varphi([a, b]), \partial U)>$ 0 . Let $0<\rho<\operatorname{dist}(\varphi([a, b]), \partial U)$. Since φ is uniformly continuous, there exists $\delta>0$ such that

$$
|\varphi(t)-\varphi(s)|<\rho
$$

for all $s, t \in[a, b]$ with $|s-t| \leq \delta$. Consider a partition $P=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[a, b]$ with $t_{k}-t_{k-1} \leq \delta$ for all $k=1, \ldots, n$. It follows that $\varphi\left(\left[t_{k-1}, t_{k}\right]\right) \subset$ $B\left(\varphi\left(t_{k-1}\right), \rho\right)$ and so we may apply the previous step to the curve γ_{k} parametrized by $\varphi:\left[t_{k-1}, t_{k}\right] \rightarrow \mathbb{C}$ to find a polygonal path Γ_{k} with endpoints $\varphi\left(t_{k-1}\right)$ and $\varphi\left(t_{k}\right)$ such that

$$
\left|\int_{\gamma_{k}} f d z-\int_{\Gamma_{k}} f d z\right| \leq \varepsilon / n
$$

By joining $\Gamma_{1}, \ldots, \Gamma_{n}$ we get a polygonal path joining $\varphi(a)$ and $\varphi(b)$. The result now follows from the previous inequality and Exercise 47 .

We turn to the proof of the fundamental theorem of calculus.
Proof. In view of the previous lemma, for every $\varepsilon>0$ there exists a polygonal path γ_{ε} with endpoints z_{1} and z_{2} such that

$$
\left|\int_{\gamma} f d z-\int_{\gamma_{\varepsilon}} f d z\right| \leq \varepsilon .
$$

Let $\varphi_{\varepsilon}:[a, b] \rightarrow \mathbb{C}$ be a parametric representation of γ_{ε}. By Exercise 46

$$
\begin{aligned}
\int_{\gamma_{\varepsilon}} f d z & =\int_{a}^{b} f\left(\varphi_{\varepsilon}(t)\right) \varphi_{\varepsilon}^{\prime}(t) d t=\int_{a}^{b} F^{\prime}\left(\varphi_{\varepsilon}(t)\right) \varphi_{\varepsilon}^{\prime}(t) d t=\int_{a}^{b}\left(F \circ \varphi_{\varepsilon}\right)^{\prime}(t) d t \\
& =F \circ \varphi_{\varepsilon}(b)-F \circ \varphi_{\varepsilon}(a)=F\left(z_{2}\right)-F\left(z_{1}\right)
\end{aligned}
$$

Hence,

$$
\left|\int_{\gamma} f d z-\left(F\left(z_{2}\right)-F\left(z_{1}\right)\right)\right| \leq \varepsilon .
$$

Letting $\varepsilon \rightarrow 0^{+}$completes the proof.
Corollary 65 Let $U \subseteq \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a continuous function, which has a primitive F in U. Then

$$
\int_{\gamma} f d z=0
$$

for every closed rectifiable continuous oriented curve with range in U.
Exercise 66 Given a rectifiable oriented curve γ in \mathbb{C} with range Γ and a continuous function $f: \Gamma \rightarrow \mathbb{C}$, let γ_{1} be the curve opposite to γ. Prove that

$$
\int_{\gamma_{1}} f d z=-\int_{\gamma} f d z
$$

6 Cauchy's Theorem in a Ball

Theorem 67 (Goursat) Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then for every closed triangle $T \subset U$,

$$
\int_{\partial T} f d z=0 .
$$

Proof. Set $T_{0}:=T$, bisect each side of T_{0} and connect the middle points. This creates four triangles $T_{1,1}, T_{1,2}, T_{1,3}$, and $T_{1,4}$. By choosing an orientation for these triangles consistent with the one of T_{0} and by canceling the sides which are integrated in two opposite directions (see Exercises 47 and 66), we get

$$
\int_{\partial T_{0}} f d z=\int_{\partial T_{1,1}} f d z+\int_{\partial T_{1,2}} f d z+\int_{\partial T_{1,3}} f d z+\int_{\partial T_{1,4}} f d z
$$

Hence, for some $j \in\{1,2,3,4\}$,

$$
\left|\int_{\partial T_{0}} f d z\right| \leq 4\left|\int_{\partial T_{1, j}} f d z\right|
$$

Let $T_{1}:=T_{1, j}$. Note that $L\left(\partial T_{1}\right)=\frac{1}{2} L\left(\partial T_{0}\right)$ and $\operatorname{diam} T_{1}=\frac{1}{2} \operatorname{diam} T_{0}$. We now bisect the sides of T_{1} and connect the middle points. Inductively we obtain a decreasing sequence of closed triangles T_{n} such that

$$
\begin{equation*}
\left|\int_{\partial T_{0}} f d z\right| \leq 4^{n}\left|\int_{\partial T_{n}} f d z\right| \tag{30}
\end{equation*}
$$

$L\left(\partial T_{n}\right)=\frac{1}{2^{n}} L\left(\partial T_{0}\right)$ and $\operatorname{diam} T_{n}=\frac{1}{2^{n}} \operatorname{diam} T_{0}$. By Cantor's theorem there exists $z_{0} \in T_{n}$ for all n. Since f is differentiable, we can write

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+R(z)
$$

where

$$
\lim _{z \rightarrow z_{0}} \frac{R(z)}{z-z_{0}}=0
$$

Since a constant function and a linear function $a z$ have a primitive, by the fundamental theorem of calculus,

$$
\int_{\partial T_{n}} f d z=\int_{\partial T_{n}} R d z
$$

Since $z_{0} \in T_{n}$ and $z \in \partial T_{n}$, we have

$$
|R(z)| \leq \varepsilon_{n}\left|z-z_{0}\right| \leq \varepsilon_{n} \operatorname{diam} T_{n}
$$

where $\varepsilon_{n} \rightarrow 0^{+}$. Hence,

$$
\begin{aligned}
\left|\int_{\partial T_{n}} f d z\right| & =\left|\int_{\partial T_{n}} R d z\right| \leq \varepsilon_{n}\left(\operatorname{diam} T_{n}\right) L\left(\partial T_{n}\right) \\
& \leq \varepsilon_{n} \frac{1}{4^{n}} L\left(\partial T_{0}\right) \operatorname{diam} T_{0}
\end{aligned}
$$

Using (30) we get

$$
\left|\int_{\partial T_{0}} f d z\right| \leq 4^{n}\left|\int_{\partial T_{n}} f d z\right| \leq \varepsilon_{n} L\left(\partial T_{0}\right) \operatorname{diam} T_{0} \rightarrow 0
$$

as $n \rightarrow \infty$.

Exercise 68 Let $U \subseteq \mathbb{C}$ be an open set, let $z_{0} \in U$, and let $f: U \rightarrow \mathbb{C}$ be a continuous function, which is holomorphic in $U \backslash\left\{z_{0}\right\}$. Prove that for every closed triangle $T \subset U$,

$$
\int_{\partial T} f d z=0
$$

Hint: Consider first the case in which z_{0} is a vertex of T.
Saturday, February 1, 2020
Make-up class.
As a corollary we get
Corollary 69 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then for every closed rectangle $R \subset U$,

$$
\int_{\partial R} f d z=0
$$

Proof. Divide R into two triangles and one side of the triangles is in common and are integrated in two opposite directions.

Theorem 70 Let $B \subset \mathbb{C}$ be an open ball and let $f: B \rightarrow \mathbb{C}$ be holomorphic. Then f has a primitive in B.

Proof. Without loss of generality assume that B is centered at the origin. Given $z=x+i y \in B$, with $x, y \in \mathbb{R}$, we connect the origin to $x+0 i$ and then $x+0 i$ to z and let γ_{z} be this polygonal path in B. We choose the orientation starting at 0 and ending at z. Define

$$
F(z):=\int_{\gamma_{z}} f d \zeta
$$

We claim that $F^{\prime}=f$. Let $z+h \in B$. Then

$$
F(z+h)-F(z)=\int_{\gamma_{z+h}} f d \zeta-\int_{\gamma_{z}} f d \zeta
$$

Using Goursat's theorem for triangles and rectangles we are left with the segment $S_{z, h}$ going from z to $z+h$. Given $\zeta \in S_{z, h}$ write $f(\zeta)=f(z)+r(\zeta)$, where by continuity

$$
\lim _{\zeta \rightarrow z} r(\zeta)=0
$$

Then

$$
\begin{aligned}
F(z+h)-F(z) & =\int_{S_{z, h}} f d \zeta=f(z) \int_{S_{z, h}} 1 d \zeta+\int_{S_{z, h}} r d \zeta \\
& =f(z) h+\int_{S_{z, h}} r d \zeta
\end{aligned}
$$

where we used the fact that the constant 1 has a primitive. Hence,

$$
\frac{F(z+h)-F(z)}{h}-f(z)=\frac{1}{h} \int_{S_{z, h}} r d \zeta
$$

and

$$
\left|\frac{1}{h} \int_{S_{z, h}} r d \zeta\right| \leq \max _{S_{z, h}}|r| \frac{|h|}{|h|}=\max _{S_{z, h}}|r| \rightarrow 0
$$

as $h \rightarrow 0$.
Remark 71 In the previous proof we only used the fact that f is continuous and for every closed triangle $T \subset B$,

$$
\begin{equation*}
\int_{\partial T} f=0 . \tag{31}
\end{equation*}
$$

Hence, if we assume that $f: B \rightarrow \mathbb{C}$ is a continuous function which is holomorphic in $B \backslash\left\{z_{0}\right\}$ for some $z_{0} \in B$, then by Exercise 68, (31) holds, and so f has a primitive in B.

Corollary 72 (Cauchy) Let B be an open ball, let $f: B \rightarrow \mathbb{C}$ be holomorphic. Then

$$
\int_{\gamma} f d z=0
$$

for every closed oriented curve γ with range in B.
Proof. This follows from the previous theorem and Corollary 72 .

Remark 73 In view of Remark 71, Corollary 72 continues to hold if we assume that $f: B \rightarrow \mathbb{C}$ is a continuous function which is holomorphic in $B \backslash\left\{z_{0}\right\}$ for some $z_{0} \in B$.

Exercise 74 Let $z_{0}=x_{0}+i y_{0} \in B(0,1)$, let $U \subset \mathbb{C}$ be the open set obtained from $B(0,1)$ by removing the segment $\left\{x_{0}+y i: y \geq y_{0}\right\}$, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Prove that f has a primitive in U.

Exercise 75 Let $U \subseteq \mathbb{C}$ be a star-shaped set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Prove that

$$
\int_{\gamma} f d z=0
$$

for every closed oriented curve γ with range in U.
We are now ready to prove Cauchy's integral formula.
Theorem 76 (Cauchy's integral formula) Let $U \subseteq \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be holomorphic. Then for every open ball B with $\bar{B} \subset U$ and every $z \in B$,

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

where ∂B is oriented counterclockwise.
Proof. Fix $z \in B$ and consider the closed curve $\Gamma_{\delta, \varepsilon}$ given in the picture below, where ε is the radius of the small circle centered at z and δ is the width of the corridor. Since the function $g(\zeta):=\frac{f(\zeta)}{\zeta-z}$ is holomorphic in $U \backslash\{z\}$, by considering $V:=B^{\prime} \backslash S^{\prime}$, where B^{\prime} is a concentric ball contained in U and containing \bar{B}, S is the segment obtained when $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$, and S^{\prime} is a slightly larger segment we can apply Exercise 74 , to obtain that g has a primitive in V. Since the range of $\Gamma_{\delta, \varepsilon}$ is contained in V, it follows from Corollary 65 that

$$
\int_{\Gamma_{\delta, \varepsilon}} \frac{f(\zeta)}{\zeta-z} d \zeta=0
$$

If we let $\delta \rightarrow 0^{+}$and use the fact that g is continuous, we get that the two segments converge to a segment which is integrated in opposite directions. Hence, we obtain

$$
\int_{\partial B} \frac{f(\zeta)}{\zeta-z} d \zeta-\int_{\partial B(z, \varepsilon)} \frac{f(\zeta)}{\zeta-z} d \zeta=0
$$

Write

$$
\frac{f(\zeta)}{\zeta-z}=\frac{f(\zeta)-f(z)}{\zeta-z}+\frac{f(z)}{\zeta-z}
$$

Since f is holomorphic, $\frac{f(\zeta)-f(z)}{\zeta-z} \rightarrow f^{\prime}(z)$ as $\zeta \rightarrow z$ and so

$$
\left|\frac{f(\zeta)-f(z)}{\zeta-z}\right| \leq M
$$

Figure 1: Figure 1: Keyhole contour
for all $\zeta \in \partial B(z, \varepsilon)$. It follows that

$$
\begin{aligned}
\int_{\partial B(z, \varepsilon)} \frac{f(\zeta)}{\zeta-z} d \zeta & =\int_{\partial B(z, \varepsilon)} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta+f(z) \int_{\partial B(z, \varepsilon)} \frac{1}{\zeta-z} d \zeta \\
& =I+I I
\end{aligned}
$$

Then $|I| \leq M(2 \pi \varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$. On the other hand, if we use the parametrization $\varphi(t)=z+\varepsilon e^{i t}, t \in[0,2 \pi]$. Then

$$
\int_{\partial B(z, \varepsilon)} \frac{1}{\zeta-z} d \zeta=\int_{0}^{2 \pi} \frac{i \varepsilon e^{i t}}{\varepsilon e^{i t}} d t=2 \pi i
$$

Hence,

$$
\int_{\partial B} \frac{f(\zeta)}{\zeta-z} d \zeta=f(z) 2 \pi i
$$

which proves the result.
Exercise 77 Use Remark 73 to give an alternative proof of the previous theorem, which does not make use of $\Gamma_{\delta, \varepsilon}$.

Exercise 78 Use contour integration to show that for $\xi \in \mathbb{R}$,

$$
e^{-\pi \xi^{2}}=\int_{\mathbb{R}} e^{-\pi x^{2}} e^{-2 \pi i x \xi} d x
$$

Exercise 79 Use contour integration to show that for $\xi \in \mathbb{R}$,

$$
\frac{\pi}{2}=\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x
$$

Exercise 80 Use contour integration to show that

$$
\frac{\pi}{2}=\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

Corollary 81 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Then f is analytic and for every open ball B with $\bar{B} \subset U$, every $z \in B$, and every $k \in \mathbb{N}$,

$$
\begin{equation*}
f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d \zeta \tag{32}
\end{equation*}
$$

where ∂B is oriented counterclockwise.
Proof. Let $B=B\left(z_{0}, r\right)$. Fix $z \in B$. For $\zeta \in \partial B$ write

$$
\frac{1}{\zeta-z}=\frac{1}{\zeta-z_{0}-\left(z-z_{0}\right)}=\frac{1}{\zeta-z_{0}} \frac{1}{1-\frac{z-z_{0}}{\zeta-z_{0}}}
$$

Then

$$
\left|\frac{z-z_{0}}{\zeta-z_{0}}\right|=\frac{\left|z-z_{0}\right|}{r}=: \delta<1
$$

and so we can use geometric power series to write

$$
\frac{1}{1-\frac{z-z_{0}}{\zeta-z_{0}}}=\sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n}
$$

Note that the series converges uniformly for all $\zeta \in \partial B$, and so (using Lebesgue dominated convergence theorem or any equivalent theorem for Riemann integration) we can interchange the integral and the series in Cauchy's formula to get

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta-z_{0}} \frac{1}{1-\frac{z-z_{0}}{\zeta-z_{0}}} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n} d \zeta \\
& =\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta=: \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
\end{aligned}
$$

The formula for the derivatives now follows by differentiating the power series. To see this, we use Corollary 31 to get

$$
\begin{aligned}
f^{(k)}(z) & =\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}\left(z-z_{0}\right)^{n-k} \\
& =\frac{1}{2 \pi i} \sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1)\left(z-z_{0}\right)^{n-k} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{n+1}} d \zeta \\
& =\frac{1}{2 \pi i} \sum_{n=k}^{\infty} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} n(n-1) \cdots(n-k+1) \frac{\left(z-z_{0}\right)^{n-k}}{\left(\zeta-z_{0}\right)^{n-k}} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) \frac{\left(z-z_{0}\right)^{n-k}}{\left(\zeta-z_{0}\right)^{n-k}} d \zeta
\end{aligned}
$$

Let $w=\frac{z-z_{0}}{\zeta-z_{0}}$. Then

$$
\begin{aligned}
\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) w^{n-k} & =\frac{d^{(k)}}{d w^{k}} \sum_{n=0}^{\infty} w^{n} \\
& =\frac{d^{(k)}}{d w^{k}}(1-w)^{-1}=k!(1-w)^{-k-1}
\end{aligned}
$$

and so (using again the uniform convergence of the power series and its derivatives)

$$
\begin{aligned}
f^{(k)}(z) & =\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) \frac{\left(z-z_{0}\right)^{n-k}}{\left(\zeta-z_{0}\right)^{n-k}} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} k!\frac{1}{\left(1-\frac{z-z_{0}}{\zeta-z_{0}}\right)^{k+1}} d \zeta=\frac{k!}{2 \pi i} \int_{\partial B} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d \zeta
\end{aligned}
$$

which completes the proof.
$\underline{\text { Remark } 82}$ Note that we have proved that for every open ball $B\left(z_{0}, r\right)$ with $\overline{B\left(z_{0}, r\right)} \subset U$, we can write

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad z \in B\left(z_{0}, r\right)
$$

where

$$
a_{n}:=\frac{f^{(n)}\left(z_{0}\right)}{n!} .
$$

Moreover, if we denote by R the radius of convergence R of the power series, then

$$
R \geq \operatorname{dist}\left(z_{0}, \partial U\right)=\sup \left\{r>0: \overline{B\left(z_{0}, r\right)} \subset U\right\}
$$

Hence, if $U=\mathbb{C}$ then $R=\infty$.
Corollary 83 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Given a closed ball $\overline{B\left(z_{0}, r\right)} \subset U$, let $M \geq \max _{\overline{B\left(z_{0}, r\right)}}|f|$. Then for every $n \in \mathbb{N}$,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}}
$$

Proof. In view of 32),

$$
\begin{aligned}
\left|f^{(n)}\left(z_{0}\right)\right| & \leq \frac{n!}{2 \pi} \int_{\partial B\left(z_{0}, r\right)} \frac{|f(\zeta)|}{\left|\zeta-z_{0}\right|^{n+1}} d \zeta \leq \frac{n!M}{2 \pi} \int_{\partial B\left(z_{0}, r\right)} \frac{1}{\left|\zeta-z_{0}\right|^{n+1}} d \zeta \\
& =\frac{n!M}{2 \pi r^{n+1}} 2 \pi r=\frac{n!M}{r^{n}}
\end{aligned}
$$

which concludes the proof.

Definition 84 Given an open connected set $U \subset \mathbb{C}$ and a holomorphic function $f: U \rightarrow \mathbb{C}$, a point $z_{0} \in \partial U$ is called a regular point if there exist $r>0$ and a holomorphic function $g: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ such that $f=g$ on $U \cap B\left(z_{0}, r\right)$. A point $z_{0} \in \partial U$ is called a singular point if it is not a regular point. We say that ∂U is the natural boundary of f if every point on ∂U is a singular point.

Exercise 85 Let $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ be holomorphic and assume that the power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

has radius of convergence exactly r. Then there is at least one singular point on $\partial B\left(z_{0}, r\right)$.

Exercise 86 Given the function

$$
f(z)=\sum_{n=0}^{\infty} z^{2^{n}}
$$

find its natural boundary.
Next we discuss some important consequences of Cauchy's formula.
Corollary 87 (Liouville) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic and bounded. Then f is constant.

Proof. Let $M>0$ be such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By the previous corollary,

$$
\left|f^{\prime}(z)\right| \leq \frac{M}{r}
$$

for every $r>0$. Hence, letting $r \rightarrow \infty$ we get $f^{\prime}(z)=0$ for all z. We can now apply Corollary 14.

Theorem 88 (Fundamental theorem of algebra) Every polynomial $P: \mathbb{C} \rightarrow$ \mathbb{C} of degree $n \geq 1$ has precisely n roots in \mathbb{C}.

Proof. Step 1: Write

$$
P(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0}
$$

where $a_{n} \neq 0$. We claim that P has at least one root. Assume by contradiction that this is not the case, that is, that $P(z) \neq 0$ for all $z \in \mathbb{C}$. Then the function $1 / P$ is well-defined and holomorphic. Let's prove that it is bounded. We have

$$
\frac{P(z)}{z^{n}}=a_{n}+\frac{a_{n-1}}{z}+\cdots+\frac{a_{0}}{z^{n}} \rightarrow a_{n}+0
$$

as $|z| \rightarrow \infty$. Hence, taking $\varepsilon=\frac{1}{2}\left|a_{n}\right|>0$ we can find $R>0$ such that

$$
\frac{1}{2}\left|a_{n}\right| \leq\left|\frac{P(z)}{z^{n}}\right| \leq \frac{3}{2}\left|a_{n}\right| \quad \text { for all }|z| \geq R
$$

In particular,

$$
\frac{1}{|P(z)|} \leq \frac{2}{\left|a_{n}\right||z|^{n}} \leq \frac{2}{\left|a_{n}\right| R^{n}} \quad \text { for all }|z| \geq R
$$

Since $\frac{1}{|P|}$ is continuous on the compact set $\overline{B(0, R)}$, there exists $M \geq 0$ such that $\frac{1}{|P(z)|} \leq M$ for all $|z| \leq R$, which, together with the previous inequality, proves the claim. It now follows from Liouville's theorem that $\frac{1}{P}$ is constant, which is a contradiction since P has degree at least one.

Wednesday, February 5, 2020
Proof. Step 2: In view of the previous step there exists $w_{1} \in \mathbb{C}$ such that $P\left(w_{1}\right)=0$. Let $z=\left(z-w_{1}\right)+w_{1}$. Then

$$
P(z)=a_{n}\left[\left(z-w_{1}\right)+w_{1}\right]^{n}+\cdots+a_{1}\left[\left(z-w_{1}\right)+w_{1}\right]+a_{0} .
$$

Using the binomial theorem

$$
(a+b)^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{j} b^{k-j}
$$

with $a=z-w_{1}$ and $b=w_{1}$, we can rewrite $P(z)$ as

$$
P(z)=b_{n}\left(z-w_{1}\right)^{n}+\cdots+b_{1}\left(z-w_{1}\right)+b_{0}
$$

where $b_{n}=a_{n}$. Since $P\left(w_{1}\right)=0$, we get that $b_{0}=0$. Hence,

$$
P(z)=\left(z-w_{1}\right)\left[b_{n}\left(z-w_{1}\right)^{n-1}+\cdots+b_{1}\right]=:\left(z-w_{1}\right) P_{1}(z)
$$

where P_{1} is a polynomial of degree $n-1$. If $n \geq 2$, we can apply the previous step to P_{1} to find a second root w_{2}.

Inductively, we can find $w_{1}, \ldots, w_{n} \in \mathbb{C}$ such that

$$
P(z)=a_{n}\left(z-w_{1}\right) \cdots\left(z-w_{n}\right) \quad \text { for all } z \in \mathbb{C} .
$$

This concludes the proof.
Another corollary of Cauchy's theorem is the following.
Corollary 89 (Morera) Let $B \subset \mathbb{C}$ be an open ball, let $f: B \rightarrow \mathbb{C}$ a continuous function such that for every closed triangle $T \subset B$,

$$
\int_{\partial T} f=0
$$

Then f is holomorphic in B.
Proof. In view of Remark 71 we have that f has a primitive $F: B \rightarrow \mathbb{C}$. Hence, F is holomorphic. In turn, by the previous corollary, F is infinitely differentiable. Since $F^{\prime}=f$, it follows that f is also holomorphic.

Let's see how to use Morera's theorem. Let $U \subseteq \mathbb{C}$ be an open set. Define

$$
\begin{aligned}
U^{+} & :=\{z=x+i y \in U: y>0\} \\
U^{-} & :=\{z=x+i y \in U: y<0\} \\
S & :=\{z=x+i 0 \in U\}
\end{aligned}
$$

so that $U=U^{+} \cup U^{-} \cup S$.
Theorem 90 Let $U \subseteq \mathbb{C}$ be an open set, let $f^{+}: U^{+} \cup S \rightarrow \mathbb{C}$ be a continuous function which is holomorphic in U^{+}and let $f^{-}: U^{-} \cup S \rightarrow \mathbb{C}$ be a continuous function which is holomorphic in U^{+}. Assume that $f^{+}=f^{-}$in S. Then the function $f: U \rightarrow \mathbb{C}$, defined by

$$
f(z):=\left\{\begin{array}{lc}
f^{+}(z) & \text { if } z \in U^{+} \cup S \\
f^{-}(z) & \text { if } z \in U^{-}
\end{array}\right.
$$

is holomorphic in U.
Proof. We only need to prove differentiability at points in S. Fix $z_{0} \in S$ and let $\overline{B\left(z_{0}, r\right)} \subseteq U$. Since f is continuous, we can use Morera's theorem to prove that f is holomorphic in $B\left(z_{0}, r\right)$. Let $T \subset B\left(z_{0}, r\right)$ be a closed triangle. If T does not intersect S, then it is contained either in U^{+}or in U^{-}and so $\int_{\partial T} f d z=0$ by Exercise 75 since f^{+}and f^{+}are holomorphic in U^{+}and U^{-}, respectively. If $T^{\circ} \subseteq U^{+}$and one of its sides lies in S, for $\varepsilon>0$ small consider the triangle $T_{\varepsilon}:=T \cap\{z=x+y i: y \geq \varepsilon\}$. Then again by Exercise 75 . $\int_{\partial T_{\varepsilon}} f^{+} d z=0$. Since f is continuous, letting $\varepsilon \rightarrow 0$ and using the Lebesgue dominated convergence theorem (or Arzelá's convergence theorem for Riemann's integration) we get $\int_{\partial T} f d z=0$. The case in which $T^{\circ} \subseteq U^{-}$and one of its sides lies in S is similar.

If T has a vertex in S and is contained in U^{+}(or U^{-}) we either raise (lower) T so that it is contained in $U^{+}\left(U^{-}\right)$and reason as above.

If the interior of T intersects S, we split T using S into three triangles whose interior is contained in U^{+}or U^{-}and which have one side or a vertex in S. We then apply the previous cases and Exercise 66 to conclude that $\int_{\partial T} f d z=0$. Hence, the hypotheses of Morera's theorem are satisfied and so f is holomorphic in $B\left(z_{0}, r\right)$.

We are ready to prove Schwarz's reflection principle
Theorem 91 (Schwarz reflection principle) Let $U \subseteq \mathbb{C}$ be an open set which is symmetric with respect to the real line, that is,

$$
z \in U \quad \text { if and only if } \bar{z} \in U .
$$

and let $f^{+}: U^{+} \cup S \rightarrow \mathbb{C}$ be a continuous function which is holomorphic in U^{+} and real-valued on S. Then the function $f: U \rightarrow \mathbb{C}$, defined by

$$
f(z):= \begin{cases}\frac{f^{+}(z)}{f^{+}(\bar{z})} & \text { if } z \in U^{+} \cup S \\ \text { if } z \in U^{-}\end{cases}
$$

is holomorphic in U.

Proof. Given $z_{0} \in U^{-}$, we have that $\bar{z}_{0} \in U^{+}$. By Corollary 81 we can write

$$
f^{+}(w)=\sum_{n=0}^{\infty} a_{n}\left(w-\bar{z}_{0}\right)^{n}
$$

for all $w \in B\left(\bar{z}_{0}, r\right) \subset U^{+}$and for some $r>0$. By symmetry $B\left(z_{0}, r\right) \subset U^{-}$and for every $z \in B\left(z_{0}, r\right)$ we have that $\bar{z} \in B\left(\bar{z}_{0}, r\right)$ and so

$$
f^{+}(\bar{z})=\sum_{n=0}^{\infty} a_{n}\left(\bar{z}-\bar{z}_{0}\right)^{n}
$$

Taking the conjugate in the partial sums and then passing to the limit we have that

$$
f(z)=\overline{f^{+}(\bar{z})}=\sum_{n=0}^{\infty} \bar{a}_{n} \overline{\left(\bar{z}-\bar{z}_{0}\right)^{n}}=\sum_{n=0}^{\infty} \bar{a}_{n}\left(z-z_{0}\right)^{n}
$$

Since the radius of convergence of $\sum_{n=0}^{\infty} \bar{a}_{n}\left(z-z_{0}\right)^{n}$ is the same as $\sum_{n=0}^{\infty} a_{n} \xi^{n}$, we conclude that f is holomorphic in $B\left(z_{0}, r\right)$.

To conclude observe that since f^{+}is real-valued on S,

$$
\overline{f^{+}(x)}=f^{+}(x)
$$

for all $x \in S$. Hence, f is continuous at points of S. Thus, by the previous theorem we conclude that f is holomorphic in U.

7 Cauchy's Theorem, General Case

In this section we extend Corollary 72 to simply connected domains.
In what follows, given the unit square $Q=[0,1] \times[0,1]$, we consider the oriented closed simple curve obtained by moving along ∂Q counterclockwise starting from $(0,0)$. Denote by $\varphi_{0}:[0,4] \rightarrow \partial Q$ the parametric representation obtained by using arclength.

Theorem 92 Let $U \subseteq \mathbb{C}$ be an open set, let $h: Q \rightarrow U$ be Lipschitz continuous, let γ be the Lipschitz continuous oriented closed curve parametrized by $h \circ \varphi_{0}$: $[0,4] \rightarrow U$, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Then

$$
\int_{\gamma} f d z=0
$$

Friday, February 7, 2020
Proof. Assume by contradiction that

$$
\int_{\gamma} f d z=c \neq 0
$$

By replacing f with f / c, without loss of generality, we may assume that $c=1$. Divide Q into four squares $Q_{1,1}, Q_{1,2}, Q_{1,3}, Q_{1,4}$ of side-length $\frac{1}{2}$ and parametrize their boundaries as we did for ∂Q. Let $\varphi_{1,1}, \varphi_{1,2}, \varphi_{1,3}, \varphi_{1,4}$ be the
corresponding parametric representations and let $\gamma_{1,1}, \gamma_{1,2}, \gamma_{1,3}, \gamma_{1,4}$ be the oriented closed curve parametrized by $h \circ \varphi_{1, k}:\left[0,4 / 2^{1}\right] \rightarrow U, k=1, \ldots, 4$, respectively. Using Exercise 66 we have that

$$
1=\int_{\gamma_{1,1}} f d z+\int_{\gamma_{1,2}} f d z+\int_{\gamma_{1,3}} f d z+\int_{\gamma_{1,4}} f d z
$$

and thus there exists $k_{1} \in\{1, \ldots, 4\}$ such that

$$
\left|\int_{\gamma_{1, k}} f d z\right| \geq \frac{1}{4}
$$

Let $Q_{1}:=Q_{1, k_{1}}$ and $\gamma_{1}:=\gamma_{1, k_{1}}$. We now divide Q_{1} into four squares $Q_{2,1}, Q_{2,2}$, $Q_{2,3}, Q_{2,4}$ of side-length $\frac{1}{16}$. Proceeding as before we find $k_{2} \in\{1, \ldots, 4\}$ such that

$$
\left|\int_{\gamma_{2, k_{2}}} f d z\right| \geq \frac{1}{16}
$$

Inductively we obtain a decreasing sequence of closed squares Q_{n} of side-length $\frac{1}{2^{n}}$ such that

$$
\begin{equation*}
\left|\int_{\gamma_{n}} f d z\right| \geq \frac{1}{4^{n}} \tag{33}
\end{equation*}
$$

where γ_{n} is the oriented closed curve parametrized by $h \circ \varphi_{n}:\left[0, \frac{4}{2^{n}}\right] \rightarrow U$ and $\varphi_{n}:\left[0, \frac{4}{2^{n}}\right] \rightarrow \partial Q_{n}$. By Cantor's theorem there exists $\left(x_{0}, y_{0}\right) \in Q_{n}$ for all n. Let $z_{0}=h\left(\left(x_{0}, y_{0}\right)\right)$. Since f is differentiable, we can write

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+R(z)
$$

where

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{R(z)}{z-z_{0}}=0 \tag{34}
\end{equation*}
$$

Since a constant function and a linear function $a z$ have a primitive, by the fundamental theorem of calculus,

$$
\int_{\gamma_{n}} f d z=\int_{\gamma_{n}} R d z
$$

Let Γ_{n} be the range of γ_{n}. If $z \in \Gamma_{n}=h\left(\varphi_{n}\left(\left[0, \frac{4}{2^{n}}\right]\right)\right)$, we can find $(x, y) \in \partial Q_{n}$ such that $z=h(x, y)$. Hence, if $L>0$ is the Lipschitz constant of h, we have that
$\left|z-z_{0}\right|=\left|h(x, y)-h\left(x_{0}, y_{0}\right)\right| \leq L \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \leq L \operatorname{diam} Q_{n}=L \frac{\sqrt{2}}{2^{n}}$.
In turn, by (34,

$$
|R(z)| \leq \varepsilon_{n}\left|z-z_{0}\right| \leq \varepsilon_{n} L \frac{\sqrt{2}}{2^{n}}
$$

where $\varepsilon_{n} \rightarrow 0^{+}$. Hence,

$$
\begin{aligned}
\left|\int_{\gamma_{n}} f d z\right| & =\left|\int_{\gamma_{n}} R d z\right| \leq \varepsilon_{n} L \frac{\sqrt{2}}{2^{n}} L\left(\gamma_{n}\right) \\
& \leq \varepsilon_{n} \frac{4 L^{2}}{4^{n}}
\end{aligned}
$$

where we used the fact that

$$
L\left(\gamma_{n}\right)=\int_{0}^{\frac{4}{2^{n}}}\left|\left(h \circ \varphi_{n}\right)^{\prime}(s)\right| d s \leq L \int_{0}^{\frac{4}{2^{n}}}\left|\varphi_{n}^{\prime}(s)\right| d s=L \int_{0}^{\frac{4}{2^{n}}} 1 d s=\frac{4 L}{2^{n}}
$$

Using (34) we get

$$
\frac{1}{4^{n}} \leq\left|\int_{\gamma_{n}} f d z\right| \leq \varepsilon_{n} \frac{4 L^{2}}{4^{n}}
$$

as $n \rightarrow \infty$, which is a contradiction.
Next we consider the case in which h is only continuous.
Theorem 93 Let $U \subseteq \mathbb{C}$ be an open set, let $h: Q \rightarrow U$ be continuous, let γ be the oriented closed curve parametrized by $h \circ \varphi_{0}:[0,4] \rightarrow U$, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. If γ is rectifiable, then

$$
\int_{\gamma} f d z=0 .
$$

Proof. Since Q is compact and h is continuous, $h(Q)$ is compact. Hence, $d:=\operatorname{dist}(h(Q), \partial U)>0$. For every n consider a partition $t_{0}=0<t_{1}<\cdots<$ $t_{n}=1$ with $t_{k}-t_{k-1} \leq \delta_{n}$ for every $k=1, \ldots, n$ (for example $\delta_{n}=\frac{1}{n}$ and $t_{k}=$ $k / n, k=0, \ldots, n)$. We construct $h_{n}: Q \rightarrow U$ by defining $h_{n}\left(t_{j}, t_{k}\right):=h\left(t_{j}, t_{k}\right)$ for each $j, k=0, \ldots, n$ and by interpolating linearly in each subrectangle

$$
\begin{aligned}
& h_{n}\left(r t_{j}+(1-r) t_{j-1}, s t_{k}+(1-s) t_{k-1}\right):=(1-r)(1-s) h_{n}\left(t_{j-1}, t_{k-1}\right) \\
& \quad+r(1-s) h_{n}\left(t_{j}, t_{k-1}\right)+(1-r) s h_{n}\left(t_{j-1}, t_{k}\right)+r s h_{n}\left(t_{j}, t_{k}\right)
\end{aligned}
$$

for $r, s \in[0,1]$. Then $h_{n}: Q \rightarrow \mathbb{C}$ is Lipschitz continuous. Using the uniform continuity of h we have that $h_{n} \rightarrow h$ uniformly in Q as $n \rightarrow \infty$. In particular, $\operatorname{dist}\left(h_{n}(Q), \partial U\right) \geq d / 2$ for all n sufficiently large. Hence, $h_{n}: Q \rightarrow U$ for n large. By the previous theorem

$$
\int_{\gamma_{n}} f d z=0
$$

Since γ_{n} is parametrized by $h_{n} \circ \varphi_{0}:[0,4] \rightarrow U$ we have that $h_{n} \circ \varphi_{0} \rightarrow h \circ \varphi_{0}$ uniformly, and since f is continuous and $h \circ \varphi_{0}$ has finite length, it follows that (Exercise, see the proof of Lemma 64)

$$
0=\lim _{n \rightarrow \infty} \int_{\gamma_{n}} f d z=\int_{\gamma} f d z
$$

which concludes the proof.

Corollary 94 Let $U \subseteq \mathbb{C}$ be an open set, let $h: Q \rightarrow U$ be continuous and such that $h(s, 0)=h(s, 1)$ for all $s \in[0,1]$, let γ be the oriented closed curve parametrized by $h \circ \varphi_{0}:[0,4] \rightarrow U$, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Assume that the curves γ_{1} and γ_{2} parametrized by $h \circ \varphi_{0}:[1,2] \rightarrow U$ and $h \circ \varphi_{0}:[3,4] \rightarrow$ U are rectifiable, then

$$
\int_{\gamma_{1}} f d z+\int_{\gamma_{2}} f d z=0
$$

Proof. Since $h(s, 0)=h(s, 1)$ for all $s \in[0,1]$, in the previous proof we will have $h_{n}(s, 0)=h_{n}(s, 1)$ for all $s \in[0,1]$. Hence, the Lipschitz curves parametrized by $h \circ \varphi_{0}:[0,1] \rightarrow U$ and $h \circ \varphi_{0}:[2,3] \rightarrow U$ are one the opposite of the other and so their corresponding integrals will cancel each other. In turn,

$$
\int_{\gamma_{1, n}} f d z+\int_{\gamma_{2}, n} f d z=0
$$

Letting $n \rightarrow \infty$ will give the desired result.
Definition 95 Given a set $E \subseteq \mathbb{C}$, two continuous oriented closed curves γ_{1} and γ_{2} with range in E and parametric representations $\varphi_{1}:[a, b] \rightarrow \mathbb{C}$ and $\varphi_{2}:[a, b] \rightarrow \mathbb{C}$, respectively, are homotopic in E if there exists a continuous function $h:[0,1] \times[a, b] \rightarrow \mathbb{C}$ such that $h([0,1] \times[a, b]) \subseteq E$,

$$
\begin{aligned}
& h(0, t)=\varphi_{1}(t) \text { for all } t \in[a, b], \quad h(1, t)=\varphi_{2}(t) \text { for all } t \in[a, b], \\
& h(s, a)=h(s, b) \text { for all } s \in[0,1] .
\end{aligned}
$$

The function h is called a homotopy in E between the two curves.
Roughly speaking, two curves are homotopic in E if it is possible to deform the first continuously until it becomes the second without leaving the set E.

Definition 96 set $E \subseteq \mathbb{C}$ is simply connected if it is pathwise connected and if every continuous closed curve with range in E is homotopic in E to a point in E (that is, to a curve with parametric representation a constant function).

Example 97 A star-shaped set is simply connected. Indeed, let $E \subseteq \mathbb{C}$ be starshaped with respect to some point $z_{0} \in E$ and consider a continuous closed curve γ with parametric representation $\varphi:[a, b] \rightarrow \mathbb{C}$ such that $\varphi([a, b]) \subseteq E$. Then the function

$$
h(s, t):=s \varphi(t)+(1-s) z_{0}
$$

is an homotopy between γ and the point z_{0}.

Theorem 98 (Cauchy) Let $U \subseteq \mathbb{C}$ be an open set, let γ_{1} and γ_{2} be two oriented closed rectifiable curves which are homotopic in U and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Then

$$
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z
$$

In particular, if U is simply connected, then

$$
\int_{\gamma} f d z=0
$$

for every rectifiable closed oriented curve γ with range in U.
Proof. Let $\varphi_{1}:[0,1] \rightarrow U$ and $\varphi_{2}:[0,1] \rightarrow U$ be parametric representations of γ_{1} and γ_{2}, respectively, and let $h:[0,1] \times[0,1]$ be a corresponding homotopy. Then $h \circ \varphi_{0}$ is composed of four curves: first $s \in[0,1] \rightarrow h(s, 0)$ followed by γ_{1}, then the opposite of $s \in[0,1] \rightarrow h(s, 1)$ and finally the opposite of γ_{2}. Since the first and the third of these four curves are the opposite to each other, the corresponding integrals will cancel out. Hence, in view of Corollary 94 ,

$$
\int_{\gamma_{1}} f d z+\int_{-\gamma_{2}} f d z=0
$$

The result now follows from 66 .
Exercise 99 Let $U \subseteq \mathbb{C}$ be a simply connected open set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Prove that f has a primitive in U.

Using the previous exercise we can show that in a simply connected open set which does not contain the origin there is a branch of the logarithm. More generally, we have the following important result.

Corollary 100 Let $U \subseteq \mathbb{C}$ be a simply connected open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function such that $f(z) \neq 0$ for all $z \in U$. Then there exists a holomorphic function $g: U \rightarrow \mathbb{C}$ such that

$$
f(z)=e^{g(z)} \quad \text { for all } z \in U
$$

If $z_{0} \in U$ and $f\left(z_{0}\right)=e^{w_{0}}$ for $w_{0} \in \mathbb{C}$, then we can choose g in such a way that $g\left(z_{0}\right)=w_{0}$.

Proof. Fix $z_{0} \in U$ and use polar coordinates to write $f\left(z_{0}\right)=r e^{i \theta}$. Taking $w_{0}:=\log r+i \theta$, we have that $f\left(z_{0}\right)=e^{w_{0}}$. Since $f(z) \neq 0$ for all $z \in U$, the function f^{\prime} / f is well-defined and holomorphic in U. By the previous exercise, f^{\prime} / f has a primitive F_{1}, that is, $F_{1}^{\prime}=f^{\prime} / f$ in U. By adding a constant, we can assume that $F_{1}\left(z_{0}\right)=w_{0}$. Then $h(z):=e^{F_{1}(z)}$ is holomorphic in U and never
vanishes (since the exponential never does). In turn, f / h is holomorphic. Let's compute its derivative

$$
\begin{aligned}
\left(\frac{f}{h}\right)^{\prime}(z) & =\frac{f^{\prime}(z) h(z)-f(z) h^{\prime}(z)}{h^{2}(z)}=\frac{f^{\prime}(z) e^{F_{1}(z)}-f(z) F_{1}^{\prime}(z) e^{F_{1}(z)}}{e^{2 F_{1}(z)}} \\
& =\frac{f^{\prime}(z) e^{F_{1}(z)}-f(z) \frac{f^{\prime}(z)}{f(z)} e^{F_{1}(z)}}{e^{2 F_{1}(z)}}=0 .
\end{aligned}
$$

Since U is connected, it follows from Corollary 14 that f / h is a constant function. Hence, there is $c \in \mathbb{C} \backslash\{0\}$ such that

$$
f(z)=\operatorname{ch}(z)=c e^{F_{1}(z)}
$$

Taking $z=z_{0}$ we get

$$
e^{w_{0}}=f\left(z_{0}\right)=c e^{F_{1}\left(z_{0}\right)}=c e^{w_{0}}
$$

and so $c=1$. This completes the proof.
Exercise 101 Let $U \subset \mathbb{C}$ be a simply connected open set with $0 \notin U$. Prove that in U there exists a branch $\log _{U}$ of the logarithm. Prove also that if $1 \in U$, then we can assume that $\log _{U} r=\log r$ whenever r is a real number sufficiently close to 1 .

Exercise 102 Prove that the previous exercise continues to hold if in place of U simply connected we assume that

$$
\int_{\gamma} f d s=0
$$

for every holomorphic function $f: U \rightarrow \mathbb{C}$ and for every closed oriented Lipschitz continuous curve with range contained in U.

Remark 103 In view of Exercise 101, if $U \subset \mathbb{C}$ is a simply connected open set with $0 \notin U$ and $a \in \mathbb{C}$, then in U there is a branch of z^{a}, defined as usual by

$$
z^{a}:=e^{a \log _{U} z}
$$

Definition 104 Given a set $E \subseteq \mathbb{C}$, two continuous oriented curves, with parametric representations $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[a, b] \rightarrow \mathbb{C}$ such that $\varphi([a, b]) \subseteq E$, $\psi([a, b]) \subseteq E, \varphi(a)=\psi(a)=\alpha, \varphi(b)=\psi(b)=\beta$ are fixed-endpoint homotopic in E if there exists a continuous function $h:[0,1] \times[a, b] \rightarrow \mathbb{C}$ such that $h([0,1] \times[a, b]) \subseteq E$,

$$
\begin{aligned}
& h(0, t)=\varphi(t) \text { for all } t \in[a, b], \quad h(1, t)=\psi(t) \text { for all } t \in[a, b] \\
& h(s, a)=\alpha, \quad h(s, b)=\beta \text { for all } s \in[0,1]
\end{aligned}
$$

The function h is called a fixed-endpoint homotopy in E between the two curves.

Exercise 105 Let $U \subseteq \mathbb{C}$ be an open set, let γ_{1} and γ_{1} be two oriented rectifiable continuous curves with the same endpoints and which are fixed-endpoint homotopic in U, and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Prove that

$$
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z
$$

8 Harmonic Functions

Given an open set $\Omega \subseteq \mathbb{R}^{N}$, a function $u: \Omega \rightarrow \mathbb{R}$ of class C^{2} is called harmonic in Ω if it satisfies

$$
\Delta u(\boldsymbol{x})=0 \quad \text { for all } \boldsymbol{x} \in \Omega
$$

where we recall that Δ is the Laplace operator defined by

$$
\Delta:=\sum_{k=1}^{N} \frac{\partial^{2}}{\partial x_{k}^{2}}
$$

As a consequence of Cauchy's integral formula we have the following important result.

Theorem 106 Let $U \subseteq \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then the real-valued functions

$$
u(x, y):=\operatorname{Re} f(x+i y), \quad v(x, y):=\operatorname{Im} f(x+i y)
$$

are harmonic in $\Omega:=\left\{(x, y) \in \mathbb{R}^{2}: x+i y \in U\right\}$.
Proof. In what follows given a function $g: U \rightarrow \mathbb{C}$ we define $R_{g}: \Omega \rightarrow \mathbb{R}$ and $I_{g}: \Omega \rightarrow \mathbb{R}$ via

$$
R_{g}(x, y)=\operatorname{Re} g(x+i y), \quad I_{g}(x, y):=\operatorname{Im} g(x+i y)
$$

Recall that by (9),

$$
\begin{aligned}
\frac{\partial u}{\partial x}(x, y) & =\frac{\partial v}{\partial y}(x, y)=\operatorname{Re} f^{\prime}(x+i y) \\
-\frac{\partial u}{\partial y}(x, y) & =\frac{\partial v}{\partial x}(x, y)=\operatorname{Im} f^{\prime}(x+i y)
\end{aligned}
$$

This shows that $R_{f^{\prime}}=\frac{\partial u}{\partial x}, I_{f^{\prime}}=-\frac{\partial u}{\partial y}$. By Corollary 81 the function f is analytic. In particular, it is of class $C^{\infty}(U)$. In particular, f^{\prime} is holomorphic, and so we can apply Theorem 13 to f^{\prime} to conclude that $R_{f^{\prime}}=\frac{\partial u}{\partial x}, I_{f^{\prime}}=-\frac{\partial u}{\partial y}$ are differentiable, with

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)(x, y) & =\frac{\partial}{\partial y}\left(-\frac{\partial u}{\partial y}\right)(x, y) \tag{35}
\end{array}\right)=\operatorname{Re} f^{\prime \prime}(x+i y), ~ 子=\frac{\partial}{\partial x}\left(-\frac{\partial u}{\partial x}\right)(x, y)=\frac{\partial}{\partial y}(x, y)=\operatorname{Im} f^{\prime \prime}(x+i y) .
$$

This implies that all second order partial derivatives of u exist and since $f^{\prime \prime}$ is continuous, so are they. Thus, $u \in C^{2}(\Omega)$. Moreover, from the first equation in (35) we get that u is harmonic.

We can repeat a similar argument for v since $R_{f^{\prime}}=\frac{\partial v}{\partial y}, I_{f^{\prime}}=\frac{\partial v}{\partial x}$ or use the Cauchy-Riemann equations, to obtain that $v \in C^{2}(\Omega)$ and is harmonic.

We also have the converse of this theorem.
Theorem 107 Let $\Omega \subseteq \mathbb{R}^{2}$ be an open set and let $u, v: \Omega \rightarrow \mathbb{R}$ be two harmonic functions satisfying the Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} \quad \text { in } \Omega \tag{36}
\end{equation*}
$$

Then the function $f: U \rightarrow \mathbb{C}$ defined by

$$
f(z)=u(x, y)+i v(x, y), \quad z=x+i y \in U
$$

where $U:=\{z=x+i y: \quad(x, y) \in \Omega\}$, is holomorphic in U.
Proof. This follows from Theorem 15.
An interesting problem is, given an open set $\Omega \subseteq \mathbb{R}^{2}$ and an harmonic function $u: \Omega \rightarrow \mathbb{R}$, to find another harmonic function $v: \Omega \rightarrow \mathbb{R}$ in such a way that the Cauchy-Riemann equations hold in Ω. If such a function v exists, it is called complex conjugate of u.

Exercise 108 Let $\Omega=\mathbb{R}^{2} \backslash\{(0,0)\}$. Prove that the function $u(x, y):=\log \left(x^{2}+\right.$ $\left.y^{2}\right),(x, y) \in \Omega$, is harmonic but does not have a complex conjugate v.

Theorem 109 Let $\Omega \subseteq \mathbb{R}^{2}$ be simply connected and let $u: \Omega \rightarrow \mathbb{R}$ be an harmonic function. Then u admits a complex conjugate $v: \Omega \rightarrow \mathbb{R}$.

Proof. Define

$$
g(z)=\frac{\partial u}{\partial x}(x, y)-\frac{\partial u}{\partial y}(x, y) i, \quad z=x+i y \in U
$$

where as before $U:=\{z=x+i y: \quad(x, y) \in \Omega\}$. Since u is of class C^{2} and harmonic ,

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)(x, y) & =\frac{\partial}{\partial y}\left(-\frac{\partial u}{\partial y}\right)(x, y) \quad \text { in } \Omega \\
-\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)(x, y) & =\frac{\partial}{\partial x}\left(-\frac{\partial u}{\partial y}\right)(x, y) \quad \text { in } \Omega
\end{aligned}
$$

and so $\frac{\partial u}{\partial x}$ and $-\frac{\partial u}{\partial y}$ satisfy the Cauchy-Riemann equations. In turn, by the previous theorem the function g is holomorphic in U. Since Ω is simply connected, so is U, and so we can apply Exercise 99 to conclude that g has a primitive, that is, there exists a holomorphic function $f: U \rightarrow \mathbb{C}$ such that $f^{\prime}=g$.

Let

$$
u_{1}(x, y):=\operatorname{Re} f(x+i y), \quad v(x, y):=\operatorname{Im} f(x+i y)
$$

By (9),

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial x}(x, y) & =\frac{\partial v}{\partial y}(x, y)=\operatorname{Re} f^{\prime}(x+i y)=\operatorname{Re} g(x+i y)=\frac{\partial u}{\partial x}(x, y) \\
-\frac{\partial u_{1}}{\partial y}(x, y) & =\frac{\partial v}{\partial x}(x, y)=\operatorname{Im} f^{\prime}(x+i y)=\operatorname{Im} g(x+i y)=-\frac{\partial u}{\partial y}(x, y)
\end{aligned}
$$

and so

$$
\frac{\partial u_{1}}{\partial x}(x, y)=\frac{\partial u}{\partial x}(x, y), \quad \frac{\partial u_{1}}{\partial y}(x, y)=\frac{\partial u}{\partial y}(x, y)
$$

Since U is connected, this implies that $u-u_{1}$ must be constant. Since v is a complex conjugate of u_{1}, it follows that it is also a complex conjugate to u, and the proof is complete.

Wednesday, February 12, 2020
As a corollary of Cauchy's integral form we obtain the mean value theorem.
Theorem 110 (Mean value theorem) Let $\Omega \subseteq \mathbb{R}^{2}$ be an open set and let $u: \Omega \rightarrow \mathbb{R}$ be an harmonic function. Then for every closed ball $\overline{B\left(\left(x_{0}, y_{0}\right), r\right)} \subset$ Ω we have

$$
u\left(x_{0}, y_{0}\right)=\int_{0}^{2 \pi} u\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right) d \theta
$$

Proof. Let $z_{0}=x_{0}+i y_{0}$. By applying the previous theorem in a larger open ball B containing z_{0} we can find a function v which is conjugate to u in B. In turn, the function

$$
f(z)=u(x, y)+i v(x, y), \quad z=x+i y \in B
$$

is holomorphic and so by Cauchy's formula,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial B\left(z_{0}, r\right)} \frac{f(z)}{z-z_{0}} d z
$$

Taking as parametric representation of $\partial B\left(z_{0}, r\right)$ the function $\varphi(\theta)=z_{0}+r e^{i \theta}$, $\theta \in[0,2 \pi]$, we get

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i \theta}\right)}{r e^{i \theta}} r i e^{i \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

where we used the fact that $\varphi^{\prime}(\theta)=r i e^{i \theta}$. In particular, taking the real part on both sides

$$
\begin{equation*}
\operatorname{Re} f\left(z_{0}\right)=\frac{1}{2 \pi} \operatorname{Re}\left(\int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta\right)=\int_{0}^{2 \pi}(\operatorname{Re} f)\left(z_{0}+r e^{i \theta}\right) d \theta \tag{37}
\end{equation*}
$$

which gives the result.
Using this formula, one can show as in Corollary 81 that u is analytic in Ω. We leave this as an exercise.

9 Zeros and Isolated Singularities

In this section we study zeros and isolated singularities of holomorphic functions. We begin by showing that zeros of holomorphic functions are isolated.

Theorem 111 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Assume that there exists a sequence $\left\{z_{k}\right\}_{k}$ in U with $z_{k} \neq z_{m}$ for $k \neq m$ such that $z_{k} \rightarrow z_{0} \in U$ as $n \rightarrow \infty$ and $f\left(z_{k}\right)=0$ for all k. Then $f=0$.

Proof. Since f is analytic by Corollary 81, there exists $r>0$ such that $B\left(z_{0}, r\right) \subseteq U$ such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

for all $z \in B\left(z_{0}, r\right)$. If $f \neq 0$ in $B\left(z_{0}, r\right)$, at least one of a_{n} must be different from 0 . Let m be the first integer such that $a_{m} \neq 0$. Let $m \in \mathbb{N}$ be the smallest integer such that $a_{m} \neq 0$. Then as in the proof of Theorem 111 we can write

$$
\begin{aligned}
f(z) & =\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{m} \sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n-m} \\
& =\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} a_{k+m}\left(z-z_{0}\right)^{k} \\
& =:\left(z-z_{0}\right)^{m} g(z)
\end{aligned}
$$

Now

$$
g(z)=a_{m}+\sum_{k=1}^{\infty} a_{k+m}\left(z-z_{0}\right)^{k}
$$

where the power series is convergent. Hence $g(z) \rightarrow a_{m} \neq 0$ as $z \rightarrow z_{0}$. Hence, taking $\varepsilon=\frac{1}{2}\left|a_{m}\right|$, there exists $0<\delta<r$ such that

$$
\left|g(z)-a_{m}\right| \leq \frac{1}{2}\left|a_{m}\right|
$$

for all z with $\left|z-z_{0}\right| \leq \delta$, and so $|g(z)| \geq\left|a_{m}\right|-\left|g(z)-a_{m}\right| \geq \frac{1}{2}\left|a_{m}\right|$, and in turn,

$$
|f(z)| \geq \frac{1}{2}\left|a_{m}\right|\left|z-z_{0}\right|^{m}
$$

for all z with $\left|z-z_{0}\right| \leq \delta$. Since $z_{k} \rightarrow z_{0}$ we have that $\left|z_{k}-z_{0}\right| \leq \delta$ for all k large. In particular, there are infinitely many z_{k} such that $z_{k} \neq z_{0}$ and $\left|z_{k}-z_{0}\right| \leq \delta$. But

$$
0=\left|f\left(z_{k}\right)\right| \geq \frac{1}{2}\left|a_{m}\right|\left|z_{k}-z_{0}\right|^{m}>0
$$

which is a contradiction. This shows that $f=0$ in $B\left(z_{0}, r\right)$.
Let

$$
V:=\{z \in U: f(z)=0\}^{\circ}
$$

The set V is open by definition and $B\left(z_{0}, r\right) \subseteq V$. The set V is also closed in U, since if $w_{k} \in V$ and $w_{k} \rightarrow w_{0} \in U$, then either $w_{k}=w_{0}$ for some k and so $w_{0} \in V$ or $w_{k} \neq w_{0}$ for all k, in which case the sequence must have infinitely many distinct elements. Hence, by the previous argument we can find a ball centered at w_{0} where f is zero. This shows that $w_{0} \in V$. Hence, V is closed in U. Hence, $U=V \cup(U \backslash V)$, with $U \backslash V$ open. Since U is connected, it follows that $U \backslash V$ must be empty.

Observe that in the previous proof we actually showed that each zero of a holomorphic function f is isolated and has finite multiplicity, unless $f=0$.

Corollary 112 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be holomorphic and not identically zero. Assume that there exists $z_{0} \in U$ such that $f\left(z_{0}\right)=0$. Then there exists $m \in \mathbb{N}$ such that

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

where $g: U \rightarrow \mathbb{C}$ is holomorphic and $g\left(z_{0}\right) \neq 0$. Moreover, there exists $r>0$ such that $f(z) \neq 0$ for all $z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\} \subset U$

Proof. Writing f as a power series centered at z_{0},

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

If $a_{n}=0$ for all $n \in \mathbb{N}_{0}$, then $f=0$ by Theorem 111 . Let $m \in \mathbb{N}$ be the smallest integer such that $a_{m} \neq 0$. Then as in the proof of Theorem 111 we can write

$$
\begin{aligned}
f(z) & =\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{m} \sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n-m} \\
& =\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} a_{k+m}\left(z-z_{0}\right)^{k} \\
& =:\left(z-z_{0}\right)^{m} g(z)
\end{aligned}
$$

Then $g\left(z_{0}\right)=a_{m}+0+\cdots+0=a_{m} \neq 0$. The function g is holomorphic in $B\left(z_{0}, R\right)$, where R is its radius of convergence. On the other hand, in $U \backslash B\left(z_{0}, R\right)$ the function

$$
g(z):=\frac{f(z)}{\left(z-z_{0}\right)^{m}}
$$

is holomorphic, since quotient of two holomorphic functions.
The last statement follows from Theorem 111.
The number m is called multiplicity of z_{0}. We say that f has a zero of order m or of multiplicity m.

Example 113 Consider the function

$$
f(z)=\cos \frac{1+z}{1-z}, \quad z \in B(0,1) .
$$

The function f is holomorphic and has infinitely many zeros when $\frac{1+z}{1-z}=\frac{\pi}{2}+n \pi$, that is, $1+z=\left(\frac{\pi}{2}+n \pi\right)(1-z)$, or

$$
z=\frac{-1+\frac{\pi}{2}+n \pi}{1+\frac{\pi}{2}+n \pi} \rightarrow 1
$$

as $n \rightarrow \infty$. Note that $1 \in \partial B(0,1)$, and so this does not contradict Theorem 111.

Corollary 114 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Assume that there exists $z_{0} \in U$ such that $f^{(n)}\left(z_{0}\right)=0$ for all $n \in \mathbb{N}_{0}$. Then $f=0$.

Proof. Writing f as a power series centered at z_{0} we get that $f=0$ in $B\left(z_{0}, r\right) \subseteq U$. But then we can apply the previous theorem to conclude that $f=0$ in U.
Corollary 115 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f, g: U \rightarrow \mathbb{C}$ be holomorphic. Assume that there exists a sequence $\left\{z_{k}\right\}_{k}$ in U with $z_{k} \neq z_{m}$ for $k \neq m$ such that $z_{k} \rightarrow z_{0} \in U$ as $n \rightarrow \infty$ and $f\left(z_{k}\right)=g\left(z_{k}\right)$ for all k. Then $f=g$ in U.

Next we study isolated singularities.
Definition 116 Let $U \subset \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. We say that $z_{0} \in \mathbb{C} \backslash U$ is a point singularity or isolated singularity of f if there exists $r>0$ such that $B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\} \subseteq U$.

Example 117 If we take $U=\mathbb{C} \backslash\{0\}$ then the holomorphic function $f(z)=z$ has an isolated singularity at 0 . In this case we can extend f to 0 as a holomorphic function by setting $f(0):=0$. This is called a removable singularity. The functions $f(z)=\frac{1}{z}$ and $g(z)=e^{1 / z}$ have an isolated singularity at $z=0$.

We will show that isolated singularities are of three types;

1. removable singularities;
2. poles;
3. essential singularities

Definition 118 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be an isolated singularity of f. We say that z_{0} is a removable singularity if we can define f at z_{0} in such a way that the resulting function is homomorphic in $U \cup\left\{z_{0}\right\}$.

Theorem 119 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be an isolated singularity of f. Then z_{0} is a removable singularity if and only if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 \tag{38}
\end{equation*}
$$

In particular, if f is bounded near z_{0}, then z_{0} is a removable singularity.

Friday, February 14, 2020
Proof. If z_{0} is a removable singularity for f then f is continuous at z_{0} and So

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 f\left(z_{0}\right)=0
$$

Conversely, assume that holds. Define $g: U \cup\left\{z_{0}\right\} \rightarrow \mathbb{C}$ via

$$
g(z):= \begin{cases}\left(z-z_{0}\right) f(z) & \text { if } z \neq z_{0} \\ 0 & \text { if } z=z_{0}\end{cases}
$$

In view of (38), the function g is holomorphic in U and continuous at z_{0}. In view of Remark 71, g has a primitive G in $B\left(z_{0}, r\right) \subseteq U \cup\left\{z_{0}\right\}$, and so G is holomorphic. By Corollary 81, G is analytic. Since $G^{\prime}=g$, we have that g is holomorphic. Since $g\left(z_{0}\right)=0$, by Corollary 112 , there exists $m \in \mathbb{N}$ such that

$$
g(z)=\left(z-z_{0}\right)^{m} h(z)
$$

where $h: U \cup\left\{z_{0}\right\} \rightarrow \mathbb{C}$ is holomorphic and $h\left(z_{0}\right) \neq 0$. Set $f_{1}(z)=(z-$ $\left.z_{0}\right)^{m-1} h(z)$. Then f_{1} is holomorphic in $U \cup\left\{z_{0}\right\}$. Since $B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ is connected, it follows that f and f_{1} must coincide in $B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ by Corollary 115 Thus, f_{1} extends f to z_{0} as an holomorphic function.

Definition 120 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be an isolated singularity of f. We say that z_{0} is a pole if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}|f(z)|=\infty \tag{39}
\end{equation*}
$$

Theorem 121 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be a pole of f. Then there exist $m \in \mathbb{N}, r>0$, and a holomorphic function $g: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ such that $B\left(z_{0}, r\right) \subseteq U \backslash\left\{z_{0}\right\}, g(z) \neq 0$ for all $z \in B\left(z_{0}, r\right)$ and

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}} \quad \text { for all } z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\} .
$$

Proof. By the definition of limit there exists $r>0$ such that $B\left(z_{0}, r\right) \subseteq$ $U \backslash\left\{z_{0}\right\}$ and $|f(z)| \geq 1$ for all $z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$. Hence, the function $\frac{1}{f}$ is well-defined and holomorphic in $B\left(z_{0}, r\right) \subseteq U \backslash\left\{z_{0}\right\}$. Moreover, by 39,

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0
$$

Thus, if we define

$$
h(z):= \begin{cases}\frac{1}{f(z)} & \text { if } z \neq z_{0} \\ 0 & \text { if } z=z_{0}\end{cases}
$$

Then h is holomorphic in $B\left(z_{0}, r\right)$ by the previous theorem. Since $h\left(z_{0}\right)=0$, by by Corollary 112 there exists $m \in \mathbb{N}$ such that

$$
h(z)=\left(z-z_{0}\right)^{m} q(z)
$$

where $q: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is holomorphic and $q\left(z_{0}\right) \neq 0$. By continuity and taking r smaller, if necessary, we can assume that $q(z) \neq 0$ for all $z \in B\left(z_{0}, r\right)$. Then

$$
\frac{1}{f(z)}=\left(z-z_{0}\right)^{m} q(z)
$$

for all $z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$, that is,

$$
f(z)=\frac{1}{\left(z-z_{0}\right)^{m} q(z)}=: \frac{g(z)}{\left(z-z_{0}\right)^{m}}
$$

where $g(z):=1 / q(z)$.
The number m is called multiplicity of z_{0}. We say that f has a pole of order m or of multiplicity m. When $m=1$, we say that f has a simple pole at z_{0}.

Theorem 122 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be a pole of f or order m. Then there exist b_{1}, $\ldots, b_{m} \in \mathbb{C}, r>0$, and a holomorphic function $h: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ such that $B\left(z_{0}, r\right) \subseteq U \backslash\left\{z_{0}\right\}$, and

$$
\begin{equation*}
f(z)=\frac{b_{1}}{z-z_{0}}+\cdots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}+h(z) \quad \text { for all } z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\} \tag{40}
\end{equation*}
$$

Proof. By the previous theorem, there exist $m \in \mathbb{N}, r>0$, and a holomorphic function $g: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ such that $B\left(z_{0}, r\right) \subseteq U \backslash\left\{z_{0}\right\}, g(z) \neq 0$ for all $z \in B\left(z_{0}, r\right)$ and

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}} \quad \text { for all } z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}
$$

Since g is analytic, by taking r smaller, if necessary, we can write

$$
g(z)=a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+a_{m-1}\left(z-z_{0}\right)^{m-1}+\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and so
$f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}=\frac{a_{0}}{\left(z-z_{0}\right)^{m}}+\frac{a_{1}}{\left(z-z_{0}\right)^{m-1}}+\cdots+\frac{a_{m-1}}{\left(z-z_{0}\right)}+\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n-m}$.
It suffices to define

$$
h(z):=\sum_{n=m}^{\infty} a_{n}\left(z-z_{0}\right)^{n-m},
$$

which is holomorphic.
The sum

$$
\frac{b_{1}}{z-z_{0}}+\cdots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

is called the principal part of f at the pole z_{0} and the number b_{1} is the residue of f at z_{0}. We write

$$
\operatorname{res}_{z_{0}} f=b_{1} .
$$

Theorem 123 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be a pole of f or order m. Then

$$
\operatorname{res}_{z_{0}} f=\lim _{z \rightarrow z_{0}} \frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)
$$

In particular, if f has a simple pole at z_{0}, then

$$
\operatorname{res}_{z_{0}} f=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Proof. By 40,

$$
\left(z-z_{0}\right)^{m} f(z)=b_{1}\left(z-z_{0}\right)^{m-1}+b_{2}\left(z-z_{0}\right)^{m-2}+\cdots+b_{m}+\left(z-z_{0}\right)^{m} h(z)
$$

Hence

$$
\frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)=b_{1}(m-1)!+0+\cdots+0+\frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} h(z)\right)
$$

To conclude observe that

$$
\lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} h(z)\right)=0
$$

since we are differentiating $m-1$ times and so by the product rule each term in $\frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{0}\right)^{m} h(z)\right)$ will have some power of $z-z_{0}$.

Next we prove the residue formula. We begin with a simple case.
Theorem 124 (Residue formula) Let $U \subseteq \mathbb{C}$ be an open set, let $z_{0} \in U$, and let $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having a pole at z_{0}. Then for closed ball $\bar{B} \subset U$ having z_{0} in its interior,

$$
\int_{\partial B} f d z=2 \pi i \operatorname{res}_{z_{0}} f
$$

Proof. Consider the closed curve $\Gamma_{\delta, \varepsilon}$ given in Figure 1, where ε is the radius of the small circle centered at z_{0} and δ is the width of the corridor. Since the function f is holomorphic in $U \backslash\left\{z_{0}\right\}$, by considering $V:=B \backslash S$, where S is the segment obtained when $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$, we can apply Exercise 74 to obtain that f has a primitive in V. Since the range of $\Gamma_{\delta, \varepsilon}$ is contained in V, it follows from Corollary 65 that

$$
\int_{\Gamma_{\delta, \varepsilon}} f d z=0
$$

If we let $\delta \rightarrow 0^{+}$and use the fact that f is continuous, we get that the two segments converge to a segment which is integrated in opposite directions. Hence, we obtain

$$
\begin{equation*}
\int_{\partial B} f d z-\int_{\partial B\left(z_{0}, \varepsilon\right)} f d z=0 \tag{41}
\end{equation*}
$$

Thus to prove the theorem it suffices to show that

$$
\begin{equation*}
\int_{\partial B\left(z_{0}, \varepsilon\right)} f d z=2 \pi i \operatorname{res}_{z_{0}} f \tag{42}
\end{equation*}
$$

By Theorem 122 there exist $b_{1}, \ldots, b_{m} \in \mathbb{C}, r>0$, and a holomorphic function $h: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ such that $B\left(z_{0}, r\right) \subseteq U \backslash\left\{z_{0}\right\}$, and

$$
f(z)=\frac{b_{1}}{z-z_{0}}+\cdots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}+h(z) \quad \text { for all } z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}
$$

Hence,

$$
\begin{equation*}
\int_{\partial B\left(z_{0}, \varepsilon\right)} f d z=\int_{\partial B\left(z_{0}, \varepsilon\right)} \frac{b_{1}}{z-z_{0}} d z+\cdots+\int_{\partial B\left(z_{0}, \varepsilon\right)} \frac{b_{m}}{\left(z-z_{0}\right)^{m}} d z+\int_{\partial B\left(z_{0}, \varepsilon\right)} h d z \tag{43}
\end{equation*}
$$

By Cauchy's integral formula applied to the constant function b_{1} we have that

$$
\begin{equation*}
b_{1}=\frac{1}{2 \pi i} \int_{\partial B\left(z_{0}, \varepsilon\right)} \frac{b_{1}}{z-z_{0}} d z \tag{44}
\end{equation*}
$$

while by Corollary 81 applied to the constant functions b_{k},

$$
\begin{equation*}
0=\frac{d^{k-1}}{d z^{k-1}}\left(b_{k}\right)=\frac{(k-1)!}{2 \pi i} \int_{\partial B\left(z_{0}, \varepsilon\right)} \frac{b_{k}}{\left(z-z_{0}\right)^{k}} d z \tag{45}
\end{equation*}
$$

Since h is holomorphic in $B\left(z_{0}, r\right)$, taking $\varepsilon<r$ we have that

$$
\begin{equation*}
\int_{\partial B\left(z_{0}, \varepsilon\right)} h d z=0 \tag{46}
\end{equation*}
$$

by Corollary 72 . Formula (42) follows by combining (43)-46).
Remark 125 Note that since ∂B and $\partial B\left(z_{0}, \varepsilon\right)$ are homotopic in U, we could have used Theorem 98 to obtain 41.

Exercise 126 Let $U \subseteq \mathbb{C}$ be an open set, let $z_{1}, \ldots, z_{n} \in U$, and let $f: U \backslash$ $\left\{z_{1}, \ldots, z_{n}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having poles at z_{1}, \ldots, z_{n}. Prove that for every closed ball $\bar{B} \subset U$ having z_{1}, \ldots, z_{n} in its interior,

$$
\int_{\partial B} f d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f
$$

Exercise 127 (Residue formula) Let $U \subseteq \mathbb{C}$ be an open set, let $z_{1}, \ldots, z_{n} \in$ U, and let $f: U \backslash\left\{z_{1}, \ldots, z_{n}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having poles at z_{1}, \ldots, z_{n}. Prove that for every continuous rectifiable closed simple curve γ homotopic to 0 in U and having z_{1}, \ldots, z_{n} in its interior,

$$
\int_{\gamma} f d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f
$$

Note that in the previous exercise we are using Jordan's curve theorem (see Theorem 57.

The calculus of residues can be used to compute many interesting improper integrals.

Example 128 Let's prove that for $0<a<1$,

$$
\int_{\mathbb{R}} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin (\pi a)}
$$

Consider the function

$$
f(z)=\frac{e^{a z}}{1+e^{z}}
$$

Note that $1+e^{z}=0$ for $z=i \pi+2 i \pi k, k \in \mathbb{Z}$. Given $\ell>0$ consider the rectangle $R_{\ell}=\{z=x+i y: x \in(-\ell, \ell), 0<y<2 \pi\}$ and let γ_{ℓ} be the oriented closed curve which parametrizes ∂R_{ℓ} using arclength and going counterclockwise starting from $-\ell+0 i y$. The only point at which the denominator vanishes in R_{ℓ} is πi. Note that

$$
(z-\pi i) f(z)=e^{a z} \frac{z-\pi i}{1+e^{z}}=e^{a z} \frac{z-\pi i}{e^{z}-e^{\pi i}}
$$

Since $\frac{d}{d z} e^{z}=e^{z}$, we have that

$$
\lim _{z \rightarrow \pi i} \frac{e^{z}-e^{\pi i}}{z-\pi i}=e^{\pi i}=-1
$$

and so

$$
\lim _{z \rightarrow \pi i}(z-\pi i) f(z)=-e^{a \pi i}
$$

In turn, by 40),

$$
\operatorname{res}_{\pi i} f=-e^{a \pi i}
$$

It follows by the residue formula that

$$
\begin{equation*}
\int_{\gamma_{\ell}} f d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{\pi i} f=-2 \pi i e^{a \pi i} \tag{47}
\end{equation*}
$$

Set

$$
\begin{equation*}
I_{\ell}:=\int_{-\ell}^{\ell} f(x) d x=\int_{-\ell}^{\ell} \frac{e^{a x}}{1+e^{x}} d x \tag{48}
\end{equation*}
$$

On the other hand, to parametrize the top we consider curve $\gamma_{\ell, 3}$ parametrized by $\varphi_{3}(t)=3 \ell+2 \pi-t+2 \pi i$, where $t \in[2 \ell+2 \pi, 4 \ell+2 \pi]$. Then by the change of variables $s=3 \ell+2 \pi-t$,

$$
\begin{align*}
\int_{\gamma_{\ell, 3}} f d z & =\int_{2 \ell+2 \pi}^{4 \ell++2 \pi} f\left(\varphi_{3}(t)\right) \varphi_{3}^{\prime}(t) d t=\int_{\ell}^{-\ell} f(s+2 \pi i) d s \tag{49}\\
& =-\int_{-\ell}^{\ell} \frac{e^{a s} e^{2 \pi i a}}{1+e^{s+2 \pi i}} d s=-\int_{-\ell}^{\ell} \frac{e^{a s} e^{2 \pi i a}}{1+e^{s}} d s=-e^{2 \pi i a} I_{\ell}
\end{align*}
$$

Next to parametrize the right vertical side we consider curve $\gamma_{\ell, 2}$ parametrized by $\varphi_{2}(t)=\ell+i(t-2 \ell)$, where $t \in[2 \ell, 2 \ell+2 \pi]$. Then by the change of variables $s=t-2 \ell$,

$$
\begin{aligned}
\int_{\gamma \ell, 2} f d z & =\int_{2 \ell}^{2 \ell++2 \pi} f(\varphi(t)) \varphi^{\prime}(t) d t=\int_{0}^{2 \pi} i f(\ell+i s) d s \\
& =\int_{0}^{2 \pi} \frac{e^{a(\ell+i s)}}{1+e^{\ell+i s}} d s=\frac{e^{a \ell}}{e^{\ell}} \int_{0}^{2 \pi} \frac{e^{a i s}}{e^{-\ell}+e^{i s}} d s
\end{aligned}
$$

Since $\left|e^{-\ell}+e^{i s}\right| \geq\left|e^{i s}\right|-e^{-\ell}=1-e^{-\ell}$, we have

$$
\begin{align*}
\left|\int_{\gamma_{\ell, 2}} f d z\right| & \leq \frac{1}{e^{\ell(1-a)}} \int_{0}^{2 \pi} \frac{\left|e^{a i s}\right|}{\left|e^{-\ell}+e^{i s}\right|} d s \tag{50}\\
& \leq \frac{1}{e^{\ell(1-a)}} \frac{2 \pi}{1-e^{-\ell}} \rightarrow 0
\end{align*}
$$

as $\ell \rightarrow \infty$. A similar computation holds for the left vertical side, whose integral can be bound in modulus by ce ${ }^{-\ell a}$. It follows from (47)-(50) that

$$
-2 \pi i e^{a \pi i}=\lim _{\ell \rightarrow \infty} \int_{\gamma_{\ell}} f d z=\left(1-e^{2 \pi i a}\right) \int_{\mathbb{R}} \frac{e^{a x}}{1+e^{x}} d x
$$

that is,

$$
\int_{\mathbb{R}} \frac{e^{a x}}{1+e^{x}} d x=\frac{-2 \pi i e^{a \pi i}}{1-e^{2 \pi i a}}=\frac{2 \pi i e^{a \pi i}}{e^{2 \pi i a}-1}=\frac{2 \pi i}{e^{\pi i a}-e^{-\pi i a}}=\frac{\pi}{\sin (\pi a)}
$$

where we used (6).

Exercise 129 Use the calculus of residues to prove that

$$
\int_{\mathbb{R}} \frac{1}{1+x^{2}} d x=\pi
$$

Exercise 130 Use the calculus of residues to prove that for all $\xi \in \mathbb{R}$,

$$
\int_{\mathbb{R}} \frac{e^{-2 \pi i x \xi}}{\cosh (\pi x)} d x=\frac{1}{\cosh (\pi \xi)}
$$

We now the notion of meromorphic functions. Consider the extended complex plane \mathbb{C}_{∞} obtained by adding to \mathbb{C} a point not in \mathbb{C} called ∞,

$$
\mathbb{C}_{\infty}:=\mathbb{C} \cup\{\infty\}
$$

Given an open set $U \subseteq \mathbb{C}$ and $z_{0} \in U$, if a holomorphic function $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$ has a pole at z_{0}, we can extend f to z_{0} by setting

$$
f\left(z_{0}\right):=\infty
$$

so that $f: U \rightarrow \mathbb{C}_{\infty}$.
Definition 131 Let $U \subseteq \mathbb{C}$ and let $f: U \rightarrow \mathbb{C}_{\infty}$. We say that f is meromorphic if there exists a sequence $\left\{z_{n}\right\}_{n}$ of complex numbers such that the set $\left\{z_{n}\right.$: $n \in \mathbb{N}\}$ has no accumulation points in U, f has poles at z_{n} for every n, and $f: U \backslash\left\{z_{n}: n \in \mathbb{N}\right\} \rightarrow \mathbb{C}$ is holomorphic.

Let $U \subseteq \mathbb{C}$ be an open set which contains $\mathbb{C} \backslash B(0, R)$ for some $R>0$ and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. We say that f has a removable singularity, a pole, or an essential singularity at infinity if the function $F(z):=$ $f(1 / z)$ has a removable singularity, a pole, or an essential singularity at 0 , respectively, In the first case we say that f is holomorphic at infinity. We say that f is meromorphic in the extended complex plane if it is meromorphic in the complex plane and either has a pole at infinity or is holomorphic at infinity.

Exercise 132 Prove that a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ has a removable singularity at infinity iff it is constant.

Exercise 133 Prove that a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ has a pole at infinity of order m iff it is polynomial of degree m.

Exercise 134 Characterize those rational functions which have a removable singularity at infinity.

Exercise 135 Characterize those rational functions which have a pole of order m at infinity.

Next we prove the argument principle. We have seen that in general for a branch $\log _{V}$ of the logarithm, the formula

$$
\log _{V}\left(z_{1} z_{2}\right)=\log _{V} z_{1}+\log _{V} z_{2}
$$

Hence, we cannot expect the formula

$$
\log _{V}\left(f_{1} f_{2}\right)=\log _{V} f_{1}+\log _{V} f_{2}
$$

to holds for holomorphic functions $f_{1}, f_{2}: U \rightarrow V$. However, the formula holds for derivatives since

$$
\frac{\left(f_{1} f_{2}\right)^{\prime}}{f_{1} f_{2}}=\frac{f_{1}^{\prime} f_{2}+f_{1} f_{2}^{\prime}}{f_{1} f_{2}}=\frac{f_{1}^{\prime}}{f_{1}}+\frac{f_{2}^{\prime}}{f_{2}}
$$

More generally,

$$
\begin{equation*}
\frac{\left(\prod_{k=1}^{n} f_{k}\right)^{\prime}}{\prod_{k=1}^{n} f_{k}}=\sum_{k=1}^{n} \frac{f_{k}^{\prime}}{f_{k}} \tag{51}
\end{equation*}
$$

Wednesday, February 19, 2020
We will use this observation to prove the argument principle. Given a set E, we denote by card E its cardinality.

Theorem 136 (Argument principle) Let $U \subseteq \mathbb{C}$ be an open set and let f : $U \rightarrow \mathbb{C}_{\infty}$ be a meromorphic function. Then for every for closed ball $\bar{B} \subset U$ such that f has no poles or zeros on ∂B, we have
$\frac{1}{2 \pi i} \int_{\partial B} \frac{f^{\prime}}{f} d z=($ number of zeros of f in B) minus (number of poles of f in B), where the zeros and poles are counted with multiplicity.

Proof. Let z_{1}, \ldots, z_{n} be the zeros of f inside B and let p_{1}, \ldots, p_{ℓ} be the poles of f inside B. For every $k=1, \ldots, n$, let m_{k} be the order of z_{k}. By Corollary 112 we can find $r_{k}>0$ and a holomorphic function $g_{k}: B\left(z_{k}, r_{k}\right) \rightarrow \mathbb{C}$ such that $g_{k} \neq 0$ in $B\left(z_{k}, r_{k}\right) \subset B$ and

$$
f(z)=\left(z-z_{k}\right)^{m_{k}} g_{k}(z) \quad \text { for all } z \in B\left(z_{k}, r_{k}\right)
$$

It follows from (51) that

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m_{k}}{z-z_{k}}+\frac{g_{k}^{\prime}(z)}{g_{k}(z)}
$$

The function $\frac{g_{k}^{\prime}}{g_{k}}$ is holomorphic in $B\left(z_{k}, r_{k}\right)$. This shows that $\frac{f^{\prime}}{f}$ has a simple pole with residue m_{k} at z_{k}, that is, $\operatorname{res}_{z_{k}} f^{\prime} / f=m_{k}$.

Similarly, for every $k=1, \ldots, \ell$, let n_{k} be the order of p_{k}. by Theorem 121 we can find $t_{k}>0$ and a holomorphic function $h_{k}: B\left(p_{k}, t_{k}\right) \rightarrow \mathbb{C}$ such that $h_{k} \neq 0$ in $B\left(p_{k}, t_{k}\right) \subset B$ and

$$
\begin{equation*}
f(z)=\frac{h_{k}(z)}{\left(z-p_{k}\right)^{n_{k}}} \quad \text { for all } z \in B\left(p_{k}, t_{k}\right) \tag{52}
\end{equation*}
$$

Since

$$
\frac{d}{d z}\left(\frac{1}{z-p_{k}}\right)=-\frac{1}{\left(z-p_{k}\right)^{2}}
$$

we have

$$
\frac{\frac{d}{d z}\left(\frac{1}{z-p_{k}}\right)}{\frac{1}{z-p_{k}}}=\frac{-\frac{1}{\left(z-p_{k}\right)^{2}}}{\frac{1}{z-p_{k}}}=-\frac{1}{z-p_{k}}
$$

and so, using (51) and (52) we get

$$
\frac{f^{\prime}(z)}{f(z)}=-\frac{n_{k}}{z-p_{k}}+\frac{h_{k}^{\prime}(z)}{h_{k}(z)}
$$

The function $\frac{h_{k}^{\prime}}{h_{k}}$ is holomorphic in $B\left(p_{k}, t_{k}\right)$. This shows that $\frac{f^{\prime}}{f}$ has a simple pole with residue $-n_{k}$ at p_{k}, that is, $\operatorname{res}_{p_{k}} f^{\prime} / f=-n_{k}$.

The conclusion now follows by applying the residue formula (Theorem 124) to f^{\prime} / f.

Exercise 137 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}_{\infty}$ be a meromorphic function. Prove that for every continuous rectifiable closed simple curve γ homotopic to 0 in U and whose range contains no zero or pole of f, we have

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z=(\text { number of zeros of } f \text { in the interior of } \gamma) \text { minus } \\
\text { (number of poles of } f \text { in the interior of } \gamma)
\end{gathered}
$$

where the zeros and poles are counted with multiplicity.
Next we discuss the last type of isolated singularities.
Definition 138 Let $U \subset \mathbb{C}$ be an open set, let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let $z_{0} \in \mathbb{C} \backslash U$ be an isolated singularity of f. We say that z_{0} is an essential singularity for f if z_{0} is not a removable singularity or a pole.

Example 139 The function $f(z)=e^{1 / z}$ has an essential singularity at 0 . Indeed, if we take $z=$ iy we have that

$$
|f(i y)|=\left|e^{1 /(i y)}\right|=\left|e^{-i / y}\right|=1
$$

so z is not a pole. On the other hand,

$$
\lim _{x \rightarrow 0+} x e^{1 / x}=\infty
$$

and so by Theorem 119, $z=0$ is not a removable singularity.

10 The Maximum Modulus Principle

In this section we prove some important theorems of holomorphic functions.
Theorem 140 (Rouché) Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ and $g: U \rightarrow \mathbb{C}$ be holomorphic functions. Assume that there exists a closed ball $\bar{B} \subset U$ such that

$$
\begin{equation*}
|f(z)|>|g(z)| \quad \text { for all } z \in \partial B \tag{53}
\end{equation*}
$$

Then f and $f+g$ have the same number of zeros inside B.
Proof. For $t \in[0,1]$ consider the function

$$
f_{t}(z):=f(z)+\operatorname{tg}(z), \quad z \in U
$$

Then $f_{0}=f$ and $f_{1}=f+g$. Moreover f_{t} is holomorphic in U. Let $n_{t} \in \mathbb{N}_{0}$ be the number of zeros of f_{t} inside B counted with multiplicity. The hypothesis (53) guarantees that f_{t} has no zeros on ∂B. Hence, by the argument principle

$$
n_{t}=\frac{1}{2 \pi i} \int_{\partial B} \frac{f_{t}^{\prime}}{f_{t}} d z
$$

Again by (53) we have that the function

$$
g(t, z)=\frac{f_{t}^{\prime}(z)}{f_{t}(z)}=\frac{f^{\prime}(z)+t g^{\prime}(z)}{f(z)+\operatorname{tg}(z)}, \quad t \in[0,1], z \in \partial B
$$

is continuous in the compact set $[0,1] \times \partial B$. Hence, it is bounded. Using the Lebesgue dominated convergence theorem (or Ascoli's convergence theorem for Riemann integrals), we have that n_{t} is a continuous function of t. But since it is integer-valued and $[0,1]$ is connected, it follows that n_{t} must be constant. This concludes the proof.

Using Rouché's theorem we can prove that non-constant holomorphic functions are open.

Theorem 141 (Open mapping) Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a non-constant holomorphic function. Then for every $V \subseteq U$ open, $f(V)$ is open.

Proof. Let $z_{0} \in V$ and let $w_{0}=f\left(z_{0}\right)$. We must find $\varepsilon>0$ such that $B\left(w_{0}, \varepsilon\right) \subset f(V)$. Since the zeros of $f-w_{0}$ are isolated by Theorem 111 (or Corollary 112, there exists $\delta>0$ such that $\overline{B\left(z_{0}, \delta\right)} \subset V$ and $f-w_{0} \neq 0$ on $\partial B\left(z_{0}, \delta\right)$. By uniform continuity, we can find $\varepsilon>0$ such that

$$
\left|f(z)-w_{0}\right|>\varepsilon \quad \text { for all } z \in \partial B\left(z_{0}, \delta\right)
$$

Let $w \in B\left(w_{0}, \varepsilon\right)$ and define

$$
g(z):=f(z)-w=\left(f(z)-w_{0}\right)+\left(w_{0}-w_{0}\right)=: F(z)+G(z)
$$

By the previous inequality we have that $|F(z)|>|G(z)|$ for all $z \in \partial B\left(z_{0}, \delta\right)$. Hence, by Rouché's theorem F and $F+G=g$ have the same number of zeros in $B\left(z_{0}, \delta\right)$. Since F has one zero in $B\left(z_{0}, \delta\right)$, so must g. Hence, there is $z \in B\left(z_{0}, \delta\right)$ such that $f(z)=w$. This shows that $B\left(w_{0}, \varepsilon\right) \subseteq f\left(B\left(z_{0}, \delta\right)\right) \subseteq f(V)$. This concludes the proof.

Corollary 142 Let $U \subseteq \mathbb{C}$ be open and let $f: U \rightarrow \mathbb{C}$ be injective and holomorphic. Then $f^{-1}: f(U) \rightarrow \mathbb{C}$ is holomorphic and

$$
\left(f^{-1}\right)^{\prime}(w)=\frac{1}{f^{\prime}\left(f^{-1}(w)\right)}, \quad w \in f(U)
$$

Proof. By the open mapping theorem, f^{-1} is continuous and $f(U)$ is open. Hence, we can apply Exercise 9 to conclude that f^{-1} is differentiable.

Theorem 143 (Maximum modulus principle) Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be a nonconstant holomorphic function. Then $|f|$ cannot attains a maximum in U.

Proof. Assume that $|f|$ assumes a maximum at some point $z_{0} \in U$. Let $B\left(z_{0}, r\right) \subseteq U$. By the open mapping theorem, $f\left(B\left(z_{0}, r\right)\right)$ is open and so there exists $B\left(f\left(z_{0}\right), \delta\right) \subseteq f\left(B\left(z_{0}, r\right)\right)$. This implies that there exists points in U with modulus bigger that $\left|f\left(z_{0}\right)\right|$, which is a contradiction.

Exercise 144 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f: U \rightarrow \mathbb{C}$ be a non-constant holomorphic function such that $f(z) \neq 0$ for all $z \in U$. Prove that $|f|$ cannot attain its minimum on U.

Corollary 145 Let $U \subset \mathbb{C}$ be an open bounded set and let $f: \bar{U} \rightarrow \mathbb{C}$ be a continuous function which is holomorphic in U. Then

$$
\sup _{U}|f| \leq \max _{\partial U}|f| .
$$

Proof. Since $|f|$ is continuous on the compact set \bar{U}, it admits a maximum. By the maximum principle, this maximum must be attained at the boundary of U.

The previous corollary fails in general in unbounded domains.
Example 146 Let $U:=\{z=x+i y: x>0, y>0\}$ be the first quadrant and let $f(z)=e^{-i z^{2}}$. Then f is holomorphic in U and continuous on \bar{U}. If $z=x \geq 0$, then $|f(x)|=\left|e^{-i x^{2}}\right|=1$, while if $z=$ iy with $y \geq 0$, then $|f(i y)|=$ $\left|e^{i y^{2}}\right|=1$. However, f is unbounded. To see this take $z=r \sqrt{i}=r e^{i \pi / 4}$. Then $f(z)=e^{r} \rightarrow \infty$ as $r \rightarrow \infty$.

Friday, February 21, 2020

11 Essential Singularities

Next we study the behavior of a holomorphic function near an essential singularity.

Theorem 147 (Casorati-Weierstrass) Let $z_{0} \in \mathbb{C}$, $r>0$, and let $f: B\left(z_{0}, r\right) \backslash$ $\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having an essential singularity at z_{0}. Then $f\left(B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}\right)$ is dense in \mathbb{C}.

Proof. Assume by contradiction that $f\left(B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}\right)$ is not dense in \mathbb{C}. Then there exist $w_{0} \in \mathbb{C}$ and $\delta>0$ such that

$$
\left|f(z)-w_{0}\right| \geq \delta \quad \text { for all } z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}
$$

It follows that the function

$$
g(z):=\frac{1}{f(z)-w_{0}}, \quad z \in B\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}
$$

is well-defined and holomorphic. Moreover, it is bounded by $1 / \delta$. Hence, by Theorem 119 it has a removable singularity at z_{0}. Extend g to z_{0} as a holomorphic function. There are now two cases. If $g\left(z_{0}\right) \neq 0$, then $g \neq 0$ in $B\left(z_{0}, r\right)$, and so $f-w_{0}$ has a removable singularity at z_{0}, which is a contradiction. If $g\left(z_{0}\right)=0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z)-w_{0}}=0
$$

which implies that

$$
\lim _{z \rightarrow z_{0}}\left|f(z)-w_{0}\right|=\infty
$$

and so f has a pole at z_{0}, which is again a contradiction. This concludes the proof.

There is actually a much stronger result.
Theorem 148 (Picard Big Theorem) Let $z_{0} \in \mathbb{C}, r>0$, and let $f: B\left(z_{0}, r\right) \backslash$ $\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having an essential singularity at z_{0}. Then f takes all possible values of \mathbb{C} with at most a single exception.

Exercise 149 Prove that

$$
\pi \cot (\pi z)=\lim _{\ell \rightarrow \infty} \sum_{k=-\ell}^{\ell} \frac{1}{z+k}=\frac{1}{z}+\sum_{n=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
$$

The proof relies on several preliminary results. We begin with another important theorem.

Theorem 150 (Bloch) Let $U \subseteq \mathbb{C}$ be an open set which contains $\overline{B(0,1)}$ and $f: U \rightarrow \mathbb{C}$ be a holomorphic function such that $f^{\prime}(0)=1$. Then $f(B(0,1))$ contains a ball of radius $\frac{3}{2}-\sqrt{2}$.

We begin with some lemmas.
Exercise 151 Let $V \subset \mathbb{C}$ be an open bounded set, let $f: \bar{V} \rightarrow \mathbb{C}$ be a continuous function such that $f: V \rightarrow \mathbb{C}$ is open. Let $w_{0} \in V$ be such that

$$
R:=\min _{z \in \partial V}\left|f(z)-f\left(w_{0}\right)\right|>0
$$

Prove that $f(V)$ contains $B\left(f\left(w_{0}\right), R\right)$.
Lemma 152 Let $U \subseteq \mathbb{C}$ be an open set which contains $\overline{B\left(z_{0}, r\right)}$ and $f: U \rightarrow \mathbb{C}$ be a holomorphic function which is non-constant in $B\left(z_{0}, r\right)$ and such that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 2\left|f^{\prime}\left(z_{0}\right)\right| \quad \text { for all } z \in \overline{B\left(z_{0}, r\right)} \tag{54}
\end{equation*}
$$

Then $f\left(B\left(z_{0}, r\right)\right)$ contains $B\left(f\left(z_{0}\right), r_{0}\right)$, where $r_{0}=(3-2 \sqrt{2})\left|f^{\prime}\left(z_{0}\right)\right| r$.
Proof. Without loss of generality we may assume that $z_{0}=0$ and $f(0)=0$. Define $g(z)=f(z)-f^{\prime}(0) z$. By the fundamental theorem of calculus,

$$
g(z)=\int_{[0, z]}\left[f^{\prime}(\zeta)-f^{\prime}(0)\right] d \zeta
$$

Consider the parametric representation $\varphi(t)=t z, t \in[0,1]$. Then

$$
\begin{equation*}
|g(z)| \leq|z| \int_{0}^{1}\left|f^{\prime}(t z)-f^{\prime}(0)\right| d t \tag{55}
\end{equation*}
$$

Let $w \in B(0, r)$. By Cauchy's formula applied to the holomorphic function f^{\prime},

$$
f^{\prime}(w)=\frac{1}{2 \pi i} \int_{\partial B(0, r)} \frac{f^{\prime}(\zeta)}{\zeta-w} d \zeta, \quad f^{\prime}(0)=\frac{1}{2 \pi i} \int_{\partial B(0, r)} \frac{f^{\prime}(\zeta)}{\zeta} d \zeta
$$

Subtracting these identities gives

$$
\begin{aligned}
f^{\prime}(w)-f^{\prime}(0) & =\frac{1}{2 \pi i} \int_{\partial B(0, r)}\left[\frac{1}{\zeta-w}-\frac{1}{\zeta}\right] f^{\prime}(\zeta) d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B(0, r)} \frac{w}{\zeta(\zeta-w)} f^{\prime}(\zeta) d \zeta
\end{aligned}
$$

and so using the the parametric representation $\psi(\theta)=r e^{i \theta}$ and the fact that $|\zeta-w| \geq|\zeta|-|w|=r-|w|$, we get

$$
\left|f^{\prime}(w)-f^{\prime}(0)\right| \leq|w| \sup _{\partial B(0, r)}\left|f^{\prime}\right| \frac{1}{r-|w|}
$$

Taking $w=t z$ and using this inequality in (55) gives

$$
\begin{align*}
|g(z)| & \leq|z| \int_{0}^{1}\left|f^{\prime}(t z)-f^{\prime}(0)\right| d t \leq|z| \sup _{\partial B(0, r)}\left|f^{\prime}\right| \int_{0}^{1} \frac{t|z|}{r-t|z|} d t \\
& \leq|z|^{2} \sup _{\partial B(0, r)}\left|f^{\prime}\right| \frac{1}{r-|z|} \int_{0}^{1} t d t=\frac{1}{2} \frac{|z|^{2}}{r-|z|} \sup _{\partial B(0, r)}\left|f^{\prime}\right| \tag{56}\\
& \leq \frac{|z|^{2}}{r-|z|}\left|f^{\prime}(0)\right|
\end{align*}
$$

where in the last inequality we used (54). Now let $0<\rho<r$ and take z with $|z|=\rho$. Then

$$
|g(z)|=\left|f(z)-f^{\prime}(0) z\right| \geq\left|f^{\prime}(0)\right| \rho-|f(z)|
$$

Combining this inequality with (56) gives

$$
\frac{\rho^{2}}{r-\rho}\left|f^{\prime}(0)\right| \geq\left|f^{\prime}(0)\right| \rho-|f(z)|
$$

or, equivalently,

$$
|f(z)| \geq\left|f^{\prime}(0)\right|\left(\rho-\frac{\rho^{2}}{r-\rho}\right)=:\left|f^{\prime}(0)\right| h(\rho)
$$

We have

$$
h^{\prime}(\rho)=\frac{d}{d \rho}\left(\rho-\frac{\rho^{2}}{r-\rho}\right)=\frac{r^{2}-4 r \rho+2 \rho^{2}}{(r-\rho)^{2}} \geq 0
$$

for $\rho \geq r\left(\frac{\sqrt{2}}{2}+1\right)$ and $\rho \leq r\left(1-\frac{\sqrt{2}}{2}\right)$, so h has a maximum at $\rho_{0}=r\left(1-\frac{\sqrt{2}}{2}\right)$. Hence,

$$
|f(z)| \geq\left|f^{\prime}(0)\right| h\left(\rho_{0}\right)=\left|f^{\prime}(0)\right| r(3-2 \sqrt{2}) \quad \text { for all } z \in \partial B\left(0, \rho_{0}\right)
$$

We now apply the previous exercise with $w_{0}=0$ and $V=B\left(0, \rho_{0}\right)$ to obtain that

$$
f(B(0, r)) \supseteq f\left(B\left(0, \rho_{0}\right)\right) \supseteq B(0, R)
$$

where $R:=\min _{\partial B\left(0, \rho_{0}\right)}|f| \geq\left|f^{\prime}(0)\right| r(3-2 \sqrt{2})=r_{0}$. This concludes the proof.
We now turn to the proof of Bloch's theorem.
Proof. Step 1: Let $U \subseteq \mathbb{C}$ be an open set which contains $\overline{B(0,1)}$ and $f: U \rightarrow \mathbb{C}$ be a holomorphic function which is non-constant in $B(0,1)$. Since the function

$$
g(z)=\left|f^{\prime}(z)\right|(1-|z|)
$$

is continuous in $\overline{B(0,1)}$, it assumes a maximum at some point z_{0}. We claim that $f(B(0,1)) \supseteq B\left(f\left(z_{0}\right), r_{0}\right)$, where $r_{0}:=\left(\frac{3}{2}-\sqrt{2}\right) g\left(z_{0}\right)$.

To see this, take $t=\frac{1}{2}\left(1-\left|z_{0}\right|\right)$. Then

$$
\begin{equation*}
g\left(z_{0}\right)=\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|\right)=2 t\left|f^{\prime}\left(z_{0}\right)\right| \tag{57}
\end{equation*}
$$

Moreover, $B\left(z_{0}, t\right) \subseteq B(0,1)$, since if $z \in B\left(z_{0}, t\right)$, then

$$
|z| \leq\left|z-z_{0}\right|+\left|z_{0}\right|<t+\left|z_{0}\right|=\frac{1}{2}\left(1-\left|z_{0}\right|\right)+\left|z_{0}\right|=\frac{1}{2}+\frac{1}{2}\left|z_{0}\right| \leq 1
$$

Note that the previous inequality also implies that

$$
\begin{equation*}
1-|z| \geq t \tag{58}
\end{equation*}
$$

Indeed, the previous inequality can be written $1 \geq t+|z|=\frac{1}{2}\left(1-\left|z_{0}\right|\right)+|z|$,or, equivalently, $\frac{1}{2}+\frac{1}{2}\left|z_{0}\right| \geq|z|$, which is what we just proved.

Using (57) and (58) and the fact that g has a maximum at z_{0}, we have

$$
\left|f^{\prime}(z)\right|(1-|z|)=g(z) \leq g\left(z_{0}\right)=2 t\left|f^{\prime}\left(z_{0}\right)\right| \leq(1-|z|)\left|f^{\prime}\left(z_{0}\right)\right|
$$

which gives $\left|f^{\prime}(z)\right| \leq\left|f^{\prime}\left(z_{0}\right)\right|$. It now follows from the previous lemma and the fact that $B\left(z_{0}, t\right) \subseteq B(0,1)$, that

$$
f(B(0,1)) \supseteq f\left(B\left(z_{0}, t\right)\right) \supseteq B\left(f\left(z_{0}\right), r_{0}\right),
$$

where $r_{0}=(3-2 \sqrt{2})\left|f^{\prime}\left(z_{0}\right)\right| t=\left(\frac{3}{2}-\sqrt{2}\right) g\left(z_{0}\right)$, again by 57).
Step 2: To conclude the proof of the theorem, observe that if $f^{\prime}(0)=1$, then $g(0)=1 \leq g\left(z_{0}\right)$ and so $r_{0} \geq \frac{3}{2}-\sqrt{2}$.

Corollary 153 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. If $z_{0} \in U$ is such that $f^{\prime}\left(z_{0}\right) \neq 0$, then $f(U)$ contains balls of every radius $\frac{1}{12} r\left|f^{\prime}\left(z_{0}\right)\right|$, where $0<r<\operatorname{dist}\left(z_{0}, \partial U\right)$.

Proof. Assume that $z_{0}=0$. If $0<r<\operatorname{dist}(0, \partial U)$, then $\overline{B(0, r)} \subset U$. Consider the function

$$
g(z):=\frac{f(r z)}{r f^{\prime}(0)}, \quad z \in \frac{1}{r} U .
$$

Since $\overline{B(0,1)} \subset \frac{1}{r} U$ and $g^{\prime}(0)=1$, by Bloch's theorem $g(B(0,1))$ contains a ball of radius $\frac{3}{2}-\sqrt{2}>\frac{1}{12}$. In turn, $f(B(0, r))$ contains a ball of radius $\frac{1}{12} r\left|f^{\prime}(0)\right|$.

Corollary 154 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function. Then $f(\mathbb{C})$ contains balls of every radius.

Exercise 155 Let $f: \mathbb{C} \rightarrow \mathbb{C}$. Prove that $f \circ f: \mathbb{C} \rightarrow \mathbb{C}$ has a fixed point unless f is of the form $f(z)=z+w$ for all $z \in \mathbb{C}$ and for some $w \in \mathbb{C}$.

In this subsection we prove the following theorem.
Theorem 156 (Picard Little Theorem) Every non-constant entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ takes every value except at most one.

We begin with some preliminary results.
Lemma 157 Let $U \subseteq \mathbb{C}$ be a simply connected open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function which does not take value -1 and 1 . Then there exists a holomorphic function $h: U \rightarrow \mathbb{C}$ such that

$$
f(z)=\cosh (z), \quad z \in U
$$

Proof. Since f does not take values -1 and $1,1-f^{2}$ is never equal to 0 and so by by Remark 103 there exists a branch of $\sqrt{1-f^{2}}$, that is a holomorphic function $g: U \rightarrow \mathbb{C}$ such that $g^{2}=1-f^{2}$ in U. Write $1=f^{2}+g^{2}=(f+i g)(f-$ $i g)$. Then $f+i g$ has no zeros in U and so by Corollary $100, f+i g=e^{i h}$ for some holomorphic function $h: U \rightarrow \mathbb{C}$. In turn, $1=(f+i g)(f-i g)=e^{i h}(f-i g)$ and so $f-i g=e^{-i h}$. Using Euler's formula 20 we get

$$
f=\frac{e^{i h}+e^{-i h}}{2}=\cos h \quad \text { in } U
$$

which concludes the proof.
Lemma 158 Let $U \subseteq \mathbb{C}$ be a simply connected open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function which does not take value 0 and 1 . Then there exists a holomorphic function $g: U \rightarrow \mathbb{C}$ such that

$$
f(z)=\frac{1}{2}[1+\cos (\pi \cos (\pi g(z)))], \quad z \in U
$$

Moreover, $g(U)$ does not contain any ball of radius 1 .

Proof. The function $2 f-1$ does not take the values -1 and 1 , and so by the previous lemma, there exists a holomorphic function $h: U \rightarrow \mathbb{C}$ such that $2 f-1=\cos (\pi h)$ in U. Note that by periodicity, the function h does not take any integer values. In particular, it does not take the values -1 and 1. Hence, by the previous lemma again, there exists a holomorphic function $g: U \rightarrow \mathbb{C}$ such that we can write $h=\cos (\pi g)$.

To prove the second part of the statement, consider the set

$$
E=\left\{k \pm i \pi^{-1} \log \left(n+\sqrt{n^{2}-1}\right): k \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

We claim that $g(U) \cap E=\emptyset$. To see this, let $w \in E$. Then by Euler's formula (20),

$$
\begin{aligned}
\cos (\pi w) & =\frac{e^{i \pi w}+e^{-i \pi w}}{2}=\frac{1}{2}\left(e^{i \pi k} e^{\mp \log \left(n+\sqrt{n^{2}-1}\right)}+e^{-i \pi k} e^{ \pm \log \left(n+\sqrt{n^{2}-1}\right)}\right) \\
& =\frac{1}{2}(-1)^{k}\left[\frac{1}{n+\sqrt{n^{2}-1}}+n+\sqrt{n^{2}-1}\right] \\
& =\frac{1}{2}(-1)^{k} 2 n=(-1)^{k} n
\end{aligned}
$$

Hence, $\cos (\pi \cos (\pi w))=\cos \left(\pi(-1)^{k} n\right) \in\{-1,1\}$. In turn. $\frac{1}{2}[1+\cos (\pi \cos (\pi w))] \in$ $\{0,1\}$. Since f does not take values 0 and $1, g$ cannot take value w. This proves the claim.

The points in E are the vertices of a rectangular grid. Consider the rectangle of vertices $k+i \pi^{-1} \log \left(n+\sqrt{n^{2}-1}\right), k+1+i \pi^{-1} \log \left(n+\sqrt{n^{2}-1}\right)$, $k+i \pi^{-1} \log \left(n+1+\sqrt{(n+1)^{2}-1}\right)$, and $k+1+i \pi^{-1} \log \left(n+1+\sqrt{(n+1)^{2}-1}\right)$. The base has length 1 and the height has length

$$
\begin{aligned}
& \log \left(n+1+\sqrt{(n+1)^{2}-1}\right)-\log \left(n+\sqrt{n^{2}-1}\right) \\
& =\log \frac{n+1+\sqrt{(n+1)^{2}-1}}{n+\sqrt{n^{2}-1}}=\log \frac{1+\frac{1}{n}+\sqrt{1+\frac{2}{n}}}{1+\sqrt{1-\frac{1}{n^{2}}}} \\
& <\log \left(1+\frac{1}{n}+\sqrt{1+\frac{2}{n}}\right) \leq \log (2+\sqrt{3}) \sim 1.317<\pi
\end{aligned}
$$

where we factor out n and used the monotonicity of the logarithm. Hence, the height of the rectangle is less than 1 . Thus for every $w \in \mathbb{C}$ we can find $z \in E$ such that $|\operatorname{Re} w-\operatorname{Re} z| \leq \frac{1}{2},|\operatorname{Im} w-\operatorname{Im} z|<\frac{1}{2}$, which implies that $|w-z|<1$. This shows that every ball of radius 1 intersects E. Since $g(U)$ does not intersect E, it cannot intersect any ball of radius 1 .

Wednesday, February 26, 2020
We are now ready to prove Picard's little theorem.
Proof of Theorem 156. Assume by contradiction that there exist $a, b \in \mathbb{C}$ with $a \neq b$ such that $f: \mathbb{C} \rightarrow \mathbb{C}$ does not takes value a and b. The the function

$$
h(z)=\frac{f(z)-a}{b-a}, \quad z \in \mathbb{C}
$$

does not take the values 0 and 1 . Hence, by the previous lemma there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
h(z)=\frac{1}{2}[1+\cos (\pi \cos (\pi g(z)))] .
$$

Moreover, $g(\mathbb{C})$ does not contain any ball of radius 1 . However, since g is not constant, by Corollary 154 we have a contradiction.

Another important theorem is the following.
Theorem 159 (Schottky) Let $U \subseteq \mathbb{C}$ be an open set which contains $\overline{B(0,1)}$, let $\alpha>0,0<r<1$, and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function which does not take values 0 and 1 and such that $|f(0)| \leq \alpha$. Then

$$
\begin{equation*}
|f(z)| \leq \exp (\pi \exp (\pi(3+\alpha+12 r /(1-r)))) \quad \text { for all } z \in B(0, r) \tag{59}
\end{equation*}
$$

Proof. Since U contains $\overline{B(0,1)}$, we can find $R>1$ such that contains $\overline{B(0,1)} \subset B(0, R) \subseteq U$. In the remaining of the proof we take $U=B(0, R)$, so that U is simply connected. As in the proof of Lemma 158 , since f does not take the values 0 and 1 , the function $2 f-1$ does not take the values -1 and 1 and so by Lemma 157 there exists a holomorphic function $h: U \rightarrow \mathbb{C}$ such that $2 f-1=\cos (\pi h)$ in U. By periodicity, we can add to h any integer multiple of 2. Hence, without loss of generality, we may assume that

$$
-1 \leq \operatorname{Re} h(0) \leq 1
$$

By Exercise 33, for every $w=x+i y$ we have that

$$
\begin{equation*}
|y| \leq \cosh y \leq|\cos w| \tag{60}
\end{equation*}
$$

and so

$$
\pi|\operatorname{Im} h(0)| \leq|\cos (\pi h(0))|=|2 f(0)-1| \leq 2|f(0)|+1
$$

Hence,

$$
\begin{equation*}
|h(0)| \leq 1+\frac{2}{\pi}|f(0)|+\frac{1}{\pi}<2+|f(0)| \tag{61}
\end{equation*}
$$

Since $2 f-1$ does not take the values -1 and 1 , the function h omits all integer values. In particular, it omits the values -1 and 1 and so by Lemma 158 there exists a holomorphic function $g: U \rightarrow \mathbb{C}$ such that $h=\cos (\pi g)$. Moreover, $g(U)$ does not contain any ball of radius 1 .

Reasoning as in the first part of the proof, by periodicity we can add to g any integer multiple of 2 and so we can assume that $-1 \leq \operatorname{Re} g(0) \leq 1$. By (60) and 61,

$$
\pi|\operatorname{Im} g(0)| \leq|\cos (\pi g(0))|=|h(0)| \leq 2+|f(0)|
$$

and so

$$
\begin{equation*}
|g(0)| \leq 1+\frac{2}{\pi}|f(0)|+\frac{2}{\pi} \leq 3+|f(0)| \tag{62}
\end{equation*}
$$

If $|z| \leq r<1$, then $\operatorname{dist}(z, \partial B(0,1)) \geq 1-r$. On one hand, $g(U)$ does not contain any ball of radius 1 . On the other hand, by Corollary 153 if $g^{\prime}(z) \neq 0$, then $g(U)$ contains balls of every radius $\frac{1}{12}(1-r)\left|g^{\prime}(z)\right|$. Hence,

$$
\frac{1}{12}(1-r)\left|g^{\prime}(z)\right|<1
$$

for all $z \in B(0, r)$. By the fundamental theorem of calculus,

$$
g(z)-g(0)=\int_{[0, z]} g^{\prime}(\zeta) d \zeta
$$

and so by the previous inequality, $(62$, and the fact that $|f(0)| \leq \alpha$,

$$
\begin{equation*}
|g(z)| \leq|g(0)|+12|z| /(1-r) \leq 3+\alpha+12 r /(1-r) \tag{63}
\end{equation*}
$$

Since $|\cos w| \leq e^{|w|}$ and $\frac{1}{2}|1+\cos w| \leq e^{|w|}$, it follows that

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{2}|1+\cos (\pi \cos (\pi g(z)))| \leq \exp (\pi|\cos (\pi g(z))|) \\
& \leq \exp (\pi \exp (\pi|g(z)|)) \leq \exp (\pi \exp (\pi(3+\alpha+12 r /(1-r))))
\end{aligned}
$$

where in the last inequality we used (63).
The beauty of Schottky's theorem is that the right-hand side of (59) depends only on α and r. Hence, we have a universal bound.

12 Sequences of Holomorphic Functions

Theorem 160 Let $U \subseteq \mathbb{C}$ be an open set and let $f_{n}: U \rightarrow \mathbb{C}$ be holomorphic functions which converge uniformly on compact sets of U to a function $f: U \rightarrow$ \mathbb{C}. Then f is holomorphic and $\left\{f_{n}^{\prime}\right\}_{n}$ converges uniformly to f^{\prime} on compact sets of U.

Proof. By Goursat's theorem,

$$
\int_{\partial T} f_{n}=0
$$

for every n and for every closed triangle $T \subset U$. Letting $n \rightarrow \infty$ and using uniform convergence we get

$$
\int_{\partial T} f=0
$$

and so by the previous corollary f is holomorphic in every open ball contained in U, which implies that f is holomorphic in U.

To prove the second part of the statement, we use $\sqrt{32}$ to get

$$
f_{n}^{\prime}(z)=\frac{1}{2 \pi i} \int_{\partial B\left(z_{0}, r\right)} \frac{f_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta
$$

for every $\overline{B\left(z_{0}, r\right)} \subset U$ and every $z \in B\left(z_{0}, r\right)$. If $z \in \overline{B\left(z_{0}, \rho\right)}$, where $0<\rho<r$, since $|\zeta-z| \geq\left|\zeta-z_{0}\right|-\left|z_{0}-z\right| \geq r-\rho$,

$$
\left|f^{\prime}(z)-f_{n}^{\prime}(z)\right|=\left|\int_{\partial B\left(z_{0}, r\right)} \frac{f(\zeta)-f_{n}(\zeta)}{(\zeta-z)^{2}} d \zeta\right| \leq \frac{2 \pi r}{(r-\rho)^{2}}\left\|f-f_{n}\right\|_{C\left(\partial B\left(z_{0}, r\right)\right)}
$$

and so there is uniform convergence in $\overline{B\left(z_{0}, \rho\right)}$. Since any compact set $K \subset U$ can be covered by a finite number of these balls, we have uniform convergence of $\left\{f_{n}^{\prime}\right\}_{n}$ on compact sets of U.

Definition 161 A metric space (X, d) is separable if there exists a countable subset that is dense in X.

Definition 162 Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A family \mathcal{F} of functions $f: X \rightarrow Y$ is said to be equicontinuous at a point $x_{0} \in X$ if for every $\varepsilon>0$ there exists $\delta=\delta\left(x_{0}, \varepsilon\right)>0$ such that

$$
d_{Y}\left(f(x), f\left(x_{0}\right)\right) \leq \varepsilon
$$

for all $f \in \mathcal{F}$ and for all $x \in X$ with $d\left(x, x_{0}\right) \leq \delta$. The family \mathcal{F} of functions $f: X \rightarrow Y$ is said to be uniformly equicontinuous if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
d_{Y}(f(x), f(y)) \leq \varepsilon
$$

for all $f \in \mathcal{F}$ and for all $x, y \in X$ with $d(x, y) \leq \delta$.
Theorem 163 (Ascoli-Arzelà) Let (X, d) be a separable metric space and let $\mathcal{F} \subseteq C_{b}(X)$ be a family of functions. Assume that \mathcal{F} is bounded and equicontinuous at every point $x \in X$. Then every sequence in \mathcal{F} has a subsequence that converges pointwise to a function $g \in C_{b}(X)$ and uniformly on every compact subset of X.

Friday, February 28, 2020
Theorem 164 (Montel) Let $U \subseteq \mathbb{C}$ be an open set and let \mathcal{F} be a family of holomorphic functions defined on U. Assume that for every $K \subset U$ there exists a constant $M_{K}>0$ such that

$$
|f(z)| \leq M_{K}
$$

for all $f \in \mathcal{F}$ and for all $z \in K$. Then the family \mathcal{F} is equicontinuous on K and for every sequence in \mathcal{F} there is a subsequence which converges uniformly on compact sets to a holomorphic function $f: U \rightarrow \mathbb{C}$.

Proof. Fix a compact set $K \subset U$ and let $d_{K}:=\operatorname{dist}(K, \partial U)>0$ and let $0<r<\frac{1}{3} d_{K}$. Then for $z \in K, \overline{B(z, 3 r)} \subset U$. Hence, for $z, w \in K$ with $|z-w|<r$ we can apply the Cauchy's theorem to get

$$
f(z)-f(w)=\frac{1}{2 \pi i} \int_{\partial B(w, 2 r)}\left(\frac{f(\zeta)}{\zeta-z}-\frac{f(\zeta)}{\zeta-w}\right) d \zeta
$$

For $\zeta \in \partial B(w, 2 r)$ we have $|\zeta-w|=2 r$ and $|\zeta-z| \geq|\zeta-w|-|z-w| \geq 2 r-r$.
Then

$$
\left|\frac{1}{\zeta-z}-\frac{1}{\zeta-w}\right|=\left|\frac{z-w}{(\zeta-z)(\zeta-w)}\right| \leq \frac{|z-w|}{2 r^{2}}
$$

Hence,

$$
|f(z)-f(w)| \leq \frac{2 M_{K}}{2 \pi} \frac{|z-w|}{2 r^{2}}(4 \pi r)
$$

for all $z, w \in K$ with $|z-w|<r$ and for all $f \in \mathcal{F}$. This shows that the family \mathcal{F} is equicontinuous in K. We can now apply the Ascoli-Arzelà to get that for every sequence in \mathcal{F} there a subsequence converging uniformly on compact sets to a continuous function. By the previous theorem, the function is holomorphic.

Exercise 165 Let $U \subseteq \mathbb{R}^{N}$ be an open connected set and let $f: U \rightarrow \mathbb{R}$ be an analytic function such that f is constant in a ball $B \subseteq U$. Prove that f is constant in U.

Theorem 166 (Hurwitz) Let $U \subseteq \mathbb{C}$ be an open set, let $f_{n}: U \rightarrow \mathbb{C}$ be a sequence of functions converging uniformly on compact set to a holomorphic function $f: U \rightarrow \mathbb{C}$. Assume that there exists $\overline{B\left(z_{0}, r\right)} \subset U$ such that $f(z) \neq 0$ for all $z \in \partial B\left(z_{0}, r\right)$. Then there exists n_{1} such that f_{n} and f have the same number of zeros in $B\left(z_{0}, r\right)$ for all $n \geq n_{1}$.

Proof. By continuity

$$
\delta:=\min _{\partial B\left(z_{0}, r\right)}|f|>0 .
$$

In turn, by uniform convergence on compact sets, there is n_{*} such that $\left|f_{n}(z)\right| \geq$ $\delta / 2$ for all $z \in \partial B\left(z_{0}, r\right)$ and all $n \geq n_{*}$. It follows that

$$
\left|\frac{1}{f_{n}(z)}-\frac{1}{f(z)}\right|=\frac{\left|f(z)-f_{n}(z)\right|}{|f(z)|\left|f_{n}(z)\right|} \leq \frac{2}{\delta^{2}}\left|f(z)-f_{n}(z)\right|
$$

and so $\left\{1 / f_{n}\right\}$ converges uniformly to $1 / f$ on $\partial B\left(z_{0}, r\right)$. Moreover, since $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact sets by Theorem 160 it follows that $\frac{f_{n}^{\prime}}{f_{n}} \rightarrow \frac{f^{\prime}}{f}$ uniformly on $\partial B\left(z_{0}, r\right)$, and so

$$
\lim _{n \rightarrow \infty} \int_{\partial B\left(z_{0}, r\right)} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z=\int_{\partial B\left(z_{0}, r\right)} \frac{f^{\prime}(z)}{f(z)} d z
$$

But by the argument principle (see Theorem 136 the integrals $\int_{\partial B\left(z_{0}, r\right)} \frac{f_{n}^{\prime}}{f_{n}} d z$ and $\int_{\partial B\left(z_{0}, r\right)} \frac{f^{\prime}}{f} d z$ are the numbers of zeros of f_{n} and f inside $B\left(z_{0}, r\right)$, and these numbers are finite. Since the limit exists, for n large these values must coincide.

The following corollary will be useful to prove the Riemann mapping theorem.

Theorem 167 Let $U \subseteq \mathbb{C}$ be an open connected set and let $f_{n}: U \rightarrow \mathbb{C}$ be a sequence of injective holomorphic functions converging uniformly on compact set to a holomorphic function $f: U \rightarrow \mathbb{C}$. Then either f is injective or constant.

Proof. Let $z_{0} \in U$. Define $g_{n}(z)=f_{n}(z)-f_{n}\left(z_{0}\right)$ and $g(z):=f(z)-f\left(z_{0}\right)$. Assume that there exists $z_{1} \neq z_{0}$ such that $f\left(z_{1}\right)=f\left(z_{0}\right)$. Then g has a zero at z_{1}. If g is not constant, then since the zeros of g are isolated, we can find $r>0$ such that $\overline{B\left(z_{1}, r\right)} \subset U$ and $g(z) \neq 0$ for all $z \in \overline{B\left(z_{1}, r\right)} \backslash\left\{z_{1}\right\}$. In particular, we are in a position to apply Hurwitz theorem to conclude that for all n large all functions g_{n} have a zero in $B\left(z_{1}, r\right)$. But by taking $r>0$ we can assume that $z_{0} \notin \overline{B\left(z_{1}, r\right)}$. Since the functions f_{n} are injective, they cannot have a zero at z_{1}, which is a contradiction.

An important application of Schottky's theorem is a sharpened version of Montel's theorem. In what follows, given an open set and $f_{n}: U \rightarrow \mathbb{C}$, we say that the sequence $\left\{f_{n}\right\}_{n}$ converges uniformly to ∞ on compact sets if for every compact set $K \subset U$ and every $M>0$ there exists $n_{K, M}$ such that

$$
\left|f_{n}(z)\right| \geq M \quad \text { for all } z \in K
$$

and all $n \geq n_{K, M}$.
Theorem 168 Let $U \subseteq \mathbb{C}$ be an open connected set and let \mathcal{F} be the family of holomorphic functions $f: U \rightarrow \mathbb{C}$ which do not take the values 0 and 1 . Then for every sequence $\left\{f_{n}\right\}_{n}$ in \mathcal{F} there is a subsequence $\left\{f_{n_{k}}\right\}_{k}$ such that $\left\{f_{n_{k}}\right\}_{k}$ converges uniformly on compact sets either to a holomorphic function $f: U \rightarrow \mathbb{C}$ or to ∞.

Proof. Step 1: Let $z_{0} \in U$ and $\alpha>0$ and let

$$
\mathcal{F}_{z_{0}, \delta}:=\left\{f \in \mathcal{F}:\left|f\left(z_{0}\right)\right| \leq \alpha\right\} .
$$

We claim that there exist $\delta>0$ and $M>0$ such that

$$
|f(z)| \leq M
$$

for all $z \in B\left(z_{0}, \delta\right)$ and all $f \in \mathcal{F}_{z_{0}, \delta}$. To see this, let $r>0$ be so small that $\overline{B\left(z_{0}, 2 r\right)} \subset U$. By a dilation and a translation, without loss of generality, we may assume that $z_{0}=0$ and $2 r=1$. Then by Schottky's theorem with $r=1 / 2$,

$$
|f(z)| \leq \exp (\pi \exp (\pi(3+\alpha+12)))
$$

for all $z \in B(0,1 / 2)$ and all $f \in \mathcal{F}_{z_{0}, r}$.

Proof. Step 2: Fix $z_{1} \in U$ and let

$$
\mathcal{F}_{z_{1}, 1}:=\left\{f \in \mathcal{F}:\left|f\left(z_{1}\right)\right| \leq 1\right\}
$$

Consider the set $V:=\left\{z \in U: \mathcal{F}_{z_{1}, 1}\right.$ is equibounded in a neighborhood of $\left.z\right\}$. The set V is open, since if $w \in V$, then there are $B(w, r) \subset U$ and $L>0$ such that $|f(z)| \leq L$ for all $z \in B(w, r)$ and all $f \in \mathcal{F}_{z_{1}, 1}$. But since $B(z, r-|z-w|) \subset$ $B(w, r)$, it follows that w is an interior point of V, and so V is open. Moreover, V is nonempty in view of Step 1 . We claim that $V=U$. If not, then using the previous step there exists $z_{2} \in \partial V \cap U$ and a sequence of functions $\left\{f_{n}\right\}_{n}$ in $\mathcal{F}_{z_{1}, 1}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f_{n}\left(z_{2}\right)\right|=\infty \tag{64}
\end{equation*}
$$

Define $g_{n}:=1 / f_{n}$. Then g_{n} is holomorphic in U and does not take values 0 and 1. Hence, $g_{n} \in \mathcal{F}$. In view of (64),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}\left(z_{2}\right)=0 \tag{65}
\end{equation*}
$$

and so there is $\alpha>0$ such that $\left|g_{n}\left(z_{2}\right)\right| \leq \alpha$ for all n. In turn, by Step 1 , the sequence $\left\{g_{n}\right\}_{n}$ is equibounded in a neighborhood $B\left(z_{2}, r\right)$ of z_{2}. It follows by Montel's theorem (Theorem 164) that there exist a subsequence $\left\{g_{n_{k}}\right\}_{k}$ and a holomorphic function $g: B\left(z_{2}, r\right) \rightarrow \mathbb{C}$ such that $g_{n_{k}} \rightarrow g$ uniformly on compact sets of $B\left(z_{2}, r\right)$. In view of (65), $g\left(z_{2}\right)=0$, but since g_{n} does not vanish in U, it follows from Hurwitz's theorem (see Theorem 166) that $g \equiv 0$ in $B\left(z_{2}, r\right)$. This implies that $\lim _{n \rightarrow \infty}\left|f_{n}(z)\right|=\infty$ for all $z \in B\left(\overline{z_{2}}, r\right)$. But since $z_{2} \in \partial V \cap U$, this implies that there exist points $z \in B\left(z_{2}, r\right) \cap V$ such that $\lim _{n \rightarrow \infty}\left|f_{n}(z)\right|=\infty$, which is a contradiction by the definition of V. Hence, the claim holds and so $V=U$.

Step 3: Let $\left\{f_{n}\right\}_{n}$ be a sequence of functions in \mathcal{F}. If there exists countably many n such that $f_{n} \in \mathcal{F}_{z_{1}, 1}$, say $f_{n_{k}} \in \mathcal{F}_{z_{1}, 1}$, then by the previous step, the sequence $\left\{f_{n_{k}}\right\}_{k}$ is locally bounded on compact sets, and thus by Montel's theorem there exists a further subsequence converging uniformly on compact set to a holomorphic function. On the other hand, if only finitely many f_{n} belong to $\mathcal{F}_{z_{1}, 1}$, then $\left|f_{n}\left(z_{1}\right)\right|>1$ for all n sufficiently large. In turn, $\frac{1}{f_{n}} \in \mathcal{F}_{z_{1}, 1}$ for all n sufficiently large. By the previous step and Montel's theorem, there exists a subsequence $\left\{f_{n_{k}}\right\}_{k}$ and a holomorphic function $g: U \rightarrow \mathbb{C}$ such that $\left\{1 / f_{n_{k}}\right\}_{k}$ converges uniformly on compact set to g. If g never vanishes, then $\left\{f_{n_{k}}\right\}_{k}$ converges uniformly to the holomorphic function $1 / g: U \rightarrow \mathbb{C}$. If g vanishes at some point, then by Hurwitz's theorem, $g \equiv 0$ (since $1 / f_{n_{k}}$ never vanishes). In turn, $\left\{f_{n_{k}}\right\}_{k}$ converges uniformly on compact set to ∞.

13 Picard's Big Theorem

In this section we prove Picard's big theorem.

Theorem 169 (Picard Big Theorem) Let $z_{0} \in \mathbb{C}$, $r>0$, and let $f: B\left(z_{0}, r\right) \backslash$ $\left\{z_{0}\right\} \rightarrow \mathbb{C}$ be a holomorphic function having an essential singularity at z_{0}. Then f takes all possible values of \mathbb{C} with at most a single exception.

Proof. Without loss of generality we assume that $z_{0}=0$, that $r=1$. Assume by contradiction that f does not assume two values a and b. By composing f with a linear function, we can assume that f does not take values 0 and 1 . Consider the sequences of functions

$$
f_{n}(z):=f(z / n), \quad z \in B(0,1) \backslash\{0\}
$$

In view of the previous theorem, taking $K=\partial B(0,1 / 2)$, we can find a subsequence $\left\{f_{n_{k}}\right\}_{k}$ such that $\left\{f_{n_{k}}\right\}_{k}$ is equibounded in $\partial B(0,1 / 2)$ or $\left\{1 / f_{n_{k}}\right\}_{k}$ is equibounded in $\partial B(0,1 / 2)$. In the first case, there exists $M>0$ such that

$$
\left|f\left(z / n_{k}\right)\right| \leq M \quad \text { for all } z \in \partial B(0,1 / 2)
$$

and all k. In turn,

$$
|f(w)| \leq M \quad \text { for all } w \in \partial B\left(0,1 /\left(2 n_{k}\right)\right)
$$

and all k. It follows by the maximum modulus principle that

$$
|f(w)| \leq M \quad \text { for all } 1 /\left(2 n_{k}+1\right)<|z|<1 /\left(2 n_{k}\right)
$$

and for all k. But this implies that f is bounded in a neighborhood of z_{0}, and so it has a removable singularity at z_{0} by Theorem 119 , which is a contradiction.

Similarly, if $\left\{1 / f_{n_{k}}\right\}_{k}$ is equibounded in $\partial B(0,1 / 2)$, then $1 / f$ is bounded in a neighborhood of z_{0}, which implies that $1 / f$ has a removable at z_{0}, again, by Theorem 119 that is, there exists

$$
\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=\ell \in \mathbb{C}
$$

If $\ell \neq 0$ then f has a removable singularity at z_{0}, while if $\ell=0$, then f has a pole at z_{0}. This is again a contradiction.

Wednesday, March 4, 2020

14 Entire Functions

We begin by reviewing infinite products.

14.1 Infinite Products

Definition 170 Given a sequence $\left\{z_{n}\right\}_{n}$ of complex numbers, we say that the infinite product

$$
\prod_{n=1}^{\infty}\left(1+z_{n}\right)
$$

converges if there exists

$$
\lim _{k \rightarrow \infty} \prod_{n=1}^{k}\left(1+z_{n}\right)=\ell \in \mathbb{C}
$$

The following theorem gives a necessary condition for the convergence of an infinite product.

Theorem 171 Given a sequence $\left\{z_{n}\right\}_{n}$ of complex numbers, if the series $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges, then the infinite product $\prod_{n=1}^{\infty}\left(1+z_{n}\right)$ converges. Moreover, the product converges to 0 if and only if $1+a_{n}=0$ for some n.

Proof. By Theorem 20, $\lim _{n \rightarrow \infty} z_{n}=0$, and so there exists $n_{1} \in \mathbb{N}$ such that $\left|z_{n}\right|<\frac{1}{2}$ for all $n \geq n_{1}$. By Exercise 36 for $z \in W \cap B(0,1)$,

$$
\begin{equation*}
\log _{W}(1+z)=-\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{n}}{n} \tag{66}
\end{equation*}
$$

where $W=\mathbb{C} \backslash\{z \in \mathbb{C}: z=x+0 i, x \leq 0\}$ and $\log _{W}$ is the principal branch of the logarithm. In particular, if $|z|<\frac{1}{2}$,

$$
\begin{equation*}
\left|\log _{W}(1+z)\right| \leq \sum_{n=1}^{\infty} \frac{|z|^{n}}{n} \leq \sum_{n=1}^{\infty}|z|^{n}=\frac{|z|}{1-|z|} \leq 2|z| \tag{67}
\end{equation*}
$$

For $k \geq n_{1}$ we use 66) to write

$$
\prod_{n=n_{1}}^{k}\left(1+z_{n}\right)=\prod_{n=n_{1}}^{k} e^{\log _{W}\left(1+z_{n}\right)}=\exp \left(\sum_{n=n_{1}}^{n} \log _{W}\left(1+z_{n}\right)\right)
$$

By 67), $\left|\log _{W}\left(1+z_{n}\right)\right| \leq 2\left|z_{n}\right|$ and since $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges, by the comparison test, the series $\sum_{n=n_{1}}^{\infty}\left|\log _{W}\left(1+z_{n}\right)\right|$ converges. Hence, the series $\sum_{n=n_{1}}^{\infty} \log _{W}\left(1+z_{n}\right)$ converges absolutely. In particular, there exists

$$
\lim _{k \rightarrow \infty} \sum_{n=n_{1}}^{n} \log _{W}\left(1+z_{n}\right)=\ell \in \mathbb{C}
$$

By the continuity of the exponential function, there exists

$$
\lim _{k \rightarrow \infty} \prod_{n=n_{1}}^{k}\left(1+z_{n}\right)=\lim _{k \rightarrow \infty} \exp \left(\sum_{n=n_{1}}^{n} \log _{W}\left(1+z_{n}\right)\right)=e^{\ell}
$$

In turn,

$$
\prod_{n=1}^{k}\left(1+z_{n}\right)=\prod_{n=1}^{n_{1}}\left(1+z_{n}\right) \prod_{n=n_{1}}^{k}\left(1+z_{n}\right) \rightarrow \prod_{n=1}^{n_{1}}\left(1+z_{n}\right) e^{\ell}
$$

This concludes the first part of the proof.
If $1+z_{m}=0$ for some m, then $\prod_{n=1}^{k}\left(1+z_{n}\right)=0$ for all $k \geq m$ and so the infinite product converges to zero. On the other hand, if $1+z_{n} \neq 0$ for all n, then by the previous part we have that $\prod_{n=1}^{k}\left(1+z_{n}\right) \rightarrow \prod_{n=1}^{n_{1}}\left(1+z_{n}\right) e^{\ell}=: \ell_{1}$. Since $e^{\ell} \neq 0$, it follows that $\ell_{1} \neq 0$.

As a corollary of the previous theorem we have the following result.
Theorem 172 Let $U \subseteq \mathbb{C}$ be an open set and let $f_{n}: U \rightarrow \mathbb{C}$ be holomorphic functions, $n \in \mathbb{N}$. Assume that for each $n \in \mathbb{N}$ there exists $a_{n}>0$, such that

$$
\begin{equation*}
\left|f_{n}(z)-1\right| \leq a_{n} \quad \text { for all } z \in U \tag{68}
\end{equation*}
$$

If $\sum_{n=1}^{\infty} a_{n}$ converges, then the infinite product $\prod_{n=1}^{\infty} f_{n}(z)$ converges uniformly to a holomorphic function $P: U \rightarrow \mathbb{C}$. Moreover, if $f_{n}(z) \neq 0$ for all $z \in U$ and all $n \in \mathbb{N}$, then $P(z) \neq 0$ for all $z \in U$ and

$$
\frac{P^{\prime}(z)}{P(z)}=\sum_{n=1}^{\infty} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} \quad \text { for all } z \in U
$$

Proof. Let $n_{1} \in \mathbb{N}$ be such that $a_{n}<\frac{1}{2}$ for all $n \geq n_{1}$. In view of 67) and (68),

$$
\left|\log _{W} f_{n}(z)\right|=\left|\log _{W}\left(1+\left(f_{n}(z)-1\right)\right)\right| \leq 2\left|f_{n}(z)-1\right| \leq 2 a_{n}
$$

for all $n \geq n_{1}$. Taking the supremum over all $z \in U$ gives

$$
\sup _{U}\left|\log _{W} f_{n}(z)\right| \leq 2 a_{n}
$$

and so the series

$$
\sum_{n=n_{1}}^{\infty} \sup _{U}\left|\log _{W} f_{n}(z)\right| \leq \sum_{n=n_{1}}^{\infty} 2 a_{n}=R:<\infty
$$

This implies that the series of functions $\sum_{n=n_{1}}^{\infty} \log _{W} f_{n}$ converges uniformly in U and that $\sum_{n=n_{1}}^{k} \log _{W} f_{n}(z) \in B(0, R)$ for all $k \geq n_{1}$ and all $z \in U$. Since $w \mapsto e^{w}$ is continuous, it follows that

$$
g_{k}(z):=\prod_{n=n_{1}}^{k} f_{n}(z)=\exp \left(\sum_{n=n_{1}}^{k} \log _{W} f_{n}(z)\right)
$$

converges uniformly in U to some function $g: U \rightarrow \mathbb{C}$, with

$$
\begin{equation*}
g(z)=\exp \left(\sum_{n=n_{1}}^{\infty} \log _{W} f_{n}(z)\right) . \tag{69}
\end{equation*}
$$

By Theorem 160, g is holomorphic and $g_{k}^{\prime} \rightarrow g^{\prime}$ uniformly on compact sets of U.

Define

$$
\begin{aligned}
P(z) & :=g(z) h(z), \quad h(z):=\prod_{n=1}^{n_{1}} f_{n}(z) \\
P_{k}(z) & :=\prod_{n=1}^{k} f_{n}(z)=g_{k}(z) h(z)
\end{aligned}
$$

Then

$$
\begin{aligned}
\sup _{U}\left|P_{k}(z)-P(z)\right| & =\sup _{U}\left|h(z)\left(g_{k}(z)-g(z)\right)\right| \\
& =\sup _{U}|h(z)|\left|g_{k}(z)-g(z)\right| \\
& \leq L \sup _{U}\left|g_{k}(z)-g(z)\right| \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, where we used the fact that $|h(z)| \leq L$ for all $z \in U$ by (68), with

$$
L:=\prod_{n=1}^{n_{1}}\left(1+a_{n}\right)
$$

Next, assume that $f_{n}(z) \neq 0$ for all $z \in U$ and all $n \in \mathbb{N}$ and fix a compact set $K \subset U$. Since g is the exponential of a holomorphic function $g(z) \neq 0$ for all $z \in U$. In particular, $|g(z)| \geq \delta_{0}$ for all $z \in K$. Moreover, by assumption $h(z) \neq 0$ for all $z \in U$ and so $|h(z)| \geq \delta_{1}$ for all $z \in K$. This implies that $|f(z)| \geq \delta_{1} \delta_{0}=: \delta_{2}$ for all $z \in K$. By uniform convergence we have that

$$
\begin{equation*}
\left|P_{k}(z)\right| \geq \frac{1}{2} \delta_{1} \quad \text { for all } z \in K \text { and all } k \geq k_{1} \tag{70}
\end{equation*}
$$

where k_{1} depends only on K. Since $g_{k}^{\prime} \rightarrow g^{\prime}$ uniformly on compact sets and $P_{k}=h g_{k}$ then $P_{k}^{\prime}=h^{\prime} g_{k}+h g_{k}^{\prime}$ converges uniformly on compact sets to P^{\prime}. In turn, by 70, $P_{k}^{\prime} / P_{k} \rightarrow P^{\prime} / P$ uniformly in K. Using (51), we get

$$
\frac{P_{k}^{\prime}(x)}{P_{k}(x)}=\sum_{n=1}^{k} \frac{f_{n}^{\prime}(x)}{f_{n}(x)} \rightarrow \frac{P^{\prime}(z)}{P(z)}
$$

uniformly in K. In particular,

$$
\frac{P^{\prime}(z)}{P(z)}=\sum_{n=1}^{\infty} \frac{f_{n}^{\prime}(x)}{f_{n}(x)}
$$

for all $z \in K$. Since this holds for every compact set $K \subset U$, this concludes the proof.

Exercise 173 Prove that

$$
\frac{\sin (\pi z)}{\pi}=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

Hint: Use Exercise 149.

14.2 Entire Functions of Finite Order

We begin by proving Jensen's formula.
Theorem 174 (Jensen formula) Let $U \subseteq \mathbb{C}$ be an open set containing 0 and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function such that $f(0) \neq 0$. Then for every for closed ball $\overline{B(0, r)} \subset U$ such that f has no zeros on $\partial B(0, r)$, we have

$$
\begin{equation*}
\log |f(0)|=\sum_{k=1}^{n} \log \left(\frac{\left|z_{k}\right|}{r}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \tag{71}
\end{equation*}
$$

where z_{1}, \ldots, z_{n} are the zeros (if any) of f inside $B(0, r)$ counted with multiplicities. Here, if $n=0$, we take $\sum_{k=1}^{0}:=0$.

Proof. Step 1: Assume first that f has no zeros inside $B(0, r)$. We claim that

$$
\begin{equation*}
\log |f(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta \tag{72}
\end{equation*}
$$

Consider an open ball $B \subseteq U$ containing $\overline{B(0, r)}$. Since B is simply connected, by Corollary 100 there exists a holomorphic function $g: B \rightarrow \mathbb{C}$ such that

$$
f(z)=e^{g(z)} \quad \text { for all } z \in B
$$

Taking the modulus on both sides we have

$$
\begin{aligned}
|f(z)| & =\left|e^{g(z)}\right|=\left|e^{\operatorname{Re} g(z)+i \operatorname{Im} g(z)}\right|=\left|e^{\operatorname{Re} g(z)} e^{i \operatorname{Im} g(z)}\right| \\
& =\left|e^{\operatorname{Re} g(z)}\right|\left|e^{i \operatorname{Im} g(z)}\right|=e^{\operatorname{Re} g(z)}
\end{aligned}
$$

and so $\log |f(z)|=\operatorname{Re} g(z)$. We now apply the mean value formula (see Theorem 110) to $\operatorname{Re} g$, to get 72 .

No class.
Wednesday, March 16, 2020
Online teaching.
Proof. Step 2: Next assume that $f(z)=z-w_{0}$ for some $w_{0} \in B(0, r) \backslash\{0\}$. We claim that

$$
\begin{equation*}
\log \left|w_{0}\right|=\log \left(\frac{\left|w_{0}\right|}{r}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|r e^{i \theta}-w_{0}\right| d \theta \tag{73}
\end{equation*}
$$

Writing $\log \left(\frac{\left|w_{0}\right|}{r}\right)=\log \left|w_{0}\right|-\log r$ and

$$
\log \left|r e^{i \theta}-w_{0}\right|=\log \left(r\left|e^{i \theta}-w_{0} / r\right|\right)=\log r+\log \left|e^{i \theta}-w_{0} / r\right|
$$

we have that formula 73 is equivalent to

$$
\begin{align*}
0 & =\int_{0}^{2 \pi} \log \left|e^{i \theta}-\zeta_{0}\right| d \theta=\int_{0}^{2 \pi} \log \left|e^{-i s}-\zeta_{0}\right| d s \\
& =\int_{0}^{2 \pi} \log \left|e^{-i s}-e^{-i s} e^{i s} \zeta_{0}\right| d s=\int_{0}^{2 \pi} \log \left(\left|e^{-i s}\right|\left|1-e^{i s} \zeta_{0}\right|\right) d s \tag{74}\\
& =\int_{0}^{2 \pi} \log \left|1-e^{i s} \zeta_{0}\right| d s
\end{align*}
$$

where $\left|\zeta_{0}\right|<1$ and we have made the change of variables $\theta=-s$. Since the holomorphic function $h(z)=1-z \zeta_{0}$ does not vanish in $\overline{B(0,1)}$, we can apply Step 1 together with the fact that $h(0)=1$, to get

$$
0=\log |h(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|1-e^{i s} \zeta_{0}\right| d s
$$

which proves (73) in view of (74).
Step 3: Let $f_{1}: U \rightarrow \mathbb{C}$ and $f_{2}: U \rightarrow \mathbb{C}$ be holomorphic function such that $f_{1}(0) \neq 0$ and $f_{2}(0) \neq 0$, and f_{1} and f_{2} have no zeros on $\partial B(0, r)$. We claim that if f_{1} and f_{2} satisfy Jensen's formula (71), then so does their product $f_{1} f_{2}$. Let $z_{1}, \ldots, z_{n_{1}}$ and $w_{1}, \ldots, w_{n_{2}}$ be the zeros of f_{1} and f_{2} inside $B(0, r)$, respectively. Then $f_{1} f_{2}$ has zeros $z_{1}, \ldots, z_{n_{1}}$ and $w_{1}, \ldots, w_{n_{2}}$. Moreover,

$$
\begin{aligned}
\log \left|\left(f_{1} f_{2}\right)(0)\right|= & \log \left(\left|f_{1}(0)\right|\left|f_{2}(0)\right|\right)=\log \left|f_{1}(0)\right|+\log \left|f_{2}(0)\right| \\
= & \sum_{k=1}^{n_{1}} \log \left(\frac{\left|z_{k}\right|}{r}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f_{1}\left(r e^{i \theta}\right)\right| d \theta \\
& +\sum_{k=1}^{n_{2}} \log \left(\frac{\left|w_{k}\right|}{r}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f_{2}\left(r e^{i \theta}\right)\right| d \theta \\
= & \sum_{k=1}^{n_{1}} \log \left(\frac{\left|z_{k}\right|}{r}\right)+\sum_{k=1}^{n_{2}} \log \left(\frac{\left|w_{k}\right|}{r}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\left(f_{1} f_{2}\right)\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

Step 4: We are finally ready to prove the general case. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function such that $f(0) \neq 0$ and f has no zeros on $\partial B(0, r)$. Let z_{1}, \ldots, z_{n} be the zeros of f inside $B(0, r)$ counted with multiplicities. Since the zeros are counted with their multiplicity and are isolated, by Corollary 112 the function

$$
q(z)=\frac{f(z)}{\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)}
$$

is defined in U, holomorphic, and does not vanish in $\overline{B(0, r)}$. Hence, Jensen's formula (71) holds for q by Step 1. On the other hand, by Step 2 it holds for each function $z \mapsto z-z_{k}$. Since

$$
f(z)=q(z)\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)
$$

the conclusion follows from Step 3 and an induction argument.
We now define functions of finite order.
Definition 175 Given an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ and $a>0$, we say that f has an order of growth less than or equal a if there exist constants $A, B>0$ such that

$$
\begin{equation*}
|f(z)| \leq A e^{B|z|^{a}} \quad \text { for all } z \in \mathbb{C} \tag{75}
\end{equation*}
$$

We define the order of growth of f as $a_{f}=\inf a$, where the infimum is taken over all $a>0$ such that f has an order of growth less than or equal to a.

The function $f(z)=e^{z^{2}}$ has order of growth 2.
Theorem 176 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function that has an order of growth less than or equal to $a>0$. For every $r>0$ let $\mathfrak{n}(r)$ be the number of zeros counted with their multiplicity inside $B(0, r)$. Then

$$
\begin{equation*}
\mathfrak{n}(r) \leq C r^{a} \quad \text { for all } r \geq 1 \tag{76}
\end{equation*}
$$

and for some constant $C>0$. Moreover, if $\left\{z_{n}\right\}_{n}$ are the zeros of f different from zero and counted with their multiplicity, then for every $b>a$,

$$
\begin{equation*}
\sum_{n} \frac{1}{\left|z_{n}\right|^{b}}<\infty \tag{77}
\end{equation*}
$$

When needed, we write \mathfrak{n}_{f} for \mathfrak{n} to highlight the dependence on f.
Proof. Step 1: We first show that if $f(0) \neq 0$ and if f does not vanish on $\partial B(0, r)$, then

$$
\int_{0}^{r} \frac{\mathfrak{n}(s)}{s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta-\log |f(0)|
$$

In view of Jensen's formula, it is enough to show that

$$
\int_{0}^{r} \frac{\mathfrak{n}(s)}{s} d s=\sum_{k=1}^{n} \log \left(\frac{\left|z_{k}\right|}{r}\right)
$$

where z_{1}, \ldots, z_{n} are the zeros of f inside $B(0, r)$ counted with their multiplicity. To see this, observe that

$$
\sum_{k=1}^{n} \log \left(\frac{\left|z_{k}\right|}{r}\right)=\sum_{k=1}^{n} \int_{\left|z_{k}\right|}^{r} \frac{1}{s} d s
$$

Write

$$
\mathfrak{n}(s)=\sum_{k=1}^{n} \chi_{\left(\left|z_{k}\right|, \infty\right)}(s)
$$

Then
$\sum_{k=1}^{n} \int_{\left|z_{k}\right|}^{r} \frac{1}{s} d s=\sum_{k=1}^{n} \int_{0}^{r} \chi_{\left(\left|z_{k}\right|, \infty\right)}(s) \frac{1}{s} d s=\int_{0}^{r} \sum_{k=1}^{n} \chi_{\left(\left|z_{k}\right|, \infty\right)}(s) \frac{1}{s} d s=\int_{0}^{r} \frac{\mathfrak{n}(s)}{s} d s$,
which completes the proof of this step.
Step 2: To prove (76), we first assume that $f(0) \neq 0$. Take $r>0$ such that f does not vanish on $\partial B(0,2 r)$. Since \mathfrak{n} is increasing,

$$
\begin{aligned}
\mathfrak{n}(r) \log 2 & =\mathfrak{n}(r) \log \frac{2 r}{r}=\mathfrak{n}(r) \int_{r}^{2 r} \frac{1}{s} d s \leq \int_{r}^{2 r} \frac{\mathfrak{n}(s)}{s} d s \\
& \leq \int_{0}^{2 r} \frac{\mathfrak{n}(s)}{s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(2 r e^{i \theta}\right)\right| d \theta-\log |f(0)|
\end{aligned}
$$

where we used the previous step with r replaced by $2 r$. On the other hand by (75),

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(2 r e^{i \theta}\right)\right| d \theta & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(A e^{B 2^{a} r^{a}}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\log A+\log \left(e^{B 2^{a} r^{a}}\right)\right] d \theta \\
& =\log A+B 2^{a} r^{a}
\end{aligned}
$$

Combining these inequalities gives

$$
\mathfrak{n}(r) \log 2 \leq \log A+B 2^{a} r^{a}
$$

Taking $r \geq 1$ and $C=\left(\log A+B 2^{a}\right) / \log 2$, we obtain 76 for all r such that f does not vanish on $\partial B(0,2 r)$. Fix $r \geq 1$. Since the number of zeros in $B(0,2 r+1)$ is finite, we have that f does not vanish on $\partial B(0,2 r+2 s)$ for all but finitely many $s \in(0,1)$. Consider a sequence $s_{k} \rightarrow 0^{+}$such f does not vanish on $\partial B\left(0,2 r+2 s_{k}\right)$. By what we just proved and the fact that \mathfrak{n} is increasing,

$$
\mathfrak{n}(r) \leq \mathfrak{n}\left(r+s_{k}\right) \leq C\left(r+s_{k}\right)^{a}
$$

for all k. It suffices to send $k \rightarrow \infty$.

Step 3: Next we prove (76), in the case $f(0)=0$. Assume that ℓ is the multiplicity of 0 . Then the function $g(z):=f(z) / z^{\ell}$ is holomorphic, \mathfrak{n}_{g} differs from \mathfrak{n}_{f} by ℓ. Moreover, for $|z| \geq 1$,

$$
|g(z)| \leq \frac{|f(z)|}{|z|^{\ell}} \leq A e^{B|z|^{a}}
$$

On the other hand, since g is holomorphic, there exists $A_{1}>0$ such that

$$
|g(z)| \leq A_{1} \leq A_{1} e^{B|z|^{a}}
$$

for all $|z| \leq 1$. Hence, by replacing A with $\max \left\{A, A_{1}\right\}$, we have that g also has an order of growth less than or equal to a. By applying Step 2 to g we get

$$
\mathfrak{n}_{g}(r) \leq C r^{a} \quad \text { for all } r \text { sufficiently large }
$$

say for $r \geq 1$ and for some constant $C \geq 1$. In turn,

$$
\mathfrak{n}_{f}(r)=\mathfrak{n}_{g}(r)+\ell \leq C r^{a}+\ell \leq(C+\ell) r^{a}
$$

Step 4: We prove (77). If the number of zeros is finite, there is nothing to prove. Thus, we assume that there are infinitely many zeros. Then by (76),

$$
\begin{aligned}
\sum_{\left|z_{n}\right| \geq 1} \frac{1}{\left|z_{n}\right|^{b}} & =\sum_{j=0}^{\infty} \sum_{2^{j} \leq\left|z_{n}\right|<2^{j+1}} \frac{1}{\left|z_{n}\right|^{b}} \leq \sum_{j=0}^{\infty} \sum_{2^{j} \leq\left|z_{n}\right|<2^{j+1}} \frac{1}{2^{j b}}=\sum_{j=0}^{\infty} \mathfrak{n}_{f}\left(2^{j+1}\right) \frac{1}{2^{j b}} \\
& \leq C \sum_{j=0}^{\infty} \frac{2^{(j+1) a}}{2^{j b}}=C 2^{a} \sum_{j=0}^{\infty} \frac{1}{2^{j(b-a)}}<\infty
\end{aligned}
$$

Since there are only finitely many zeros in $B(0,1), 77$
The next example shows that we cannot take b to be the order of growth of f.

Example 177 Let $f(z)=\sin (\pi z)$. By Euler's identity

$$
f(z)=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i}
$$

Hence,

$$
|f(z)| \leq e^{\pi|z|}
$$

so f has an order of growth less than or equal to 1. Taking $z=-i x$ gives

$$
f(i x)=\frac{e^{\pi x}-e^{-\pi x}}{2 i}
$$

which shows that the order of growth is 1 . Note that $f(n)=\sin (\pi n)=0$ and

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Friday, March 20, 2020

14.3 Weierstrass Theorem

In this section we show that given a sequence $\left\{z_{n}\right\}_{n}$ of complex numbers whose moduli converge to infinity, we can construct an entire function which vanishes exactly at each z_{n}.

Theorem 178 (Weierstrass) Let $\left\{z_{n}\right\}_{n}$ be a sequence of complex numbers such that $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. Then there exists an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f\left(z_{n}\right)=0$ for all n and $f \neq 0$ otherwise. Moreover, any other entire function with the same property is of the form $f(z) e^{g(z)}$, where $g: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function.

The natural choice of f would be

$$
f(z)=\prod_{n=1}^{\infty}\left(1-z / z_{n}\right)
$$

However, in general the infinite product will not converge.
Proof. Step 1: Define

$$
\begin{equation*}
E_{0}(z)=1-z, \quad E_{n}(z)=(1-z) \exp \left(z+\frac{1}{2} z^{2}+\cdots+\frac{1}{n} z^{n}\right) \tag{78}
\end{equation*}
$$

We claim that if $|z| \leq 1 / 2$, then

$$
\left|1-E_{n}(z)\right| \leq 2 e|z|^{n+1}
$$

By Exercise 36, for $z \in W \cap B(0,1)$,

$$
\log _{W}(1-z)=-\sum_{k=1}^{\infty} \frac{z^{k}}{k}
$$

where $W=\mathbb{C} \backslash\{z \in \mathbb{C}: z=x+0 i, x \leq 0\}$ and $\log _{W}$ is the principal branch of the logarithm. Writing $1-z=e^{\log _{W}(1-z)}$, we have

$$
\begin{align*}
E_{n}(z) & =\exp \left(\log _{W}(1-z)+z+\frac{1}{2} z^{2}+\cdots+\frac{1}{n} z^{n}\right) \tag{79}\\
& =\exp \left(-\sum_{k=n+1}^{\infty} \frac{z^{k}}{k}\right)=: e^{w}
\end{align*}
$$

In particular, if $|z| \leq \frac{1}{2}$,
$|w|=\left|\sum_{k=n+1}^{\infty} \frac{z^{k}}{k}\right| \leq|z|^{n+1} \sum_{k=n+1}^{\infty} \frac{|z|^{k-n-1}}{k} \leq|z|^{n+1} \sum_{j=0}^{\infty}|z|^{j} \leq|z|^{n+1} \sum_{j=0}^{\infty} \frac{1}{2^{j}}=2|z|^{n+1} \leq 1$.

Hence,

$$
\begin{aligned}
\left|1-E_{n}(z)\right| & =\left|1-e^{w}\right|=\left|\sum_{k=1}^{\infty} \frac{w^{k}}{k!}\right| \leq \sum_{k=1}^{\infty} \frac{|w|^{k}}{k!}=|w| \sum_{k=1}^{\infty} \frac{|w|^{k-1}}{k!} \\
& \leq|w| \sum_{k=1}^{\infty} \frac{1}{k!}=|w|(e-1) \leq 2(e-1)|z|^{n+1}
\end{aligned}
$$

which proves the claim for $z \in W \cap \overline{B(0,1 / 2)}$. For $z \in \overline{B(0,1 / 2)}$ we can use the fact that E_{n} and $|z|^{n+1}$ are continuous functions.

Step 2: We are now ready to construct the function f. Since $\left|z_{n}\right| \rightarrow \infty$, by relabelling the sequence, we can assume that

$$
\left|z_{1}\right| \leq\left|z_{2}\right| \leq \cdots \leq\left|z_{n}\right| \leq\left|z_{n+1}\right|
$$

for all n. If 0 is one of the numbers z_{n} with multiplicity ℓ we define

$$
f(z)=z^{\ell} \prod_{n=1}^{\infty} E_{n}\left(z / z_{n}\right)
$$

while if zero is not, we take $\ell=0$ and set $z^{0}:=1$ in the previous definition. Fix $r>0$ and consider $z \in B(0, r)$. Let $n_{1}>1$ be such that $\left|z_{n}\right| \geq 2 r$ for all $n \geq n_{1}$. Then $\left|z / z_{n}\right| \leq 1 / 2$ and so by the previous step

$$
\left|1-E_{n}\left(z / z_{n}\right)\right| \leq 2 e\left|z / z_{n}\right|^{n+1} \leq 2 e / 2^{n+1}
$$

Since the series $\sum_{n=n_{1}}^{\infty} \frac{e}{2^{n}}$ converges, by Theorem 172 , the infinite product $\prod_{n=n_{1}}^{\infty} E_{n}\left(z / z_{n}\right)$ converges uniformly to a holomorphic function $P: B(0, r) \rightarrow \mathbb{C}$. Moreover, since $E_{n}\left(z / z_{n}\right)$ vanishes only at z_{n}, we have that if $E_{n}\left(z / z_{n}\right) \neq 0$ for all $z \in B(0, r)$ and all $n \geq n_{1}$. Thus, again by Theorem $172, P(z) \neq 0$ for all $z \in B(0, r)$. Since

$$
f(z)=z^{\ell} \prod_{n=1}^{n_{1}-1} E_{n}\left(z / z_{n}\right) P(z)
$$

we have that f is holomorphic in $B(0, r)$. Moreover, since $P \neq 0$ in $B(0, R)$, $E_{n}\left(z / z_{n}\right)$ vanishes only at z_{n}, we have that f vanishes only at those $z_{n}, n=$ $1, \ldots, n_{1}-1$, which are inside $B(0, r)$. By the arbitrariness of $r>0$ this concludes the first part of the proof.

Step 3: Let $h: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that $h\left(z_{n}\right)=0$ for all n and $h(z) \neq 0$ otherwise. If w_{k} is a zero of h and f with multiplicity m_{k}, by Corollary 112 applied f and h we can write

$$
h(z)=\left(z-w_{k}\right)^{m_{k}} h_{1}(z), \quad f(z)=\left(z-w_{k}\right)^{m_{k}} f_{1}(z)
$$

where h_{1} and f_{1} are holomorphic functions in some ball $B\left(w_{k}, r_{k}\right)$ which do not vanish in $B\left(w_{k}, r_{k}\right)$. Hence,

$$
\frac{h(z)}{f(z)}=\frac{h_{1}(z)}{f_{1}(z)} \quad \text { for all } z \in B\left(w_{k}, r_{k}\right) \backslash\left\{w_{k}\right\}
$$

This shows that h / f has a removable singularity at w_{k} and does not vanishes in $B\left(w_{k}, r_{k}\right)$. By the arbitrariness of the zero w_{k} and the fact that the zeros are isolated, we have shown that h / f can be extended to \mathbb{C} as a holomorphic function which vanishes nowhere. We now apply Corollary 100 to write $h / f=e^{g}$ for some entire function $g: \mathbb{C} \rightarrow \mathbb{C}$. This concludes the proof.

The functions E_{n} are called canonical factors and n the degree of the canonical factor.

Corollary 179 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Then the following hold:
(i) if $f(z) \neq 0$ for all $z \in \mathbb{C}$, then there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(z)=e^{g(z)}$ for all $z \in \mathbb{C}$,
(ii) if f has finitely many zeros z_{1}, \ldots, z_{n} counted with their multiplicity, then there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
f(z)=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) e^{g(z)}
$$

for all $z \in \mathbb{C}$,
(iii) if f has infinitely many zeros $\left\{z_{n}\right\}_{n}$ counted with their multiplicity, then there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
f(z)=z^{\ell} \prod_{n=1}^{\infty} E_{n}\left(z / z_{n}\right) e^{g(z)}
$$

for all $z \in \mathbb{C}$.
Proof. Item (i) is Corollary 100. Items (ii) and (iii) follow as in Step 3 of the previous proof.

Note that Weierstrass theorem shows that any entire function with infinitely many zeros can be written as the product of the function constructed by Weierstrass and an exponential function. Thus, it provides a way to represent entire functions. This is why this theorem is called Weierstras representation theorem.

The next theorem shows that if f has finite order of growth, then the function g in the exponential is a polynomial.

Theorem 180 (Hadamard) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function which has growth order a and infinitely many zeros z_{n}. Then

$$
f(z)=e^{p(z)} z^{\ell} \prod_{n} E_{n}\left(z / z_{n}\right)
$$

where p is a polynomial of degree less than or equal to $\lfloor a\rfloor, \ell \in \mathbb{N}_{0}$ is the order of the zero of f at $z=0$.

15 Prime Number Theorem

Throughout this section p denotes a prime number.
Theorem 181 (Prime Number Theorem) Given $x \in \mathbb{R}$, let $\pi(x)$ be the number of prime numbers which are less than or equal to x. Then

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { as } x \rightarrow \infty
$$

Consider the

$$
\begin{equation*}
\zeta(z):=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \quad z \in \mathbb{C}, \operatorname{Re} z>1 \tag{81}
\end{equation*}
$$

This function is called the Riemann zeta function.
Lemma 182 The function ζ converges absolutely and uniformly on compact sets of $U:=\{z \in \mathbb{C}: \operatorname{Re} z>1\}$. Moreover,

$$
\zeta(z)=\prod_{p \text { prime }} \frac{1}{1-p^{-z}}, \quad z \in U .
$$

In particular, ζ has no zeros in U.
Proof. We have

$$
\left|n^{z}\right|=\left|e^{z \log n}\right|=e^{(\operatorname{Re} z) \log n}=n^{\operatorname{Re} z}
$$

and so if $\operatorname{Re} z \geq 1+\varepsilon$, with $\varepsilon>0$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\left|n^{z}\right|} \leq \sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}}<\infty
$$

which implies that there is uniform and absolute convergence in the set $\{z \in$ $\mathbb{C}: \operatorname{Re} z \geq 1+\varepsilon\}$. In particular, there is absolute convergence in U. Hence, we can rearrange terms in the series.

Monday, March 23, 2020
Proof. Let $\left\{p_{n}\right\}_{n}$ be the ordered sequence of prime numbers. For each $\ell \in \mathbb{N}$ let S_{ℓ} be the set of all natural numbers which are not divisible by p_{1}, \ldots, p_{ℓ}. We claim that

$$
\begin{equation*}
\xi(z) \prod_{l=1}^{\ell}\left(1-\frac{1}{p_{l}^{z}}\right)=\sum_{n \in S_{\ell}} \frac{1}{n^{z}} . \tag{82}
\end{equation*}
$$

For $\ell=1$ we have $p_{1}=2$ and so

$$
\xi(z)\left(1-\frac{1}{2^{z}}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}-\sum_{n=1}^{\infty} \frac{1}{(2 n)^{z}}=\sum_{n \in S_{1}} \frac{1}{n^{z}}
$$

since we removed all the even natural numbers. Hence, the base case $\ell=1$ is true. Next assume that the claim holds for ℓ and let's prove it for $\ell+1$. By the induction hypothesis,

$$
\xi(z) \prod_{l=1}^{\ell}\left(1-\frac{1}{p_{l}^{z}}\right)=\sum_{n \in S_{\ell}} \frac{1}{n^{z}} .
$$

Multiply both sides by $1-\frac{1}{p_{\ell+1}^{z}}$ to get

$$
\begin{aligned}
\xi(z) \prod_{l=1}^{\ell+1}\left(1-\frac{1}{p_{l}^{z}}\right) & =\left(1-\frac{1}{p_{\ell+1}^{z}}\right) \sum_{n \in S_{\ell}}^{\infty} \frac{1}{n^{z}} \\
& =\sum_{n \in S_{\ell}} \frac{1}{n^{z}}-\sum_{n \in S_{\ell}} \frac{1}{\left(p_{\ell+1} n^{z}\right)}=\sum_{n \in S_{\ell+1}} \frac{1}{n^{z}},
\end{aligned}
$$

which proves the claim.
Letting $\ell \rightarrow \infty$ in 82) gives

$$
\xi(z) \prod_{l=1}^{\infty}\left(1-\frac{1}{p_{l}^{z}}\right)=\lim _{\ell \rightarrow \infty} \sum_{n \in S_{\ell}} \frac{1}{n^{z}}=1
$$

where we used the fact that $S_{\ell+1} \subset S_{\ell}$ and $\bigcap_{\ell=1}^{\infty} S_{\ell}=\{1\}$.
The last part of the statement follows from Theorem 172 and the fact that $\frac{1}{1-p^{-z}} \neq 0$ for all $z \in U$.

Exercise 183 Let $z \in \mathbb{C}$ with $\operatorname{Re} z>1$. Prove that

$$
\int_{1}^{\infty} \frac{1}{t^{z}} d t=\frac{1}{z-1}, \quad \int_{n}^{x} \frac{z}{t^{z+1}} d t=\frac{1}{n^{z}}-\frac{1}{x^{z}}
$$

for every $n \in \mathbb{N}$.
Lemma 184 The function $z \mapsto \zeta(z)-\frac{1}{z-1}$ can be extended as an holomorphic function to the half-plane $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$.

Proof. By the previous exercise

$$
\begin{aligned}
\zeta(z)-\frac{1}{z-1} & =\sum_{n=1}^{\infty} \frac{1}{n^{z}}-\int_{1}^{\infty} \frac{1}{t^{z}} d t=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(\frac{1}{n^{z}}-\frac{1}{t^{z}}\right) d t \\
& =\sum_{n=1}^{\infty} \int_{n}^{n+1} \int_{n}^{x} \frac{z}{s^{z+1}} d s d t
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left|\int_{n}^{n+1} \int_{n}^{x} \frac{z}{s^{z+1}} d s d t\right| & \leq \int_{n}^{n+1} \int_{n}^{n+1}\left|\frac{z}{s^{z+1}}\right| d s d t \\
& \leq|z| \max _{s \in[n, n+1]} \frac{1}{|s|^{\operatorname{Re} z+1}}=|z| \frac{1}{n^{\operatorname{Re} z+1}}
\end{aligned}
$$

Hence, the series $\sum_{n=1}^{\infty} \int_{n}^{n+1} \int_{n}^{x} \frac{z}{s^{z+1}} d s d t$ is absolutely convergent for every $z \in$ \mathbb{C} with $\operatorname{Re} z>0$.

In view of the previous lemma, the Riemann zeta function can be extended as a meromorphic function to $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ with a simple pole in $z=1$ and no other poles. Next we study the zeros of ζ. The Riemann hypothesis is the conjecture that all zeros of ζ lie on the line $\operatorname{Re} z=\frac{1}{2}$.

The following lemma shows that there are no zeros for $\operatorname{Re} z \geq 1$.
Lemma 185 The Riemann zeta ζ has no zeros in $\{z \in \mathbb{C}: \operatorname{Re} z=1\}$.
Proof. Step 1: Let $U:=\{z \in \mathbb{C}: \operatorname{Re} z>1\}$. Since ζ has no zeros in U, using Lemma 182 and Theorem 172 ,

$$
\begin{equation*}
\frac{\zeta^{\prime}(z)}{\zeta(z)}=\sum_{p \text { prime }} \frac{\left(\frac{1}{1-p^{-z}}\right)^{\prime}}{\frac{1}{1-p^{-z}}}=-\sum_{p \text { prime }} \frac{\frac{p^{-z} \log p}{\left(1-p^{-z}\right)^{2}}}{\frac{1}{1-p^{-z}}}=-\sum_{p \text { prime }} \frac{p^{-z} \log p}{1-p^{-z}} \tag{83}
\end{equation*}
$$

where we used the fact that $p^{z}=e^{z \log p}$ and so $\left(p^{z}\right)^{\prime}=e^{z \log p} \log p=p^{z} \log p$. Using the geometric series we have that

$$
\frac{1}{1-p^{-z}}=\sum_{k=0}^{\infty} p^{-k z}
$$

Hence,

$$
\frac{\zeta^{\prime}(z)}{\zeta(z)}=-\sum_{p \text { prime }} \sum_{k=0}^{\infty} p^{-(k+1) z} \log p=-\sum_{p \text { prime }} \sum_{n=1}^{\infty} p^{-n z} \log p
$$

Step 2: Assume that $\zeta(1+i y)=0$ and consider the function

$$
g(z):=(\zeta(z))^{3}(\zeta(z+i y))^{4} \zeta(z+2 i y)
$$

Note that ζ has a simple pole at $z=1$, so $(\zeta(z))^{3} \sim \frac{c_{0}}{(z-1)^{3}}$, while $\zeta_{1}(z):=$ $\zeta(z+i y)$ has a zero of order $n \in \mathbb{N}$ at $z=1$ so $(\zeta(z+i y))^{4} \sim c_{1}(z-1)^{4}$, and $\zeta_{2}(z):=\zeta(z+2 i y)$ may have a zero of order $m \in \mathbb{N}_{0}$ at $z=1$, so $\zeta(z+2 i y) \sim$ $c_{2}(z-1)^{m}$. It follows that

$$
g(z) \sim \frac{c}{(z-1)^{3}}(z-1)^{4 n}(z-1)^{m}=c(z-1)^{4 n+m-3}
$$

as $z \rightarrow 1$. Thus g has a zero at $z=1$ of order $4 n+m-3 \geq 1$. Hence,

$$
g(z)=(z-1)^{4 n+m-3} h(z)
$$

where h is holomorphic near $z=1$ and $h(1) \neq 0$. In turn, by (51),

$$
\begin{aligned}
\frac{g^{\prime}(z)}{g(z)} & =\frac{(4 n+m-3)(z-1)^{4 n+m-4}}{(z-1)^{4 n+m-3}}+\frac{h^{\prime}(z)}{h(z)} \\
& =\frac{4 n+m-3}{z-1}+\frac{h^{\prime}(z)}{h(z)}
\end{aligned}
$$

and so

$$
\begin{equation*}
\lim _{z \rightarrow 1}(z-1) \frac{g^{\prime}(z)}{g(z)}=4 n+m-3>0 \tag{84}
\end{equation*}
$$

On the other hand, for $z \in \mathbb{C}$ with $\operatorname{Re} z>1$, by 51 and the previous step,

$$
\begin{aligned}
\frac{g^{\prime}(z)}{g(z)} & =3 \frac{(\zeta(z))^{2} \zeta^{\prime}(z)}{(\zeta(z))^{3}}+4 \frac{(\zeta(z+i y))^{3} \zeta^{\prime}(z+i y)}{(\zeta(z+i y))^{4}}+\frac{\zeta^{\prime}(z+2 i y)}{\zeta(z+2 i y)} \\
& =3 \frac{\zeta^{\prime}(z)}{\zeta(z)}+4 \frac{\zeta^{\prime}(z+i y)}{\zeta(z+i y)}+\frac{\zeta^{\prime}(z+2 i y)}{\zeta(z+2 i y)} \\
& =-3 \sum_{p \text { prime }} \sum_{n=1}^{\infty} p^{-n z} \log p-4 \sum_{p \text { prime }} \sum_{n=1}^{\infty} p^{-n z} p^{-n y i} \log p-\sum_{p \text { prime }} \sum_{n=1}^{\infty} p^{-k z} p^{-2 n y i} \log p \\
& =-\sum_{p \text { prime }} \sum_{n=1}^{\infty}\left(3+4 p^{-n y i}+p^{-2 n y i}\right) p^{-n z} \log p
\end{aligned}
$$

Taking $z=x>1$ we have that

$$
\begin{aligned}
\operatorname{Re} \frac{g^{\prime}(x)}{g(x)} & =-\sum_{p \text { prime }} \sum_{n=1}^{\infty}\left(\operatorname{Re}\left(3+4 p^{-n y i}+p^{-2 n y i}\right)\right) p^{-n x} \log p \\
& =-\sum_{p \text { prime }} \sum_{n=1}^{\infty}(3+4 \cos (n y)+\cos (2 n y)) p^{-n x} \log p
\end{aligned}
$$

Since $\cos (2 \theta)=2 \cos ^{2} \theta-1$ we have that
$3+4 \cos \theta+\cos (2 \theta)=3+4 \cos \theta+2 \cos ^{2} \theta-1=2\left(1+2 \cos \theta+\cos ^{2} \theta\right)=2(1+\cos \theta)^{2}$.

Hence,

$$
\lim _{x \rightarrow 1^{+}}(x-1) \operatorname{Re} \frac{g^{\prime}(x)}{g(x)} \leq 0
$$

which contradicts 84 .
Wednesday, March 25, 2020
The following theorem is of independent interest.
Theorem 186 Let $f:[0, \infty) \rightarrow \mathbb{C}$ be bounded and locally integrable and let

$$
g(z):=\int_{0}^{\infty} f(t) e^{-t z} d t, \quad \operatorname{Re} z>0
$$

Assume that for every $z \in \mathbb{C}$ with $\operatorname{Re} z=0$ there exists $r_{z}>0$ such that g can be extended holomorphically to $B\left(z, r_{z}\right)$. Then the generalized Riemann integral

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d t \tag{85}
\end{equation*}
$$

is well-defined and equals $g(0)$.
Proof. Using Corollary 115 and a compactness argument for every $R>$ 1 we can find $\delta=\delta(R) \in\left(0, \frac{1}{2}\right)$ and $M=M(R)>0$ such that g can be extended to a holomorphic function g in an open set U_{R} containing the set $C_{R}:=\overline{B(0, R)} \cap\{z \in \mathbb{C}: \operatorname{Re} z \geq-\delta\}$ and $|g(z)| \leq M$ for every $z \in C_{R}$. Consider the counterclockwise contour γ given by the intersection of $\partial B(0, R)$ and the segment $\operatorname{Re} z=-\delta,|z| \leq R$. Also denote by γ_{+}and γ_{-}the parts of γ in the right half-plane $\operatorname{Re} z \geq 0$ and in the left half-plane $\operatorname{Re} z \leq 0$, respectively. Let Γ_{+}and Γ_{-}be their ranges. Let $T>0$ and consider the function

$$
h_{T}(z):=g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right), \quad z \in U_{R} \backslash\{0\} .
$$

If $g(0) \neq 0$, the function h_{T} has only one pole at 0 with residue $\operatorname{res}_{0} h_{T}=g(0)$, while if $g(0)=0$, then h_{T} is holomorphic in U_{R}. It follows by the residue's formula

$$
\begin{align*}
2 \pi i g(0) & =2 \pi i \operatorname{res}_{0} h_{T}=\int_{\gamma} h_{T} d z=\int_{\gamma} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{86}\\
& =\int_{\gamma_{+}} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z+\int_{\gamma_{-}} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z
\end{align*}
$$

If z belongs to the range of γ_{+}, then by 85 , we can write

$$
\begin{equation*}
g(z)=\int_{0}^{T} f(t) e^{-t z} d t+\int_{T}^{\infty} f(t) e^{-t z} d t=: S_{T}(z)+R_{T}(z) \tag{87}
\end{equation*}
$$

Consider the function

$$
q_{T}(z):=S_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right), \quad z \in B(0, R+1) \backslash\{0\}
$$

Again by the residue's formula

$$
\begin{align*}
2 \pi i S_{T}(0) & =2 \pi i \operatorname{res}_{0} q_{T}=\int_{\partial B(0, R)} q_{T} d z=\int_{\partial B(0, R)} S_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \\
& =\int_{\gamma_{+}} S_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z+\int_{\partial B(0, R) \backslash \Gamma_{+}} S_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{88}\\
& =\int_{\gamma_{+}} S_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z+\int_{\gamma_{+}} S_{T}(-w) e^{-w T}\left(\frac{1}{w}+\frac{w}{R^{2}}\right) d w
\end{align*}
$$

where we have made the change of variable $z=-w$. Subtracting 88) from (86), and using (87) gives

$$
\begin{align*}
2 \pi i\left(g(0)-S_{T}(0)\right)= & \int_{\gamma_{+}} R_{T}(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \\
& -\int_{\gamma_{+}} S_{T}(-z) \frac{1}{e^{z T}}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z \tag{89}\\
& +\int_{\gamma_{-}} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z=: I+I I+I I I .
\end{align*}
$$

We now estimate $I, I I$, and $I I$. Let $z=x+i y$ with $x>0$. Since f is bounded, say, $|f(t)| \leq L$ for all $t \in[0, \infty)$, we have

$$
\left|R_{T}(z)\right| \leq \int_{T}^{\infty}|f(t)|\left|e^{-t z}\right| d t \leq C \int_{T}^{\infty} e^{-t x} d t=\left[-\frac{1}{x} e^{-t x}\right]_{t=T}^{t \rightarrow \infty}=\frac{e^{-T x}}{x}
$$

On the other hand, for $z \in \partial B(0, R)$, we have that

$$
\begin{align*}
\frac{1}{z}+\frac{z}{R^{2}} & =\frac{\bar{z}}{z \bar{z}}+\frac{z}{R^{2}} \tag{90}\\
& =\frac{\bar{z}}{R^{2}}+\frac{z}{R^{2}}=\frac{\operatorname{Re} z}{R^{2}}=\frac{x}{R^{2}}
\end{align*}
$$

In turn, for $z \in \Gamma_{+}$,

$$
\left|R_{T}(z) e^{z T}\right|\left|\frac{1}{z}+\frac{z}{R^{2}}\right| \leq \frac{e^{-T x}}{x} e^{x T} \frac{x}{R^{2}}=\frac{1}{R^{2}}
$$

Hence,

$$
\begin{equation*}
|I| \leq \frac{1}{R^{2}} \pi R=\frac{\pi}{R} \tag{91}
\end{equation*}
$$

Similarly,

$$
\left|S_{T}(-z)\right| \leq \int_{0}^{T}\left|f(t) \| e^{t z}\right| d t \leq C \int_{0}^{T} e^{t x} d t=\left[\frac{1}{x} e^{t x}\right]_{t=0}^{t=T}=\frac{e^{T x}-1}{x} \leq \frac{e^{T x}}{x}
$$

In turn, for $z \in \Gamma_{+}$,

$$
\left|S_{T}(-z) \frac{1}{e^{z T}}\right|\left|\frac{1}{z}+\frac{z}{R^{2}}\right| \leq \frac{e^{T x}}{x} \frac{1}{e^{T x}} \frac{x}{R^{2}}=\frac{1}{R^{2}}
$$

It follows that

$$
\begin{equation*}
|I I| \leq \frac{\pi R}{R^{2}}=\frac{\pi}{R} \tag{92}
\end{equation*}
$$

It remains to estimate $I I I$. Along the segment Σ given by $\operatorname{Re} z=-\delta,|z| \leq R$ we have $z=-\delta+i y$ and so

$$
\left|\frac{1}{z}+\frac{z}{R^{2}}\right| \leq \frac{1}{|z|}+\frac{|z|}{R^{2}} \leq \frac{1}{\delta}+\frac{1}{R}
$$

Since $|g(z)| \leq M$ for all $z \in C_{R}$, In turn,

$$
\left|g(z) e^{z T}\right|\left|\frac{1}{z}+\frac{z}{R^{2}}\right| \leq M e^{-\delta T}\left(\frac{1}{\delta}+\frac{1}{R}\right)
$$

and so

$$
\begin{align*}
\left|\int_{\Sigma} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z\right| & \leq M e^{-\delta T}\left(\frac{1}{\delta}+\frac{1}{R}\right) \int_{-R}^{R} 1 d y \tag{93}\\
& =M e^{-\delta T}\left(\frac{2 R}{\delta}+2\right) .
\end{align*}
$$

Friday, March 27, 2020
Proof. On the other hand, on $\gamma_{-} \backslash \Sigma$, we have $x=\operatorname{Re} z \leq 0$ and $|z|=R$. Using (90) we have

$$
\left|g(z) e^{z T}\right|\left|\frac{1}{z}+\frac{z}{R^{2}}\right| \leq M e^{x T} \frac{|x|}{R^{2}}
$$

Since $-\delta \leq x \leq 0$ we can parametrize these two arcs by $\varphi(x)=x+ \pm i \sqrt{R^{2}-x^{2}}$. Then

$$
\left|\varphi^{\prime}(x)\right|=\sqrt{1+\frac{x^{2}}{R^{2}-x^{2}}}=\frac{R}{\sqrt{R^{2}-x^{2}}} \leq \frac{R}{\sqrt{R^{2}-\delta^{2}}} \leq \frac{1}{2}
$$

since $R^{2} \geq 1>\frac{1}{4} \geq \delta^{2}$. Hence,

$$
\begin{aligned}
\left|\int_{\gamma-\backslash \Sigma} g(z) e^{z T}\left(\frac{1}{z}+\frac{z}{R^{2}}\right) d z\right| & \leq \int_{-\delta}^{0} M e^{x T} \frac{|x|}{R^{2}} d x \\
& =\frac{M}{R^{2}} \int_{0}^{\delta} e^{-t T} t d t=\frac{M}{R^{2}}\left[-\frac{1}{T^{2}} e^{-T t}(T t+1)\right]_{t=0}^{t=\delta} \\
& \leq \frac{M}{R^{2}}\left(\frac{1}{T^{2}}-\frac{1}{T^{2}} e^{-T \delta}(T \delta+1)\right)
\end{aligned}
$$

Together with 93 this shows that

$$
|I I I| \leq M T^{-\delta}\left(\frac{2 R}{\delta}+2\right)+\frac{M}{R^{2} T^{2}}
$$

Combining this inequality with (91) and (92), it follows from (89) that

$$
\left|2 \pi i\left(g(0)-S_{T}(0)\right)\right| \leq \frac{\pi}{R}+\frac{\pi}{T}+\frac{\pi}{R}+M e^{-\delta T}\left(\frac{2 R}{\delta}+2\right)+\frac{M}{R^{2} T^{2}}
$$

We now choose $R=\frac{1}{\varepsilon}$. This determines $\delta=\delta(\varepsilon)$ and $M=M(\varepsilon)$. Since

$$
\lim _{T \rightarrow \infty}\left[\frac{\pi}{T}+M e^{-\delta T}\left(\frac{2 R}{\delta}+2\right)+\frac{M}{R^{2} T^{2}}\right]=0
$$

taking T sufficiently large, we have that

$$
\left|2 \pi i\left(g(0)-S_{T}(0)\right)\right| \leq 2 \pi \varepsilon+\varepsilon
$$

which proves that $S_{T}(0) \rightarrow g(0)$ as $T \rightarrow \infty$.
Define

$$
\theta(x):=\sum_{p \text { prime } \leq x} \log p, \quad x \in \mathbb{R} .
$$

Theorem 187 The generalized Riemann integral

$$
\int_{1}^{\infty} \frac{\theta(x)-x}{x^{2}} d x
$$

converges. In turn,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1 \tag{94}
\end{equation*}
$$

Proof. Step 1: We claim that there exists a constant $C>0$ such that

$$
|\theta(x)| \leq C x
$$

for all $x>0$ sufficiently large. For $n \in \mathbb{N}$, by the binomial theorem

$$
\begin{aligned}
2^{2 n} & =(1+1)^{2 n}=\binom{2 n}{0}+\cdots+\binom{2 n}{n} \geq\binom{ 2 n}{n}=\frac{(2 n)!}{(n!)^{2}} \\
& =\prod_{k=0}^{n-1} \frac{(2 n-k)}{n!} \geq \prod_{n<p \leq 2 n} p=\exp \log \left(\prod_{n<p \leq 2 n} p\right)=\exp \log \frac{\prod_{p \leq 2 n} p}{\prod_{p \leq n} p} \\
& =\exp \left(\sum_{p \leq 2 n} \log p-\sum_{p \leq n} \log p\right)=e^{\theta(2 n)-\theta(n)}
\end{aligned}
$$

where in the last inequality we used the fact that $\binom{2 n}{n}$ is an integer (this can be proved by induction). Taking logarithms on both sides gives

$$
2 n \log 2 \geq \theta(2 n)-\theta(n)
$$

Hence for $m \in \mathbb{N}$,

$$
\theta\left(2^{m}\right)=\sum_{n=1}^{m}\left(\theta\left(2^{n}\right)-\theta\left(2^{n-1}\right)\right) \leq \log 2 \sum_{n=1}^{m} 2^{n}=\left(2^{m+1}-2\right) \log 2<2^{m+1} \log 2
$$

Given $x>1$ find $m \in \mathbb{N}$ such that $2^{m-1} \leq x<2^{m}$. Since θ is increasing,

$$
\theta(x) \leq \theta\left(2^{m}\right) \leq 2^{m+1} \log 2 \leq x 4 \log 2,
$$

which proves the claim.
Step 2: Observe that in view of the previous step, for $\operatorname{Re} z>-1$ the integral $\int_{0}^{\infty} e^{-(z+1) t} \theta\left(e^{t}\right) d t$ is well-defined. Indeed,

$$
\left|e^{-(z+1) t}\right|=e^{-t(\operatorname{Re} z+1)}
$$

Let p_{n} be the n-th prime number. If $p_{n}<e^{t}<p_{n+1}$, then

$$
\theta\left(e^{t}\right)=\sum_{p \text { prime } \leq e^{t}} \log p=\theta\left(p_{n}\right),
$$

or equivalently, $\theta\left(e^{t}\right)=\theta\left(p_{n}\right)$ for all $\log p_{n}<t<\log p_{n+1}$. Also $\theta\left(e^{t}\right)=0$ for $0<t<\log 2=\log p_{1}$. Hence, for $\operatorname{Re} z>-1$,

$$
\begin{aligned}
\int_{0}^{\infty} e^{-(z+1) t} \theta\left(e^{t}\right) d t & =\sum_{n=1}^{\infty} \int_{\log p_{n}}^{\log p_{n+1}} e^{-(z+1) t} \theta\left(e^{t}\right) d t=\sum_{n=1}^{\infty} \theta\left(p_{n}\right) \int_{\log p_{n}}^{\log p_{n+1}} e^{-(z+1) t} d t \\
& =\sum_{n=1}^{\infty} \theta\left(p_{n}\right)\left[-\frac{e^{-(z+1) t}}{z+1}\right]_{t=\log p_{n}}^{t=\log p_{n+1}}=\frac{1}{z+1} \sum_{n=1}^{\infty} \theta\left(p_{n}\right)\left[p_{n}^{-(z+1)}-p_{n+1}^{-(z+1)}\right] \\
& =\frac{1}{z+1} \sum_{n=1}^{\infty} \theta\left(p_{n}\right) p_{n}^{-(z+1)}-\frac{1}{z+1} \sum_{k=2}^{\infty} \theta\left(p_{k-1}\right) p_{k}^{-(z+1)} \\
& =\frac{1}{z+1} 2^{-(z+1)} \log 2+\frac{1}{z+1} \sum_{n=2}^{\infty}\left(\theta\left(p_{n}\right)-\theta\left(p_{n-1}\right)\right) p_{n}^{-(z+1)} \\
& =\frac{1}{z+1} 2^{-(z+1)} \log 2+\frac{1}{z+1} \sum_{n=2}^{\infty} p_{n}^{-(z+1)} \log p_{n}=\frac{\Phi(z+1)}{z+1}
\end{aligned}
$$

where in the second to last equality we used the fact that $\theta\left(p_{n}\right)-\theta\left(p_{n-1}\right)=\log p_{n}$ and we set $k=n+1$ and where

$$
\Phi(z):=\sum_{p \text { prime }} \frac{\log p}{p^{z}}, \quad z \in \mathbb{C}, \operatorname{Re} z>1
$$

Proof. Step 3: We prove that the function $z \mapsto \Phi(z)-\frac{1}{z-1}$ can be extended as a meromorphic function to the half-plane $\{z \in \mathbb{C}: \operatorname{Re} z>1 / 2\}$ and is holomorphic for all $z \in \mathbb{C}$ with $\operatorname{Re} z \geq 1$. Using the identity

$$
\frac{1}{p^{z}-1}=\frac{1}{p^{z}}+\frac{1}{p^{z}\left(p^{z}-1\right)}
$$

by 83 we can write

$$
\begin{aligned}
-\frac{\zeta^{\prime}(z)}{\zeta(z)} & =\sum_{p \text { prime }} \frac{\log p}{p^{z}-1}=\sum_{p \text { prime }} \frac{\log p}{p^{z}}+\sum_{p \text { prime }} \frac{\log p}{p^{z}\left(p^{z}-1\right)} \\
& =\Phi(z)+\sum_{p \text { prime }} \frac{\log p}{p^{z}\left(p^{z}-1\right)} .
\end{aligned}
$$

Note that for $\operatorname{Re} z>\frac{1}{2}$, and $p>4$,

$$
\left|p^{z}-1\right| \geq\left|p^{z}\right|-1 \geq p^{\operatorname{Re} z}-1 \geq \frac{1}{2} p^{\operatorname{Re} z}
$$

and so

$$
\left|\frac{\log p}{p^{z}\left(p^{z}-1\right)}\right| \leq \frac{2 \log p}{p^{2 \operatorname{Re} z}}
$$

Since the series

$$
\sum_{n=1}^{\infty} \frac{\log n}{n^{2} \operatorname{Re} z}
$$

converges, the series $\sum_{p \text { prime }} \frac{\log p}{p^{z}\left(p^{z}-1\right)}$ is absolutely convergent for $\operatorname{Re} z>\frac{1}{2}$. Moreover, by Lemma $184 \frac{\zeta^{\prime}(z)}{\zeta(z)}$ is a meromorphic function for $\operatorname{Re} z>0$. Hence,

$$
\Phi(z)=-\frac{\zeta^{\prime}(z)}{\zeta(z)}-\sum_{p \text { prime }} \frac{\log p}{p^{z}\left(p^{z}-1\right)}
$$

can be extended as a meromorphic function to $\operatorname{Re} z>\frac{1}{2}$ with poles at $z=1$ and at the zeros of ζ.

Step 4: Consider the continuous bounded function

$$
f(t)=e^{-t} \theta\left(e^{t}\right)-1
$$

By Step 2 for $\operatorname{Re} z>0$, we have that

$$
\int_{0}^{\infty} f(t) e^{-t z} d t=\int_{0}^{\infty} e^{-t(z+1)} \theta\left(e^{t}\right) d t-\int_{0}^{\infty} e^{-t z} d t=\frac{\Phi(z+1)}{z+1}-\frac{1}{z}
$$

It follows from Step 3 that $\frac{\Phi(z+1)}{z+1}-\frac{1}{z}$ can be extended to a meromorphic function g for $\operatorname{Re} z>-\frac{1}{2}$, which is holomorphic for $\operatorname{Re} z \geq 0$. Hence, we are in a position
to apply Theorem 186 to conclude that the integral $\int_{0}^{\infty} f(t) d t$ is well-defined and

$$
\int_{0}^{\infty}\left(e^{-t} \theta\left(e^{t}\right)-1\right) d t=\int_{0}^{\infty} f(t) d t=g(0)
$$

By considering the change of variables $x=e^{t}$, that is $\log x=t$, so that $\frac{1}{x} d x=d t$ we have that

$$
\int_{1}^{\infty} \frac{\theta(x)-x}{x^{2}} d x=\int_{0}^{\infty}\left(e^{-t} \theta\left(e^{t}\right)-1\right) d t=g(0)
$$

which proves the first part of the statement.
Step 5: We prove (94). Assume by contradiction that

$$
\limsup _{x \rightarrow \infty} \frac{\theta(x)}{x}>1
$$

There there exists an increasing sequence $x_{n} \rightarrow \infty$ such that $\theta\left(x_{n}\right)>(1+\varepsilon) x_{n}$ for all $n \in \mathbb{N}$ and for some $0<\varepsilon<1$. Since θ is increasing, if $x>x_{n}$, $\theta(x) \geq \theta\left(x_{n}\right)>(1+\varepsilon) x_{n}$, and so

$$
\begin{aligned}
\int_{x_{n}}^{(1+\varepsilon) x_{n}} \frac{\theta(x)-x}{x^{2}} d x & \geq \int_{x_{n}}^{(1+\varepsilon) x_{n}} \frac{(1+\varepsilon) x_{n}-x}{x^{2}} d x \\
& =\int_{1}^{(1+\varepsilon)} \frac{(1+\varepsilon)-s}{s^{2}} d s>0
\end{aligned}
$$

where we made the change of variables $x=x_{n} s$ so $d x=x_{n} d s$.
On the other hand, since

$$
\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{\theta(x)-x}{x^{2}} d x=\ell \in \mathbb{R}
$$

there exists $T_{\varepsilon}>0$ such that

$$
\left|\int_{T}^{S} \frac{\theta(x)-x}{x^{2}} d x\right|<\int_{1}^{(1+\varepsilon)} \frac{(1+\varepsilon)-s}{s^{2}} d s
$$

for all $S, T \geq T_{\varepsilon}$. Hence, by taking n so large that $x_{n} \geq T_{\varepsilon}$ we obtain a contradiction.

Similarly, if

$$
\liminf _{x \rightarrow \infty} \frac{\theta(x)}{x}<1
$$

There there exists an increasing sequence $y_{n} \rightarrow \infty$ such that $\theta\left(y_{n}\right)<(1-\varepsilon) y_{n}$ for all $n \in \mathbb{N}$ and for some $0<\varepsilon<1$. Since θ is increasing, if $y_{n}>x$, $\theta(x) \leq \theta\left(y_{n}\right) \leq(1-\varepsilon) y_{n}$, and so

$$
\begin{aligned}
\int_{(1-\varepsilon) y_{n}}^{y_{n}} \frac{\theta(x)-x}{x^{2}} d x & \leq \int_{(1-\varepsilon) y_{n}}^{y_{n}} \frac{(1-\varepsilon) x_{n}-x}{x^{2}} d x \\
& =\int_{1-\varepsilon}^{1} \frac{(1-\varepsilon)-s}{s^{2}} d s<0
\end{aligned}
$$

where we made the change of variables $x=y_{n} s$. On the other hand, there exists $S_{\varepsilon}>0$ such that

$$
\left|\int_{T}^{S} \frac{\theta(x)-x}{x^{2}} d x\right|<-\int_{1-\varepsilon}^{1} \frac{(1-\varepsilon)-s}{s^{2}} d s
$$

for all $S, T \geq S_{\varepsilon}$. Hence, by taking n so large that $(1-\varepsilon) y_{n} \geq S_{\varepsilon}$ we obtain a contradiction. This shows that

$$
\liminf _{x \rightarrow \infty} \frac{\theta(x)}{x} \geq 1
$$

which would complete the proof.
We turn to the proof of the prime number theorem.
Proof of Theorem 181. For every $\varepsilon \in(0,1)$ and $x>1$ we have

$$
\theta(x)=\sum_{p \text { prime } \leq x} \log p \leq \sum_{p \text { prime } \leq x} \log x=\pi(x) \log x
$$

while

$$
\begin{aligned}
\theta(x) & =\sum_{p \text { prime } \leq x} \log p \geq \sum_{x^{1-\varepsilon} \leq p \text { prime } \leq x} \log p \\
& \geq \sum_{x^{1-\varepsilon} \leq p \text { prime } \leq x} \log x^{1-\varepsilon}=(1-\varepsilon) \sum_{x^{1-\varepsilon} \leq p \text { prime } \leq x} \log x \\
& =(1-\varepsilon) \log x\left(\pi(x)-\pi\left(x^{1-\varepsilon}\right)\right) \\
& \geq(1-\varepsilon) \log x\left(\pi(x)-x^{1-\varepsilon}\right)
\end{aligned}
$$

Hence,

$$
\frac{\pi(x)}{\frac{x}{\log x}} \geq \frac{\theta(x)}{x} \geq(1-\varepsilon) \frac{\pi(x)}{\frac{x}{\log x}}-C \frac{\log x}{x^{\varepsilon}}
$$

Letting $x \rightarrow \infty$ gives

$$
\liminf _{x \rightarrow \infty} \frac{\pi(x)}{\frac{x}{\log x}} \geq \lim _{x \rightarrow \infty} \frac{\theta(x)}{x} \geq(1-\varepsilon) \limsup _{x \rightarrow \infty} \frac{\pi(x)}{\frac{x}{\log x}}
$$

It suffices to let $\varepsilon \rightarrow 1^{-}$.
Wednesday, April 1, 2020

16 Conformal Mappings

Definition 188 Given two open set $U, V \subseteq \mathbb{C}$, a bijective holomorphic function $f: U \rightarrow V$ is called a conformal map. If such a map exists, the sets U and V are said to be conformally equivalent.

We have seen in Corollary 142 that the inverse function of a injective holomorphic function is also holomorphic. Hence, the inverse of a conformal mapping is still a conformal mapping.

Exercise 189 Consider the upper half-plane

$$
H:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

and let

$$
f(z)=\frac{i-z}{i+z}, \quad z \in H
$$

Prove that $f: H \rightarrow B(0,1)$ is a conformal map.
Mappings of the form

$$
z \mapsto \frac{a z+b}{c z+d},
$$

where $a, b, c, d \in \mathbb{C}$ are called fractional linear transformations.
Example 190 Given $n \in \mathbb{N}$, the function $f(z)=z^{n}$ is a conformal mapping from the sector $S=\{z \in \mathbb{C}: 0<\arg z<\pi / n\}$ to the upper half-plane H. Its inverse is $f^{-1}(w)=w^{1 / n}$, defined in terms of the principal branch of the logarithm.

Exercise 191 Let $0<\alpha<2$. Prove that the sector $S=\{z \in \mathbb{C}: 0<\arg z<$ $\alpha \pi\}$ and the upper half-plane are conformally equivalent.

The Riemann mapping theorem proves that any simply connected open set which is not the entire space is conformally equivalent to the open unit ball. To prove the Riemann mapping theorem we will need the following auxiliary result.

Theorem 192 (Schwarz's lemma) Let $f: B(0,1) \rightarrow \mathbb{C}$ be a holomorphic function such that $f(0)=0$ and $|f(z)| \leq 1$ for all $z \in B(0,1)$. Then $|f(z)| \leq|z|$ for all $z \in B(0,1)$ and $\left|f^{\prime}(0)\right| \leq 1$. Moreover, if $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in$ $B(0,1)$ or $\left|f^{\prime}(0)\right|=1$, then $f(z)=a z$ for all $z \in B(0,1)$ and for some $a \in \mathbb{C}$ with $|a|=1$.

Proof. Since $f(0)=0$, we can write

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad z \in B(0,1)
$$

Hence the function

$$
h(z):=\sum_{n=1}^{\infty} a_{n} z^{n-1}, \quad z \in B(0,1)
$$

is analytic in $B(0,1)$, since the radius of convergence is the same. In turn,

$$
g(z):= \begin{cases}\frac{f(z)}{z} & z \in B(0,1), z \neq 0, \\ f^{\prime}(0) & z=0,\end{cases}
$$

is holomorphic (since $g=h$ near 0). For every $r \in(0,1)$ and every $z \in \partial B(0, r)$, $|g(z)| \leq 1 / r$, and so by the maximum modulus principle $|g(z)| \leq 1 / r$ for all $z \in \overline{B(0, r)}$. Letting $r \rightarrow 1^{+}$, it follows that $|g(z)| \leq 1$ in $B(0,1)$. Moreover, if $\left|g\left(z_{0}\right)\right|=1$ for some $z_{0} \in B(0,1)$, then g must be constant, which shows that $f(z)=a z$ for all $z \in B(0,1)$ and for some $a \in \mathbb{C}$ with $|a|=1$.

Exercise 193 Let $z, \alpha \in \mathbb{C}$ be such that $1-\bar{\alpha} z \neq 0$.
(i) Prove that

$$
\left|\frac{\alpha-z}{1-\bar{\alpha} z}\right|<1
$$

if $|z|<1$ and $|\alpha|<1$ and that

$$
\left|\frac{\alpha-z}{1-\bar{\alpha} z}\right|=1
$$

if $|z|=1$ or $|\alpha|<1$.
(ii) Given $\alpha \in B(0,1)$, the function $\psi_{\alpha}: B(0,1) \rightarrow B(0,1)$ given by

$$
\psi_{\alpha}(z):=\frac{\alpha-z}{1-\bar{\alpha} z} .
$$

Prove that ψ_{α} is a bijection.
We turn to the proof of the Riemann mapping theorem.
Theorem 194 (Riemann mapping) Let $U \subset \mathbb{C}$ be an open simply connected set. Then U is comformally equivalent to a sphere.

Proof. Step 1: Since U is strictly contained in \mathbb{C} there exists $\alpha \in \mathbb{C} \backslash U$. Hence the function $z \mapsto z-\alpha$ never vanishes on the simply connected set U and so by Exercise 101 we may define the holomorphic function $f(z):=\log _{U}(z-\alpha)$. Since $e^{f(z)}=z-\alpha$, we have that f is injective. Fix $z_{0} \in U$. We claim that

$$
\begin{equation*}
f(z) \neq f\left(z_{0}\right)+2 \pi i \quad \text { for all } z \in U \tag{95}
\end{equation*}
$$

Indeed, if $f(z)=f\left(z_{0}\right)+2 \pi i$ then by taking the exponential on both sides we get

$$
z-\alpha=e^{f(z)}=e^{f\left(z_{0}\right)+2 \pi i}=e^{f\left(z_{0}\right)} e^{2 \pi i}=\left(z_{0}-\alpha\right) 1,
$$

which implies that $z=z_{0}$ and in turn that $f(z)=f\left(z_{0}\right)$. This contradicts the fact that $f(z)=f\left(z_{0}\right)+2 \pi i$. Hence, the claim (95) holds.

We claim that there exists $r>0$ small such that $B\left(f\left(z_{0}\right)+2 \pi i, r\right) \cap f(U)=\emptyset$. Indeed, if not then taking $r=\frac{1}{n}$ we could find $z_{n} \in U$ such that $f\left(z_{n}\right) \rightarrow$ $f\left(z_{0}\right)+2 \pi i$. Again by exponentiation

$$
z_{n}-\alpha=e^{f\left(z_{n}\right)} \rightarrow e^{f\left(z_{0}\right)+2 \pi i}=e^{f\left(z_{0}\right)} e^{2 \pi i}=\left(z_{0}-\alpha\right) 1,
$$

which implies that $z_{n} \rightarrow z_{0}$, and in turn that $f\left(z_{0}\right)=f\left(z_{0}\right)+2 \pi i$, which contradicts 95 . It follows that the function

$$
F(z):=\frac{1}{f(z)-\left(f\left(z_{0}\right)+2 \pi i\right)}, \quad z \in U
$$

is holomorphic. Moreover, since $\left|f(z)-\left(f\left(z_{0}\right)+2 \pi i\right)\right| \geq r>0$ for all $z \in U$, we have that F is bounded. By a translation and a rescaling we can assume that

$$
F: U \rightarrow B(0,1)
$$

and that $0 \in F(U)$. By the open mapping theorem the set $F(U)$ is open. Since $F: U \rightarrow F(U)$ is a homeomorphism and U is simply connected, it follows that $F(U)$ is also simply connected.

Since U and $F(U)$ are conformally equivalent, it suffices to prove that $F(U)$ and $B(0,1)$ are conformally equivalent.

Friday, April 4, 2020
Proof. Step 2: In view of Step 1, by replacing U with $F(U)$, without loss of generality we may assume that $U \subseteq B(0,1)$ and that $0 \in U$. Let

$$
\mathcal{G}:=\{g: U \rightarrow B(0,1) \text { holomorphic, injective, } g(0)=0\}
$$

The family \mathcal{G} is nonempty since the identity belongs to \mathcal{G}. Since, $|g(z)| \leq 1$ for all $z \in U$ and $0 \in U$, by (32),

$$
\left|g^{\prime}(0)\right| \leq \frac{1}{2 \pi} \int_{\partial B(0, r)} \frac{|g(\zeta)|}{\zeta^{2}} d \zeta \leq \frac{2 \pi r}{2 \pi r^{2}}
$$

for all $g \in \mathcal{G}$ and for $r>0$ such that $\overline{B(0, r)} \subset U$. Let

$$
s:=\sup \left\{\left|g^{\prime}(0)\right|: g \in \mathcal{G}\right\}
$$

Consider a sequence $\left\{g_{n}\right\}_{n}$ in \mathcal{G} such that $\left|g_{n}^{\prime}(0)\right| \rightarrow s$. Since the family \mathcal{G} is equibounded, by Montel's theorem there exists a subsequence $\left\{g_{n_{k}}\right\}_{k}$ which converges uniformly on compact sets to a holomorphic function $g: U \rightarrow \mathbb{C}$. By uniform convergence, $g(0)=0$ and $g: U \rightarrow \overline{B(0,1)}$. By Theorem 70 $\left|g_{n}^{\prime}(0)\right| \rightarrow\left|g^{\prime}(0)\right|=s$. Since $s \geq 1$ (since the identity has derivative with modulus one), the function g cannot be constant and thus by Theorem 167 it must be injective. Since $g(U)$ is open, it follows that $g: U \rightarrow B(0,1)$. It follows that g belongs to \mathcal{G}.

Step 3: It remains to show that g is onto. Assume by contradiction that there is $\alpha \in B(0,1) \backslash g(U)$. Consider the diffeomorphism $\psi_{\alpha}: B(0,1) \rightarrow B(0,1)$ given by

$$
\psi_{\alpha}(z):=\frac{\alpha-z}{1-\bar{\alpha} z} .
$$

Note that ψ_{α} interchanges 0 with α, since $\psi_{\alpha}(\alpha)=0$ and $\psi_{\alpha}(0)=\alpha$. The set $V:=\left(\psi_{\alpha} \circ g\right)(U) \subseteq B(0,1)$ is open and simply connected and 0 does not
belong to V since $\alpha \in B(0,1) \backslash g(U)$ and $\psi_{\alpha}(\alpha)=0$. Hence, by Exercise 101 the function $h_{1}: V \rightarrow \mathbb{C}$ given by

$$
h_{1}(w):=e^{\frac{1}{2} \log _{V} w}=\sqrt{w}
$$

is holomorphic and injective and $h_{1}: V \rightarrow B(0,1)$. It follows that the function

$$
g_{1}:=\psi_{h_{1}(\alpha)} \circ h_{1} \circ \psi_{\alpha} \circ g
$$

is injective, holomorphic, and

$$
\begin{aligned}
g_{1}(0) & =\psi_{h_{1}(\alpha)}\left(h_{1}\left(\psi_{\alpha}(g(0))\right)\right)=\psi_{h_{1}(\alpha)}\left(h_{1}\left(\psi_{\alpha}(0)\right)\right) \\
& =\psi_{h_{1}(\alpha)}\left(h_{1}(\alpha)\right)=0
\end{aligned}
$$

Hence, $g_{1} \in \mathcal{G}$.
Next consider the function $h_{2}(w):=w^{2}$ and $\phi:=\psi_{\alpha}^{-1} \circ h_{2} \circ \psi_{h_{1}(\alpha)}^{-1}$. Then

$$
\begin{aligned}
\phi \circ g_{1} & :=\psi_{\alpha}^{-1} \circ h_{2} \circ \psi_{h_{1}(\alpha)}^{-1} \circ \psi_{h_{1}(\alpha)} \circ h_{1} \circ \psi_{\alpha} \circ g \\
& =\psi_{\alpha}^{-1} \circ h_{2} \circ h_{1} \circ \psi_{\alpha} \circ g=\psi_{\alpha}^{-1} \circ \psi_{\alpha} \circ g=g
\end{aligned}
$$

and

$$
g^{\prime}(0)=\left(\phi \circ g_{1}\right)^{\prime}(0)=\phi^{\prime}(0) g_{1}^{\prime}(0)
$$

and so

$$
s=\left|g^{\prime}(0)\right|=\left|\phi^{\prime}(0)\right|\left|g_{1}^{\prime}(0)\right| .
$$

The function $\phi: B(0,1) \rightarrow \mathbb{C}$ satisfies all the hypotheses of Schwarz's lemma, but it is not injective since h_{2} is not injective. Hence $\left|\phi^{\prime}(0)\right|<1$, which implies that $\left|g_{1}^{\prime}(0)\right|>s$ and contradicts the maximality of s. Hence, g is onto and the proof is complete.

Remark 195 In view of Exercise 102 , the Riemann mapping theorem continues to hold is instead of assuming U simply connected, we assume that

$$
\int_{\gamma} f d s=0
$$

for every holomorphic function $f: U \rightarrow \mathbb{C}$ and for every closed oriented Lipschitz continuous curve with range contained in U.

An important consequence of the Riemann mapping theorem is the following characterization of simply connected open sets.

Theorem 196 Let $U \subset \mathbb{C}$ be an open connected set. Then the following are equivalent:
(i) U is homeomorphic to an open ball,
(ii) U is simply connected,
(iii) $\int_{\gamma} f d z=0$ for every holomorphic function $f: U \rightarrow \mathbb{C}$ and for every rectifiable closed oriented curve γ with range contained in U.

Proof. Assume that U is homeomorphic to an open ball, say $B(0,1)$. Then there exists an invertible function $\Psi: U \rightarrow B(0,1)$, which is continuous together with its inverse and consider a continuous closed curve, with parametric representation $\varphi:[a, b] \rightarrow \mathbb{C}$ such that $\varphi([a, b]) \subseteq U$. Define the function $h:[a, b] \times[0,1] \rightarrow \mathbb{C}$ by

$$
h(t, s)=\Psi^{-1}(s \Psi(\varphi(t))) .
$$

Then $h([a, b] \times[0,1]) \subseteq U$,

$$
\begin{aligned}
& h(t, 0)=\Psi^{-1}(0) \text { for all } t \in[a, b], \quad h(t, 1)=\varphi(t) \text { for all } t \in[a, b] \\
& h(a, s)=\Psi^{-1}(s \Psi(\varphi(a)))=\Psi^{-1}(s \Psi(\varphi(b)))=h(b, s) \text { for all } s \in[0,1] .
\end{aligned}
$$

Hence, U is simply connected. Hence (ii) holds.
Conversely, assume that U is simply connected. Then by the Riemann mapping theorem U is homeomorphic to a ball. This shows that (i) and (ii) are equivalent.

To show that (ii) and (iii) are equivalent, note that if U is simply connected, then (iii) holds in view of Theorem 98 . Conversely, if (iii) holds then by Remark $195 U$ is homeomorphic to a ball and so it is simply connected by the equivalence between (i) and (ii).

Next we study the behavior of conformal mappings at the boundary.
Definition $197 A$ set $E \subseteq \mathbb{C}$ is locally connected if for every $\varepsilon>0$ there exists $\delta>0$ such that for all $z, w \in E$ with $0<|z-w|<\delta$ there exists a compact connected set $F \subseteq E$ such that $z, w \in F$ and $\operatorname{diam} F<\varepsilon$.

The range of a continuous curve is locally connected.

Monday, April 6, 2020
Exercise 198 Let E_{1}, \ldots, E_{n} be locally connected. Prove that their union is locally connected.

Exercise 199 Let

$$
E=\{x+i y:|x|<1,0<y<1\} \backslash \bigcup_{n=1}^{\infty}\left[\frac{i}{n}, \frac{i}{n}+1\right]
$$

Prove that ∂E is not locally connected.
Theorem 200 Let $U \subset \mathbb{C}$ be an open bounded simply connected set and and let f map conformally $B(0,1)$ onto U. Then the following conditions are equivalent
(i) f can be extended continuously to $\overline{B(0,1)}$,
(ii) ∂U is the range of an oriented closed curve,
(iii) ∂U is locally connected,
(iv) $\mathbb{C} \backslash U$ is locally connected.

In general the extension of f to $\partial B(0,1)$ will not be injective.
Example 201 An example of a simply connected domain whose boundary is not the range of an oriented simple closed curve is $U=B(0,1) \backslash\{x: 0 \leq x<1\}$.

Indeed, we have the following result:
Theorem 202 (Carathéodory) Let $U \subset \mathbb{C}$ be an open bounded simply connected set and let f map conformally $B(0,1)$ onto U. Then f has a continuous and injective extension to $\overline{B(0,1)}$ if and only if ∂U is the range of an oriented simple closed curve.

17 Runge's Theorem

Next we proof another important theorem. There is a more general statement but we will prove first a simpler version.

Theorem 203 (Runge) Let $U \subseteq \mathbb{C}$ be an open set, let $K \subset U$ be a compact set with $\mathbb{C} \backslash K$ connected, and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then there exists a sequence of polynomials $p_{n}: \mathbb{C} \rightarrow \mathbb{C}$ such that $p_{n} \rightarrow f$ uniformly in K.

Exercise 204 Let $K \subset \mathbb{C}$ be a compact set.
(i) Let B be an open ball such that $K \subset B$ and let $z_{1} \in \mathbb{C} \backslash B$. Let $f(z):=$ $\frac{1}{z-z_{1}}$. Prove that there exists a sequence of polynomials which converges to f uniformly in K.
(ii) Assume that $\mathbb{C} \backslash K$ is connected and let $z_{0} \in \mathbb{C} \backslash K$. Let $g(z):=\frac{1}{z-z_{0}}$. Prove that there exists a sequence of polynomials which converges to g uniformly in K.

Lemma 205 Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then there exist finitely many oriented segments $\gamma_{1}, \ldots, \gamma_{n}$ with range in $U \backslash K$ such that

$$
f(z)=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

for all $z \in K$.
Proof. Let $d:=\operatorname{dist}(K, \partial U)$ and partition \mathbb{C} into squares of side-length less than $\frac{1}{\sqrt{2}} d$. Let Q_{1}, \ldots, Q_{ℓ} be the closed cubes which intersects K with ∂Q_{k} oriented counterclockwise. Since $K \cap Q_{k} \neq \emptyset$ and Q_{k} has diameter less than d, each Q_{k} is contained in U. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the oriented sides of these cubes which do not belong to two adjacent squares. Then each γ_{k} does not intersect K since otherwise γ_{k} would belong to two adjacent cubes intersecting K. Let $z \in K$ and assume that z is not on the boundary of one of the cubes. Then there exists a unique j such that $z \in Q_{j}$. It follows by Cauchy's theorem and Theorem 98 that

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial Q_{j}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

On the other hand for all $k \neq j$,

$$
\frac{1}{2 \pi i} \int_{\partial Q_{j}} \frac{f(\zeta)}{\zeta-z} d \zeta=0
$$

Hence, if we sum these equalities we get

$$
f(z)=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\partial Q_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

where in the second equality we used the fact that integrals over the sides of adjacent cubes cancel out. This proves the result for all $z \in K$ not on the boundary of a cube Q_{k}. Now if $z \in K$ and z belongs to the boundary of a cube, then z does not belong to any of the segments γ_{k} and so by continuity we have that the formula

$$
f(z)=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

holds for all $z \in K$.
Lemma 206 Let γ be a Lipschitz continuous oriented curve in \mathbb{C} parametrized by $\varphi:[a, b] \rightarrow \mathbb{C}$, let $f: \varphi([a, b]) \rightarrow \mathbb{C}$ be a continuous function, and let $K \subset \mathbb{C}$
be a compact set with $K \cap \varphi([a, b])=\emptyset$. Then for every $\varepsilon>0$ there exists a rational function $R: \mathbb{C} \backslash \bigcup_{j=1}^{n}\left\{z_{j}\right\} \rightarrow \mathbb{C}$, where $z_{j} \in \varphi([a, b])$ such that

$$
\left|\int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta-R(z)\right| \leq \varepsilon \quad \text { for all } z \in K
$$

Proof. The function

$$
g(z, t):=\frac{f(\varphi(t))}{\varphi(t)-z}, \quad(t, z) \in[a, b] \times K
$$

is uniformly continuous, therefore we can find a partition $a=t_{0}<t_{1}<\cdots<$ $t_{n}=b$ such that

$$
\left|\frac{f(\varphi(t))}{\varphi(t)-z}-\frac{f\left(\varphi\left(t_{j}\right)\right)}{\varphi\left(t_{j}\right)-z}\right| \leq \frac{\varepsilon}{M(b-a)} \quad \text { for all }(t, z) \in\left[t_{j-1}, t_{j}\right] \times K
$$

where $\left\|\varphi^{\prime}\right\|_{\infty} \leq M$. Define

$$
R(z):=\sum_{j=1}^{n} \frac{f\left(\varphi\left(t_{j}\right)\right)}{\varphi\left(t_{j}\right)-z}\left(\varphi\left(t_{j}\right)-\varphi\left(t_{j-1}\right)\right)
$$

Then

$$
\begin{aligned}
\int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta-R(z) & =\sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{f(\varphi(t))}{\varphi(t)-z} \varphi^{\prime}(t) d t-\sum_{j=1}^{n} \frac{f\left(\varphi\left(t_{j}\right)\right)}{\varphi\left(t_{j}\right)-z} \int_{t_{j-1}}^{t_{j}} \varphi^{\prime}(t) d t \\
& =\sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}}\left(\frac{f(\varphi(t))}{\varphi(t)-z}-\frac{f\left(\varphi\left(t_{j}\right)\right)}{\varphi\left(t_{j}\right)-z}\right) \varphi^{\prime}(t) d t
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|\int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta-R(z)\right| & \leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}}\left|\frac{f(\varphi(t))}{\varphi(t)-z}-\frac{f\left(\varphi\left(t_{j}\right)\right)}{\varphi\left(t_{j}\right)-z}\right|\left|\varphi^{\prime}(t)\right| d t \\
& \leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{\varepsilon}{M(b-a)} M d t=\varepsilon
\end{aligned}
$$

This concludes the proof.
Wednesday, April 8, 2020
Lemma 207 Let $G \subseteq \mathbb{C}$ be a set and let $\mathcal{F}(G)$ be the family of functions f : $G \rightarrow \mathbb{C}$ for which there exists a sequence of polynomials p_{n} such that $p_{n} \rightarrow f$ uniformly in G as $n \rightarrow \infty$. If $f_{k} \in \mathcal{F}(G)$ and $f_{k} \rightarrow f$ uniformly in G, then $f \in \mathcal{F}(G)$.

Proof. The proof uses a diagonal argument. Since $f_{k} \in \mathcal{F}(G)$ there exists a sequence of polynomials $p_{n, k}$ such that $p_{n, k} \rightarrow f_{k}$ uniformly in G as $n \rightarrow \infty$. Hence we can find $n_{k} \geq k$ such that

$$
\sup _{z \in K}\left|p_{n, k}(z)-f_{k}(k)\right| \leq \frac{1}{k}
$$

for all $n \geq n_{k}$. Define

$$
q_{k}(z):=p_{n_{k}, k}(z)
$$

Then

$$
\begin{aligned}
\left|f(z)-q_{k}(z)\right| & =\left|f(z)-p_{n_{k}, k}(z)\right| \leq\left|f(z)-f_{k}(z)\right|+\left|f_{k}(z)-p_{n_{k}, k}(z)\right| \\
& \leq\left|f(z)-f_{k}(z)\right|+\frac{1}{k}
\end{aligned}
$$

Taking the supremum over all $z \in G$, we have that the right-hand side converges uniformly to zero in G as $k \rightarrow \infty$.

Lemma 208 Let $K \subset \mathbb{C}$ be a compact set such that $\mathbb{C} \backslash K$ is connected. Given $z_{0} \in \mathbb{C} \backslash K$, let $g_{z_{0}}(z):=\frac{1}{z-z_{0}}$. Then there exists a sequence of polynomials which converges to $g_{z_{0}}$ uniformly in K.

Proof. Let $\mathcal{F}(K)$ be the space of all functions $f: K \rightarrow \mathbb{C}$ such that there exists a sequence of polynomials $p_{n}: \mathbb{C} \rightarrow \mathbb{C}$ such that $p_{n} \rightarrow f$ uniformly in K. Note that if $f, g \in \mathcal{F}(K)$, then $f g$ and $f+g \in \mathcal{F}(K)$. Moreover, if $f_{k} \in \mathcal{F}(K)$ and $f_{k} \rightarrow f$ uniformly in K, then by the previous lemma, $f \in \mathcal{F}(K)$.

Step 1: Let $R>0$ be so large that $K \subset B(0, R)$, let $z_{1} \in \mathbb{C} \backslash B(0, R)$, and let $g_{z_{1}}(z):=\frac{1}{z-z_{1}}$. We claim that $g_{z_{1}} \in \mathcal{F}(K)$. Find $0<r<R$ such that $K \subset B(0, r)$. For $z \in K$, write

$$
\frac{1}{z-z_{1}}=-\frac{1}{z_{1}} \frac{1}{1-\frac{z}{z_{1}}}
$$

Then

$$
\left|\frac{z}{z_{1}}\right| \leq \frac{r}{R}=: \delta<1
$$

and so we can use geometric power series to write

$$
\frac{1}{z-z_{1}}=-\frac{1}{z_{1}} \frac{1}{1-\frac{z}{z_{1}}}=-\frac{1}{z_{1}} \sum_{k=0}^{\infty}\left(1-\frac{z}{z_{1}}\right)^{k}
$$

Since this geometric series converges uniformly in K (since the number δ is independent of z), we have that and the polynomials $-\frac{1}{z_{1}} \sum_{k=0}^{\ell}\left(1-\frac{z}{z_{1}}\right)^{k}$ converge uniformly to $g_{z_{1}}$ in K.

Step 2: Let $w_{1} \in \mathbb{C} \backslash K$ and assume that $g_{w_{1}} \in \mathcal{F}(K)$. Let $0<\delta<$ $\frac{1}{4} \operatorname{dist}\left(w_{1}, K\right)$. We claim that for every $w_{2} \in \mathbb{C}$ with $\left|w_{1}-w_{2}\right|<\delta$ we have that $g_{w_{2}} \in \mathcal{F}(K)$ in K. To see this we proceed as in the previous step to write for $z \in K$,

$$
g_{w_{2}}(z)=\frac{1}{z-w_{2}}=\frac{1}{z-w_{1}-\left(w_{1}-w_{2}\right)}=\frac{1}{z-w_{1}} \frac{1}{1-\frac{w_{1}-w_{2}}{z-w_{1}}}
$$

Then $\left|z-w_{1}\right| \geq 4 \delta$ and so

$$
\left|\frac{w_{1}-w_{2}}{z-w_{1}}\right| \leq \frac{\delta}{4 \delta}=\frac{1}{4}<1
$$

and so we can use geometric power series to write

$$
g_{w_{2}}(z)=\frac{1}{z-w_{1}} \frac{1}{1-\frac{w_{1}-w_{2}}{z-w_{1}}}=\frac{1}{z-w_{1}} \sum_{k=0}^{\infty}\left(\frac{w_{1}-w_{2}}{z-w_{1}}\right)^{k}
$$

where this geometric series converges uniformly in K. Hence, the sequence of functions

$$
\sum_{k=0}^{\ell}\left(\frac{w_{1}-w_{2}}{z-w_{1}}\right)^{k}
$$

converges uniformly in K as $\ell \rightarrow \infty$. Since $g_{w_{1}} \in \mathcal{F}(K)$ we have that $g_{w_{1}}^{k} \in$ $\mathcal{F}(K)$. In turn, $\left(w_{1}-w_{2}\right)^{k} g_{w_{1}}^{k} \in \mathcal{F}(K)$ and so

$$
\sum_{k=0}^{\ell}\left(w_{1}-w_{2}\right)^{k} g_{w_{1}}^{k} \in \mathcal{F}(K)
$$

Hence, $\sum_{k=0}^{\infty}\left(\frac{w_{1}-w_{2}}{z-w_{1}}\right)^{k} \in \mathcal{F}(K)$ since the series converges uniformly in K. It follows that $g_{w_{2}} \in \mathcal{F}(K)$, since it is the product of $g_{w_{1}}$ and this series.

Step 3: Let $R>0$ be so large that $K \subset B(0, R)$. Let $z_{1} \in \mathbb{C} \backslash B(0, R)$. Given $z_{0} \in \mathbb{C} \backslash K$, since $\mathbb{C} \backslash K$ is connected, we can find a polygonal path γ that joins z_{0} and z_{1} with range Γ in $\mathbb{C} \backslash K$. Let $0<\delta<\frac{1}{4} \operatorname{dist}(\Gamma, K)$. Without loss of generality we can assume that the endpoints of the segments of γ have distance less than δ. Hence, we can apply Step 2 starting from z_{1} until we reach z_{0}.

We turn to the proof of the theorem.
Proof of Runge's theorem. By Lemma 205 there exist finitely many oriented segments $\gamma_{1}, \ldots, \gamma_{n}$ with range in $U \backslash K$ such that

$$
f(z)=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

for all $z \in K$. By Lemma 205 for each $\varepsilon>0$ there exists a rational function R_{k} such that

$$
\left|\frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-z} d \zeta-R_{k}(z)\right| \leq \varepsilon / n \quad \text { for all } z \in K
$$

Hence,

$$
\left|f(z)-\sum_{k=1}^{n} R_{k}(z)\right| \leq \varepsilon \quad \text { for all } z \in K
$$

Now each R_{k} is a sum of rational functions whose denominator has the form $\frac{1}{z-z_{0}}$ for some $z_{0} \in U \backslash K$. We now apply Lemma 208 .

Friday, April 10, 2020
We now present a more general version. Let $\mathbb{S}^{2}:=\partial B((0,0,0), 1)$ be the unit sphere in \mathbb{R}^{3}. We can view the complex plane as the plane the plane $\{(x, y, 0): x, y \in \mathbb{R}\}$ inside \mathbb{R}^{3}. Let $N=(0,0,1) \in \mathbb{S}^{2}$ be the north pole. Given
a point $z=x+i y$ there is a unique line passing through N and $(x, y, 0)$ which intersects \mathbb{S}^{2} at a point $S(z) \in \mathbb{S}^{2} \backslash\{N\}$. The map S gives a bijection between \mathbb{C} and $\mathbb{S}^{2} \backslash\{N\}$. Indeed, given $(X, Y, Z) \in \mathbb{S}^{2} \backslash\{N\}$ consider

$$
x=\frac{X}{1-Z}, \quad y=\frac{Y}{1-Z}
$$

Conversely, given $z=x+i y \in \mathbb{C}$ we have that

$$
\begin{aligned}
S(z) & =\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) \\
& =\frac{1}{1+|z|^{2}}\left(2 \operatorname{Re} z, 2 \operatorname{Im} z,|z|^{2}-1\right) .
\end{aligned}
$$

If we set $S(\infty):=N$ we have a bijection between \mathbb{C}_{∞} and \mathbb{S}^{2}. Note that $S(z) \rightarrow N$ in \mathbb{R}^{3} if and only if $|z| \rightarrow \infty$ in \mathbb{C}.

Hence, we can regard \mathbb{C}_{∞} as a subset of \mathbb{R}^{3}. In turn, the metric in \mathbb{R}^{3} induces a metric on \mathbb{C}_{∞}. We leave as an exercise to show that this metric is given by

$$
d(z, w)=\frac{2|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}, \quad d(z, \infty)=\frac{2}{\sqrt{1+|z|^{2}}}
$$

for $z, w \in \mathbb{C}$ and that this metric induces the same topology in \mathbb{C}. Note that since \mathbb{S}^{2} is compact, so is \mathbb{C}_{∞}.

Theorem 209 (Runge) Let $U \subseteq \mathbb{C}$ be an open set, let $K \subset U$ be a compact set, let $E \subseteq \mathbb{C}_{\infty} \backslash U$ be such that E contains at least one point in each component of $\mathbb{C}_{\infty} \backslash K$, and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Then there exists a sequence of rational functions $r_{n}: \mathbb{C} \backslash E \rightarrow \mathbb{C}$ with poles in E such that $r_{n} \rightarrow f$ uniformly in K.

We will need two more lemmas.
Lemma 210 Let $V, W \subseteq \mathbb{C}$ be two open sets with $V \subseteq W$ and $\partial V \cap W=\emptyset$. If H is any component of W and $H \cap V \neq \emptyset$, then $H \subseteq V$.

Proof. Let H be as in the statement and let $z_{0} \in H \cap V$. Then there exists a connected component G of V such that $z_{0} \in G$. To conclude the proof, it is enough to show that $H=G$.

We have that $G \subseteq H$, since G is a connected subset of V (and so of W) containing z_{0} and H is the union of all connected subsets of W containing z_{0}. Write

$$
H=G \cup(H \backslash G)=G \cup((H \cap \partial G) \cup(H \backslash \bar{G}))
$$

But $H \cap \partial G \subseteq W \cap \partial G \subseteq W \cap \partial V=\emptyset$. Hence, the connected set H is the union of two disjoint open sets. Since G is nonempty, it follows that $H \backslash \bar{G}=\emptyset$, which shows that $H=G$.

Lemma 211 Let $K \subset \mathbb{C}$ be a compact set, let $z_{0} \in \mathbb{C} \backslash K$, let $g(z):=\frac{1}{z-z_{0}}$, and let $E \subseteq \mathbb{C}_{\infty} \backslash K$ be such that E contains at least one point in each component of $\mathbb{C}_{\infty} \backslash K$. Then there exists a sequence of rational functions $R_{n}: \mathbb{C} \backslash E \rightarrow \mathbb{C}$ with poles in E such that $R_{n} \rightarrow g$ uniformly in K.

Proof. Step 1: Let $B(E)$ be the space of all functions $f: K \rightarrow \mathbb{C}$ such that there exists a sequence of rational functions $R_{n}: \mathbb{C} \backslash E \rightarrow \mathbb{C}$ with poles in E such that $R_{n} \rightarrow f$ uniformly in K. Note that if $f, g \in B(E)$, then $f g$ and $f+g \in B(E)$. Moreover, if $f_{k} \in B(E)$ and $f_{k} \rightarrow f$ uniformly in K, then by Lemma 207 (which continues to hold if we replace polynomials with rational functions), $f \in B(E)$.

Step 2: Assume that $E \subset \mathbb{C} \backslash K$. Let $W:=\mathbb{C} \backslash K$ and let V be the set of all $w \in W$ such that $g_{w} \in B(E)$, where $g_{w}(z)=\frac{1}{z-w}, z \in K$. We claim that V is an open set. To see this, let $w_{0} \in V$ and $w \in B\left(w_{0}, r\right)$, where $r:=\operatorname{dist}\left(w_{0}, K\right)>0$. For $z \in K$, write

$$
\frac{1}{z-w}=\frac{1}{z-w_{0}-\left(w-w_{0}\right)}=\frac{1}{z-w_{0}} \frac{1}{1-\frac{w-w_{0}}{z-w_{0}}}
$$

Then $\left|z-w_{0}\right| \geq r$ and so

$$
\left|\frac{w-w_{0}}{z-w_{0}}\right| \leq \frac{\left|w-w_{0}\right|}{r}=: \delta<1
$$

and so we can use geometric power series to write

$$
\frac{1}{1-\frac{w-w_{0}}{z-w_{0}}}=\sum_{k=0}^{\infty}\left(\frac{w-w_{0}}{z-w_{0}}\right)^{k}
$$

Since this geometric series converges uniformly in K (since the number δ is independent of z), and $\sum_{k=0}^{\ell}\left(\frac{w-w_{0}}{z-w_{0}}\right)^{k}$ belongs to $B(E)$, because is it given by products and sums of functions in $B(E)$, by Step $1, \frac{1}{1-\frac{w-w_{0}}{z-w_{0}}} \in B(E)$, and so also $g_{w} \in B(E)$. This shows that $B\left(w_{0}, r\right) \subseteq V$. Thus, V is open.

Next we claim that $\partial V \cap W=\emptyset$. Let $w \in \partial V$ and find $w_{n} \in V$ such that $w_{n} \rightarrow w$. By what we just proved, if $\left|w_{n}-w\right|<\operatorname{dist}\left(w_{n}, K\right)$, then $w \in V$. Since $w \notin V$, it must be that

$$
\left|w_{n}-w\right| \geq \operatorname{dist}\left(w_{n}, K\right) \geq \operatorname{dist}(w, K)-\left|w_{n}-w\right|
$$

Letting $n \rightarrow \infty$ gives $\operatorname{dist}(w, K)=0$, which implies that $w \in K$, since K is compact. Recalling that $W:=\mathbb{C} \backslash K$, it follows that $w \notin W$.

This proves that all the hypotheses of the previous lemma are satisfied. Let H be any component of $W=\mathbb{C} \backslash K$. By hypothesis there exists $w \in E \cap H$. Moreover g_{w} is a rational function itself with pole in E. Hence, w belongs to V. By the previous lemma, it follows that $H \subseteq V$. This shows that $V=\mathbb{C} \backslash K$, that is, that for every $w \in \mathbb{C} \backslash K$ there exists a sequence of rational functions $R_{n}: \mathbb{C} \backslash E \rightarrow \mathbb{C}$ with poles in E such that $R_{n} \rightarrow g_{w}$ uniformly in K.

Monday, April 13, 2020
Proof. Step 3: Assume that $\infty \in E \subset \mathbb{C}_{\infty} \backslash K$. Since K is bounded, there exists a unique unbounded connected component H of $\mathbb{C} \backslash K$. If $w_{0} \in H$ and $\left|w_{0}\right|$ is very large, then the Taylor series of $g_{w_{0}}$ converges uniformly in K (see Lemma 208. Thus, $w_{0} \in B(S)$.

By applying Step 2 to $\left(E \cup\left\{w_{0}\right\}\right) \backslash\{\infty\}$, we conclude that for every $w \in \mathbb{C} \backslash K$ there exists a sequence of rational functions $R_{n}: \mathbb{C} \backslash\left(\left(E \cup\left\{w_{0}\right\}\right) \backslash\{\infty\}\right) \rightarrow \mathbb{C}$ with poles in $\left(E \cup\left\{w_{0}\right\}\right) \backslash\{\infty\}$ such that $R_{n} \rightarrow g_{w}$ uniformly in K. Write

$$
R_{n}=Q_{n}+S_{n}
$$

where the poles of Q_{n} are in $E \backslash\{\infty\}$ and S_{n} is either zero or has only a pole in w_{0}. Since S_{n} can be approximated uniformly in K by polynomials, by a diagonal argument, we can find a sequence of rational functions with poles in $E \backslash\{\infty\}$ converging uniformly to $g_{w_{0}}$ in K. This concludes the proof.

We turn to the proof of Runge's theorem.
Proof. We proceed as in the proof of Theorem 203 with the only difference that in place of Lemma 208 we apply the previous lemma.

17.1 Mittag-Leffler Theorem

This is the analog of Weierstrass representation theorem for meromorphic functions. In the statement we will use the fact that if $U \subseteq \mathbb{C}$ is an open set and $E \subset U$ is a set with no accumulation points in U, then E is countable.

Theorem 212 Let $U \subseteq \mathbb{C}$ be an open set, let $E=\left\{w_{n}: n \in I\right\} \subset U$ be a set with no accumulation points in U, where $I \subseteq \mathbb{N}$ and let

$$
S_{n}(z)=\frac{a_{n, 1}}{z-w_{n}}+\cdots+\frac{a_{n, \ell_{k}}}{\left(z-w_{n}\right)^{\ell_{k}}} .
$$

Then there exists a meromorphic function $f: U \backslash E \rightarrow \mathbb{C}$ whose only poles are at E and whose principal part at w_{n} is S_{n}.

Proof. Step 1: Let $K_{0}:=\emptyset$ and

$$
K_{j}:=\overline{B(0, j)} \cap\{z \in \mathbb{C}: \operatorname{dist}(z, \mathbb{C} \backslash U) \geq 1 / j\}
$$

Then $K_{j} \subset K_{j+1}^{\circ}$ and $\bigcup_{j=1}^{\infty} K_{j}=U$.
Note that
$\mathbb{C}_{\infty} \backslash K_{j}=\left(\mathbb{C}_{\infty} \backslash \overline{B(0, j)}\right) \cup(\overline{B(0, j)} \backslash U) \cup\{z \in U \cap \overline{B(0, j)}: \operatorname{dist}(z, \mathbb{C} \backslash U)<1 / j\}$.
We claim that each component of $\mathbb{C}_{\infty} \backslash K_{j}$ contains a component of $\mathbb{C}_{\infty} \backslash U$. Indeed, since $\mathbb{C}_{\infty} \backslash U \subset \mathbb{C}_{\infty} \backslash K_{j}$, if we consider the component G of $\mathbb{C}_{\infty} \backslash K_{j}$ which contains ∞, it must contain the component H of $\mathbb{C}_{\infty} \backslash U$ which contains ∞ (since H is connected, $\infty \in H$ and $H \subseteq \mathbb{C}_{\infty} \backslash K_{j}$). On the other hand, since $K_{j} \subseteq \overline{B(0, j)}$, we have that G contains $\mathbb{C}_{\infty} \backslash \overline{B(0, j)}$, since the latter is
a connected set contained in $\mathbb{C}_{\infty} \backslash K_{j}$. It follows that if D is a component of $\mathbb{C}_{\infty} \backslash K_{j}$ which does not contain ∞, then $D \subseteq \overline{B(0, j)}$ and so by (96), D contains a point $z_{0} \in \mathbb{C}$ with $\operatorname{dist}\left(z_{0}, \mathbb{C} \backslash U\right)<1 / j$. It follows from the definition of distance that there exists $w_{0} \in \mathbb{C} \backslash U \subset \mathbb{C}_{\infty} \backslash K_{j}$ with $\left|z_{0}-w_{0}\right|<1 / j$. Hence, $z_{0} \in B\left(w_{0}, 1 / j\right)$. But $B\left(w_{0}, 1 / j\right) \subseteq \mathbb{C}_{\infty} \backslash K_{j}$. Indeed, let $w \in B\left(w_{0}, 1 / j\right)$. If $w \in\left(\mathbb{C}_{\infty} \backslash \overline{B(0, j)}\right) \cup(\overline{B(0, j)} \backslash U)$ there is nothing to prove, so assume that $w \in U$ and $|w| \leq j$. Since $w_{0} \in \mathbb{C} \backslash U$,

$$
\operatorname{dist}(w, \mathbb{C} \backslash U) \leq\left|w-w_{0}\right|<1 / j
$$

and so by the definition of $K_{j}, w \notin K_{j}$.
Thus, $z_{0} \in B\left(w_{0}, 1 / j\right) \subseteq \mathbb{C}_{\infty} \backslash K_{j}$. Since D and $B\left(w_{0}, 1 / j\right)$ are connected and contain $z_{0}, D \cup B\left(w_{0}, 1 / j\right)$ is connected. But D is maximal, so $B\left(w_{0}, 1 / j\right) \subseteq D$. Let D_{1} be the component of $\mathbb{C} \backslash U$ which contains w_{0}. Then $D \subseteq D_{1}$ again because $D \subseteq \mathbb{C} \backslash U \subset \mathbb{C}_{\infty} \backslash K_{j}$ and $w_{0} \in D$. This proves the claim.

Step 2: Let

$$
I_{j}:=\left\{n \in I: w_{n} \in K_{j} \backslash K_{j-1}\right\}
$$

The sets I_{j} are disjoint and each I_{j} has only finitely many elements, since E has no accumulation points in U. Define

$$
Q_{j}:=\sum_{n \in I_{j}} S_{n}
$$

if I_{j} is nonempty and $Q_{j}=0$ otherwise. Then Q_{j} is a rational functions with poles in $K_{j} \backslash K_{j-1}$. By Runge's theorem with $E=\mathbb{C} \backslash U$, there exists a rational functions R_{j} with poles in $\mathbb{C} \backslash U$ such that

$$
\left|Q_{j}(z)-R_{j}(z)\right| \leq 1 / 2^{j} \quad \text { for all } z \in K_{j-1}
$$

We claim that the function

$$
f(z)=Q_{1}(z)+\sum_{j=2}^{\infty}\left(Q_{j}(z)-R_{j}(z)\right)
$$

is well-defined and has all the desired property of the theorem. To see this let we beging by showing that f is holomorphic in $U \backslash E$. Note that since each w_{n} is isolated and don't accumulate at points of $U, U \backslash E$ is open. Let $K \subset U \backslash E$ be a compact set. Then there exists m such that $K \subset K_{m}$. If $j \geq m+1$, then $K \subset K_{j-1}$ and so

$$
\left|Q_{j}(z)-R_{j}(z)\right| \leq 1 / 2^{j} \quad \text { for all } z \in K
$$

It follows that the series $\sum_{j=m+1}^{\infty}\left(Q_{j}(z)-R_{j}(z)\right)$ is uniformly convergent in K. Since $Q_{1}(z)+\sum_{j=2}^{m}\left(Q_{j}(z)-R_{j}(z)\right)$ have poles in E or in $\mathbb{C} \backslash U$, we have that f is holomorphic in K°. By considering an increasing sequence of compact sets T_{l}, with $T_{l} \subset T_{l+1}^{\circ}$ and $\bigcup_{j} T_{l}=U \backslash E$, we have that f is holomorphic in $U \backslash E$.

Wednesday, April 15, 2020
Proof. It remains to show that f has poles at each w_{n} and that its principal part is Q_{n}. Since w_{n} is isolated, there exists $r>0$ such that $\left|w_{n}-w_{j}\right|>r$ for all $j \neq n$. For $z \in U \cap B\left(w_{n}, r\right) \backslash\left\{w_{n}\right\}$ we can write

$$
f(z)=S_{n}(z)+f(z)-S_{n}(z)
$$

and the function $f-S_{n}$ is holomorphic in $U \cap B\left(w_{n}, r\right)$ since the poles of R_{j} are in $\mathbb{C} \backslash U$ for all j and Q_{j} has poles in $w_{j} \notin B\left(w_{n}, r\right)$ for all $j \neq n$. Thus, S_{n} is the principal part of f at w_{n}.

18 Simply Connected Domains

Using Runge's theorem we can give another characterization of simply connected sets. Given $z \in \mathbb{C}$ and a Lipschitz continuous closed oriented curve γ with range not containing z the winding number of γ around z is defined as

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z):=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z} \tag{97}
\end{equation*}
$$

It is also called the index of z with respect to γ.
Theorem 213 Let γ be a rectifiable closed oriented curve in \mathbb{C} with range Γ. Then
(i) for every $z \in \mathbb{C} \backslash \Gamma$, $\operatorname{ind}_{\gamma}(z)$ is an integer,
(ii) if z, w belong to the same connected component of $\mathbb{C} \backslash \Gamma$, then $\operatorname{ind}_{\gamma}(z)=$ $\operatorname{ind}_{\gamma}(w)$,
(iii) $\operatorname{ind}_{\gamma}(z)=0$ for all z in the unbounded connected component of $\mathbb{C} \backslash \Gamma$.

Proof. (i) Fiz $z \in \mathbb{C} \backslash \Gamma$. Assume that γ is a polygonal path. Let $\varphi:[0,1] \rightarrow$ \mathbb{C} be a parametrization of γ and consider the function

$$
g(t):=\int_{0}^{t} \frac{\varphi^{\prime}(r)}{\varphi(r)-z} d r
$$

Then g is absolutely continuous and $g^{\prime}(t)=\frac{\varphi^{\prime}(t)}{\varphi(t)-z}$ for \mathcal{L}^{1}-a.e. $t \in[0,1]$. Define

$$
h(t)=(\varphi(t)-z) e^{-g(t)} .
$$

By the chain rule,

$$
\begin{aligned}
h^{\prime}(t) & =\varphi^{\prime}(t) e^{-g(t)}-(\varphi(t)-z) e^{-g(t)} g^{\prime}(t) \\
& =\varphi^{\prime}(t) e^{-g(t)}-(\varphi(t)-z) e^{-g(t)} \frac{\varphi^{\prime}(t)}{\varphi(t)-z}=0
\end{aligned}
$$

for \mathcal{L}^{1}-a.e. $t \in[0,1]$ and since h is absolutely continuous, it follows that h is constant,say $h \equiv \frac{1}{c}$. Since $\varphi(0)=\varphi(1)$ we get

$$
1=e^{g(0)}=c(\varphi(0)-z)=c(\varphi(1)-z)=e^{g(1)}
$$

and so

$$
1=e^{\int_{\gamma} \frac{d \zeta}{\zeta-z}}
$$

which implies that $\int_{\gamma} \frac{d \zeta}{\zeta-z}$ is a multiple of $2 \pi i$. Hence, $\operatorname{ind}_{\gamma}(z)$ is an integer.
On the other hand, if γ is only rectifiable, by Lemma 64 for every $0<\varepsilon<\frac{1}{2}$ there exists a polygonal path γ_{ε} with the same endpoints of γ such that

$$
\left|\operatorname{ind}_{\gamma}(z)-\operatorname{ind}_{\gamma_{\varepsilon}}(z)\right| \leq \varepsilon
$$

Since $\operatorname{ind}_{\gamma_{\varepsilon}}(z)$ is an integer, letting $\varepsilon \rightarrow 0^{+}$we conclude that $\operatorname{ind}_{\gamma}(z)$ is also an integer.
(ii) Since the function $\operatorname{ind}_{\gamma}: \mathbb{C} \backslash \Gamma \rightarrow \mathbb{Z}$ is continuous and it is integer-valued, it must be constant in any connected component of $\mathbb{C} \backslash \Gamma$.
(iii) Let $C>0$ be such that $|\varphi(t)| \leq C$ for all $t \in[0,1]$. Hence, for $|z|>R>C$, we have that

$$
|\varphi(t)-z| \geq|z|-|\varphi(t)| \geq|z|-C>0
$$

and so

$$
\left|\frac{\varphi^{\prime}(t)}{\varphi(t)-z}\right| \leq \frac{M}{|\varphi(t)-z|} \leq \frac{M}{|z|-C}<\pi
$$

provided R is sufficiently large. It follows that for $|z|>R$,

$$
\left|\operatorname{ind}_{\boldsymbol{\gamma}}(z)\right| \leq \frac{1}{2}
$$

and since $\operatorname{ind}_{\boldsymbol{\gamma}}$ takes only integer values, $\operatorname{ind}_{\boldsymbol{\gamma}}(z)=0$. The result now follows from part (ii).

Another important application of Theorem ?? is the following.
Theorem 214 Let $U \subseteq \mathbb{C}$ be an open set and let γ_{1} and γ_{2} be two continuous, closed, oriented curves that are homotopic in U. Then

$$
\operatorname{ind}_{\gamma_{1}}(z)=\operatorname{ind}_{\gamma_{2}}(z)
$$

for all $z \in \mathbb{C} \backslash U$. In particular, if U is simply connected, then $\operatorname{ind}_{\gamma}(z)=0$ for every continuous closed oriented curve γ with range contained in U and for every $z \in \mathbb{C} \backslash U$.

Proof. Fix $z_{0} \in \mathbb{C} \backslash U$ and let γ_{1} and γ_{2} be as in the statement. Since the the function $f(z)=\frac{1}{z-z_{0}}$ is holomorphic in U, it follows by Theorem 98 , that $\int_{\gamma_{1}} \frac{d \zeta}{\zeta-z_{0}}=\int_{\gamma_{2}} \frac{d \zeta}{\zeta-z_{0}}$, and so $\operatorname{ind}_{\gamma_{1}}\left(z_{0}\right)=\operatorname{ind}_{\gamma_{2}}\left(z_{0}\right)$. On the other hand, if U is simply connected, then every continuous closed oriented curve g_{1} is homotopic
to a point. But for a curve γ_{2} with constant parametric representation we have that $\int_{\gamma_{2}} \frac{d \zeta}{\zeta-z_{0}}=0$, and so by the first part of the theorem, $\operatorname{ind}_{\gamma_{1}}\left(z_{0}\right)=0$.

Given n closed continuous oriented curves $\gamma_{1}, \ldots, \gamma_{n}$, the family $\Xi:=$ $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ is called a cycle. The range of Ξ is given by the union of the ranges of $\gamma_{1}, \ldots, \gamma_{n}$. Given a point $z \in \mathbb{C}$ not contained in the range of Ξ, we define the winding number of Ξ around z to be the integer

$$
\operatorname{ind}_{\Xi}(z):=\sum_{k=1}^{n} \operatorname{ind}_{\gamma_{k}}(z)
$$

Theorem 215 Let $U \subseteq \mathbb{C}$ be an open set and let $K \subset U$ be a compact set. Then there exists a cycle Ξ with range contained in $U \backslash K$ such that

$$
\operatorname{ind}_{\Xi}(z)= \begin{cases}1 & \text { if } z \in K \\ 0 & \text { if } z \in \mathbb{C} \backslash U\end{cases}
$$

Proof. Let $0<\delta<\frac{1}{2} \operatorname{dist}(K, \partial U)$ and consider a grid of squares of diameter less than δ. Since K is compact, only finitely many closed squares Q_{1}, \ldots, Q_{n} intersect K. If $z \in Q_{j}$ for some j, then $\operatorname{dist}(z, K)<\delta$. Hence, $Q_{j} \subset U$. Also if Q_{j} and Q_{k} have a side S in common, then if we consider the closed curves ∂Q_{j} and ∂Q_{k} oriented counterclockwise, then S will be traversed in both directions and so the integrals of any continuous function over S^{+}and S^{-}will cancel out.

Let S_{1}, \ldots, S_{n} be the segments which are the sides of only one the rectangles. Note that if one of these segments S_{j} intersects K then necessarily there must be two rectangles which intersect K, which contradicts the definition of S_{j}. It follows that $S_{k} \subseteq U \backslash K$.

If $z \in K$, then there exists $j \in\{1, \ldots, m\}$ such that $z \in R_{j}$. If $z \in R_{j}^{\circ}$, then

$$
\begin{aligned}
\operatorname{ind}_{\partial R_{j}}(z) & =\frac{1}{2 \pi i} \int_{\partial R_{j}} \frac{d \zeta}{\zeta-z}=1 \\
\operatorname{ind}_{\partial R_{k}}(z) & =\frac{1}{2 \pi i} \int_{\partial R_{k}} \frac{d \zeta}{\zeta-z}=0, \quad k \neq j
\end{aligned}
$$

Hence, summing these two identities

$$
\operatorname{ind}_{\Xi}(z)=\sum_{k=1}^{n} \operatorname{ind}_{\partial R_{k}}(z)
$$

If z belongs to ∂R_{j}, then either z is a vertex, in which case it belongs to four rectangles, say $R_{j_{1}}, R_{j_{2}}, R_{j_{3}}, R_{j_{4}}$. Then, setting $R=\bigcup_{l=1}^{4} R_{j_{l}}$,

$$
\sum_{l=1}^{4} \operatorname{ind}_{\partial R_{j_{l}}}(z)=\sum_{l=1}^{4} \frac{1}{2 \pi i} \int_{\partial R_{j_{l}}} \frac{d \zeta}{\zeta-z}=\frac{1}{2 \pi i} \int_{\partial R} \frac{d \zeta}{\zeta-z}=1
$$

since all the integral along common edges cancel out. On the other hand,

$$
\operatorname{ind}_{\partial R_{k}}(z)=\frac{1}{2 \pi i} \int_{\partial R_{k}} \frac{d \zeta}{\zeta-z}=0, \quad k \notin\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}
$$

Hence, as before $\operatorname{ind}_{\Xi}(z)=1$. Finally if z belongs to ∂R_{j} but it is not a vertex, in which case it belongs to two rectangles, say $R_{j_{1}}, R_{j_{2}}$ Then, setting $R=\bigcup_{l=1}^{2} R_{j_{l}}$, as before

$$
\sum_{l=1}^{2} \operatorname{ind}_{\partial R_{j_{l}}}(z)=\sum_{l=1}^{2} \frac{1}{2 \pi i} \int_{\partial R_{j_{l}}} \frac{d \zeta}{\zeta-z}=\frac{1}{2 \pi i} \int_{\partial R} \frac{d \zeta}{\zeta-z}=1
$$

Also, On the other hand,

$$
\operatorname{ind}_{\partial R_{k}}(z)=\frac{1}{2 \pi i} \int_{\partial R_{k}} \frac{d \zeta}{\zeta-z}=0, \quad k \notin\left\{j_{1}, j_{2}\right\}
$$

This shows that $\operatorname{ind}_{\Xi}(z)=1$.
If $z \in \mathbb{C} \backslash U$, then $z \notin R_{k}$ for any k and since z belongs to the unbounded component of $\mathbb{C} \backslash \partial R_{k}, \operatorname{ind}_{\partial R_{k}}(z)=0$ for all k, which shows that $\operatorname{ind}_{\Xi}(z)=0$. This completes the proof.

Friday, April 17, 2020
Theorem 216 Let $U \subset \mathbb{C}$ be an open connected set. Then the following are equivalent:
(i) $\mathbb{C}_{\infty} \backslash U$ is connected,
(ii) U is simply connected,
(iii) $\operatorname{ind}_{\gamma}(z)=0$ for every continuous closed oriented curve γ with range contained in U and for every $z \in \mathbb{C} \backslash U$.

Proof. Step 1: We prove that (i) implies (ii). Assume that $\mathbb{C}_{\infty} \backslash U$ is connected. Fix an holomorphic function $f: U \rightarrow \mathbb{C}$ and a rectifiable closed oriented curve γ with range Γ contained in U. Taking $E=\{\infty\}$ in Runge's theorem there exists a sequence of rational functions $r_{n}: \mathbb{C} \rightarrow \mathbb{C}$ with poles in ∞ such that $r_{n} \rightarrow f$ uniformly in Γ. But this implies that these rational functions are polynomials. Since each polynomial has a primitive, by Remark ??,

$$
\int_{\gamma} r_{n} d z=0
$$

Letting $n \rightarrow \infty$ and using uniform convergence in Γ, it follows that $\int_{\gamma} f d s=0$. Thus (ii) holds. In view of Theorem 196 it follows that U is simply connected.

Step 2: That (ii) implies (iii) follows from Theorem 214.
Step 3: Assume that (iii) holds but that $\mathbb{C}_{\infty} \backslash U$ is not connected. Since $\mathbb{C}_{\infty} \backslash U$ is closed, its connected components are also closed. Moreover, since \mathbb{C}_{∞} is compact, so is any closed subset of \mathbb{C}_{∞}. Hence, we can find two disjoint nonempty compact sets C and K (with respect to the metric in \mathbb{C}_{∞}) such that

$$
\mathbb{C}_{\infty} \backslash U=C \cup K
$$

Moreover, since $U \subseteq \mathbb{C}$ we have that $\infty \in \mathbb{C}_{\infty} \backslash U$, so $\infty \in C \cup K$. Assume that $\infty \in C$. Then $\infty \notin K$ and so K must be bounded, since otherwise we could find a sequence $\left\{z_{n}\right\}_{n}$ in K such that $\left|z_{n}\right| \rightarrow \infty$. This would imply that ∞ is an accumulation point of K and so it would belong to K since K is closed. Thus K is compact in \mathbb{C}.

Let $V:=\mathbb{C} \backslash C$. Then V is open and contains K. By Theorem 215 there exists a cycle Ξ with range contained in $V \backslash K$ such that

$$
\operatorname{ind}_{\Xi}(z)= \begin{cases}1 & \text { if } z \in K \\ 0 & \text { if } z \in \mathbb{C} \backslash V\end{cases}
$$

But $V \backslash K=(\mathbb{C} \backslash C) \backslash K=\mathbb{C} \backslash(C \cup K)=\mathbb{C} \backslash(\mathbb{C} \backslash U)=U$. Hence, the range of Ξ is contained in U but $\operatorname{ind}_{\Xi}(z)=1$ for all $z \in K \subset \mathbb{C} \backslash U$, which contradicts hypothesis (iii), since the winding number of each closed curve in the cycle should be zero.

Remark 217 Note that saying that $\mathbb{C}_{\infty} \backslash U$ is connected is not equivalent to saying that $\mathbb{C} \backslash U$ is connected. Indeed, consider the set $E=\{z=x+i y: y \in$ $(0,1)\}$. Then its complement is not connected in $\mathbb{C} \backslash U$ but it is connected in $\mathbb{C}_{\infty} \backslash U$.

Corollary 218 Let $U \subset \mathbb{C}$ be an open bounded connected set. Then U is connected if and only if $\mathbb{C} \backslash U$ is connected.

Exercise 219 Let $U \subseteq \mathbb{C}$ be an open set. Prove that $\mathbb{C}_{\infty} \backslash U$ is connected if and only if every component of $\mathbb{C} \backslash U$ is unbounded.

19 Proof of Caratheodory's Theorem

Given an open set $U \subseteq \mathbb{C}$ an oriented continuous half-open curve γ in U is an equivalence class of continuous equivalent functions $\varphi:[a, b) \rightarrow U$. We define the length of γ as

$$
\left.L(\gamma):=\lim _{r \rightarrow b^{-}} \operatorname{Var}, r\right]
$$

We say that the curve γ ends at b if there exists

$$
\lim _{t \rightarrow b^{-}} \varphi(t)=b \in \bar{U}
$$

Exercise 220 Let γ be an oriented continuous half-curve with range in some open set $U \subseteq \mathbb{C}$. Prove that if γ has finite length, then it ends at some point $b \in \bar{U}$.

We begin with a preliminary result.
Lemma 221 Let $V \subseteq \mathbb{C}$ be an open set and assume that $f: V \rightarrow f(V)$ be a conformal map with $f(V) \subseteq B(0, R)$ for some $R>0$. If $z_{0} \in \mathbb{C}$ and

$$
C(r):=V \cap \partial B\left(z_{0}, r\right)
$$

then

$$
\inf _{\rho<r<\sqrt{\rho}} L(f(C(r))) \leq \frac{2 \pi R}{\sqrt{\log (1 / \rho)}}, \quad 0<\rho<1
$$

In particular, there exists $r_{n} \searrow 0^{+}$such that $L\left(f\left(C\left(r_{n}\right)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Let $D_{r}:=\left\{t \in[0,2 \pi]: z_{0}+r e^{i t} \in V\right\}$ and define $\varphi(t)=z_{0}+r e^{i t}$, $t \in D_{r}$. The set D_{r} is the union of disjoint intervals, Let I be one of these intervals and consider $[a, b] \subseteq I$. Then $f \circ \varphi:[a, b] \rightarrow \mathbb{C}$ is a curve of class C^{∞} and so

$$
L\left(f(\varphi([a, b]))=\int_{a}^{b}\left|f^{\prime}(\varphi(t)) \| \varphi^{\prime}(t)\right| d t\right.
$$

Letting $[a, b] \nearrow I$ if needed, we get

$$
L\left(f(\varphi(I))=\int_{I}\left|f^{\prime}(\varphi(t)) \| \varphi^{\prime}(t)\right| d t\right.
$$

Summing over all disjoint intervals in D_{r} we obtain

$$
g(r):=L(f(C(r)))=L\left(f\left(\varphi\left(D_{r}\right)\right)=\int_{D_{r}}\left|f^{\prime}(\varphi(t)) \| \varphi^{\prime}(t)\right| d t\right.
$$

In turn, by Hölder's inequality

$$
\begin{aligned}
(g(r))^{2} & =\left(\int_{D}\left|f^{\prime}(\varphi(t))\right|\left|\varphi^{\prime}(t)\right|^{1 / 2}\left|\varphi^{\prime}(t)\right|^{1 / 2} d t\right)^{2} \leq \int_{D_{r}}\left|\varphi^{\prime}(t)\right| d t \int_{D_{r}}\left|f^{\prime}(\varphi(t))\right|^{2}\left|\varphi^{\prime}(t)\right| d t \\
& \leq 2 \pi r \int_{D_{r}}\left|f^{\prime}(\varphi(t))\right|^{2}\left|\varphi^{\prime}(t)\right| d t=2 \pi r \int_{D_{r}}\left|f^{\prime}\left(z_{0}+r e^{i t}\right)\right|^{2} r d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{0}^{\infty}(g(r))^{2} \frac{d r}{r} & \leq 2 \pi \int_{0}^{\infty} \int_{D_{r}}\left|f^{\prime}\left(z_{0}+r e^{i t}\right)\right|^{2} r d t d r \\
& =2 \pi \int_{U}\left|f^{\prime}(x+i y)\right|^{2} d x d y
\end{aligned}
$$

where we used polar coordinates. Recalling that

$$
\left|f^{\prime}(x+i y)\right|^{2}=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial u}{\partial x}(x, y) & \frac{\partial u}{\partial y}(x, y) \\
\frac{\partial v}{\partial x}(x, y) & \frac{\partial v}{\partial y}(x, y)
\end{array}\right)
$$

(see $\sqrt{10}$), using the theorem on change of variables for Lebesgue (or Riemann) integration we get

$$
\int_{0}^{\infty}(g(r))^{2} \frac{d r}{r} \leq 2 \pi \int_{V}\left|f^{\prime}(x+i y)\right|^{2} d x d y=2 \pi \mathcal{L}^{2}(f(V))
$$

Since $f(V) \subseteq B(0, R)$ we obtain

$$
\frac{1}{2} \log \frac{1}{\rho} \inf _{\rho<r<\sqrt{\rho}}(g(r))^{2} \leq \int_{\rho}^{\sqrt{\rho}}(g(r))^{2} \frac{d r}{r} \leq 2 \pi^{2} R^{2}
$$

Dividing by $\log \frac{1}{\rho}$ proves the first part of the theorem, while to prove the second part of the statement it suffice to observe that $\frac{1}{\log \frac{1}{\rho}} \rightarrow 0$ as $\rho \rightarrow 0^{+}$.

Exercise 222 Let $U, V \subseteq \mathbb{C}$ be open sets and let $f: U \rightarrow V$ be continuous, one-to-one, onto, with $f^{-1}: V \rightarrow U$ continuous.
(i) Let $\left\{z_{n}\right\}_{n}$ be a sequence of points in U such that $z_{n} \rightarrow z_{0} \in \partial U$. Assume that there exists

$$
\lim _{n \rightarrow \infty} f\left(z_{n}\right)=w_{0} \in \mathbb{C}
$$

Prove that $w_{0} \in \partial V$.
(ii) Assume that $U=B(0,1)$ and that f can be extended continuously to $\overline{B(0,1)}$. Prove that $f(\partial U)=\partial V$.

Monday, April 20, 2020
Given a closed set $C \subset X$, where X is a metric space and $x, y \in X \backslash C$. We say that x, y are separated by C if they belong to different connected components of $X \backslash C$. We say that are not separated by C if they belong to the same connected component of $X \backslash C$.

Lemma 223 (Janiszweski) Let $C_{1}, C_{2} \subset \mathbb{C}_{\infty}$ be two closed sets such that $C_{1} \cap C_{2}$ is connected. If the points $a, b \in \mathbb{C}_{\infty} \backslash\left(C_{1} \cup C_{2}\right)$ are not separated by either C_{1} or C_{2}, then they are not separated by $C_{1} \cup C_{2}$.

Proof. Assume that $a=0$ and $b=\infty$ (the other cases are similar). Since $\infty \notin C_{k}$, we have that C_{k} is bounded, since otherwise we could find a sequence $\left\{z_{n}\right\}_{n}$ in C_{k} such that $\left|z_{n}\right| \rightarrow \infty$. This would imply that ∞ is an accumulation point of C_{k} and so it would belong to C_{k} since C_{k} is closed. Hence, C_{k} is compact. Note that 0 and ∞ belong to the same connected component U of $\mathbb{C}_{\infty} \backslash C_{k}$ which is open and connected. Since C_{k} is bounded, with $C_{k} \subseteq B\left(0, R_{k}\right)$ we have that the connected set $\mathbb{C} \backslash B\left(0, R_{k}\right)$ is contained in U. Thus, $U \backslash\{\infty\}$ is open and connected in \mathbb{C} and so pathwise connected. Thus we can find a simple infinite polygonal path γ_{k} joining 0 with ∞ (we can take it to be the union of a half line and a simple polygonal path of finite length). Since the range of Γ_{k} is connected and $\mathbb{C} \backslash \Gamma_{k}$ is connected, by Theorem 216, $\mathbb{C} \backslash \Gamma_{k}$ is simply connected and does not contain 0 and ∞. Hence, by Theorem 100 we can define a branch f_{k} of the logarithm in $\mathbb{C} \backslash \Gamma_{k}$. The connected set $C_{1} \cap C_{2}$ lies in one connected component F of $\mathbb{C} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$. If $C_{1} \cap C_{2}$ is empty we take F to be any connected component of $\mathbb{C} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)$. In the first case, by adding a constant we can assume that $f_{1}=f_{2}$ in F. Since the compact sets $C_{1} \backslash F$ and $C_{2} \backslash F$ are disjoint, we can find disjoint open sets V_{1} and V_{2} such that $C_{k} \backslash F \subset V_{k} \subset \mathbb{C} \backslash \Gamma_{k}, k=1,2$. Define

$$
f(z):= \begin{cases}f_{k}(z) & z \in V_{k}, k=1,2 \\ f_{1}(z)=f_{2}(z) & z \in F\end{cases}
$$

Then f is holomorphic in the open set $V:=V_{1} \cup V_{2} \cup F$ which contains $C_{1} \cup C_{2}$ and $e^{f(z)}=z$ for all $z \in V$.

Assume by contradiction that $C_{1} \cup C_{2}$ separates 0 and ∞. Then the connected component G of $\mathbb{C}_{\infty} \backslash\left(C_{1} \cup C_{2}\right)$ which contains 0 is bounded. Note that $\partial G \subseteq \partial\left(C_{1} \cup C_{2}\right)$ and since V contains $C_{1} \cup C_{2}$ we have that $\partial V \cap \partial G=\emptyset$. Let $0<\bar{\delta}<\frac{1}{2} \operatorname{dist}(\partial V, \partial G)$ and consider a grid of closed squares with diameter less than δ and such that 0 lies in the interior of one of these squares, say $0 \in Q_{1}^{\circ}$. Note that Q_{1} is contained in G. Let Q_{1}, \ldots, Q_{n} be the closed squares contained in G. Since $\partial G \subset V$ and $0<\delta<\frac{1}{2} \operatorname{dist}(\partial V, \partial G)$, we have that the sides of Q_{1}, \ldots, Q_{n} which are not counted twice are contained in V. Since $f^{\prime}(z)=\frac{1}{z}$ for $z \in V$, we have that

$$
\operatorname{ind}_{\Xi}(0)=\sum_{k=1}^{n} \operatorname{ind}_{\partial Q_{k}}(0)=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\partial Q_{k}} \frac{d \zeta}{\zeta}=\int_{\partial \Xi} f^{\prime}(\zeta) d \zeta=0
$$

On the other hand,

$$
\begin{aligned}
\operatorname{ind}_{\partial Q_{1}}(0) & =\frac{1}{2 \pi i} \int_{\partial Q_{1}} \frac{d \zeta}{\zeta}=1 \\
\operatorname{ind}_{\partial Q_{k}}(0) & =\frac{1}{2 \pi i} \int_{\partial Q_{k}} \frac{d \zeta}{\zeta}=0, \quad k \geq 2
\end{aligned}
$$

Hence, summing these two identities $\operatorname{ind}_{\Xi}(0)=1$, which gives a contradiction.
We turn to the proof of Theorem 200
Proof. (i) \Longrightarrow (ii). Assume that f can be extended continuously to $\overline{B(0,1)}$ and still denote by f the extension. Then by the previous exercise, $f(\partial B(0,1))=\partial U$. It follows that we can parametrize ∂U as

$$
\varphi(t)=f\left(e^{i t}\right), \quad t \in[0,2 \pi]
$$

and so ∂U is the range of an oriented closed curve.
(ii) \Longrightarrow (iii) This implication follows from that fact that the range of a continuous curve is locally connected.
(iii) \Longrightarrow (iv) Assume that ∂U is locally connected. For every $\varepsilon>0$ let $0<\delta<\varepsilon$ be such that if $z, w \in \partial U$ with $0<|z-w|<\delta$ there exists a compact connected set $F \subseteq \partial U$ such that $z, w \in F$ and $\operatorname{diam} F<\varepsilon$. Let $z, w \in \mathbb{C} \backslash U$ with $|z-w|<\delta$. If the closed segment $[z, w]$ does not intersect ∂U, then we take $F=[z, w]$. If $[z, w] \cap \partial U \neq \emptyset$, let z^{\prime} and w^{\prime} be the first and last points of $[z, w]$ where $[z, w]$ intersects ∂U. Since $\left|z^{\prime}-w^{\prime}\right|<\delta$ and $z^{\prime}, w^{\prime} \in \partial U$, there exists a compact connected set $F \subseteq \partial U$ such that $z^{\prime}, w^{\prime} \in F$ and $\operatorname{diam} F<\varepsilon$. But then $\left[z, z^{\prime}\right] \cup F \cup\left[w^{\prime}, w\right]$ is a compact connected set in $\mathbb{C} \backslash U$ with diameter less than 3ε which contains z, w. Hence, $\mathbb{C} \backslash U$ is locally connected.

Wednesday, April 22, 2020
Proof. (iv) \Longrightarrow (i) Assume that $\mathbb{C} \backslash U$ is locally connected. Without loss of generality we may assume that $f(0)=0$. Since U is bounded, there exist $R_{0}<R$ such that

$$
\begin{equation*}
B\left(0, R_{0}\right) \subseteq U \subseteq B(0, R) \tag{98}
\end{equation*}
$$

We claim that f is uniformly continuous in $B(0,1) \backslash \overline{B(0,1 / 2)}$. Fix $0<\varepsilon<R_{0}$. Since $\mathbb{C} \backslash U$ is locally connected we can find $0<\delta<\varepsilon$ such that if $z_{1}, z_{2} \in \mathbb{C} \backslash U$ with $0<\left|z_{1}-z_{2}\right|<\delta$ there exists a compact connected set $F \subseteq \mathbb{C} \backslash U$ such that $z_{1}, z_{2} \in F$ and $\operatorname{diam} F<\varepsilon$. Let $0<\rho<1 / 4$ be such that $2 \pi R(\log (1 / \rho))^{-1 / 2}<$ δ.

Let $z, w \in B(0,1) \backslash \overline{B(0,1 / 2)}$ with $|z-w|<\rho$. We claim that

$$
\begin{equation*}
|f(z)-f(w)|<2 \varepsilon \tag{99}
\end{equation*}
$$

Assume by contradiction that

$$
|f(z)-f(w)| \geq 2 \varepsilon
$$

By applying Lemma 221 with $V=B(0,1)$ and $z_{0}=z$ we can find $r \in(\rho, \sqrt{\rho})$ such that

$$
\begin{equation*}
L(f(C(r)))<\delta<\varepsilon \tag{100}
\end{equation*}
$$

where $C(r):=B(0,1) \cap \partial B(z, r)$. There are two cases. If $\overline{B(z, r)} \subset B(0,1)$. Then $C(r)=\partial B(z, r)$ and $f(\partial B(z, r))$ is the boundary of the simply connected open set $f(B(z, r))$ which contains $f(z)$ and $f(w)$. Since $|z-w|<\rho<r$, we have that $z, w \in B(z, \rho) \subset B(z, r)$, and so $f(z)$ with $f(w)$ belong to the interior of the closed curve $f(\partial B(z, r))$. Consider the segment S joining $f(z)$ with $f(w)$ and extend it on both sides until it meets $f(\partial B(z, r))$. The resulting segment has length bigger than 2ε, which contradicts the fact that $L(f(C(r)))<\delta<\varepsilon$ (the length is the supremum of the length of all polygonal paths made of segments with endpoints on $f(C(r))$).

Assume next that $\overline{B(z, r)} \cap \partial B(0,1) \neq \emptyset$. In view of 100 and Exercise 220 . the continuous rectifiable curve $f(C(r))$ has endpoints a and $b \in \partial U \subset \mathbb{C} \backslash U$. In view of 100 , $|b-a| \leq L(f(C(r)))<\delta$, and so, since $\mathbb{C} \backslash U$ is locally connected there exists a compact connected set $F \subseteq \mathbb{C} \backslash U$ such that $a, b \in F$ and $\operatorname{diam} F<\varepsilon$. Then $F \cup f(C(r))$ is a connected set and

$$
\begin{equation*}
F \cup f(C(r)) \subseteq B(a, \varepsilon) \tag{101}
\end{equation*}
$$

On the other hand, by 98 , the fact that $a \in \partial U$ and $\varepsilon<R_{0}$, we have that $0 \notin B(a, \varepsilon)$. Since $|f(z)-f(w)| \geq 2 \varepsilon$, it follows that either $f(z)$ or $f(w)$ does not belong to $B(a, \varepsilon)$. Denote this point by c, so $c \notin B(a, \varepsilon)$. Using the fact that $0 \notin B(a, \varepsilon)$ in view of 101 we have that c and 0 are not separated by the connected set $F \cup f(C(r))$. On the other hand $c \in U$ and $f(0)=0 \in U$ and so c and 0 are also not separated by $\mathbb{C} \backslash U$. Note that $(F \cup f(C(r))) \cap(\mathbb{C} \backslash U)=F$, which is connected. Hence, by Janiszweski's theorem c and 0 are not separated by $F \cup f(C(r)) \cup(\mathbb{C} \backslash U)$. Since the $\mathbb{C} \backslash(F \cup f(C(r)) \cup(\mathbb{C} \backslash U))=U \backslash(F \cup f(C(r))$ is open, its connected components are open, and so pathwise connected. Hence, there exists a polygonal path in $U \backslash(F \cup f(C(r))$ which joins c and 0 . Let $\gamma=[\varphi]$. Since f is a conformal map, $f^{-1} \circ \varphi$ is a curve joining $f^{-1}(c) \in\{z, w\}$ and 0 . Moreover, its range its contained in $B(0,1) \backslash C(r)=B(0,1) \backslash \partial B(z, r)$.

Since $z, w \in B(0,1) \backslash \overline{B(0,1 / 2)}$ with $|z-w|<\rho<r$, we have that $z, w \in$ $B(z, \rho) \subset B(z, r)$, while $\operatorname{dist}(0, B(0,1) \backslash \overline{B(0,1 / 2)})=\frac{1}{2}>\sqrt{\rho}>r$. Hence, $0 \notin \overline{B(z, r)}$. In turn, any curve joining 0 and either z or w would intersect $\partial B(z, r)$, and so we have a contradiction.

Let $E \subset \mathbb{C}$ be a connected set and let $z \in E$. We say that z is a cut point of E is $E \backslash\{z\}$ is no longer connected. If we have a continuous simple arc, then every point except the endpoints is a cut point. If we have a closed simple curve then no point is a cut point.

Theorem 224 Let $U \subset \mathbb{C}$ be an open bounded simply connected set and let f map conformally $B(0,1)$ onto U. Assume that $\frac{\partial U \text { is a closed oriented curve }}{B(0,1)}$ and denote by f the continuous extension of f to $\overline{B(0,1)}$ given by Theorem 200. Then $z \in \partial U$ is a cut point of ∂U if and only if the set $f^{-1}(\{z\})$ has more than one element and the components of $\partial U \backslash\{z\}$ are $f\left(I_{k}\right)$, where I_{k} are the components of $\partial B(0,1) \backslash f^{-1}(\{z\})$.

Friday, April 24, 2020
Proof. Let $m=\operatorname{card} f^{-1}(\{z\}) \in \mathbb{N} \cup\{\infty\}$. Since $f: \overline{B(0,1)} \rightarrow \bar{U}$ is continuous, the set $f^{-1}(\{z\})$ is closed and so $\partial B(0,1) \backslash f^{-1}(\{z\})$ is relatively open and thus it can be written as a countable union of disjoint open maximal $\operatorname{arcs} I_{k}$. In turn, we may write

$$
\partial U \backslash\{z\}=f\left(\partial B(0,1) \backslash f^{-1}(\{z\})\right)=f\left(\bigcup_{k=1}^{m} I_{k}\right)=\bigcup_{k=1}^{m} f\left(I_{k}\right)
$$

Since f is continuous and the sets I_{k} are connected we have that the sets $f\left(I_{k}\right)$ are connected. Note that if $f^{-1}(\{z\})$ is a singleton, then $\partial U \backslash\{z\}=f\left(I_{1}\right)$, which is connected, and so z is not a cut point of ∂U.

Conversely, assume that $m \geq 2$. Then the endpoints a and b of I_{1} are distinct. Consider the oriented closed segment $\overrightarrow{a b}$ and let $\varphi(t)=t b+(1-t) a$, $t \in[0,1]$. Consider the continuous curve γ parametrized by $f \circ \varphi$. Since f is injective in $B(0,1)$ and $f(a)=f(b)=z$, we have that γ is a continuous simple closed curve with range in $U \cup\{z\}$. Let $\Sigma=f(\varphi([0,1))$ be its range. By the Jordan's curve theorem, $\mathbb{C} \backslash \Sigma$ has two connected components V_{b} and V_{u}, with V_{b} bounded and V_{u} unbounded, and with $\partial V_{b}=\partial V_{u}=\Sigma=f(\varphi([0,1))$.

Note that $\overline{B(0,1)} \backslash\left(\overrightarrow{a b} \cup f^{-1}(\{z\})\right)$ has two connected components E_{1} and E_{2}. Since f is continuous and $f(\overline{B(0,1)} \backslash \overrightarrow{a b}) \subseteq \mathbb{C} \backslash \Sigma=V_{b} \cup V_{u}$, and since f maps connected sets into connected sets, we must have that $f\left(E_{1}\right)$ and $f\left(E_{2}\right)$ are contained in V_{b} or in V_{u}. But since $f: B(0,1) \rightarrow U$ is open, if we take $z_{0} \in \overrightarrow{a b} \backslash\{a, b\}$, we can find a small ball $B\left(z_{0}, r\right)$ such that $f\left(B\left(z_{0}, r\right)\right)$ is open and so there exists $B\left(f\left(z_{0}\right), \delta\right) \subseteq f\left(B\left(z_{0}, r\right)\right)$. Since $f\left(z_{0}\right) \in \Sigma=\partial V_{b}=\partial V_{u}$, there must be points of $B\left(z_{0}, r\right)$ which end up in V_{b} and points which end up in V_{u}. Thus $f\left(E_{1}\right)$ and $f\left(E_{2}\right)$ are contained one in V_{b} and the other in V_{u}. Thus $f\left(I_{1}\right)$ and $\bigcup_{k=2}^{m} f\left(I_{k}\right)$ are not connected. In turn, z is a cut point of ∂U.

There are examples in which $f^{-1}(\{z\})$ has countably many elements.
We are now ready to prove Carathéodory's theorem.
Proof. Let $U \subset \mathbb{C}$ be an open bounded simply connected set and let f map conformally $B(0,1)$ onto U. If f has a continuous and injective extension to $\overline{B(0,1)}$ then ∂U is parametrized by $f\left(e^{i t}\right), t \in[0,2 \pi]$, which is an oriented simple closed curve. Conversely assume that ∂U is the range of an oriented simple closed curve. In particular, ∂U is locally connected and it has no cut points. Then by Theorem 200, f can be extended continuously to $\overline{B(0,1)}$. By the previous theorem the set $f^{-1}(\{z\})$ is a singleton for every $z \in \partial U$, which implies that f is injective on $\partial B(0,1)$. This concludes the proof.

Remark 225 Note that we actually proved that f has a continuous and injective extension to $\overline{B(0,1)}$ if and only if ∂U is locally connected and it has no cut points.

20 Elliptic Functions

We are interested in meromorphic functions $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ which have two periods, that is, there exist $\omega_{1}, \omega_{2} \in \mathbb{C} \backslash\{0\}$ such that

$$
f\left(z+\omega_{1}\right)=f(z), \quad f\left(z+\omega_{2}\right)=f(z)
$$

for all $z \in \mathbb{C}$. A function with these properties is called doubly periodic.
Exercise 226 Let $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ be a doubly periodic meromorphic function with periods $\omega_{1}, \omega_{2} \in \mathbb{C} \backslash\{0\}$. Assume that $\tau:=\omega_{1} / \omega_{2} \in \mathbb{R}$. Prove that f is either periodic with simple period or constant.,

In view of the previous exercise, we can assume that $\operatorname{Im} \tau \neq 0$. Since τ and $\frac{1}{\tau}$ have imaginary parts of opposite sign, by interchanging ω_{1} and ω_{2}, in what follows we can assume that $\operatorname{Im} \tau>0$.

Consider the function

$$
g(z):=f\left(\omega_{1} z\right), \quad z \in \mathbb{C}
$$

Then

$$
\begin{aligned}
& g(z+1)=f\left(\omega_{1} z+\omega_{1}\right)=f\left(\omega_{1} z\right)=g(z) \\
& g(z+\tau)=f\left(\omega_{1} z+\omega_{1} \tau\right)=f\left(\omega_{1} z+\omega_{2}\right)=f\left(\omega_{1} z\right)=g(z)
\end{aligned}
$$

Moreover, g is meromorphic if and only if f is and it has the same number of zeros and of poles. Any other property of f can be deduced by the analogous property of g. Thus, in what follows we assume that f has periods 1 and τ, where $\operatorname{Im} \tau>0$. By induction we have that

$$
\begin{equation*}
f(z+j+k \tau)=f(z) \quad \text { for all } z \in \mathbb{C} \text { and } j, k \in \mathbb{Z} \tag{102}
\end{equation*}
$$

Consider the lattice

$$
\begin{equation*}
\Lambda:=\{j+k \tau: j, k \in \mathbb{Z}\} \tag{103}
\end{equation*}
$$

We will show that Λ partitions \mathbb{C} into pairwise disjoint parallelograms congruent to

$$
\begin{equation*}
P_{0}:=\{z \in \mathbb{C}: z=x+y \tau, 0 \leq x<1,0 \leq y<1\} \tag{104}
\end{equation*}
$$

To be precise,

$$
\mathbb{C}=\bigcup_{j, k \in \mathbb{Z}}\left(j+k \tau+P_{0}\right)
$$

We say that 1 and τ generate the lattice Λ and we call P_{0} the fundamental parallelogram of f.

We say that $z, w \in \mathbb{C}$ are congruent modulo Λ if

$$
z=w+j+k \tau
$$

for some $j, k \in \mathbb{Z}$ and we write $z \sim w$. Note that $z-w \in \Lambda$.

Remark 227 If $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ is be a doubly periodic meromorphic function with periods $\omega_{1}, \omega_{2} \in \mathbb{C} \backslash\{0\}$ such that $\omega_{1} / \omega_{2} \notin \mathbb{R}$, then we define

$$
P_{0}=\left\{z \in \mathbb{C}: z=x \omega_{1}+y \omega_{2}, 0 \leq x<1,0 \leq y<1\right\}
$$

the fundamental parallelogram of f.
Theorem 228 Let $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ be a doubly periodic meromorphic function with periods 1 and τ, where $\operatorname{Im} \tau>0$. Then
(i) every point in \mathbb{C} is congruent modulo Λ to a unique point in the fundamental parallelogram P_{0},
(ii) given $j, k \in \mathbb{Z}$, every point in \mathbb{C} is congruent modulo Λ to a unique point in the parallelogram $j+k \tau+P_{0}$,
(iii) we have

$$
\mathbb{C}=\bigcup_{j, k \in \mathbb{Z}}\left(j+k \tau+P_{0}\right)
$$

where the interiors of the parallelograms are parwise disjoint,
(iv) the function f is completely determined by its values in P_{0}.

Proof. (i) Since the vectors 1 and τ form a basis over the reals of the twodimensional vector space \mathbb{C}, given $z \in \mathbb{C}$, we can write $z=x+\tau y$, for some $x, y \in \mathbb{R}$. Let $j, k \in \mathbb{Z}$ be such that $j \leq x<j+1$ and $k \leq y<k+1$. Then

$$
w:=z-j-k \tau=(x-j)+(y-k) \tau
$$

is congruent to z modulo Λ. Moreover, $0 \leq x-j<1$ and $0 \leq y-k<1$, and so $w \in P_{0}$.

To prove uniqueness, let $w_{1}, w_{2} \in P_{0}$ be congruent modulo Λ. Then $w_{l}=$ $x_{l}+y_{j} \tau$, where $0 \leq x_{l}<1$ and $0 \leq y_{l}<1, l=1,2$. Since $w_{1} \sim w_{2}$ we have that

$$
x_{1}+y_{1} \tau-x_{2}-y_{2} \tau=w_{1}-w_{2}=j+k \tau
$$

for some $j, k \in \mathbb{Z}$. But since $0 \leq x_{1}, x_{2}<1$, we have that $-1<x_{1}-x_{2}<1$ and so $j=x_{1}-x_{2}=0$. Similarly, $k=y_{1}-y_{2} \in(-1,1)$ and so $k=0$. Thus $w_{1}=w_{2}$.
(ii) Let $P:=j_{0}+k_{0} \tau+P_{0}$, where $j_{0}, k_{0} \in \mathbb{Z}$. Given $z \in \mathbb{C}$ by item (i) there exists a unique $w \in P_{0}$ with $z \sim w$. In turn, $j_{0}+k_{0} \tau+w \in P$ and $z \sim j_{0}+k_{0} \tau+w$. By the uniqueness in part (i), it follows that $j_{0}+k_{0} \tau+w$ is the unique point in P which is congruent to z modulo Λ.
(iii) By part (i) each $z \in \mathbb{C}$ is congruent to some $w \in P_{0}$ modulo Λ, which means that $z=j+k \tau+w$ for some $w \in P_{0}$. Hence, $z \in j+k \tau+P_{0}$.

On the other hand, if $P_{1}=j_{1}+k_{1} \tau+P_{0}$ and $P_{2}=j_{2}+k_{2} \tau+P_{0}$, and $z \in P_{1} \cap P_{2}$, then

$$
z=j_{1}+k_{1} \tau+w_{1}=j_{2}+k_{2} \tau+w_{2}
$$

with $w_{1}, w_{2} \in P_{0}$. This means that $z \sim w_{1}$ and $z \sim w_{2}$. Again by the uniqueness in item (i), $w_{1}=w_{2}$. In turn, $j_{1}+k_{1} \tau=j_{2}+k_{2} \tau$, which implies that $j_{1}=j_{2}$ and $k_{1}=k_{2}$.
(iv) In view of 102,

$$
f(z)=f(w) \quad \text { if } z \sim w
$$

The result now follows from item (i).
Next we show why we are taking meromorphic functions instead of holomorphic functions.

Corollary 229 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic and doubly periodic with periods 1 and τ, where $\operatorname{Im} \tau>0$. Then f is constant.

Proof. Let $M:=\max _{\overline{P_{0}}}|f|$. By item (iv) of the previous theorem for every $z \in \mathbb{C}$ there exists $w \in P_{0}$ such that $f(z)=f(w)$. Hence, $|f(z)|=|f(w)| \leq M$. It follows by Liouville's theorem that f is constant.

Definition 230 An elliptic function is a meromorphic function which is doubly periodic with periods $w_{1}, w_{2} \in \mathbb{C} \backslash\{0\}$ such that $w_{1} / w_{2} \notin \mathbb{R}$.

We begin by showing that an elliptic function must have more than one pole.
Theorem 231 Let $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ be an elliptic function. Then f must have at least two poles.

Proof. Without loss of generality we may assume that the periods are 1 and τ with $\operatorname{Im} \tau>0$.

Step 1: Assume that f has no poles on ∂P_{0}. Then by the residue theorem

$$
\int_{\partial P_{0}} f d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f
$$

where z_{1}, \ldots, z_{n} are the poles of f inside P_{0}. Note that there must be at least one in view of the previous two theorems. With a slight abuse of notation we write

$$
\int_{\partial P_{0}} f d z=\int_{0}^{1} f d z+\int_{1}^{1+\tau} f d z+\int_{1+\tau}^{\tau} f d z+\int_{\tau}^{0} f d z
$$

Note that by 102,

$$
\begin{aligned}
\int_{0}^{1} f d z+\int_{1+\tau}^{\tau} f d z & =\int_{0}^{1} f d z+\int_{1}^{0} f(\tau+w) d w \\
& =\int_{0}^{1} f d z+\int_{1}^{0} f(w) d w=\int_{0}^{1} f d z-\int_{0}^{1} f(z) d z=0
\end{aligned}
$$

and similarly,

$$
\int_{1}^{1+\tau} f d z+\int_{\tau}^{0} f d z=0
$$

Hence,

$$
0=\int_{\partial P_{0}} f d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f
$$

If n were 1 , we would have $0=\operatorname{res}_{z_{1}} f$, which would impliy that f has a removable singularity at z_{1} by Theorems and . This would contradict the previous corollary. Hence, $n \geq 2$.

Monday, April 27, 2020
Proof. Step 2: Since poles do no accumulate in the interior, it follows that f has a finite number of poles in $\overline{P_{0}}$. Hence, if $B(0, R)$ contains $\overline{P_{0}}$ then by periodicity f has a finite number of poles in $B(0, R)$. In turn, for $\varepsilon>0$ the function $f_{\varepsilon}(z):=f(z+\varepsilon(1+\tau))$ has no poles on ∂P_{0}. By the previous step we find that f_{ε} has at least two poles in P_{0} for every ε small. Letting $\varepsilon \rightarrow 0$ we conclude that f has at least two poles.

The number of poles of an elliptic function in its fundamental parallelogram counted with their multiplicity is called its order. Next we show that the number of zeros of an elliptic function equals the number of poles.

Theorem 232 Let $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ be an elliptic function of order ℓ. Then f has ℓ zeros in its fundamental parallelogram counted with their multiplicity.

Proof. Without loss of generality we may assume that the periods are 1 and τ with $\operatorname{Im} \tau>0$. Since zeros and poles do no accumulate in the interior, it follows that f has a finite number of poles and zeros in $\overline{P_{0}}$.

Step 1: Assume that f has no poles and no zeros on ∂P_{0}. By the argument principle,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\partial P_{0}} \frac{f^{\prime}}{f} d z & \left.=\left(\text { number of zeros of } f \text { in } P_{0}\right) \text { minus (number of poles of } f \text { in } P_{0}\right) \\
& =: n_{z}-\ell
\end{aligned}
$$

Since $\frac{f^{\prime}}{f}$ is doubly periodic with periods 1 and τ, reasoning as in the previous theorem, we can show that $\frac{1}{2 \pi i} \int_{\partial P_{0}} \frac{f^{\prime}}{f} d z=0$. Hence, $n_{z}=\ell$.

Step 2: Since poles and zeros do no accumulate in the interior, it follows that f has a finite number of poles and zeros in $\overline{P_{0}}$. Hence, if $B(0, R)$ contains $\overline{P_{0}}$ then by periodicity f has a finite number of poles and zeros in $B(0, R)$. In turn, for $\varepsilon>0$ the function $f_{\varepsilon}(z):=f(z+\varepsilon(1+\tau))$ has no poles or zeros on ∂P_{0}. By previous step we find that the number of zeros of f_{ε} in P_{0} is the same as the number of poles of f_{ε} in P_{0} for every ε small. Letting $\varepsilon \rightarrow 0$ we conclude that the number of zeros of f in P_{0} is the same as the number of poles of f in P_{0}.

The next natural question is the existence of elliptic functions. We will construct an elliptic function of order two. The idea is to consider the function

$$
\sum_{\omega \in \Lambda} \frac{1}{(z+\omega)^{2}}
$$

but the problem is that this double series does not converge absolutely. Indeed we will see below that for a double series to converge we need the exponent to be bigger than 2. To fix this problem, we follow the approach in your homework for cot and we define the function

$$
\wp(z):=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda_{*}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

where $\Lambda_{*}:=\Lambda \backslash\{0\}$. This function is called Weierstrass \wp function. Note that

$$
\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}=\frac{\omega^{2}-z^{2}-2 z \omega-\omega^{2}}{\omega^{2}(z+\omega)^{2}}=\frac{-z^{2}-2 z \omega}{\omega^{2}(z+\omega)^{2}} \sim-\frac{2 z}{\omega^{3}}
$$

as $|\omega| \rightarrow \infty$.
Theorem 233 The Weierstrass \wp function is an elliptic function of order two.
We begin with a preliminary result.
Lemma 234 The double series

$$
\sum_{(j, k) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(|j|+|k|)^{r}}, \quad \sum_{j+k \tau \in \Lambda_{*}} \frac{1}{|j+k \tau|^{r}}
$$

converge if and only if $r>2$.
Proof. Step 1: Assume that $r>2$. For every $j \neq 0$ we have

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} \frac{1}{(|j|+|k|)^{r}} & =\frac{1}{|j|^{r}}+\sum_{k \in \mathbb{Z} \backslash 00\}} \frac{1}{(|j|+|k|)^{r}}=\frac{1}{|j|^{r}}+2 \sum_{k \in \mathbb{N}} \frac{1}{(|j|+k)^{r}} \\
& =\frac{1}{|j|^{r}}+2 \sum_{n=|j|+1} \frac{1}{n^{r}} \leq \frac{1}{|j|^{r}}+2 \int_{|j|}^{\infty} \frac{d x}{x^{r}}=\frac{1}{|j|^{r}}+\frac{2}{r-1} \frac{1}{|j|^{r-1}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{(j, k) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(|j|+|k|)^{r}} & =\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{1}{(0+|k|)^{r}}+\sum_{j \in \mathbb{Z} \backslash\{0\}} \sum_{k \in \mathbb{Z}} \frac{1}{(|j|+|k|)^{r}} \\
& \leq 2 \sum_{k \in \mathbb{N}} \frac{1}{k^{r}}+\sum_{j \in \mathbb{Z} \backslash\{0\}}\left(\frac{1}{|j|^{r}}+\frac{2}{r-1} \frac{1}{|j|^{r-1}}\right)<\infty
\end{aligned}
$$

since $r>2$.
To prove that the second series converges, it suffices to show that there exists a constant $c>0$ such that

$$
|j+k \tau| \geq c(|j|+|k|)
$$

for all $(j, k) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$. Write $\tau=x+i y$, where $x \in \mathbb{R}$ and $y>0$. Then

$$
|j+k \tau|=\sqrt{(j+k x)^{2}+k^{2} y^{2}} \geq \frac{1}{2}(|j+k x|+|k y|)
$$

If $x=0$, then

$$
\frac{1}{2}(|j|+|k y|) \geq \frac{\min \{1, y\}}{2}(|j|+|k|)
$$

Assume that $x \neq 0$. If $|j| \leq 2|k x|$, then

$$
\begin{aligned}
|j+k x|+|k y| & \geq|k y|=\frac{1}{2}|k x| \frac{|y|}{|x|}+\frac{1}{2}|k y| \geq \frac{1}{4} \frac{|y|}{|x|}|j|+\frac{1}{2}|k y| \\
& \geq \frac{|y| \min \{1 /|x|, 1\}}{4}(|j|+|k|)
\end{aligned}
$$

If $|j| \geq 2|k x|$, then

$$
|j+k x|+|k y| \geq|j|-|k x|+|k y| \geq \frac{1}{2}|j|+|k y| \geq \frac{\min \{1, y\}}{2}(|j|+|k|)
$$

This concludes the proof of the case $r>2$.
Step 2: Assume that $r \leq 2$. If $1 \leq k \leq j$ then $j+k \leq 2 j$ and so $\frac{1}{j+k} \geq \frac{1}{2 j}$. Then

$$
\sum_{(j, k) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \frac{1}{(|j|+|k|)^{r}} \geq \sum_{j=1}^{\infty} \sum_{k=1}^{j} \frac{1}{(j+k)^{r}} \geq \sum_{j=1}^{\infty} \sum_{k=1}^{j} \frac{1}{(2 j)^{r}}=\sum_{j=1}^{\infty} \frac{j}{(2 j)^{r}}=\infty
$$

To prove that the second series diverges, it suffices to show that there exists a constant $c>0$ such that

$$
|j+k \tau| \leq c(|j|+|k|)
$$

for all $(j, k) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$. We have

$$
|j+k \tau| \leq|j|+|k \tau|=|j|+|k||\tau| \leq \max \{1,|\tau|\}(|j|+|k|)
$$

which concludes the proof.
We turn to the proof of Weierstrass theorem.
Proof. Let $R>0$ and let $|z|<R$. Write

$$
\begin{aligned}
\wp(z) & =\frac{1}{z^{2}}+\sum_{|\omega| \leq 2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]+\sum_{|\omega|>2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right] \\
& =I+I I+I I I .
\end{aligned}
$$

To estimate $I I I$ observe that for $|z|<R$ and $|\omega|>2 R$,

$$
|z+\omega| \geq|\omega|-|z| \geq \frac{1}{2}|\omega|+R-|z| \geq \frac{1}{2}|\omega|
$$

and so

$$
\begin{aligned}
\left|\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right| & =\left|\frac{-z^{2}-2 z \omega}{\omega^{2}(z+\omega)^{2}}\right| \leq 2 \frac{R^{2}+2 R|\omega|}{|\omega|^{4}} \\
& \leq 2 \frac{4 R|\omega|}{|\omega|^{4}}=8 R \frac{1}{|\omega|^{3}}
\end{aligned}
$$

Hence

$$
|I I I| \leq 8 R \sum_{j+k \tau \in \Lambda_{*}} \frac{1}{(|j+k \tau|)^{3}}
$$

which converges by the previous lemma.
The term $I I$ is a finite sum and so it is a meromorphic function in $B(0, R)$ with double poles at those $\omega \in \Lambda_{*}$ inside $B(0, R)$.

This shows that \wp is well-defined and meromorphic with double poles at each point of the lattice Λ. To prove that \wp is doubly periodic with periods 1 and τ we compute the derivative of \wp. We have

$$
\wp^{\prime}(z)=-\frac{2}{z^{3}}-\sum_{\omega \in \Lambda_{*}} \frac{2}{(z+\omega)^{3}}=-\sum_{\omega \in \Lambda} \frac{2}{(z+\omega)^{3}}
$$

Note that by the previous lemma the series converges absolutely whenever $z \notin \Lambda$. Let's prove that \wp^{\prime} has periods 1 and τ. Since $\omega+1 \in \Lambda$ and $\omega+\tau \in \Lambda$ whenever $\omega \in \Lambda$, we have

$$
\begin{aligned}
& \wp^{\prime}(z+1)=-\sum_{\omega \in \Lambda} \frac{2}{(z+1+\omega)^{3}}=-\sum_{\zeta \in \Lambda} \frac{2}{(z+\xi)^{3}}=\wp^{\prime}(z), \\
& \wp^{\prime}(z+\tau)=-\sum_{\omega \in \Lambda} \frac{2}{(z+\tau+\omega)^{3}}=-\sum_{\zeta \in \Lambda} \frac{2}{(z+\xi)^{3}}=\wp^{\prime}(z) .
\end{aligned}
$$

Hence, there exist $a, b \in \mathbb{C}$ such that

$$
\begin{equation*}
\wp(z+1)=\wp(z)+a, \quad \wp(z+\tau)=\wp(z)+b \tag{105}
\end{equation*}
$$

for all $z \in \mathbb{C} \backslash \Lambda$.
Using the fact that $\omega \in \Lambda$ if and only if $-\omega \in \Lambda$ we have that

$$
\begin{aligned}
\wp(-z) & =\frac{1}{(-z)^{2}}+\sum_{\omega \in \Lambda_{*}}\left[\frac{1}{(-z+\omega)^{2}}-\frac{1}{\omega^{2}}\right] \\
& =\frac{1}{z^{2}}+\sum_{\omega \in \Lambda_{*}}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{(-\omega)^{2}}\right]=\wp(z) .
\end{aligned}
$$

This shows that \wp is even. Taking $z=-\frac{1}{2}$ and $z=-\frac{\tau}{2}$ in 105 gives $a=0$ and $b=0$. We have proved that \wp is doubly periodic with periods 1 and τ. Since the only element of Λ inside the fundamental parallelogram is $0, \wp$ has order 2 .

Wednesday, April 29, 2020
Next we show some important properties of the function \wp.
Theorem 235 The function \wp satisfies the equality

$$
\left(\wp^{\prime}(z)\right)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right),
$$

where

$$
\begin{equation*}
e_{1}:=\wp(1 / 2), \quad e_{2}:=\wp(\tau / 2), \quad e_{3}:=\wp((1+\tau) / 2) . \tag{106}
\end{equation*}
$$

Proof. Since \wp is even, \wp^{\prime} is odd, and so using also the fact that \wp^{\prime} is periodic of period 1 ,

$$
\wp^{\prime}(1 / 2)=-\wp^{\prime}(-1 / 2)=-\wp^{\prime}(-1 / 2+1)=-\wp^{\prime}(1 / 2)
$$

which implies that $\wp^{\prime}(1 / 2)=0$. Similalrly,

$$
\wp^{\prime}(\tau / 2)=-\wp^{\prime}(-\tau / 2)=-\wp^{\prime}(-\tau / 2+\tau)=-\wp^{\prime}(\tau / 2)
$$

and so $\wp^{\prime}(\tau / 2)=0$. Finally,
$\wp^{\prime}((1+\tau) / 2)=-\wp^{\prime}(-(1+\tau) / 2)=-\wp^{\prime}(-(1+\tau) / 2+1+\tau)=-\wp^{\prime}((1+\tau) / 2)$,
which implies that $\wp^{\prime}((1+\tau) / 2)$. Since \wp^{\prime} is an elliptic function of order 3 , it follows from Theorem 232, that it has three zeros in the fundamental parallelogram P_{0} (already counted with their multiplicity). Hence, $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$ are simple zeros of \wp^{\prime} and they are the only ones in P_{0}.

Since the function $\wp-e_{1}$ is elliptic of order two, and it has a double zero at $\frac{1}{2}$ (since its derivative has a simple zero), it follows from Theorem 232 that $\wp-e_{1}$ has no other zeros in P_{0}. Similarly, $\wp-e_{2}$ and $\wp-e_{3}$ have a double zero at $\frac{\tau}{2}$ and $\frac{1+\tau}{2}$, respectively, and no other zeros in P_{0}.

Consider the function

$$
g(z)=\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right)
$$

The only zeros of g in P_{0} are at $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$ and they have multiplicity 2 . Moreover, g is an elliptic function of with poles at Λ. Since 0 is the only pole in P_{0}, it has multiplicity 6 by Theorem 232 . Thus, every pole in Λ has multiplicity 6.

On the other hand, since \wp^{\prime} has poles of multiplicity 3 at $\Lambda,\left(\wp^{\prime}\right)^{2}$ has poles of multiplicity 6 at Λ. Also, by what we did before it only has zeros of multiplicity 2 at $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$. Thus, if we consider the function $\left(\wp^{\prime}\right)^{2} / g$, we have that it has removable singularities at each point of Λ and at $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$ (and their periodic translates). Hence, $\left(\wp^{\prime}\right)^{2} / g$ can be extended to an entire function. Since it is doubly periodic with periods 1 and τ, by Corollary 229, $\left(\wp^{\prime}\right)^{2} / g$ is constant.

We have seen in the proof of Theorem 233 that if we take $R>0$ so small that $B(0,2 R) \cap \Lambda=\{0\}$, then the function $\sum_{|\omega|>2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]=$ $\sum_{\omega \in \Lambda_{*}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]$ is holomorphic in $B(0, R)$. Hence,

$$
\lim _{z \rightarrow 0} z^{2} \wp(z)=1
$$

Similarly,

$$
\lim _{z \rightarrow 0} z^{3} \wp^{\prime}(z)=-2
$$

It follows that

$$
c=\lim _{z \rightarrow 0} \frac{z^{6}\left(\wp^{\prime}\right)^{2}}{z^{6} g(z)}=\frac{4}{1}
$$

This completes the proof.

Remark 236 The numbers $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$ are called half-periods. It follows from the previous proof that \wp^{\prime} restricted to P_{0} has three simple zeros at the half-periods and no other zeros. Hence, for every $a \in P_{0}$, the function $\wp-\wp(a)$ has a double zero at a if a is a half-period and otherwise a simple zero at a and -a since \wp is even.

We now demonstrate the importance of the function \wp.
Theorem 237 Every elliptic function $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ with periods 1 and τ, where $\operatorname{Im} \tau>0$, is a rational function of \wp and \wp^{\prime}.

Proof. We want to construct a doubly periodic elliptic function g using \wp which has the same zeros and poles of f.

Step 1: Assume that f is even. Then if f has a zero or a pole at some $a \in P_{0} \backslash\{0\}$, then it also has a zero or a pole at $-a$. Note that $-a$ is congruent to a modulo Λ if and only if a is a half-period. Indeed, if

$$
a=-a+j+k \tau
$$

for some $j, k \in \mathbb{Z}$, then $a=\frac{1}{2} j+\frac{1}{2} k \tau \in P_{0}$, which can happen only if $j, k \in\{0,1\}$.
Substep 1: Assume that f has no zeros or poles at the origin and at the half-periods. We recall that by Theorem 232, if f has order ℓ, then it has ℓ zeros. Let $a_{1}, \ldots, a_{\ell} \in P_{0} \backslash\{0\}$ be the zeros of f in P_{0} counted with their multiplicity and let $b_{1}, \ldots, b_{\ell} \in P_{0} \backslash\{0\}$ be the poles of f in P_{0} counted with their multiplicity. We claim that

$$
f(z)=f(0) \prod_{n=1}^{\ell} \frac{\wp(z)-\wp\left(a_{n}\right)}{\wp(z)-\wp\left(b_{n}\right)}
$$

Indeed, let g denote the function on the right-hand side. In view of the previous remark $\wp-\wp\left(a_{n}\right)$ has a simple zero at a_{n} while the function $\frac{1}{\wp-\wp\left(b_{n}\right)}$ has a simple pole at b_{n}. Thus, the function g has the same zeros and poles in P_{0} as f. It follows that f / g has removable singularities at a_{n} and at $b_{n}, n=1, \ldots, \ell$. Thus f / g can be extended to a doubly periodic entire function, and so it must be constant in view of Corollary 229. Using the fact that

$$
\lim _{z \rightarrow 0} z^{2} \wp(z)=1
$$

we obtain that the constant must be $f(0)$.
Substep 2: If f has a zero at at a half-period a, then the zero must have even multiplicity. Indeed $f^{(2 n+1)}$ is odd and we can reason as in the proof of Theorem 235 to show that $f^{(2 n+1)}$ vanishes at all the half-periods. Similarly, if f has a pole at a half-period a, then $\frac{1}{f}$ is still an even elliptic function with the same periods and so the pole must have even multiplicity. Recalling that $\wp-\wp(a)$ has a double zero if a is a half-period and a pole of multiplicity two at the origin we can find integers $k_{0}, \ldots, k_{3} \in \mathbb{Z}$ such that $\wp^{k_{0}}$ behaves like f near $z=0$ and $\left(\wp(z)-e_{j}\right)^{k_{j}}, j=1,2,3$, behaves like f near $\frac{1}{2}, \frac{\tau}{2}$, and $\frac{1+\tau}{2}$,
respectively. Let $a_{1}, \ldots, a_{n} \in P_{0} \backslash\left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\}$ be the other zeros of f in P_{0} counted with their multiplicity and let $b_{1}, \ldots, b_{m} \in P_{0} \backslash\left\{0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}\right\}$ be the other poles of f in P_{0} counted with their multiplicity. Consider the function

$$
g(z):=\wp^{k_{0}}(z) \prod_{j=1}^{3}\left(\wp(z)-e_{j}\right)^{k_{j}} \prod_{j=1}^{n}\left(\wp(z)-\wp\left(a_{j}\right)\right) \prod_{j=1}^{m} \frac{1}{\wp(z)-\wp\left(b_{j}\right)},
$$

where

$$
2\left(k_{0}+k_{1}+k_{2}+k_{2}\right)+n-m=0
$$

by Theorem 232. The function g has the same zeros and poles in P_{0} as f. It follows that f / g has removable singularities at $0,0, \frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$, and at all the a_{j} and b_{k}. Thus f / g can be extended to a doubly periodic entire function, and so it must be constant in view of Corollary 229

Step 2: If f is odd, then f / \wp^{\prime} is an even elliptic function and so by the previous step it can be written as a rational function of \wp. Finally, in the general case we can write f as the sum of an even function and an odd function, to be precise,

$$
f(z)=\frac{1}{2}[f(z)+f(-z)]+\frac{1}{2}[f(z)-f(-z)] .
$$

This concludes the proof.
Friday, May 1, 2020
No class.

