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Monday, January 13, 2020

1 The Field of Complex Numbers

We define C, the complex numbers, to be the set of all ordered pairs z = (z,y)
of real numbers z,y with operations of addition and multiplication defined by

(1, 1) + (22, y2) = (21 + 22, Y1 + ¥2), (1)
(1, 11) (22, Y2) = (X122 — Y1Y2, Y1Z2 + T1Y2), (2)

for all z; = (21,y1), 22 = (z2,y2). It can be checked that with these two oper-
ations C is a field. This means that addition and multiplication are associative
and commutative, (0,0) and (1,0) are the identities for addition and multiplica-
tion, respectively, every complex number has an additive inverse, every complex
number different from zero has a multiplicative inverse, and distributivity of
multiplication over addition holds. The set of complex numbers of the form
(z,0), z € R is a subfield of C, and it is the isomorphic image of R through the
mapping
x +— (z,0).

Hence, from now on we will consider R as a subset of C by identifying the pair
(z,0) with the real number x. Using this identification, if we define 7 := (0, 1)
then x 4 iy = (z,y). From now on we will use notation. The real numbers x
and y are called the real and imaginary parts of z, and we write

Rez=2z Imz=y.

Complex numbers of the form yi are called purely imaginary numbers.
Observe that using we have that 2 = —1 and so the equation 22 4+1 =10
has a root in C. Indeed, 2? + 1 = (2 +i)(z — i). More generally, if z,w € C we
have that
22+ w? = (24 iw)(z — iw).
Using the previous formula, given z = x + iy # 0 we have

1 1 1 z—y z-—1y

: w4y Tty —iy a2+y?’

which is the formula for the multiplicative inverse, or the opposite, of z.
Given a complex number z = x + iy, x,y € R, we define the absolute value

of or modulus of z as
o] = VaZ + 2.
Note that this is the norm of the vector (z,y) € R%. Hence, we have

|z =0 if and only if z =0,
|z +w| <|z| + |w| forall z,w e C,
[tz| = |t||z| for all z€ C and t € R.



We leave as an exercise to show that

|zw| = |z||w| for all z,w € C,

‘i‘ = |i for all z,w € C, with w # 0.
w |w

Since the absolute value of z = x + iy is the norm in R? of (z,y), if we define
the open ball centered at zg = xg + 1yp € C and radius r > 0 as

B(zg,7):={2€C: |z— 2| <r},

this is nothing else than the ball B((xo,%0),r) C R?. Hence, the topology in
C coincides with the topology in R2. So we will have the same open sets, the
same closed sets, the same compact sets, the same connected sets, and so on.

Given a complex number z = z + iy € C, the complex conjugate of z is
defined as the complex number

|Z|2:2;2;, Rezzz—;z, Imz:% for all z € C, (3)

ztw=z+w, zw=zw forall z,weC, (4)
(i>:é for all z,w € C, with w # 0. (5)
w w

A complex number z =z + ¢y € C\ {0} can be written in polar form as
z=re",
where r = |z| and (we will justify this later)
e = cosf + isin, (6)

where 6 is the angle between the positive real axis and the half-line starting at
the origin and passing through z. The number 0 is called the argument of z and
is denoted arg z.

The following properties are left as an exercise:

if 2 =re" and w = se’®, then zw = rse’(®+%)

if z=re" and n € N, then 2" = r"e™?.

Exercise 1 Given n € N, solve the equation z" = 1.



2 Complex Functions

Definition 2 Let E C C, let zg € C be an accumulation point of E and let
f+E— C. Wesay that £ € C is the limit of f as z approaches zy and we write

lim f(z)=1¢

z2—20
if for every € > 0 there exists § = 6(zo,&) > 0 such that

|f(z) -t <e
forall z € E with 0 < |z — 29| < 4.

Given F C C and a function f : E — C, since the absolute value in C is the
norm in R?, the the basic properties of limits (sum, composition, multiplication
by a scalar) will not change. The only additional property is the product of
limits.

Exercise 3 Let E C C, let z9 € C be an accumulation point of E and let
f:E—Candg: E— C. Assume that there exist

lim f(z) =¢€C, lim g(z)=LeC.

zZ—20 zZ—20
Prove that

(i) there exist
lim (f 4+ g)(z) = ¢+ L;

(ii) there exwist
lim (fg)(2) = (L

zZ—20

(i11) if L # 0, then zo is an accumulation point for Ey = {z € E: g(z) # 0},
and if we restrict f/g to Ey, then there exists

AV
Jim, <g> (&) =7

Exercise 4 State and prove a similar result for the limit of compositions.
Next we discuss differentiation.

Definition 5 Let E C C, let zg € E be an accumulation point of E and let
f:E— C. We say that f is differentiable at zqy if there exists the limit

IIOESIE)

z—20 Z— 20

=(eC.

We call the limit £ the derivative of f at zg and we denote it by f'(zo) or %(zo),



Definition 6 Let U C C be an open set and let f : U — C. We say that f is
holomorphic in U, if f is differentiable in U.

The following properties are left as an exercise;

Exercise 7 Let E C C, let z9 € E be an accumulation point of E and let
f:E—Candg:FE — C be differentiable at zy. Prove that

(i) [+ g is differentiable at zo and (f + g)'(20) = f'(20) + ¢'(20),
(ii) fg is differentiable at zo and (fg)'(20) = g(20)f'(20) + f(20)g'(20),
(iii) if g(20) # 0 then 5 : By — C is differentiable at zg and

<f>’ () = 90" (0) = [ G0)g'(z0)
9) (9(z0))? ’

where Ey :={z € E: g(z) # 0}.

Exercise 8 Let E,F C C, let zg € E be an accumulation point of E | let
f+ E — F be differentiable at zo, let f(zo) be an accumulation point of f(FE)
and let g : F — C be differentiable at f(zo). Prove that go f is differentiable at

2o and
(90 ) (20) = g'(f(20))f'(20)-

Exercise 9 Let U,V C C be open sets, let f : U — V be continuous and let
gV — C be differentiable and such that

g(f(2)) =2z forall z e U.

Let zy € U be such that g'(f(z0)) # 0. Prove that f is differentiable at zo and

) = S

Let’s discuss the relation between complex and real differentiation. Given
ECCand f: F— C,let

F:={(z,y) €R?*: z +iy € E}
and define u: F — Rand v: FF — R by
u(z,y) :==Re f(z+iy), wv(z,y):=Imf(z+1y). (7

The following example shows that differentiability of v and v does not imply
differentiability of f.



Example 10 Consider the function f(z) =Z. Then u(x,y) =z and v(z,y) =
—y, which are C*° and even analytic functions. However, f is not differentiable

at 0, since
o ST
z—0 z—0 z—0 2

and this limit does not exist, since taking z = x + i0 gives

.z . x
lim — = lim — =1,
z—0 2 z—0 x

while taking z = 0+ iy gives

lim 2 = lim —¢ = —1.
z—0 2 y—0 y

Wednesday, January 15, 2020

We recall that given a set ¥ C RN, a point ¢y € FNacc F, and a real-valued

function u : F — R, we say that u is differentiable at x( if there exists a linear
function L : RN — R such that

u(x) —u(xzo) — L(x — xo)

lim = 0.

=0 (e

The linear function L is called the differential of f at xo and is denoted df ().

Exercise 11 Let F CRY, let &y € F°, and let u: F — R be differentiable at
.

(i) Prove that u is continuous at .

(i) Prove that there exist all partial derivatives %‘i(mo), all directional deriv-
atives g—ﬁ(mo) and that
ou
Vu(zg) - v = a—y(mo) (8)

for allv € RV \ {0}.

Exercise 12 Let u : R? — R be defined by

u(z, y) ::{ z ify=2%x#0,

0 otherwise.

Prove that u is continuous at (0,0), all partial and directional derivatives exist
at (0,0) and that (&§) holds but that u is not differentiable at (0,0).

Next we show that differentiability of f implies the differentiability of v and
v. In what follows, given a set E C C, we denote by E° the set of interior points
of E.



Theorem 13 (Cauchy—Riemann Equations) Let E C C, let zyp = zop +
o € E be an accumulation point of E and let f : E — C be differentiable
at zg. Then the functions u and v defined in @ are differentiable at (xo,yo).
Moreover if zg is an interior point of E, then

ou ov .
%(ﬂfo,yo) = a*y(l’o,yo) = Re f'(z0 + o), 9)

ou ov y _

—@(xo,yo) = %(movyo) = Im f'(zo + iyo).
In particular,
8*“(330 yo) @(wo Yo)
det [ 9= gy = |f'(20))? 10
( %Z(:ro,yo) %Z(l’o,yo) A (10)
The relations

ou ov ou ov

8*:6(330#0) = aiy(x07y0>7 _aiy<x07y0) = %(anyo) (11)

are known as the Cauchy—Riemann equations.
Proof. We have

0= lim f(2) = f(20) — f'(20) (2 — 20)

z2—20 Z— 20

and so (since the product of a bounded function and a function going to zero

goes to zero)
0= lim 13 = f0) = F'(z0)(z = 20)
z=%0 |z — 20 '

In turn,

Re(f(2) — f(20) = f'(20)(2 — 20))

lim i | =0, (12)
z—20 zZ— 20
zZ—20 ‘Z — 2;0|

Now by , writing z = x + 4y and 2o = z¢ + Yo,

f'(20)(2 = 20) = Re f'(20)(x — w0) — Im f'(20)(y — %o)
+ i(Im f'(20)(z — o) + Re f'(20) (¥ — w0)),

and so and become
Re f(x +iy) — Re f(wo + iyo) — Re f'(xo + 1yo)(x — o) + Im f' (w0 + iyo)(y — yo)

lim =0,
(@)= (20.y0) V(@ —0)2+ (y — yo)?

IR f(z +iy) — Im f(zo +iyo) — Im f'(x0 + iyo) (x — x0) — Re f'(wo +iyo)(y — yo) _ 0
(@,9) = (z0,y0) V(@ —20)2+ (y — yo)?



These can be written as

lim u(z,y) — u(wo,yo) — (Re f'(zo + iyo), — Im f'(wo +iyo)) - ((z — 20), (¥ — o))

p— ()7
() = (0,y0) V(@ —20)2+ (y — v0)?
lim v(z,y) — v(zo,y0) — (Im f'(xo + iyo), Re f'(xo + i%0)) - ((x — z0), (¥ — o)) -0
(2.y)—(z0,y0) V(@ —20)2+ (y — yo)?

These implies that v and v are differentiable at (xq,yo) with
du(zo,y0)(s,t) = Re f'(xo +iyo)s — Im f'(xo +iyo)t, (s,t) € R%,
dv(zo,y0)(s,t) = Im f'(zo + iyo)s + Re f'(zo +iyo)t, (s,t) € R

In particular, if zp belongs to the interior of E then Vu(xg,yo) and Vu(zo, yo)
exist with

ou ou

afx(l‘o,yo) = Re f'(z0 + iyo), @(wo,yo) = —1Im f'(z0 + iyo) (14)
0 . 0 )
87;(370’3/0) =Im f'(zo + iyo), 87;(%’3/0) = Re f'(z0 + iyo). (15)

Comparing and gives the Cauchy—Riemann equations. In turn,
follows by direct computation. m

Corollary 14 Let U C C be an open and connected set and let f : U — C be a
differentiable function with f' =0 in U. Then f is constant.

Proof. By the previous theorem the functions u and v defined in are
differentiable in V = {(z,y) € R? : z + iy € U}, with Vu = Vo = (0,0) in
V. Thus, by a result in Analysis, v and v are constant in V. Again by , it
follows that f is constant. m

Theorem 15 Let F C R?, let (zo,y0) € F be an interior point of F and let
u,v : E — R be differentiable at (xq,y0). Assume that the Cauchy—Riemann
equations hold at (zo,y0). Let E:={z=xz+iy € C: (z,y) € F} and let
f:E — C be defined by

f(2) =ulz,y) +iv(z,y), z=z+iye k. (16)
Then f is differentiable at zg.

Proof. Set



Now by , writing z = x + iy and 29 = zg + Yo,

f'(20)(z = z0) = Re f'(20)(z — x0) — Im f'(20)(y — vo0)
+i(Im f'(20)(z — z0) + Re f'(20)(y — %0))

0 0
= %(xoayo)(x —xg) — 8*;(9607110)(3/ —%o)

.0 0
+ la*::(wo,yo)(x —x0) + 28*5(%, Y0) (Y — %o)

9 0
— 37;6(5807?/0)(5” — @) + ?Z(xojyo)(y )

.0 0
i, (0, u0)(e = o) + 5 (20, 10) (v — o),

where in the last equality we used (%(mo, Yo) = g—Z(:ﬁo, yo) and —%Z(xo, Yo) =
%(aso,yo)). Hence, also by ,
f(2) = f(20) = f'(20) (2 = 20) = u(,y) — u(xo,y0) — Vu(ro,yo) - (* — 0,y — yo)

+ i(”[)(.’b, y) - v(x())yO) - V’U(xo,yo) : (IIZ —X0,Y — yO))

Dividing by |z — 20| = v/(z — 70)2 + (y — yo)? gives

f(2) = f(20) — f'(20)(2 — 20) _ u(z,y) — u(xo, yo) — Vu(zo,%0) - (z — 0,y — ¥o)
|2 — 2ol V(@ —20)2+ (y — y0)?
4+ 0@ y) —v(zo, y0) — Vu(o,y0) - (& — o,y — o)
V(@ —20)? + (y — 50)?

Since u and v are differentiable at (xg,yo), it follows that

f(z) = fz0) = ['(20) (2 = 20)

0= lim ,
z—20 ‘Z — ZO|
which implies that
0= Lim f(z) = fz0) = ['(20) (2 — Zo)’
zZ—20 zZ— 20

and the proof is complete. m
The following example shows that the previous theorem fails without assum-
ing that v and v are differentiable. We refer to Section [3] for the definition of

e.

Example 16 Let

0 if z=0.

Prove that the Cauchy—Riemann equations are satisfied but that f is not differ-
entiable at the origin.

1(z) = { exp(—z7%) if 2 #0,

10



Note that the previous function is not continuous at z = 0. There is a
beautiful theorem, due to Looman and Menchoff, which we will not prove, which
says the following.

Theorem 17 (Looman—Menchoff) Let V. C R? be an open set, let u,v :

V' — R be continuous functions in V. Assume that %, %Z’ %, and g—z exist in

V' and satisfy the Cauchy—Riemann equations inV. LetU :={z =z+iy €
C: (z,y) €V} and let f: U — C be defined by
f(z) =u(z,y) +iv(z,y), z=z+iyel.

Then f is differentiable in U.

3 Power Series and Some Elementary Functions

Definition 18 Given a sequence {z,}n of complex numbers, we call the n-th
partial sum the number
Sp =21+ 4 2.

The sequence {sn}n of partial sums is called infinite series or series and is

denoted
oo
>
n=1

If there exists lim, . s, = S € C, we say that the series Zf;l Zy, 18 conver-
gent. The number S is called sum of the series. If the limit lim,_, s, does
not exist, we say that the series > - z, oscillates.

We say that the series Y-, z, converges absolutely if the series Y - | |zn|
converges.

Remark 19 There is nothing special about 1, we will also consider series of
the type > 0" o zn or Z;’O:no zn, where ng € N. The only change is that in the
partial sums, one should consider s, = zo + -+ 4+ 2z, and 8, = 2py + - + 2p,
respectively.

Theorem 20 If the series Y -, z, converges, then there exists

lim z, =0.

n—oo

Proof. Since the series Zzozl zpn, converges, there exists lim,, o, s, = 5 € C.
Hence,
Zn =Sp+1— Sp — 9 —85=0

as n — oo. Note that here it is important that S € C. m
Definition 21 A power series is a series of the form

oo
Z a,z", z¢€C,

n=0

where a,, € C.

11



Friday, January 17, 2020
We recall that given a sequence {x,, },, of real numbers, the limit superior of
{Zn}n is defined as
lim sup x,, := inf sup zg.

n—oo n k>n

Exercise 22 Given a sequence {xp}, of real numbers and € € R, prove that £
is the limit superior of the sequence {xy}, if and only if

(i) for every e > 0 there exists n. € N such that

T, <Ll+e foralln>n,

(ii) for everye >0,
Ty >0 —ce for infinitely many n.
State and prove a similar result for the case £ = co.

Theorem 23 Given a power series

o0
E anz", z€C,
n=0

let R € [0,00] be given by

1
— .= limsup |a,|*/".

Then for |z] < R the series converges absolutely, while for |z] > R the series
oscillates.

Proof. If |z| < R, then |z|/R < 1. Fix € > 0 so small that (1/R+¢)|z| < 1.
By the previous exercise, there exists N € N such that

lan|V/" <1/R+¢

for all n > N, and so
lan] < (1/R+¢)"

for all n > N. In turn,
|anz"| = lan||z[" < [(1/R+¢) [2]]"

for allm > N. Since (1/R + ¢€) |z| < 1, the geometric series ),
converges. Hence, so does Y~ | |a,2"| by the comparison test.

On the other hand, if |z| > R, fix ¢ > 0 so small that (1/R —¢)|z| > 1. By
the previous exercise,

[(1/R +e) [2])"

lan)'/" > 1/R—e>0

12



for infinitely many n, and so
lan| > (1/R —¢€)"
for infinitely many n. In turn,
|anz"| = lan|[2]" = [(1/R —¢) [2[]"

Thus,
lim sup |a,,z"| > limsup[(1/R — ¢) |z|]" = oo,
since (1/R —¢€)|z| > 1. It follows by Theorem that the series >~ | a,z"
oscillates. m
The number R is called radius of convergence of the power series.

Exercise 24 Given {ay}y_, and {by}}_, in C, let B; := 22:1 br, Bo := 0.
Prove that

n n—1
E arby = anByp — a4 By — E (ag4+1 — ax)Byg.
k=m k=m

Exercise 25 Assume that the series of complex numbers > >~ a, converges.
Use the previous exercise to show that

lim Z apr" = Zan.
n=1
Exercise 26 Version of Abel’s with angles. Ahlfors.

Example 27 When |z| = R anything can happen as the two power series

oo o0
1 n 1 n
27 X
n n
n=1 n=1

show. Note that for a > 0,

1 11
ﬁ T opa/n elogne/n ~ ela/n)logn - 670 - E

Exercise 28 Let {x,}, be a sequence of real numbers, with x,, > 0 for all
n € N. Prove that

lim inf =2 < liminf /x, <limsup ¥z, < limsup ntl

n—oo Tn n—oo n—oo n—oo In

Show that the inequality can be strict.

13



Remark 29 In view of the previous exercise, if there exists

. Tn+1
lim =~

n—oo  Tp
then there exists

lim ¥/x,
n—oo

and the two limits are the same.

Next we show that a power series is differentiable in B(0, R).

Theorem 30 Given a power series

oo
g anz", z€C,
n=0

let R be its radius of convergence and assume that R > 0. Then the function
f(z) =300y an2" is differentiable in the open set Ug := {z € C: |z| < R}

and
Z Nan 2

Moreover, the power series ano nanz"" ' has the same radius of convergence

R.

Proof. The fact that the two power series have the same radius of conver-
gence follows from the fact that

1/n 1/n log nt/

|1/n

lim sup |na,|"/™ = limsup n'/"|a,|'/™ = limsup e
n—oo n—oo n—oo
1
= limsup e1°¢™/"|q, [V/" = lim e(°&™/" limsup |a, /™ = 1=.

n—oo n—0o0 n— 00

Let zg € Ug and find |z9| < r < R. Let h € C be so small that |z9 + k| < 7.

Define
oo
)= Z na,z""
n=0
and consider

fath) = f(o) _ f:an ot )" Zmn

—f:an B
+ Z o, L Z nay !

n=N+1 n=N+1
= I+I1I+1II.

14



Using the facts that ™ —b" = (b—a)(a™ ' +a" 2b+---+ab" "2 +b""1), that
|z0] < r, and that |zp + h| < r we have that

[(zo + h)" — 2] < |h\nr"_1.

In turn,
o0

111 < Y Jan|nr""
n=N+1
Since g has the same radius of convergence than f and r < R we have that
the right-hand side is the tail of a convergent series and thus goes to zero as
N — oo. Hence, given ¢ > 0 we can find N. € N such that |[II] < ¢ for all
N > N..

Similarly, since |z9| < R and g(zg) converges, by taking N, larger, if neces-
sary, we have that |[1I| < ¢ for all N > N..

Fix N = N.. Since [ is the difference quotient of a finite number of differen-
tiable functions, we can find d. > 0 such that |I| < ¢ for all h € C with |h| < d..
This concludes the proof. m

By repeated applications of the previous theorem we obtain the following:

Corollary 31 A power series f(z) = Y. .o, anz" is infinitely differentiable in
Ur := {#z € C: |z| < R}, where R is its radius of convergence. Moreover,
the higher derivatives f*) are power series obtained by pointwise differentiation
and with the same radius of convergence. To be precise,

FF(z) = Zn(n— D (n—k+1a,z"% 2€Ug.
n=~k

Moreover,
1
F®(0) = T k € No.
Remark 32 Similarly, if we consider f(z) = >.." jan(z — 20)", then f is
infinitely differentiable in Ur := {z € C: |z — 29| < R}, with f*)(z) = ks
k € Np.

Using power series we can define e?, cos z, and sin z as follows

oo oo oo

z . 1 n . n 1 2n . . n 1 2n+1
€ —Zﬁz , CoSz = Z(—l) (2n)!z , sinz:= Z(—l) mz .
n=0 n=0 n=0
Using Remark [29] we compute
G _ AT 1
n4+1)! n!'(n+1
= = O
1 I Tafl
n+1 1 1
(1) Cn+2)! _ _ EoCnt)@etD) _ 1 0
(=1)" @y @ (2n+2)(2n+1) 7
1 1
(1)t Cn+3)! _ _ @ntDnt3)(@n+2) _ 1 -0
(=1)" (2n£rl)1 (2n11)! (2n+3)(2n +2) ’

15



and so all three series have radius of convergence R = oo, so they converge in
C. For cos z we used the fact that 22" = (22)" and for sin 2z we pulled out z and
used the same trick.

Note that if we differentiate e*, by Theorem [30]

(EZ)/ — i 'Zn—l — i
n= k=1

1

|3
| —

2k =¢?,

o

!

S

which is the same property of the real exponential function. Similarly, by The-

orem [30}

(cosz) = —sinz, (sinz) = cosz.

Consider the function g(z) = ee* %, where a € C is fixed. By the product
rule, Exercise [§] and Theorem

g/(z) — ezea—z _ ezea—z — O

and so by Corollary g is constant. Since ¢’ = 1, taking z = 0 gives g(z) = e°.
Hence,
e*e?™* =% forall z € C.

Taking a = z + w we get

e“e” = e*™ for all z,w € C. (17)
Taking w = —z gives e’e™* = 1 so e* # 0 for all z and
1 —z

Observe also that by 1) Lon = L% — 2" and so € = 7. In turn, by

and ,

n! n!

|€z|2:ez?:ezefzez+§:eQRez. (19)
Note that ) ) . .
e’LZ + e—’LZ eZZ _ e—ZZ
cosz = ——, sing=—7-—. 20
2 21 (20)

These are called Fuler formulas for cosz and sinz. From these formulas and

we obtain

5 L 621.2 + e—Zzz 4 Qetzeiz esz + e—21z — etzeiz
cos” z 4+ sin” z = 1 — 1 =1

and .

€* = cosz +isinz, (21)
which is what we used in @
Exercise 33 Let x + iy € C. Prove that

2 . . .12
| cos 2|2 = cos® & + cosh®y, |sinz|*> = sin? 2 4 sinh?y,

16



Monday, January 20, 2020
MLK Day, no classes.
Wednesday, January 22, 2020
Next we study the periodicity of e*. We say that a function f: C — C is
periodic with period w € C if

f(z+w) = f(z) forall zeC.

Given w € C, assume that

for all z € C. Then by multiplying both sides by e™* and using we get
1 = e™. Taking the modulus on both sides and using 19| we get

1= eQRew

)

which implies that Rew = 0. Thus, w = 46 for some 6 € R. In turn, by ,

1=¢" =cosf+isinb,

and so
0=2nk, kelZ.

This shows that the exponential function is periodic with period 2zi. This is
one of the main differences with the real exponential. In particular, this implies
that e* is not one-to-one in C. Thus, we cannot define the complex logarithmic
function as the inverse of the complex exponential function.

Definition 34 Given a connected open set U C C, a branch of the logarithm
s a continuous function f:U — C such that

z=¢e® forallzeU.
We sometimes write f = log;.

Remark 35 Note that since e* # 0 for all z, in order for a branch of the
logarithm to exist in U, we must have 0 ¢ U.

Exercise 36 Let
W:=C\{ze€C: z=a+0i, z <0}
For every z € W, write z =re?, r = |2|, —m < 0 < 7, and define
f(z) :=logr + 6.
(i) Prove that f is branch of the logarithm in W.
(i) Prove that for all z € B(0,1) with 1 +2z € W,
fa+2) ==Y (1)

n=1

n
.
n

17



(iii) Prove that in general
f(z122) # f(21) + f(22).

The branch of the logarithm constructed in the previous exercise is called
the principal branch of the logarithm.

Proposition 37 Let U C C be an open connected set and let f: U — C be a
branch of of the logarithm. Then f is differentiable in U, with

fl(z)= % for all z € U.
Moreover, every other branch of the logarithm in U has the form
9(z) = f(2) + 2kmi
for some k € Z.

Proof. The differentiability of f follows from Exercise[9] By the chain rule
(see Exercise |8) and the definition of f,

1=e@f(2)=2f'(z) forall z €U,

which implies that f'(z) = 1.
Given k € Z, consider the function g(z) := f(z) + 2kwi, z € U. Then the
periodicity of the exponential

e9(?) = f(A)+2hmi — o f(2) = 5
which shows that ¢ is a branch of log z.

Conversely, assume that g : U — C is another branch of logz. Then the
function

1
he) = 5= (f(2) —g(2), €U,
is continuous and since
(2mh() Z F(2)=0(z) Z o f()p=a() — 41 _ g
z

by (18), we have that 2mih(z) = 2kni for some k € Z (depending on z). This
shows that h(U) C Z, but since h is continuous and U is connected, h must be
constant, and thus there is ky € Z such that h(z) = ko for all z € U, which
completes the proof. m

If U C Cis an open connected set and f : U — C is a branch of the logarithm
in U, then for every a € C we define a branch of z* as

g(z) =@ el

In view of the previous theorem, ¢ is differentiable in U, since composition of
differentiable functions, and every other branch is given by

h(z) _ eaf(z)+a2k7ri _ eaf(z)ea2lcm' _ g(z)ea2k7ri.
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4 Riemann-Stieltjes integrals

In what follows, given an interval [a,b] C R, a partition of [a,b] is a finite set
P .= {to, - ,tn} C [a,7 bL where

a=ty <ty <---<t,="h

Definition 38 Let g : [a,b] — C be a function. The pointwise variation of g
on the interval [a,b] is

Var g := sup {Z lg(tr) — g(tk1)|} )
k=1

where the supremum 1is taken over all partitions P := {tg,...,t,} of [a,b], n € N.
A function g : [a,b] — C has finite or bounded pointwise variation if Var g < co.
The space of all functions g : [a,b] — C of bounded pointwise variation is

denoted by BV ([a,b]; C).

To highlight the dependence on the interval [a,b], we will sometimes write
Var(, ) g-

Given a function g : [a,b] — C, we say that g is piecewise C*, if g is
continuous, and there exists a partition P := {tg...,t,} C [a,b] such that
g: [tk—1,tx] — Cis of class C* for every k =1,...,n.

Exercise 39 Let g: [a,b] — C be piecewise C*. Prove that

b
Varg:/ lg' (¢)] dt.
a

Exercise 40 Let g : [a,b] — C be Lipschitz continuous. Prove that g €
BV ([a, b]; C).

Exercise 41 Let g : [a,b] — R be a monotone function. Prove that

Var g = supg — inf g.
[a,b] [a,b]

Exercise 42 Let f,g € BV ([a,b];C). Prove the following.
(i) f+g¢€ BV ([a,0];C).
(ii) fg € BV ([a,0];C).

(i) If |g(t)] > ¢ > 0 for all t € [a,b] and for some ¢ > 0, then % €
BV ([a,b]; C).

Exercise 43 Let g : [a,b] — C, and let ¢ € [a,b]. Prove that

Var, ) g + Var|., g = Vary, p g-
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Exercise 44 Prove that g — Var g is a seminorm in BV ([a,b]; C).

Theorem 45 Let g € BV ([a,b];C) and let f : [a,b] — C be a continuous
function. Then there exists £ € C with the property that for every ¢ > 0 there
exists 0. > 0 such that if P = {to,...,tn} is a partition of [a,b] with tj —tr_1 <
Oc forall k=1,...,n, then

<e,

- Z F(sk)(g(te) — g(tk—1))
=1

for every sy € [tg—1,tx], k=1,...,n.

The number ¢ is called the Riemann-Stieltjes integral of f with respect to g
over [a,b] and is denoted
b
= / fdg.

Exercise 46 Let g : [a,b] — C be piecewise C* and let f : [a,b] — C be a
continuous function. Prove that

/a " fag = / " fog e

Exercise 47 Let g € BV ([a,b]; C), let f : [a,b] — C be a continuous functions,
and P = {to,...,tn} be a partition of [a,b] with a =ty and b = t,. Prove that

/bfdgfj/tk fdg.
a k=1

th—1

Exercise 48 Let g € BV ([a,b];C), let f : [a,b] — C be a continuous functions.

Prove that
b
/ fdg
a

Exercise 49 Let g € BV ([a,b];C), let f1, f2 : [a,b] — C be continuous func-
tions, and let a, B € C. Prove that

< I[na})?lflVarg-

/ab(afl+ﬁfz)dg—a/abf1dg+ﬁ/abfzdg-

Exercise 50 Let g1,92 € BV ([a,b];C), let f : [a,b] — C be continuous func-
tions, and let o, B € C. Prove that

/abfdmmwm) Za/abfdgl-i-ﬁ/abfdgzo
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Exercise 51 Let g € BV ([a,b];C), let f : [a,b] — C be a continuous functions,
and P = {to,...,tn} be a partition of [a,b] with a =ty and b = t,. Prove that

n th

/fdg—z sy

k=17t

Monday, January 20, 2020
We turn to the proof of Theorem
Proof of Theorem Since f is uniformly continuous, given ¢ = % we
can find §,, > 0 such that

1
_ < = 22
[f(z) = flw)l < — (22)
for all z,w € [a,b] with |z —w| < §,,,. By an induction argument, we can assume
that &, > dp,41 for all m € N. For each m let P, be the family of all partitions
P = {tg,...,tp} of [a,b] with ty —t_1 < 0, for all K = 1,...,n. Note that
Pin+1 C Py, for every m. Let

Ep :={S(P): P={to,....tn} € Pom, sk € [tr_1,ta), k=1,...,n}

where .
S(P) =) [flse)(g(tr) — g(tr-1)),
k=1
and let C,, = E,,. Since P41 C P, we have that E,,,1 C E,,, and so
Cm+l g Cm
Next we claim that 9
diam C,,, < — Varg. (23)
m

To see this, let P,Q € Pp,. Let P = {to,...,t,} and assume first that Q is
obtained from P by adding a point ¢ and let ky be such that ¢5,_1 < ¢ < tg,.-
Then

=" Fm)gtn) — gta-1)) + F()(9(e) — 9ltre—1))

kko

+ (7)) (9(try) — 9(c));

where t_1 < 7 < ti, tge—1 <7 < ¢, ¢ <7 <tp,. In turn, by (22)),

1S(Q) = S(P) < D (1) = Flsillg(tn) = glte—a)l + () = f(sr0)ll9(e) = gtrg—1)]

k+#ko

+|f( ") = S (sko)llg(try) — g(C)I

1
< — Z lg(tr) — g(th—1)| + — |9(C) = g(tko—1)| + E‘g(tko) —g(c)]
L
1
< —Varg.
m
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With a similar proof, we can show that if P C @, then |S(Q)—S(P)| <
Finally, if P,Q € P,,, let R € P,;, be such that P,Q C R, then

Varg.

1
m

S(@) ~ S(P)| £ 18(Q) — S(R)| + |S(R) — S(P)] < — Varg + — Varg,

By taking the supremum over all such partitions we conclude that diam E,,, <
% Var g, and in turn, follows.

It now follows from Cantor’s theorem that there exists a unique £ € C such
that

{y =) Cm.

Given ¢ > 0 let m be so large that %Varg < m and take 6. := §,,. Since
¢ € Cyy,, we have that C,,, C B({,¢), which proves the theorem. m

5 Line Integrals

Definition 52 Given two functions ¢ : [a,b] — C and ¢ : [c,d] — C, we say
that they are equivalent if there exists a continuous, strictly increasing, onto
function h : [a,b] — [c,d] such that

forallt € [a,b]. We write ¢ ~ 1 and we call ¢ and 1) parametric representations
and the function h a parameter change.

Note that in view of a theorem real analysis, h=! : [c,d] — [a,b] is also
continuous.

Exercise 53 Prove that ~ is an equivalence relation.

Definition 54 An oriented curve v is an equivalence class of parametric rep-
resentations.

Remark 55 The definition of a curve is a restrictive, although it is what we
will need it in this course. More generally, given two intervals I,J C R, and
two functions ¢ : I — C and ) : J — C, we say that they are equivalent if there
exists a continuous, strictly increasing, onto function h : I — J such that

@ (t) =1 (h(t)

forallt € I. We write ¢ ~ 1 and we call ¢ and ¢ parametric representations
and the function h a parameter change.

Given an oriented curve v with parametric representation ¢ : [a,b] — C the
multiplicity of a point z € C is the (possibly infinite) number of points ¢ € [a, b]
such that ¢ (t) = z. Since every parameter change h : [a,b] — [c,d] is bijective,
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the multiplicity of a point does not depend on the particular parametric repre-
sentation. The range of « is the set of points of C with positive multiplicity,
that is, ¢([a, b]).

A point in the range of v with multiplicity one is called a simple point. If
every point of the range is simple, then ~y is called a simple arc.

Given an oriented curve v with parametric representation ¢ : [a,b] — C, the
oriented curve ; with parametric representation ¢ : [a,b] — C given by

e1(t) == (-t +b+a)
is called the curve opposite to .

Definition 56 Given two functions ¢ : [a,b] — C and ¢ : [¢,d] — C of class
C*, k € Ny, we say that they are equivalent if there exists a strictly increasing,
onto function h : [a,b] — [c,d] with h and h=" of class C* such that

@ (t) =4 (h(t)

for all t € [a,b]. We write ¢ ~j ¥ and we call ¢ and 1 parametric repre-
sentations of class C* and the function h a parameter change of class C*. An

oriented curve v of class C* is an equivalence class of parametric representations
of class C*.

Similarly we can define C'*° oriented curves, Lipschitz oriented curves, ana-
lytic oriented curves, and so on.

Given a continuous curve, the points ¢(a) and ¢(b) are called endpoints of
the curve. If ¢ (a) = ¢ (b), then the oriented curve ~ is called a closed oriented
curve. A closed curve is called simple if every point of the range is simple, with
the exception of ¢ (a), which has multiplicity two.

The following theorem will be used in the sequel.

Theorem 57 (Jordan’s curve theorem) Given a continuous closed simple
oriented curve v in C with range T, the set C\ T' consists of two connected
components.

The bounded connected component of C\ T" is called the interior of ~.
We are ready to define the notion of length of a curve.

Exercise 58 Let~y be an oriented curve in C. Let ¢ : [a,b] — C and ¢ : [c,d] —
C be two parametric representations of vy. Prove that Var, ) ¢ = Var. q .

We are now ready to define the length of a curve.

Definition 59 Let v be an oriented curve in C and let ¢ : [a,b] — C be a
parametric representation of v. We define the length of v as

L () := Vare.

We say that the curve v is rectifiable if L () < oo.
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Theorem 60 Given a rectifiable oriented curve v in C with range I' and a
continuous function f : T' — C, let ¢ : [a,b] — C and ¢ : [¢,d] — C be two
parametric representations of v. Then

/abfwchp:/cdfowdw-

24



Monday, January 27, 2020

No class
Wednesday, January 29, 2020

No class
Friday, January 31, 2020

2 hours

Proof. Since ¢ and v are equivalent, there exists h : [¢,d] — [a, b] continu-
ous, strictly increasing, with h(c) = a and h(d) = b, such that

p(h(s)) =¥(s) for all s € [c,d]. (24)
By Theorem [45|for every & > 0 there exists §. > 0 such that if P = {to,...,tn}
is a partition of [a,b] with ¢, — tx_1 <. for all k =1,...,n, then

<eg, (25)

b n
/ Fopdo— 3 Flelth)(w(te) — olts1))
a k=1

for every t) € [ty—1,tx], K =1,...,n. Similarly, there exists p. > 0 such that if

Q ={s0,...,8m} is a partition of [c,d] with s; — s;—1 < p. for alll =1,...,m,
then
d m
| fovdn =3 s s) ~ vsi)| <= (26)
¢ =1
for every s; € [si—1,5], I = 1,...,m. Since h is uniformly continuous, there

exists 1. > 0 such that

[h(s) = h(s)] < 0
for all s,s" € [¢,d] with |s—s'| < n.. Let Q = {s0, ..., Sm} be a partition of [¢, d]
with s; — s;—1 < min{n., pc} for alll =1,...,m. Then P = {h(so),...,h(sm)}
is a partition of [a,b] with h(sg) — h(sx_1) < J.. Hence, holds for this
partition,On the other hand, by (24)), ¢(h(s;)) = ¢ (s;) and so

m m

D (s (p(h(s1)) = @(h(si-1)) = D F (D)) (W (s1) = ¥ (s1-1)).-

=1 =1

Hence, by and ,

/abfosodwfcdfowdw

<

b m
/ Fopdo = fle(h(s)))(p(h(s1) — sa(h(Sz_l)))|
@ =1

+ < 2e.

d m
/ fowdy =3 F(s))@(s1) — ¥lsi1))
¢ =1

Letting € — 0T gives the result. m
Given a rectifiable oriented curve v in C parametrized by ¢ : [a,b] — C and
a continuous function f : ¢([a,b]) — C, the line integral of f over ~ is defined

as b
[yfdz::/a fopdp.
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In view of the previous theorem, the integral does not depend on the particular
representation of the curve.

Note that all the properties in the exercises in the previous section continue
to hold for line integrals.

Definition 61 Let U C C be an open set and let f : U — C. We say that f
has a primitive in U if there exists a holomorphic function F' : U — C such that
Fr=7.

Remark 62 The function f(z) = az™, where a € C and n € Ny has a primitive

given by F(z) = nilz”H +c.

Theorem 63 (Fundamental theorem of calculus) Let U C C be an open
set, let f : U — C be a continuous function, which has a primitive F in U.
Then for every z1,z2 € U and for every rectifiable continuous oriented curve ~y
starting at z1 and ending at zo and with range in U,

Lfdz — Plz) - F(2).

We begin with a preliminary result.

Lemma 64 Let U C C be an open set, let f : U — C be a continuous function,
and let v be a rectifiable continuous oriented curve v with range in U. Then for
every € > 0 there exists a polygonal path . with the same endpoints of v and

range in U such that
/fdz —/ fdz
.

=

<e

Proof. Step 1: Assume first that U = B(zp,7). Let ¢ : [a,b)] — C
be a parametric representation of 4. Since ¢([a,b]) is compact, we have that
dist(e([a, b]),0U) = p > 0. Hence, ¢([a,b]) € B(zp,r — p) =: K. Since f is
uniformly continuous on K, given € > 0, there exists d. > 0 such that

[f(2) = fw)] < e (27)

for all z,w € K with |z — w| < J..
Since ¢ : [a,b] — C is uniformly continuous, there exists 7. > 0 such that

lp(t) — ()] < dc (28)

for all s,t € [a,b] with |s — ¢| < n.. Moreover, by Theorem there exists
pe > 0 such that if P = {to,...,¢,} is a partition of [a,b] with ¢ — tx—1 < pe
forall k=1,...,n, then

[ £2= 3 fe et - et <. (29)
v k=1

26



for every si € [trk—1,tk], kK = 1,...,n. Consider a partition P = {tg,...,t,} is
a partition of [a, b] with t; — tx—1 < min{p.,n.}. Let ¢. be the polygonal path
joining ©(to), ..., ¢(ts). To be precise

1
by — tk—1
Note that

Pe(t) = [(t=tk—1)p(tr)+ =) p(te-1)], t€ -1,k k=1,...,n

/ (t) _ (p(tk) — @(tk—l)

e , t€ (th—1,tk), k=1,...,n.
bk —tp—1

Hence, by Exercise [16]

de—/f% (1) dt = Z“’t’“ t’”/ Fpe(t)

te — tp—1
Hence, by ,

wa%fw

<

/ Fdz=>>" flp(si)(pt) — sﬁ(tk_l))|
v k=1

) — )y — 3 2L = ellim) / Fp-(t)) dt
k=1 th—

bt —tp—1

Z@ Pl=1) [ fipu(s Z@ Al) [ (1)) d

tk—tk 1 tho1 tk—tk 1 th—1

<e+

<g+z'“”’“ Pl [ o)) — fetelan

by — -1 tho1

For t € [tx_1,tx] we have

P(sk) — pe(t) = ﬁ[(i —ti—1)(p(sk) — @(tr)) + (tk — ) (@(sk) — o(te-1)]
and so by ,
le(sk)—pe(t)| < ﬁ[(t—tkfl)|<P(Sk)—<P(tk)|+(tk—t)|<P(8k)—90(tk71)|] <0

In turn, by 27), [f(¢(sk)) — f(¢-(t))| < e. Using this inequality we have that

Lfdz—/ygfdz

Step 2: For a generic open set, since ¢([a, b]) is compact, as before dist(¢([a, b]), OU) >
0. Let 0 < p < dist(e([a, b]),U). Since ¢ is uniformly continuous, there exists
0 > 0 such that

<S+Z () = olti- 1)‘5(tk_tk—1) §€+5i|<ﬁ(tk)—<ﬂ(tk—1)|

tk —tp1 —

§s+sL( ).

lo(t) —p(s)| < p
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for all s,t € [a,b] with |s —¢t| < §. Consider a partition P = {to,...,t,} of
[a,b] with ¢, — tp—1 < § for all k = 1,...,n. It follows that p([tg—1,tx]) C
B(p(ty—1), p) and so we may apply the previous step to the curve v parame-
trized by ¢ : [tg—1,tx] — C to find a polygonal path T'y, with endpoints p(tx_1)

and ¢(tx) such that
/ fdz —/ fdz
Yk Tk

By joining I'y, ..., I';, we get a polygonal path joining ¢(a) and ¢(b). The result
now follows from the previous inequality and Exercise ]

We turn to the proof of the fundamental theorem of calculus.

Proof. In view of the previous lemma, for every ¢ > 0 there exists a
polygonal path ~. with endpoints z; and 22 such that

/Wfdz/%fdz

Let . : [a,b] — C be a parametric representation of 7.. By Exercise

<e/n.

<e.

b b b
/ fdz= / F (e ()l (t) dt = / F (e (1))l (t) dt = / (Fop.)(t)dt
= Fop:(b) — Foy:(a) = F(z2) — F(z1).

Hence,

/fdz — (F(z2) — F(zl))’ <e.
¥
Letting ¢ — 0™ completes the proof. m

Corollary 65 Let U C C be an open set, let f : U — C be a continuous
function, which has a primitive F in U. Then

/fdzzO
.

for every closed rectifiable continuous oriented curve with range in U.

Exercise 66 Given a rectifiable oriented curve v in C with range I' and a con-
tinuous function f: ' — C, let 1 be the curve opposite to v. Prove that

Mfdz_/vfdz.

6 Cauchy’s Theorem in a Ball

Theorem 67 (Goursat) Let U C C be an open set and let f : U — C be a
holomorphic function. Then for every closed triangle T C U,

fdz=0.
ar
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Proof. Set Ty := T, bisect each side of Ty and connect the middle points.
This creates four triangles 17 1, 11,2, 11,3, and 17 4. By choosing an orientation
for these triangles consistent with the one of Ty and by canceling the sides which
are integrated in two opposite directions (see Exercises |47| and , we get

fdz:/ fdz+/ fdz+/ fdz+/ fdz.
8T0 8T1,1 aTl,g 6T1Y3 8T114

Hence, for some j € {1,2, 3,4},
/ fdz|.
8T1,j

/aTofdz

Let Ty := T ;. Note that L(0Th) = %L(@To) and diam T} = %diamTo. We
now bisect the sides of T3 and connect the middle points. Inductively we obtain
a decreasing sequence of closed triangles 7T;, such that

/3T0fdz /8Tnfdz

L(8T,) = 5:L(dTy) and diamT,, = 5 diam7T,. By Cantor’s theorem there

exists zg € T, for all n. Since f is differentiable, we can write

f(2) = f(20) + f'(20)(z — 20) + R(2),

<4

<4" , (30)

where

lim R(z)

Z—/2Z0 2 — 20

=0.

Since a constant function and a linear function az have a primitive, by the
fundamental theorem of calculus,

fdz= Rdz.
oT, 0Ty

Since zg € T,, and z € 9T,,, we have

|R(2)| < enlz — 20| < &, diam Ty,

/ Rdz
aT,

1
< En4—nL(8T0) diam Tp.

/aTnfdz

29

where &, — 07. Hence,

/aTnfdz

Using we get

/aTofdz

S En (dlam T,L)L (8Tn)

< 4" < e, L(0Tp) diam Ty — 0

asn—oo. i



Exercise 68 Let U C C be an open set, let zg € U, and let f : U — C be
a continuous function, which is holomorphic in U \ {z0}. Prove that for every
closed triangle T C U,

fdz=0.
aT

Hint: Consider first the case in which zg is a vertex of T'.

Saturday, February 1, 2020
Make-up class.
As a corollary we get

Corollary 69 Let U C C be an open set and let f : U — C be a holomorphic
function. Then for every closed rectangle R C U,

/6Rfdz:0.

Proof. Divide R into two triangles and one side of the triangles is in common
and are integrated in two opposite directions. m

Theorem 70 Let B C C be an open ball and let f : B — C be holomorphic.
Then f has a primitive in B.

Proof. Without loss of generality assume that B is centered at the origin.
Given z = z + iy € B, with x,y € R, we connect the origin to x + 0¢ and then
x 4 0i to z and let v, be this polygonal path in B. We choose the orientation
starting at 0 and ending at z. Define

F(z) = / Fdc.

z

We claim that F’ = f. Let z + h € B. Then

F(z+h) — F(2) = fdg—/ fdc.

Yz+h

Using Goursat’s theorem for triangles and rectangles we are left with the seg-
ment S, j, going from z to z+ h. Given ¢ € S, write f(¢) = f(z) +7({), where
by continuity

lim () = 0.

(—z

Then
F(z+h)—F(z)=/S fdg“:f(z)/s 1d§+/s rdc

= fem+ [ rdc

30



z+h

where we used the fact that the constant 1 has a primitive. Hence,

F(z+h) — F(2) 1
HethoFO =1 [ ra

ARG

Remark 71 In the previous proof we only used the fact that f is continuous
and for every closed triangle T C B,

2,h

and
h
< rnax|7‘|u =max|r| — 0
Sz,h, |h| Sz‘h

ash—0. m

F=o. (31)

orT

Hence, if we assume that f : B — C is a continuous function which is holomor-
phic in B\ {zo} for some zy € B, then by Ezercise[68, holds, and so f has
a primitive i B.

Corollary 72 (Cauchy) Let B be an open ball, let f : B — C be holomorphic.

Then
/fdz =0
~

for every closed oriented curve v with range in B.

Proof. This follows from the previous theorem and Corollary ]
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Remark 73 In view of Remark[71], Corollary[73 continues to hold if we assume
that f : B — C is a continuous function which is holomorphic in B\ {20} for
some zy € B.

Exercise 74 Let zo = zo + iyo € B(0,1), let U C C be the open set obtained
from B(0,1) by removing the segment {xo +yi: y > yo}, and let f : U — C be
holomorphic. Prove that f has a primitive in U.

Exercise 75 Let U C C be a star-shaped set and let f : U — C be holomorphic.

Prove that
/ fdz=0
.

for every closed oriented curve v with range in U.
We are now ready to prove Cauchy’s integral formula.

Theorem 76 (Cauchy’s integral formula) Let U C C be an open set, let
f:U — C be holomorphic. Then for every open ball B with B C U and every

z € B,
foy =1 [ LDy

27 Jop € — 2

where OB is oriented counterclockwise.

Proof. Fix z € B and consider the closed curve I's . given in the picture
below, where ¢ is the radius of the small circle centered at z and ¢ is the width

of the corridor. Since the function g(¢) := % is holomorphic in U \ {z}, by
considering V' := B’ \ S/, where B’ is a concentric ball contained in U and

containing B, S is the segment obtained when ¢ — 0 and § — 0, and S’ is a
slightly larger segment we can apply Exercise[74] to obtain that g has a primitive
in V. Since the range of I'5 . is contained in V/, it follows from Corollarythat

| 1Q gy

(—=z

If we let § — 01 and use the fact that g is continuous, we get that the two seg-
ments converge to a segment which is integrated in opposite directions. Hence,

we obtain £0) 0
/83 ¢— ch - /BB(z,e) ¢— Zd< =0

1O _fQ-1() , f()

C(—z (—z (—z
Since f is holomorphic, w — f'(2) as ( — z and so

Write




F(S,e

Figure 1: Figure 1: Keyhole contour

for all ¢ € 0B(z,¢). It follows that

fQ) . () — f(2) 1
v/aB(Z,E) ¢— ch B /BB(Z,E) (—=z e+ f(z) /03(z,a) ¢— ng

=I+1I

Then |I| < M(2me) — 0 as ¢ — 0", On the other hand, if we use the parame-
trization ¢(t) = z + ee’, t € [0,27]. Then

1 2m . it
/ d¢ = / =it = 2ri.
OB(z,e) C -z 0 ee’

/ Q) 4 = fayom,
o

BGC—2

Hence,

which proves the result. m

Exercise 77 Use Remark[73 to give an alternative proof of the previous theo-
rem, which does not make use of I'5 ..

Exercise 78 Use contour integration to show that for £ € R,
677752 — / 677“26727”@5(11’.
R

Exercise 79 Use contour integration to show that for £ € R,
T 1 —cosz
R RRET
2 0 x

33



Exercise 80 Use contour integration to show that

T * sinx
— = dx.
2 0 X
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Corollary 81 Let U C C be an open set and let f : U — C be holomorphic.
Then f is analytic and for every open ball B with B C U, every z € B, and
every k € N,

106 = o [ A (32)

2mi

where OB s oriented counterclockwise.
Proof. Let B = B(zp,r). Fix z € B. For ¢ € OB write
1 1 1 1

C—z_(j—zo—(z—zo)_(—zol—z:—zg'

Then
Z— 20
¢ — 20

and so we can use geometric power series to write

zZ— 20
ey ()
(- 23 n=0 20
Note that the series converges uniformly for all ¢ € 9B, and so (using Lebesgue
dominated convergence theorem or any equivalent theorem for Riemann inte-

gration) we can interchange the integral and the series in Cauchy’s formula to
get

= ] =0<1

r

flz) =

L[ fOy L[ 0 1
el = — -

d
2mi Jop € — 2 27 Jop C— 201 — E=28 ¢

_ 1 £(©) i(z_z‘))nd
¢— 20

2mi aBC—Zon 0

f(©) __Ooa L ym
_Z 27” /BB (C*ZO)”HdC _.nZ:o nl o

The formula for the derivatives now follows by differentiating the power series.
To see this, we use Corollary [31] to get

f(k)(z):Zn(n—1)-~-(n—k+1)an(z—zo)"_k
n=k
—Loonn— <o (n— z—zg)" F L
N 2mn & ( Do (n =k I 0) /83 (C—Zo)"“dC
(z — zo)"F
= o Z/SB = ) k+1 n(n—1)- (”*k“)WdC
_ b (kg E=2)" "
_ 27”,/ e k+1 2 1) (e
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Let w = 2222, Then

¢—z0
n—k __ n
Zn(n—l)---(n—k+1)w —me
n=~k n=0
dk)

= o(l-w w)~t = k(1 —w)7k!

and so (using again the uniform convergence of the power series and its deriva-
tives)

1 £(¢ S
f(k)(z):% LT ;3’“*1 Znnfl) (nkJrl)EC_Zz; d
n=~k
o £(O) 1 B k! f(C)
T 2mi Jap (¢ — 20)F & (1 zsz)Hl "o /BB Wdc’
¢—2o0

which completes the proof. m

Remark 82 Note that we have proved that for every open ball B(zg,r) with
B(zp,r) C U, we can write

o
z) = Z an(z —20)", z€ B(z,7),
n=0

where (n)
n
Gy = S z0) (zo)-
n!
Moreover, if we denote by R the radius of convergence R of the power series,
then

R > dist(z9,0U) = sup{r > 0: B(z,r) C U}.
Hence, if U = C then R = oo.

Corollary 83 Let U C C be an open set and let f : U — C be holomorphic.
Given a closed ball B(z,7) C U, let M > maxg_— \f| Then for everyn € N,

n!M

rn

£ (20)] <
Proof. In view of ,

| LM 1
£ (z0)] < o 9B(z0.r) ¢ — 2o+ (= 27 9B(20,r) |¢ — zo|"H! ¢
n!M n!M

= 2qpntl = rn

which concludes the proof. m
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Definition 84 Given an open connected set U C C and a holomorphic function
f:U — C, apoint zg € OU is called a regular point if there exist r > 0 and a
holomorphic function g : B(zg,1) — C such that f = g on UNB(zg,7). A point
zo € OU s called a singular point if it is not a regular point. We say that OU
is the natural boundary of f if every point on AU is a singular point.

Exercise 85 Let f : B(z9,r) — C be holomorphic and assume that the power
series

(o]
f(2) =) an(z—20)"
n=0
has radius of convergence exactly . Then there is at least one singular point on
0B(zg,r).

Exercise 86 Given the function

fz)=>_2",
n=0

find its natural boundary.
Next we discuss some important consequences of Cauchy’s formula.

Corollary 87 (Liouville) Let f : C — C be holomorphic and bounded. Then
f is constant.

Proof. Let M > 0 be such that |f(z)| < M for all z € C. By the previous

corollary,
M
IF'(2)] < —

r

for every r > 0. Hence, letting » — oo we get f/'(z) = 0 for all z. We can now
apply Corollary [ ]

Theorem 88 (Fundamental theorem of algebra) Every polynomial P : C —
C of degree n > 1 has precisely n roots in C.

Proof. Step 1: Write
P(z)=apz"+ -+ a1z + ag,

where a,, # 0. We claim that P has at least one root. Assume by contradiction
that this is not the case, that is, that P(z) # 0 for all z € C. Then the function
1/P is well-defined and holomorphic. Let’s prove that it is bounded. We have

P .
Gy %
z "

Z’ﬂ
as |z| — oo. Hence, taking ¢ = 1|a,| > 0 we can find R > 0 such that

1
§|an| S

P(z)

Z’ﬂ

3
< §|an| for all |z] > R.
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In particular,

1 < 2 < 2
[P(2)] ~ lan[l2]* ~ |an|R"

for all |z| > R.

Since ﬁ is continuous on the compact set B(0, R), there exists M > 0 such
that le)l < M for all |z| < R, which, together with the previous inequality,

proves the claim. It now follows from Liouville’s theorem that % is constant,
which is a contradiction since P has degree at least one. m
Wednesday, February 5, 2020
Proof. Step 2: In view of the previous step there exists wy € C such that
P(w;) =0. Let 2z = (2 —wy) + w;. Then

P(z) = ap[(z —w1) + wi]" 4+ -+ + a1[(z — w1) + w1] + ao.
Using the binomial theorem
k
(a+0b)F = Z <I;> albk=I
§=0
with @ = z — w; and b = w;, we can rewrite P(z) as
P(z) =bp(z —w1)" + -+ b1(z — wy) + by,
where b, = a,,. Since P(w;) = 0, we get that by = 0. Hence,
P(2) = (z —w1)[bp(z — w)" L 4+ b1] = (z — w1) P (2),

where P is a polynomial of degree n — 1. If n > 2, we can apply the previous
step to P; to find a second root wo.
Inductively, we can find wy,...,w, € C such that

P(z)=an(z —wy1) (2 —w,) forall zeC.

This concludes the proof. m
Another corollary of Cauchy’s theorem is the following.

Corollary 89 (Morera) Let B C C be an open ball, let f: B — C a continu-
ous function such that for every closed triangle T C B,

f=o.
oT

Then f is holomorphic in B.

Proof. In view of Remark [71| we have that f has a primitive F' : B — C.
Hence, F' is holomorphic. In turn, by the previous corollary, F' is infinitely
differentiable. Since F’ = f, it follows that f is also holomorphic. m
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Let’s see how to use Morera’s theorem. Let U C C be an open set. Define
Ut i={z=z+iyeU:y>0}
U ={z=z+iyeU: y<0},
S:={z=z+1i0€ U},

sothat U=UtUU-US.

Theorem 90 Let U C C be an open set, let f¥:UTUS — C be a continuous
function which is holomorphic in UT and let f~ : U~ US — C be a continuous
function which is holomorphic in UT. Assume that f~ = f~ in S. Then the
function f: U — C, defined by

[ ) ifzeUtus,
f(z)'_{f(z) ifzeU-,

18 holomorphic in U.

Proof. We only need to prove differentiability at points in S. Fix zy € S
and let B(zg,r) C U. Since f is continuous, we can use Morera’s theorem to
prove that f is holomorphic in B(zg,r). Let T C B(zp,7) be a closed triangle.
If T does not intersect S, then it is contained either in U' or in U~ and so
Jor [ dz = 0 by Exercise [75|since f* and f* are holomorphic in U* and U™,
respectively. If 7° C U™ and one of its sides lies in S, for € > 0 small consider
the triangle T, := TN{z = x4+ yi : y > e}. Then again by Exercise
Jor. fTdz = 0. Since f is continuous, letting ¢ — 0 and using the Lebesgue
dominated convergence theorem (or Arzeld’s convergence theorem for Riemann’s
integration) we get [, fdz = 0. The case in which 7° C U~ and one of its
sides lies in S is similar.

If T has a vertex in S and is contained in U™ (or U~) we either raise (lower)
T so that it is contained in U' (U~) and reason as above.

If the interior of T intersects S, we split 7" using S into three triangles whose
interior is contained in U™ or U~ and which have one side or a vertex in S. We
then apply the previous cases and Exercise to conclude that f or fdz = 0.
Hence, the hypotheses of Morera’s theorem are satisfied and so f is holomorphic
in B(zp,r). m

We are ready to prove Schwarz’s reflection principle

Theorem 91 (Schwarz reflection principle) Let U C C be an open set which
1s symmetric with respect to the real line, that is,

zeU ifand only ifz e U.

and let f¥:UTUS — C be a continuous function which is holomorphic in U™
and real-valued on S. Then the function f:U — C, defined by

[ f*() ifzeUtUS,
/) "{ () ifzeU-,

18 holomorphic in U.
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Proof. Given zp € U™, we have that zp € UT. By Corollary ﬂ we can

write
§ an - ZO

for all w € B(Zo,r) C UT and for some r > 0. By symmetry B(z9,7) C U~ and
for every z € B(zg,r) we have that z € B(Zp,r) and so

T(z) = Zan(Z

Taking the conjugate in the partial sums and then passing to the limit we have

that
f(z) f+2 ZanszO"*Zanzfzo

n=0 n=0

Since the radius of convergence of Y " @, (z — 2z0)" is the same as >~ a,&",
we conclude that f is holomorphic in B(zg, 7).
To conclude observe that since fT is real-valued on S,

fr(@) = f"(z)

for all z € S. Hence, f is continuous at points of S. Thus, by the previous
theorem we conclude that f is holomorphic in U. m

7 Cauchy’s Theorem, General Case

In this section we extend Corollary [72| to simply connected domains.

In what follows, given the unit square Q = [0,1] x [0, 1], we consider the
oriented closed simple curve obtained by moving along 0@ counterclockwise
starting from (0,0). Denote by ¢g : [0,4] — 0Q the parametric representation
obtained by using arclength.

Theorem 92 Let U C C be an open set, let h : Q — U be Lipschitz continuous,
let v be the Lipschitz continuous oriented closed curve parametrized by h o pq :
[0,4] = U , and let f : U — C be holomorphic. Then

/f@:u
.

Proof. Assume by contradiction that

Friday, February 7, 2020

/fdz:c;é().
¥

By replacing f with f/c, without loss of generality, we may assume that ¢ = 1.
Divide @ into four squares Q1,1, Q1,2, @1,3, Q1,4 of side-length % and para-
metrize their boundaries as we did for 0Q. Let @11, @12, ¥1,3, Y14 be the
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corresponding parametric representations and let 711, 71,2, 71,3, 71,4 be the
oriented closed curve parametrized by ho ¢ : [0,4/2Y] — U, k = 1,...,4,
respectively. Using Exercise [66] we have that

1:/ fdz—i—/ fdz+/ fdz—i—/ fdz
1,1 Y1,2 71,3 V1,4

and thus there exists k1 € {1,...,4} such that

/Mk fdz

Let Q1 := Q1,, and 1 := 71,%,. We now divide @Q); into four squares Q2 1, @22,
Q2,3, Q2,4 of side-length %. Proceeding as before we find ko € {1,...,4} such
that

>

B~ =

1
> —.
Jdz 2 15

V2,ko

Inductively we obtain a decreasing sequence of closed squares @,, of side-length

% such that
/ fdz

> (33)

1
gqn”

where 7, is the oriented closed curve parametrized by h o @, : [0, ;%] — U and
©n [0, 5%} — 0Q,. By Cantor’s theorem there exists (zo,yo) € @ for all n.

Let zo = h((z0,yo)). Since f is differentiable, we can write

f(2) = f(20) + f'(20)(z — 20) + R(2),

where R
lim G g, (34)
zZ—20 Z — 20

Since a constant function and a linear function az have a primitive, by the

fundamental theorem of calculus,

/ fdz:/ Rdz.
Y Y

Let I',, be the range of v,. If z € '), = h(n ([0, 5=])), We can find (z,y) € 0Q,
such that z = h(z,y). Hence, if L > 0 is the Lipschitz constant of h, we have
that

: V2
|2 =20l = (2, y) = b0, y0)| < LV/(z = 20)? + (y — y0)? < L diam Q = L=

In turn, by ,
2
IR(2)| < enlz — 20| < anL;—C7
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where €, — 07. Hence,

/fﬁ

n

2
< 5nL\2§L (Yn)

/ Rdz
Yn

< 4172
En—7—>
- 4n

where we used the fact that

P o o Al
Lo = [T lhepyGlds <L [T e olds =1 [T 1as =3
0 0 0 2n
Using we get
/ fdz
Tn

as n — 00, which is a contradiction. m
Next we consider the case in which h is only continuous.

2

< Enm

— <
4n =

Theorem 93 Let U C C be an open set, let h : Q — U be continuous, let v be
the oriented closed curve parametrized by ho g : [0,4] — U, and let f : U — C
be holomorphic. If v is rectifiable, then

/f@:a
.

Proof. Since @ is compact and h is continuous, h(Q) is compact. Hence,
d := dist(h(Q),0U) > 0. For every n consider a partition tg = 0 < t; < -+ <

t, =1 with tx — tx_1 <6, for every k = 1,...,n (for example §,, = % and tg =
k/n, k=0,...,n). We construct h,, : Q — U by defining h, (¢;,t5) := h(¢;, tx)
for each j,k =0,...,n and by interpolating linearly in each subrectangle

hn(th + (1 — T)tj_l, Stk + (1 — S)tk_l) = (1 — 7”‘)(1 — S)hn(tj—latk—l)
+7(1 — s)h,(tj, th—1) + (1 — r)shyp(tj—1, tx) + rshy(t;, tr)
for r,s € [0,1]. Then h, : @ — C is Lipschitz continuous. Using the uniform
continuity of h we have that h,, — h uniformly in @ as n — oo. In particular,

dist(h,(Q),0U) > d/2 for all n sufficiently large. Hence, h,, : Q@ — U for n
large. By the previous theorem
/ fdz=0.

n

Since 7, is parametrized by h,, o ¢q : [0,4] — U we have that h,, o ¢g — h o g
uniformly, and since f is continuous and h o ¢y has finite length, it follows that
(Exercise, see the proof of Lemma

0= lim fdz:/fdz,
%l

n—oo

In

which concludes the proof. m
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Corollary 94 Let U C C be an open set, let h : Q@ — U be continuous and
such that h(s,0) = h(s,1) for all s € [0,1], let v be the oriented closed curve
parametrized by h o @g : [0,4] — U, and let f : U — C be holomorphic. Assume
that the curves 1 and v2 parametrized by hoyg : [1,2] — U and hoyg : [3,4] —

U are rectifiable, then
/ fdz+/ fdz=0.
7 2

Proof. Since h(s,0) = h(s,1) for all s € [0,1], in the previous proof we
will have h,(s,0) = h,(s,1) for all s € [0,1]. Hence, the Lipschitz curves
parametrized by ho g : [0,1] — U and h o ¢q : [2,3] — U are one the opposite
of the other and so their corresponding integrals will cancel each other. In turn,

/ fdz+ / fdz=0.
Y1,n Y2,m

Letting n — oo will give the desired result. m

Definition 95 Given a set E C C, two continuous oriented closed curves i
and 2 with range in E and parametric representations @1 : [a,b] — C and
2 : la,b] — C, respectively, are homotopic in E if there exists a continuous
function h :[0,1] X [a,b] — C such that h([0,1] x [a,b]) C E,

(0,¢

(s,a

= @1(t) for allt € [a,b], h(1,t) = pa(t) for allt € [a,b],
h(s,b) for all s €[0,1].

h(0,1)
h(s,a)

The function h is called a homotopy in E between the two curves.

Roughly speaking, two curves are homotopic in E if it is possible to deform
the first continuously until it becomes the second without leaving the set E.

Definition 96 A set E C C is simply connected if it is pathwise connected and
if every continuous closed curve with range in E is homotopic in E to a point
in E (that is, to a curve with parametric representation a constant function).

Example 97 A star-shaped set is simply connected. Indeed, let E C C be star-
shaped with respect to some point zg € E and consider a continuous closed curve
~ with parametric representation ¢ : [a,b] — C such that ¢ ([a,b]) C E. Then
the function

h(s,t):=sp(t)+ (1 —s) 2o

is an homotopy between v and the point zg.
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Theorem 98 (Cauchy) Let U C C be an open set, let v1 and v2 be two ori-
ented closed rectifiable curves which are homotopic in U and let f : U — C be
holomorphic. Then
fdz= fdz.
71 2

In particular, if U is simply connected, then

/fdz:O

for every rectifiable closed oriented curve v with range in U.

Proof. Let 1 : [0,1] — U and 2 : [0,1] — U be parametric representations
of ;1 and s, respectively, and let h : [0,1] x [0, 1] be a corresponding homotopy.
Then h o g is composed of four curves: first s € [0,1] — h(s,0) followed by ~1,
then the opposite of s € [0,1] — h(s,1) and finally the opposite of v2. Since
the first and the third of these four curves are the opposite to each other, the
corresponding integrals will cancel out. Hence, in view of Corollary [94]

fdz+ fdz=0.

71 -T2

The result now follows from [ ]

Exercise 99 Let U C C be a simply connected open set and let f : U — C be
holomorphic. Prove that f has a primitive in U.

Using the previous exercise we can show that in a simply connected open
set which does not contain the origin there is a branch of the logarithm. More
generally, we have the following important result.

Corollary 100 Let U C C be a simply connected open set and let f : U — C
be a holomorphic function such that f(z) # 0 for all z € U. Then there exists a
holomorphic function g : U — C such that

f(z)=¢e9%)  forall z € U.

If 20 € U and f(z9) = €™ for wg € C, then we can choose g in such a way that
9(z0) = wo.

Proof. Fix zy € U and use polar coordinates to write f(z9) = re’?. Taking
wo = logr + i0, we have that f(zp) = e¥°. Since f(z) # 0 for all z € U, the
function f’/f is well-defined and holomorphic in U. By the previous exercise,
f'/f has a primitive Fy, that is, F] = f’/f in U. By adding a constant, we can
assume that F(zp) = wo. Then h(z) := ¢™(*) is holomorphic in U and never
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vanishes (since the exponential never does). In turn, f/h is holomorphic. Let’s
compute its derivative

<f>’ (z) = F()hz) — FR(2)  f(2)el") — f(2)Fi(2)ef1 )
h

h2(z) e2F1(z)

F(2)en ) — f(2) 5 e
= 02F1(2) =0.

Since U is connected, it follows from Corollary[L4]that f/h is a constant function.
Hence, there is ¢ € C\ {0} such that

f(2) = ch(z) = cef1(2),
Taking z = zy we get
ev0 = f(z) = ce1(30) = cewo
and so ¢ = 1. This completes the proof. m

Exercise 101 Let U C C be a simply connected open set with 0 ¢ U. Prove
that in U there exists a branch logy of the logarithm. Prove also that if 1 € U,
then we can assume that logy r = logr whenever r is a real number sufficiently
close to 1.

Exercise 102 Prove that the previous exercise continues to hold if in place of
U simply connected we assume that

/fdszO

for every holomorphic function f : U — C and for every closed oriented Lip-
schitz continuous curve with range contained in U.

Remark 103 In view of Ezercise if U C C is a simply connected open set
with 0 ¢ U and a € C, then in U there is a branch of 2%, defined as usual by

P log; z

Definition 104 Given a set E C C, two continuous oriented curves, with para-
metric representations ¢ : [a,b] — C and v : [a,b] — C such that ¢ ([a,b]) C E,
¥ ([a,b]) C E, p(a) = ¥(a) = a, p(b) = ¥(b) = B are fixed-endpoint homo-
topic in E if there exists a continuous function h : [0,1] X [a,b] — C such that
h([0,1] x [a,b]) € E,

h(0,t) = @(t) for allt € [a,b], h(1,t)=1(t) for allt € [a,b],
h(s,a)=a, h(s,b)=p forallsec]|0,1].

The function h is called a fixed-endpoint homotopy in E between the two curves.
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Exercise 105 Let U C C be an open set, let v, and 1 be two oriented recti-
fiable continuous curves with the same endpoints and which are fized-endpoint
homotopic in U, and let f : U — C be holomorphic. Prove that

7lfdzszfdz.

8 Harmonic Functions

Given an open set Q C RY, a function u : Q — R of class C? is called harmonic
in Q if it satisfies
Au(z) =0 forall x € Q,

where we recall that A is the Laplace operator defined by

N

As a consequence of Cauchy’s integral formula we have the following important
result.

Theorem 106 Let U C C be an open set, let f : U — C be a holomorphic
function. Then the real-valued functions

u(z,y) :=Re f(x +1iy), wv(z,y):=Im f(z+iy)
are harmonic in Q = {(z,y) € R? : x +iy € U}.

Proof. In what follows given a function g : U — C we define R; : 2 — R
and I, : @ = R via

Ry(z,y) = Reg(z +iy), Iy(z,y):=Img(z +iy).
Recall that by @D,

ou Ov ,
%($7y) = 873/(1;’ y) = Re fl(x + Zy)a
ou v )
Gy = 5@ y) =Im a4 i),
This shows that Ry = %v Iy = fg—?;. By Corollary the function f is

analytic. In particular, it is of class C°*°(U). In particular, f’ is holomorphic,

and so we can apply Theorem [13|to f’ to conclude that Ry = %, I = —g—;‘
are differentiable, with
0 (Ju 0 ou )
oz <am> (.9) =3, <_6y) (2,y) = Re f"(z + iy), (35)
d (Ou 0 ou
PR J— = — _—— = I " ] .
o (5e) =g (-50) ) =t "o i



This implies that all second order partial derivatives of u exist and since f” is
continuous, so are they. Thus, u € C?(Q). Moreover, from the first equation in
we get that u is harmonic.

e o _ 0Ov _ Ov
We can repeat a similar argument for v since Ry = By Iy = 57 or use the

Cauchy-Riemann equations, to obtain that v € C?(Q) and is harmonic. m
We also have the converse of this theorem.

Theorem 107 Let Q C R? be an open set and let u,v : Q — R be two harmonic
functions satisfying the Cauchy—Riemann equations

ou Ov ou Ov |

Then the function f : U — C defined by
f(2) =u(z,y) +iv(z,y), z=z+iyel,
where U :={z=xz+iy: (z,y) € Q}, is holomorphic in U.

Proof. This follows from Theorem [[5 =

An interesting problem is, given an open set @ C R? and an harmonic
function u :  — R, to find another harmonic function v : 2 — R in such a way
that the Cauchy—Riemann equations hold in 2. If such a function v exists, it is
called complex conjugate of u.

Exercise 108 Let ) = R?\{(0,0)}. Prove that the function u(z,y) := log(z+
v?), (z,y) € Q, is harmonic but does not have a complex conjugate v.

Theorem 109 Let Q C R? be simply connected and let w : @ — R be an
harmonic function. Then u admits a complex conjugate v : ) — R.

Proof. Define

ou ou ) .
g(Z)—%(I,y)*afy(x,y)Z, Z—I+ZyEU,

where as before U := {z = x + iy : (x,y) € Q}. Since u is of class C? and

harmonic ,
0 (0Ou 0 ou )
o (33:) (z,y) = 87/ <_8y> (z,y) inQ,

0 (0Ou 0 ou .
"oy (8:5) (z,y) = % <8y> (z,y) in Q,

and so g—g and —g—Z satisfy the Cauchy—Riemann equations. In turn, by the pre-
vious theorem the function g is holomorphic in U. Since 2 is simply connected,
so is U, and so we can apply Exercise 09] to conclude that g has a primitive,
that is, there exists a holomorphic function f : U — C such that f' = g.
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Let

By (),

ui(z,y) := Re f(z +1iy), wv(z,y):=1Im f(z+iy).

Oouy _Ov B , L L %
Sk@) = 5.0 = Re (o + i) = Regla + i) = 5 (2.0),

Ouy _Ov B / L o Ou
Ty(x’y) = 8;1:(36’1/) =1Im f'(z +iy) = Img(z + iy) = ay(%y)

and so 9 9 5 5
U1 _gu gu1 _gu

Since U is connected, this implies that © — u; must be constant. Since v is a

complex conjugate of uq, it follows that it is also a complex conjugate to u, and
the proof is complete. m

Wednesday, February 12, 2020

As a corollary of Cauchy’s integral form we obtain the mean value theorem.

Theorem 110 (Mean value theorem) Let @ C R? be an open set and let
u:Q — R be an harmonic function. Then for every closed ball B((xo,yo),r) C
Q we have

27
u(zo,yo) = / u(xo + 7 cos b, yo + rsinb) db.
0
Proof. Let zyp = zg + iyg. By applying the previous theorem in a larger

open ball B containing zg we can find a function v which is conjugate to v in
B. In turn, the function

() =u(z,y) +iv(z,y), z=z+iy€ B,
is holomorphic and so by Cauchy’s formula,

1 ) .

211 9B(z0,r) Z— 20

f(20)

Taking as parametric representation of dB(zq,r) the function ¢(#) = zg + re®,
0 € [0, 2], we get
L (2T f(zo+71e) . Lo 6
= —_— - et dg = — ¢ d9
f(20) 51 /. 7, rie o7 /. flzo+1re?)

where we used the fact that ¢’ () = rie’®. In particular, taking the real part on
both sides

2m

Re f(z9) = % Re ( f(z0 +re®?) d9> = /0 7T(Re )(zo +re®ydo, (37)

0

which gives the result. =
Using this formula, one can show as in Corollary [81| that u is analytic in €.
We leave this as an exercise.
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9 Zeros and Isolated Singularities

In this section we study zeros and isolated singularities of holomorphic functions.
We begin by showing that zeros of holomorphic functions are isolated.

Theorem 111 Let U C C be an open connected set and let f : U — C be
holomorphic. Assume that there exists a sequence {zy}r in U with zy, # zm for
k # m such that zi, — 20 € U as n — oo and f(zi) =0 for all k. Then f =0.

Proof. Since f is analytic by Corollary there exists » > 0 such that
B(zg,r) C U such that
z) = Z an(z — 2z9)"

n=0

for all z € B(zo,7). If f # 0 in B(z0,7), at least one of a,, must be different
from 0. Let m be the first integer such that a,, # 0. Let m € N be the smallest
integer such that a,, # 0. Then as in the proof of Theorem [111] we can write

o0
g an(z—20)" = (2 — 20)™ E an(z —29)" ™™
n=m n=—m

Z—Zo E CLk+mZ—Zo

=:(z—2z0)™ g(z)

Now

o0
9(2) = am + Zak+m(z - 20)k7
k=1

where the power series is convergent. Hence ¢g(z) — a,, # 0 as z — 2. Hence,
taking € = 3|a,,|, there exists 0 < § < r such that

1
19(2) — am] < glan]

for all z with |2 — zo| < 4, and so |g(2)| > |am| — |9(2) — am| > %|am|, and in
turn,

1 m
2 Slamllz = |

for all z with |z —zg| < . Since 2z — 2o we have that |z, —zg| < § for all k large.
In particular, there are infinitely many z; such that z, # zp and |z — 2| < 6.
But

1
0=1[f(z)| = §|am||2k —z|™ >0,
which is a contradiction. This shows that f =0 in B(zp, 7).

Let
Vi={zeU: f(z) =0}".
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The set V' is open by definition and B(zg,7) C V. The set V is also closed in
U, since if wp € V and w, — wo € U, then either wy = wq for some k and so
wg € V or wg # wp for all k, in which case the sequence must have infinitely
many distinct elements. Hence, by the previous argument we can find a ball
centered at wg where f is zero. This shows that wy € V. Hence, V is closed in
U. Hence, U =V U (U \ V), with U \ V open. Since U is connected, it follows
that U \ V must be empty. ®

Observe that in the previous proof we actually showed that each zero of a
holomorphic function f is isolated and has finite multiplicity, unless f = 0.

Corollary 112 Let U C C be an open connected set and let f : U — C be
holomorphic and not identically zero. Assume that there exists zg € U such that
f(z0) = 0. Then there exists m € N such that

f(z) = (2= 20)"9(2),

where g : U — C is holomorphic and g(z9) # 0. Moreover, there exists r > 0
such that f(z) #0 for all z € B(z0,7) \ {20} CU

Proof. Writing f as a power series centered at z,

1) =3 an(z - 20)",

n=0

If a,, = 0 for all n € Ny, then f = 0 by Theorem Let m € N be the smallest
integer such that a,, # 0. Then as in the proof of Theorem we can write

f(z)= Z an(z — 20)" = (z — z9)™ Z an(z—20)" "

o0
= (2= 20)™ Y thym(z = 2)"
k=0

=: (2 = 20)"9(2).
Then ¢g(20) = am + 0+ ---+ 0 = a, # 0. The function g is holomorphic in
B(zp, R), where R is its radius of convergence. On the other hand, in U\ B(zp, R)
the function £2)
z
2) = ——t
9(2) = T

is holomorphic, since quotient of two holomorphic functions.

The last statement follows from Theorem (11l =

The number m is called multiplicity of zg. We say that f has a zero of order
m or of multiplicity m.

Example 113 Consider the function

£(2) = cos 1”, 2 € B(0,1).

-z
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The function f is holomorphic and has infinitely many zeros when }fz = 5+nm,

that is, 1+ z = (5 +nm)(1 — 2), or
14z
_ifsrnm
1+ 35 +nm

as m — 0o. Note that 1 € 0B(0,1), and so this does not contradict Theorem
11

Corollary 114 Let U C C be an open connected set and let f : U — C be
holomorphic. Assume that there exists zg € U such that f(")(zo) = 0 for all
n € Ng. Then f =0.

Proof. Writing f as a power series centered at zg we get that f = 0 in
B(zg,7) € U. But then we can apply the previous theorem to conclude that
f=0inU. m

Corollary 115 Let U C C be an open connected set and let f,g : U — C be
holomorphic. Assume that there exists a sequence {zy i in U with zi # 2z, for
k # m such that z, — z0 € U as n — oo and f(zr) = g(zx) for all k. Then
f=ginU.

Next we study isolated singularities.

Definition 116 Let U C C be an open set and let f : U — C be a holomorphic
function. We say that zo € C\ U is a point singularity or isolated singularity
of f if there exists v > 0 such that B(zo,7)\ {20} CU.

Example 117 If we take U = C\ {0} then the holomorphic function f(z) = z
has an isolated singularity at 0. In this case we can extend f to 0 as a holomor-
phic function by setting f(0) := 0. This is called a removable singularity. The

functions f(z) = % and g(z) = e'/* have an isolated singularity at z = 0.

We will show that isolated singularities are of three types;
1. removable singularities;

2. poles;

3. essential singularities

Definition 118 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zg € C\ U be an isolated singularity of f. We say that zo is a
removable singularity if we can define f at zg in such a way that the resulting
function is homomorphic in U U {z}.

Theorem 119 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zg € C\ U be an isolated singularity of f. Then zy is a
removable singularity if and only if

lim (z — 20)f(2) = 0. (38)

zZ—20

In particular, if f is bounded near zy, then zg is a removable singularity.
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Proof. If z; is a removable singularity for f then f is continuous at zy and
SO
lim (z — 20) f(2) =0f(20) = 0.

z—20

Conversely, assume that holds. Define g : U U {z9} — C via
z— z z) if z # 2,
g(z) ::{ ( O)f( ) 7é 0

0 if z = 2.

In view of , the function g is holomorphic in U and continuous at zy. In
view of Remark ¢ has a primitive G in B(zg,r) € U U {2}, and so G is
holomorphic. By Corollary G is analytic. Since G’ = g, we have that g is
holomorphic. Since g(z9) = 0, by Corollary there exists m € N such that

9(2) = (z — 20)"h(2),

where h : U U {2z} — C is holomorphic and h(z9) # 0. Set fi(z) = (2 —
20)™ h(z). Then f; is holomorphic in U U {z9}. Since B(z,7) \ {20} is
connected, it follows that f and f; must coincide in B(zg,7) \ {20} by Corollary
Thus, f; extends f to zg as an holomorphic function. m

Definition 120 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zg € C\ U be an isolated singularity of f. We say that zg is a

pole if
lim |f(z)| = oc. (39)
z—20
Theorem 121 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zg € C\ U be a pole of f. Then there exist m € N, r > 0, and
a holomorphic function g : B(zg,r) — C such that B(zo,7) C U\ {20}, g(z) #0
for all z € B(zp,7) and

f(z)= _9(x) for all z € B(zo,7) \ {20}
(z— zp)™
Proof. By the definition of limit there exists r > 0 such that B(zp,r) C
U\ {z0} and |f(2)] > 1 for all z € B(zo,7) \ {20}. Hence, the function % is
well-defined and holomorphic in B(zg,7) C U \ {20}. Moreover, by (39),

lim —— =0.
A2 70
Thus, if we define
= if 2 # 2
— ) 1 05
hz) : { 0 if z = zp.

Then h is holomorphic in B(zp,r) by the previous theorem. Since h(zy) = 0, by
by Corollary there exists m € N such that

h(z) = (z = 20)"q(2),
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where ¢ : B(zg,7) — C is holomorphic and ¢(zp) # 0. By continuity and taking
r smaller, if necessary, we can assume that ¢(z) # 0 for all z € B(zg,r). Then
—— = (2 —20)"q(»
75 = (2= 20"ale)
for all z € B(zo,7) \ {20}, that is,

£2) = s = 20

(z—20)mq(z) (2 —20)™’

where g(z) :=1/q(z). =
The number m is called multiplicity of zo. We say that f has a pole of order
m or of multiplicity m. When m = 1, we say that f has a simple pole at z.

Theorem 122 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zo € C\ U be a pole of f or order m. Then there exist by,
cery by € C, r > 0, and a holomorphic function h : B(zo,7) — C such that
B(zp,7) CU\ {20}, and

b _bm
z— 20 (z — zp)™

flz)= + h(z) forall z € B(zo,7)\{20}. (40)

Proof. By the previous theorem, there exist m € N, » > 0, and a holomor-
phic function ¢ : B(zp,7) — C such that B(zo,7) C U \ {20}, g(z) # 0 for all
z € B(zg,r) and

f(z) = (Zi(;)))m for all z € B(z,7) \ {20}

Since g is analytic, by taking r smaller, if necessary, we can write

g(z) =ap+ai(z—2) +-+am1(z—2)""" + Z an(z — 20)"

n=m

and so

f(z) = 9(2) = oy = o=l +i an(z—29)" "™
(Z _ ZO)'m (Z _ Zo)m (Z _ Zo)m—l (Z _ ZO) = n 0

It suffices to define

h(z) := Z an(z —2z9)" ™™,
which is holomorphic. m
The sum
b1 T b
z— 2 (z — z0)™

is called the principal part of f at the pole zy and the number b, is the residue
of f at zg. We write
res,, f = by.
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Theorem 123 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zo € C\ U be a pole of f or order m. Then

1 dm—1
res,, f = lim

S WW((Z —20)" f(2))-

In particular, if f has a simple pole at zgy, then

res,, f = lim (z — z0) f(2).

z—20

Proof. By ,
(2= 20)"f(2) = bi(z = 20)™ " +ba(z = 20)" 2+ + by + (2 — 20)"h(2).

Hence
;Zn;_,l (z=20)"f(2)) =bi(m—-1)!+0+---+0+ %((z —20)"h(z2)).

To conclude observe that

m—1
lim L((Z —20)"h(2)) =0

2—z0 dzm—1

since we are differentiating m — 1 times and so by the product rule each term
m—1

in ddzmi,l((z — 20)™h(z)) will have some power of z — z5. ®
Next we prove the residue formula. We begin with a simple case.

Theorem 124 (Residue formula) Let U C C be an open set, let zg € U, and
let f:U\{z0} — C be a holomorphic function having a pole at zy. Then for
closed ball B C U having zy in its interior,

fdz=2mires,, f.
0B

Proof. Consider the closed curve I's. given in Figure m where ¢ is the
radius of the small circle centered at zo and ¢ is the width of the corridor. Since
the function f is holomorphic in U \ {20}, by considering V' := B\ S, where S
is the segment obtained when ¢ — 0 and § — 0, we can apply Exercise to
obtain that f has a primitive in V. Since the range of I's . is contained in V, it
follows from Corollary [65] that

fdz=0.

If we let § — 0" and use the fact that f is continuous, we get that the two seg-
ments converge to a segment which is integrated in opposite directions. Hence,

we obtain
fdzf/ fdz=0. (41)
OB 8B(Zo,5)
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Thus to prove the theorem it suffices to show that

/ fdz=2mires,, f. (42)
aB(Zo,E)

By Theorem [122] there exist by, ..., b, € C, 7 > 0, and a holomorphic function
h: B(zg,r) — C such that B(zg,r) CU \ {20}, and

o) = - flzo o (z_b";o)m 4 h(z) forall 2 € B(zo,7) \ {z0}.

Hence,

b b,
/ fdz:/ - dz—l—--~+/ 7mdz+/ hdz.
OB(z0,¢) 8B(z0,e) # — ?0 OB(z0,¢) (2 — 20) OB(z0,¢)
(43)
By Cauchy’s integral formula applied to the constant function b; we have that

1
by = — b g, (44)
211 OB(z0,c) Z — 20

while by Corollary [81] applied to the constant functions by ,

dk=1 (k—1)! by,
=——7(by) = —dz. 4
0 de_l( k) i /BB(zo,a) (z — z0)F ¥ (45)

Since h is holomorphic in B(zp, ), taking ¢ < r we have that

/ hdz =0 (46)
OB(z0,€)

by Corollary Formula follows by combining —. ]

Remark 125 Note that since 0B and 0B(zp,&) are homotopic in U, we could
have used Theorem to obtain .
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Exercise 126 Let U C C be an open set, let z1,...,2, € U, and let f : U\

{z1,...,2n} — C be a holomorphic function having poles at z1,...,z,. Prove
that for every closed ball B C U having z1,...,z, in its interior,
n
/ fdz=2mi Zreszk f
aB —

Exercise 127 (Residue formula) Let U C C be an open set, let z1,...,2, €
U, and let f : U\ {z1,...,2n} — C be a holomorphic function having poles
at z1,...,2zn. Prove that for every continuous rectifiable closed simple curve
homotopic to 0 in U and having 21, ..., 2z, in its interior,

/ fdz= QWineszk f.
Y k=1

Note that in the previous exercise we are using Jordan’s curve theorem (see

Theorem .

The calculus of residues can be used to compute many interesting improper
integrals.

Example 128 Let’s prove that for 0 < a < 1,

/ e’ d 71'
r = .
r1+e? sin(ma)

Consider the function

eaz

e =1

Note that 1 + €* = 0 for z = im + 2iwk, k € Z. Given £ > 0 consider the
rectangle Ry ={z=x +iy: z € (—{,£), 0 < y < 2w} and let v, be the oriented
closed curve which parametrizes ORy using arclength and going counterclockwise

starting from —f + Oiy. The only point at which the denominator vanishes in
Ry is mi. Note that

Z — T Z— T
z—mi) f(z) =e** =% -,
(s =) () = eI m o 22T
Since d%ez = e*, we have that
e? — e7r7,' .
lim — =¢™ = -1
z—mt 2 — Tl
and so A
lim (z — i) f(z) = —e®™".

Z2—Ti

In turn, by @,

res;; f = —e".
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It follows by the residue formula that

fdz=2miy resy f = —2mie"™, (47)
k=1

e

4 0 ax
I = /Jf(x) dm:/J 1j_exd:c. (48)

On the other hand, to parametrize the top we consider curve vy, 3 parametrized
by p3(t) = 30+ 2w — t + 2mi, where t € [20 + 27,40 + 2x]. Then by the change
of variables s = 30 + 2w — t,

Set

A40++27 iy
fie= [ fea@b@d= [ frzmds )
Ye,3 20+2m )
£ as ,2mia L _as_ 2mia
:—/ L,ds:—/ Lc1ls:—e27r“11'g.
_¢ 14+ est2mi ", 14+ e

Next to parametrize the right vertical side we consider curve 7g 2 parametrized
by pa(t) = L+ i(t —20), where t € [2¢,20 + 27]. Then by the change of variables
s=1t— 2/,

20++2m o
/mfdz—/2 f(<P(t))ga(t)dt:/O PF(0+is)ds

¢
27 ea(f+is) et 27 eais
o 14ettes et Jo e t+e
Since e~ + €¥*| > |e¥*| —e™¢ =1 —e~¢, we have

1 27 |eais|
d — d 50
/Ye.z f z e[(l—a) /0 |€7£ + ezs| s ( )

1 2m
— ef(l—-a) ] — ¢

IN

— 0

as  — oco. A similar computation holds for the left vertical side, whose integral
can be bound in modulus by ce=**. It follows from f@ that

ax
. i . ; &
—2mie?™ = lim fdz=(1- 627”“)/ —du,
{—00 ~e R 1+e
that is,
e*r —2mie?™ 2mie™ 2m T
T = — = - = — — = —
R 14 e® 1— e27ma 627”0‘ -1 eTia _ p—mia sm(7ra)’

where we used (@
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Exercise 129 Use the calculus of residues to prove that

1
-
rR1+x

Exercise 130 Use the calculus of residues to prove that for all £ € R,

672771':05 1
/ dr = .
r cosh(mz) cosh(m¢)

We now the notion of meromorphic functions. Consider the extended complex
plane C4 obtained by adding to C a point not in C called oo,

Coo :=CU{o0}.

Given an open set U C C and zy € U, if a holomorphic function f : U\ {20} — C
has a pole at zg, we can extend f to zg by setting

f(20) := o0,
so that f: U — C.

Definition 131 LetU C C andlet f : U — Co,. We say that f is meromorphic
if there exists a sequence {zn}n of complex numbers such that the set {z, :
n € N} has no accumulation points in U, f has poles at z, for every n, and
f:U\A{zn: n €N} — C is holomorphic.

Let U C C be an open set which contains C \ B(0, R) for some R > 0 and
let f : U — C be a holomorphic function. We say that f has a removable
singularity, a pole, or an essential singularity at infinity if the function F(z) :=
f(1/2) has a removable singularity, a pole, or an essential singularity at 0,
respectively, In the first case we say that f is holomorphic at infinity. We say
that f is meromorphic in the extended complex plane if it is meromorphic in
the complex plane and either has a pole at infinity or is holomorphic at infinity.

Exercise 132 Prove that a holomorphic function f : C — C has a removable
singularity at infinity iff it is constant.

Exercise 133 Prove that a holomorphic function f : C — C has a pole at
nfinity of order m iff it is polynomial of degree m.

Exercise 134 Characterize those rational functions which have a removable
singularity at infinity.

Exercise 135 Characterize those rational functions which have a pole of order
m at infinity.
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Next we prove the argument principle. We have seen that in general for a
branch logy, of the logarithm, the formula

logy (2122) = logy 21 + logy 22.

Hence, we cannot expect the formula

logy (f1.f2) = logy f1 +logy fa

to holds for holomorphic functions fi, fo : U — V. However, the formula holds
for derivatives since

(fif2) _ fif2+ffs _fi n 13

fife fife ho fo

i) .,
k=1 = Z@. (51)

More generally,

. fr
| |f k=1
k=1 ’

Wednesday, February 19, 2020
We will use this observation to prove the argument principle. Given a set
FE, we denote by card F its cardinality.

Theorem 136 (Argument principle) Let U C C be an open set and let f :
U — Cy be a meromorphic function. Then for every for closed ball B C U
such that f has no poles or zeros on 0B, we have

1 !/
— —dz = (number of zeros of f in B) minus (number of poles of f in B),
2ni Jop f

where the zeros and poles are counted with multiplicity.

Proof. Let 21, ..., 2z, be the zeros of f inside B and let p1, ..., pe be the poles
of f inside B. For every k = 1,...,n, let my be the order of z;. By Corollary
we can find 7, > 0 and a holomorphic function gy : B(zk,r,) — C such
that g # 0 in B(zk,7;) C B and

f(2) = (z — zi)™gi(z) for all z € B(zg, k).
It follows from that

f'(z) my . gp(2)
f(z) 2=z +gk(z)'

The function % is holomorphic in B(zg, 7). This shows that fT/ has a simple
pole with residue my, at zj, that is, res,, f'/f = my.
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Similarly, for every k =1,...,¢, let ny be the order of p;. by Theorem [121
we can find ¢t > 0 and a holomorphic function hy : B(pg,tr) — C such that
hi # 0 in B(pg,tx) C B and

hi(2)
= ——"" _ forall B(pg, tr). 52
f(z) Goppye orallze (Pr, tr) (52)
Since
i < 1 > _ 1
dz \ z — pi (z —pr)?’
we have
a ( 1 ) 1
dz \ z—p B _(Z—pk)2 _ 1
1 = 1 = ]
Z—DPk Z—DPk Z =Pk
and so, using and we get
f'(2) ne | hy(z)

) - i )

The function % is holomorphic in B(pg,tx). This shows that fT/ has a simple
pole with residue —ny, at pg, that is, res,, f'/f = —ng.
The conclusion now follows by applying the residue formula (Theorem [124)

to f//f. m

Exercise 137 Let U C C be an open set and let f : U — Cy be a meromor-
phic function. Prove that for every continuous rectifiable closed simple curve
homotopic to 0 in U and whose range contains no zero or pole of f , we have

1 !/
—/ —dz = (number of zeros of f in the interior of ) minus
2mi ), f

(number of poles of f in the interior of v),
where the zeros and poles are counted with multiplicity.

Next we discuss the last type of isolated singularities.

Definition 138 Let U C C be an open set, let f : U — C be a holomorphic
function, and let zg € C\ U be an isolated singularity of f. We say that zy is
an essential singularity for f if zg is not a removable singularity or a pole.

Example 139 The function f(z) = e'/* has an essential singularity at 0. In-
deed, if we take z = iy we have that

|fiy)| =[] = e Y] = 1,
so z is not a pole. On the other hand,

lim ze!/* = 0
x—0+

and so by Theorem (119, z = 0 s not a removable singularity.
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10 The Maximum Modulus Principle
In this section we prove some important theorems of holomorphic functions.

Theorem 140 (Rouché) Let U C C be an open set and let f : U — C and
g : U — C be holomorphic functions. Assume that there exists a closed ball
B C U such that

|f(2)] > 1g9(2)| for all z € OB. (53)

Then f and f 4 g have the same number of zeros inside B.

Proof. For t € [0, 1] consider the function

fi(z) == f(2) + tg(z), z€eU.

Then fo = f and f; = f + g. Moreover f; is holomorphic in U. Let n; € Ny be
the number of zeros of f; inside B counted with multiplicity. The hypothesis
(b3) guarantees that f; has no zeros on dB. Hence, by the argument principle

1 /
ng = —/ ﬁ dz.
2mi Jop fi

Again by we have that the function

fiz) _ () +tg'(2)
filz)  f(2) +tg(2)

is continuous in the compact set [0,1] x B. Hence, it is bounded. Using the
Lebesgue dominated convergence theorem (or Ascoli’s convergence theorem for
Riemann integrals), we have that n; is a continuous function of ¢. But since it is
integer-valued and [0, 1] is connected, it follows that n; must be constant. This
concludes the proof. m

Using Rouché’s theorem we can prove that non-constant holomorphic func-
tions are open.

g(t,z) = tel0,1], z € OB

Theorem 141 (Open mapping) Let U C C be an open set and let f : U — C
be a non-constant holomorphic function. Then for every V.C U open, f(V) is
open.

Proof. Let zp € V and let wyg = f(20). We must find € > 0 such that
B(wg,e) C_f(V). Since the zeros of f — wy are isolated by Theorem [111] (or
Corollary7 there exists 6 > 0 such that B(z9,d) C V and f —wp # 0 on
0B(zp,0). By uniform continuity, we can find € > 0 such that

|f(z) —wo| >¢e forall z € dB(z0,9).

Let w € B(wop, ) and define

9(2) = f(z) —w = (f(2) = wo) + (wo — wo) =: F(2) + G(z).
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By the previous inequality we have that |F(z)| > |G(2)]| for all z € 0B(z,9).
Hence, by Rouché’s theorem F' and F'+ G = g have the same number of zeros in
B(zp,0). Since F has one zero in B(zg, d), so must g. Hence, there is z € B(zp, 0)
such that f(z) = w. This shows that B(wo,e) C f(B(z0,6)) C f(V). This
concludes the proof. m

Corollary 142 Let U C C be open and let f : U — C be injective and holo-
morphic. Then f~1: f(U) — C is holomorphic and

v
I w)

Proof. By the open mapping theorem, f~! is continuous and f(U) is open.
Hence, we can apply Exercise |§| to conclude that f~1! is differentiable. m

(f ) (w) = w e f(U).

Theorem 143 (Maximum modulus principle) Let U C C be an open con-
nected set and let f : U — C be a nonconstant holomorphic function. Then |f]|
cannot attains a mazximum in U.

Proof. Assume that |f| assumes a maximum at some point zy € U. Let
B(zg,7) C U. By the open mapping theorem, f(B(zp,r)) is open and so there
exists B(f(z0),0) C f(B(z0,7)). This implies that there exists points in U with
modulus bigger that |f(zo)|, which is a contradiction. m

Exercise 144 Let U C C be an open connected set and let f : U — C be a
non-constant holomorphic function such that f(z) # 0 for all z € U. Prove that
|f| cannot attain its minimum on U.

Corollary 145 Let U C C be an open bounded set and let f : U — C be a
continuous function which is holomorphic in U. Then

sgp\fl SrggXIfl-

Proof. Since |f| is continuous on the compact set U, it admits a maximum.
By the maximum principle, this maximum must be attained at the boundary
of U. m

The previous corollary fails in general in unbounded domains.

Example 146 Let U := {z = x + iy : © > 0,y > 0} be the first quadrant
and let f(z) = e~ Then f is holomorphic in U and continuous on U. If
z=1x >0, then |f(z)| = |e=®"| = 1, while if z = iy with y > 0, then |f(iy)| =
|eiy2| = 1. However, f is unbounded. To see this take z = r\/i = re’™/*. Then
f(z) =e" — 00 as r — 0.

Friday, February 21, 2020
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11 Essential Singularities

Next we study the behavior of a holomorphic function near an essential singu-
larity.

Theorem 147 (Casorati—-Weierstrass) Letzy € C, r > 0, and let f : B(zo,7)\
{z0} — C be a holomorphic function having an essential singularity at zo. Then
f(B(z0,7) \ {20}) is dense in C.

Proof. Assume by contradiction that f(B(zo,7) \ {20}) is not dense in C.
Then there exist wg € C and § > 0 such that

|f(z) —wo| > & forall z € B(zp,7) \ {20}

It follows that the function

g(z) == 7 =y’ z € B(zo,7) \ {20},
is well-defined and holomorphic. Moreover, it is bounded by 1/5. Hence, by
Theorem it has a removable singularity at zg. Extend g to zo as a holomor-
phic function. There are now two cases. If g(zp) # 0, then g # 0 in B(zo,7),
and so f — wp has a removable singularity at zg, which is a contradiction. If
g9(z0) = 0, then

which implies that
lim [f(z) — wo| = oo,

zZ—Zz0

and so f has a pole at zy, which is again a contradiction. This concludes the
proof. m
There is actually a much stronger result.

Theorem 148 (Picard Big Theorem) Letzy € C,r > 0, and let f : B(zo,7)\
{20} — C be a holomorphic function having an essential singularity at zo. Then
f takes all possible values of C with at most a single exception.

Exercise 149 Prove that

o0

2z
7 eot(mz) hm Z erk ; Zm
k=—/¢ n=1

The proof relies on several preliminary results. We begin with another im-
portant theorem.

Theorem 150 (Bloch) Let U C C be an open set which contains B(0,1) and
f:U—C bea holomorphic function such that f'(0) = 1. Then f(B(0,1)
contains a ball of radius 2 5 — V2.

~—
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We begin with some lemmas.

Exercise 151 Let V C C be an open bounded set, let f : V — C be a continuous
function such that f : V — C is open. Let wg € V' be such that

R:= min [f(z) = f(wo)| > 0.
Prove that f(V') contains B(f(wo), R).

Lemma 152 Let U C C be an open set which contains B(zo,r) and f : U — C
be a holomorphic function which is non-constant in B(zo,r) and such that

I (2)] <2|f'(20)| for all z € B(z,). (54)
Then f(B(zo,7)) contains B(f(z0),70), where ro = (3 — 2v/2)|f'(20)|r.

Proof. Without loss of generality we may assume that zop = 0 and f(0) = 0.
Define g(z) = f(z) — f'(0)z. By the fundamental theorem of calculus,

o) = /[] () — O] d.

Consider the parametric representation ¢(t) = tz, ¢t € [0,1]. Then

A <lel [ 1763 - 7Ol (55)
Let w € B(0,7). By Cauchy’s formula applied to the holomorphic function f,
1 1 !
/(w) = P ro=gm [ D
2mi Jon(o,y ¢ — w 21 Japory €

Subtracting these identities gives

= N e FOL

1 w ,
T om /zm(o,r) (= w)f () de

and so using the the parametric representation () = re'® and the fact that
¢ = wl =[] = [w] =7 = |w]|, we get

1/ (w) = F/(O)] < Juo| sup |f'|—

aB(0,r) r— |w|

Taking w = tz and using this inequality in (55 gives
0t
0 < el [ 1763 - POl <l s i at
r —t|z]

oB(0,r)
2 1 ‘ |2 /
< [z]® sup sup |f’]| (56)
aB(0,r) |2 T 25— 4 OB(0,r)
\ K
< | (0)],
— |2
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where in the last inequality we used . Now let 0 < p < r and take z with

|z| = p. Then
l9(2)| = [£(2) = [/ (0)z] = [£"(0)lp — [ £ (2)]
Combining this inequality with gives

(O] = 1£(0)lp = If(2)];

or, equivalently,

&) 2 170 (p— ik ) — 17(O)(p).

We have

2 2_y 9,2
h’(p)=d(p— P ):r rp+2p >0
dp r=p (r—p)

forer(g—f—l) andpgr(l— @),sohhasamaximumatpo :r(l— g)
Hence,

£ = 17 O)hlpo) = [/ O)lr (3= 2v2)  for all = € IB(0, po).

We now apply the previous exercise with wg = 0 and V' = B(0, pg) to obtain
that

f(B(O,?“)) 2 f(B(O,po)) 2 B(OvR)v

where R := mingp(o,pe) |f| = [f/(0)|r (3 — 2v/2) = ry. This concludes the proof.
|

We now turn to the proof of Bloch’s theorem.

Proof. Step 1: Let U C C be an open set which contains B(0,1) and
f : U — C be a holomorphic function which is non-constant in B(0,1). Since

the function
9(z) = |f"(2)I(1 — [2])
is continuous in B(0, 1), it assumes a maximum at some point zp. We claim
that f(B(0,1)) 2 B( (zo ,T0), where rg := (% —V2)g(20).
To see this, take ¢ = $(1 — |z]). Then

9(z0) = [ (20)I(1 — |20]) = 2t|f"(20)]. (57)

Moreover, B(zp,t) C B(0,1), since if z € B(zg,t), then
1 1 1
|2 < [z = 20| + [z0] <t + 20| = 5(1 = [#0]) + [20] = 5T §|Zo\ <1

Note that the previous inequality also implies that

1—|z| >t (58)
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Indeed, the previous inequality can be written 1 > ¢+ [z| = (1 — |20]) + |2],0r,
equivalently, & 4+ £|z0| > |z|, which is what we just proved.
Using and and the fact that g has a maximum at zy, we have

[F/(2)I(1 = |2]) = 9(2) < g(20) = 2t|f(20) < (1 = [2D)]f"(20),

which gives |f'(2)| < |f'(20)]- It now follows from the previous lemma and the
fact that B(zg,t) C B(0,1), that

f(B(0,1)) 2 f(B(z0,t)) 2 B(f(20),70),
where rg = (3 — 2v2)|f/(20)|t = (2 — V2)g(20), again by .

Step 2: To conclude the proof of the theorem, observe that if f/(0) = 1,
then g(0) =1 < g(z9) and so 1o > 3 — V2. m
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Monday, February 24, 2020

Corollary 153 Let U C C be an open set and let f : U — C be a holomorphic
function. If zg € U is such that f'(z9) # 0, then f(U) contains balls of every
radius 57| f'(20)], where 0 < r < dist(z9, OU).

Proof. Assume that zp = 0. If 0 < r < dist(0,0U), then B(0,r) C U.
Consider the function .
g(2) : f(rz) z e =U.

Tef) T
Since B(0,1) C 21U and ¢’(0) = 1, by Bloch’s theorem g(B(0,1)) contains a ball
of radius 2 — /2 > . In turn, f(B(0,7)) contains a ball of radius 75r|f’(0)|.
[

Corollary 154 Let f : C — C be a non-constant entire function. Then f(C)
contains balls of every radius.

Exercise 155 Let f: C — C. Prove that fof: C — C has a fized point unless
f is of the form f(z) = z+w for all z € C and for some w € C.

In this subsection we prove the following theorem.

Theorem 156 (Picard Little Theorem) Every non-constant entire function
f:C — C takes every value except at most one.

We begin with some preliminary results.

Lemma 157 Let U C C be a simply connected open set and let f : U — C be
a holomorphic function which does not take value —1 and 1. Then there exists
a holomorphic function h : U — C such that

f(z) =cosh(z), zeU.

Proof. Since f does not take values —1 and 1, 1 — f2 is never equal to 0 and
so by by Remark there exists a branch of /1 — f2, that is a holomorphic
function g : U — C such that g = 1— f2in U. Write 1 = f2+g¢% = (f+ig)(f —
ig). Then f+ig has no zeros in U and so by Corollary f+ig = e for some
holomorphic function h : U — C. In turn, 1 = (f +ig)(f — ig) = e (f — ig)
and so f —ig = e, Using Euler’s formula we get

eih 4 =ik

f:f:cosh in U,

which concludes the proof. m

Lemma 158 Let U C C be a simply connected open set and let f: U — C be
a holomorphic function which does not take value O and 1. Then there exists a
holomorphic function g : U — C such that

f(z)= %[1 + cos(mwcos(mg(z)))], z€U.

Moreover, g(U) does not contain any ball of radius 1.
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Proof. The function 2f — 1 does not take the values —1 and 1, and so by
the previous lemma, there exists a holomorphic function h : U — C such that
2f — 1 = cos(mh) in U. Note that by periodicity, the function h does not take
any integer values. In particular, it does not take the values —1 and 1. Hence,
by the previous lemma again, there exists a holomorphic function g : U — C
such that we can write h = cos(7g).

To prove the second part of the statement, consider the set

E={k+in log(n+ /n? : ke€Z,neN}.
We claim that g(U) N E = (. To see this, let w € E. Then by Euler’s formula

0,
ei'rrw + e—i'frw
cos(Tw) =

2

:1(—1)k n+\/17127+n+\/

= 5(—1)k2n = (—1)*n.

- %(eiﬂkei log(n+vnZ=1T) 4 p—inkElog(n+vn?=1))

Hence, cos(r cos(mw)) = cos(m(—1)*n) € {—1,1}. In turn. £[1+cos(r cos(rw))] €
{0, 1}. Since f does not take values 0 and 1, g cannot take value w. This proves
the claim.

The points in E are the vertices of a rectangular grid. Consider the rec-
tangle of vertices k + ir ! log(n +vn2—1), k+ 1+ ir tlog(n + \/n2 )

k+irtlog(n+1++/(n+1)2 —1),and k+1+ir tlog(n+1++/(n + 1)2 .

The base has length 1 and the height has length
log(n+ 14+ +/(n+1)2 —log(n + v/n?

SR VA el Vel W 1+ 5+ 1+%
= 10 = 10
& n+vn2—1 & 14./1- 1

n2

1 2
<10g(1+ﬁ+\/1+ﬁ) <log(2+V3) ~ 1.317 < 7,

where we factor out n and used the monotonicity of the logarithm. Hence, the
height of the rectangle is less than 1. Thus for every w € C we can find z €
such that [Rew —Rez| < 1, |Imw —Imz| < 1, which implies that [w — 2| < 1.
This shows that every ball of radius 1 intersects E. Since g(U) does not intersect
E, it cannot intersect any ball of radius 1. =
Wednesday, February 26, 2020
We are now ready to prove Picard’s little theorem.
Proof of Theorem Assume by contradiction that there exist a,b € C
with a # b such that f : C — C does not takes value a and b. The the function

f(z) —a

b—a ’

h(z) = z € C,
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does not take the values 0 and 1. Hence, by the previous lemma there exists an
entire function g : C — C such that

h(z) = %[1 + cos(m cos(mg(z)))].

Moreover, ¢g(C) does not contain any ball of radius 1. However, since g is not
constant, by Corollary [[54 we have a contradiction. m
Another important theorem is the following.

Theorem 159 (Schottky) Let U C C be an open set which contains B(0,1),
leta>0,0<r<1, andlet f:U — C be a holomorphic function which does
not take values 0 and 1 and such that |f(0)| < o. Then

[f(2)| < exp(mexp(n(3+a+12r/(1 —1)))) for all z € B(0,r). (59)

Proof. Since U contains B(0,1), we can find R > 1 such that contains
B(0,1) c B(0,R) C U. In the remaining of the proof we take U = B(0, R), so
that U is simply connected. As in the proof of Lemma [I58] since f does not
take the values 0 and 1, the function 2f — 1 does not take the values —1 and 1
and so by Lemma there exists a holomorphic function h : U — C such that
2f —1 = cos(wh) in U. By periodicity, we can add to h any integer multiple of
2. Hence, without loss of generality, we may assume that

—1 < Reh(0) < 1.
By Exercise [33] for every w = z + iy we have that
ly| < coshy < |cosw| (60)

and so
7 Im h(0)[ < |cos(wh(0))[ = [2f(0) — 1] < 2[f(0)| + 1.

Hence,

BO) < 14 2150)] + = < 2+ 10 (61)

Since 2f — 1 does not take the values —1 and 1, the function h omits all integer
values. In particular, it omits the values —1 and 1 and so by Lemma there
exists a holomorphic function g : U — C such that h = cos(mg). Moreover,
g(U) does not contain any ball of radius 1.

Reasoning as in the first part of the proof, by periodicity we can add to g
any integer multiple of 2 and so we can assume that —1 < Reg(0) < 1. By
and ,

7[Im g(0)| < |cos(mg(0))| = [2(0)] < 2+ [f(0)],

and so 5 5
90 < 1+ 17O + = <3+ (O)]. (62
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If |z| < r < 1, then dist(z,0B(0,1)) > 1 —r. On one hand, ¢g(U) does not
contain any ball of radius 1. On the other hand, by Corollary [153] if ¢'(z) # 0,
then g(U) contains balls of every radius 75 (1 — 7)|¢g'(2)|. Hence,

1

S-nlg ) <1

for all z € B(0,r). By the fundamental theorem of calculus,
950 = [ g©u
0,z
and so by the previous inequality, (62)), and the fact that |f(0)| < «,
19(2)] < g(0)] +12[2[/(1 =) <3+ a+12r/(1 — 7). (63)

Since |cosw| < el and 3|1 + cosw]| < el it follows that

IF(2)] < %Il + cos(m cos(mg(2)))| < exp(w|cos(mg(2))])
< exp(mexp(w|g(2)])) < exp(mexp(w(3 + a+12r/(1 —1)))),

where in the last inequality we used . ]
The beauty of Schottky’s theorem is that the right-hand side of depends
only on « and r. Hence, we have a universal bound.

12 Sequences of Holomorphic Functions

Theorem 160 Let U C C be an open set and let f, : U — C be holomorphic
functions which converge uniformly on compact sets of U to a function f:U —

C. Then f is holomorphic and { f}, converges uniformly to f' on compact sets
of U.

Proof. By Goursat’s theorem,
n=0
T

for every n and for every closed triangle 7' C U. Letting n — oo and using
uniform convergence we get
f=0
orT
and so by the previous corollary f is holomorphic in every open ball contained
in U, which implies that f is holomorphic in U.
To prove the second part of the statement, we use to get

fi() = o /a fa6) g,

B Tm B(zo,r) (C - Z)2
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for every B(zp,r) C U and every z € B(zp,7). If z € B(z, p), where 0 < p < r,
since | — z| > |¢ — 20| — |20 — 2| =7 — p,

f(©) = fa(Q) 27
LB(ZOJ’) (C - Z)Q dC § (r - p)2 ”f - fn”C(aB(ZU’T))

and so there is uniform convergence in B(zp, p). Since any compact set K C U
can be covered by a finite number of these balls, we have uniform convergence
of {f] }n on compact sets of U. m

Definition 161 A metric space (X,d) is separable if there exists a countable
subset that is dense in X.

Definition 162 Let (X,dx) and (Y, dy) be metric spaces. A family F of func-
tions f : X — Y is said to be equicontinuous at a point z¢g € X if for every
€ > 0 there exists § = § (xg,€) > 0 such that

dy (f(z), f(z0)) <€

for all f € F and for all x € X with d(x,z9) < 6. The family F of functions
f X =Y is said to be uniformly equicontinuous if for every € > 0 there exists
0 > 0 such that

dy (f(z),f(y) <e
for all f € F and for all x,y € X with d(x,y) < 4.

Theorem 163 (Ascoli—Arzeld) Let (X,d) be a separable metric space and let
F C Cy(X) be a family of functions. Assume that F is bounded and equicon-
tinuous at every point x € X. Then every sequence in F has a subsequence that
converges pointwise to a function g € Cp(X) and uniformly on every compact

subset of X.
Friday, February 28, 2020

Theorem 164 (Montel) Let U C C be an open set and let F be a family of
holomorphic functions defined on U. Assume that for every K C U there exists
a constant Mg > 0 such that

[f(2)] < Mk

for all f € F and for oll z € K. Then the family F is equicontinuous on K
and for every sequence in F there is a subsequence which converges uniformly
on compact sets to a holomorphic function f:U — C.

Proof. Fix a compact set K C U and let di := dist(K,0U) > 0 and let
0<r< %dK. Then for z € K, B(z,3r) C U. Hence, for z,w € K with
|z — w| < r we can apply the Cauchy’s theorem to get

1) = flw) = — (£2- 29

T 2mi Jopwany \C—2  C—w
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For ( € O0B(w,2r) we have |( —w| =2r and |[( — 2| > [ —w| — |z —w| > 2r — .
Then

‘ 11 '_‘ z—w ‘ |z — w|
G R (G ()| R T
Hence,
M _
7() — f)] < 220 Wy

for all z,w € K with |z —w| < r and for all f € F. This shows that the family
F is equicontinuous in K. We can now apply the Ascoli-Arzela to get that for
every sequence in F there a subsequence converging uniformly on compact sets
to a continuous function. By the previous theorem, the function is holomorphic.
]

Exercise 165 Let U C RY be an open connected set and let f:U—Rbe
an analytic function such that f is constant in a ball B C U. Prove that f is
constant in U.

Theorem 166 (Hurwitz) Let U C C be an open set, let f, : U — C be a
sequence of functions converging uniformly on compact set to a holomorphic
function f : U — C. Assume that there exists B(zy,7) C U such that f(z) # 0
for all z € OB(zo,r). Then there exists ny such that f, and f have the same

number of zeros in B(zg,r) for allm > ny.
Proof. By continuity

6 := min > 0.
9B (z0,r) ‘f|

In turn, by uniform convergence on compact sets, there is n, such that | f,(z)| >
0/2 for all z € OB(zp,r) and all n > n,. It follows that

L L _ e —hGl_ 2,
ERECIRRTC O I A
and so {1/ f,,} converges uniformly to 1/f on dB(zg,r). Moreover, since f/ — f’

uniformly on compact sets by Theorem it follows that }l — fTI uniformly

on 0B(zg,r), and so

lim

fu(2) f'(2)
dz = dz.
n=° JoB(zo,r) fn(Z) : /é;B(zo,r) f(Z) :

But by the argument principle (see Theorem ) the integrals |, OB (20,r) ;—’/Ldz

and f@B(zo,r) fT/dz are the numbers of zeros of f,, and f inside B(zp,r), and
these numbers are finite. Since the limit exists, for n large these values must
coincide. m

The following corollary will be useful to prove the Riemann mapping theo-
rem.
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Theorem 167 Let U C C be an open connected set and let f, : U — C be
a sequence of injective holomorphic functions converging uniformly on compact
set to a holomorphic function f : U — C. Then either f is injective or constant.

Proof. Let zp € U. Define g,,(2) = fn(2) — fn(20) and g(z) := f(2) — f(20)-
Assume that there exists 21 # zg such that f(z1) = f(20). Then g has a zero at
z1. If g is not constant, then since the zeros of g are isolated, we can find r > 0
such that B(z1,7) C U and g(z) # 0 for all z € B(zy1,r) \ {21}. In particular,
we are in a position to apply Hurwitz theorem to conclude that for all n large
all functions g, have a zero in B(z1,r). But by taking r > 0 we can assume
that zo ¢ B(z1,r). Since the functions f,, are injective, they cannot have a zero
at z1, which is a contradiction. m

An important application of Schottky’s theorem is a sharpened version of
Montel’s theorem. In what follows, given an open set and f, : U — C, we say
that the sequence {f, }n converges uniformly to oo on compact sets if for every

compact set K C U and every M > 0 there exists ng jr such that
|[fn(2)| > M forall ze K
and all n > ng .

Theorem 168 Let U C C be an open connected set and let F be the family
of holomorphic functions f : U — C which do not take the values 0 and 1.
Then for every sequence {fn}n in F there is a subsequence {fn, }r such that
{fn }i converges uniformly on compact sets either to a holomorphic function
f:U— C orto oco.

Proof. Step 1: Let zp € U and a > 0 and let
Fros ={f € F: |f(20)] < al}.
We claim that there exist § > 0 and M > 0 such that
[f() <M

for all z € B(zp,6) and all f € F,, 5. To see this, let » > 0 be so small that

B(zp,2r) C U. By a dilation and a translation, without loss of generality, we
may assume that zp = 0 and 2r = 1. Then by Schottky’s theorem with r = 1/2,

£ (2)] < exp(mexp(m(3 + a4 12)))

for all z € B(0,1/2) and all f € F,,,. =

3
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Proof. Step 2: Fix z; € U and let

Faur1:={feF:|f(xn) <1}

Consider the set V := {z € U : F,, 1 is equibounded in a neighborhood of z}.
The set V' is open, since if w € V', then there are B(w,r) C U and L > 0 such
that |f(2)] < Lforall z € B(w,r) and all f € F,, ;1. But since B(z,r—|z—w]|) C
B(w,r), it follows that w is an interior point of V', and so V' is open. Moreover,
V' is nonempty in view of Step 1. We claim that V' = U. If not, then using the
previous step there exists zo € 9V NU and a sequence of functions {f,}, in
F, 1 such that

lim | fy(22)] = oo, (64)
Define g,, := 1/ f,,. Then g, is holomorphic in U and does not take values 0 and
1. Hence, g, € F. In view of ,

lim g¢,(22) =0 (65)

n—oo
and so there is @ > 0 such that |g,(22)| < « for all n. In turn, by Step 1, the
sequence {gn }, is equibounded in a neighborhood B(za,r) of z9. It follows by
Montel’s theorem (Theorem that there exist a subsequence {g,, }r and a
holomorphic function g : B(z2,7) — C such that g,, — ¢ uniformly on compact
sets of B(z,7). In view of (65)), g(22) = 0, but since g,, does not vanish in U, it
follows from Hurwitz’s theorem (see Theorem [L66)) that g = 0 in B(z2,r). This
implies that lim,, o |frn(2)| = 0o for all z € B(zs,r). But since z2 € 9VNU, this
implies that there exist points z € B(z2,7) NV such that lim, o |fn(2)| = oo,
which is a contradiction by the definition of V. Hence, the claim holds and so
V=U.

Step 3: Let {f,}» be a sequence of functions in F. If there exists countably
many n such that f, € F, 1, say fn, € F., 1, then by the previous step,
the sequence {fy, }r is locally bounded on compact sets, and thus by Montel’s
theorem there exists a further subsequence converging uniformly on compact
set to a holomorphic function. On the other hand, if only finitely many f,
belong to F, 1, then | f,,(z1)| > 1 for all n sufficiently large. In turn, ﬁ cF.q
for all n sufficiently large. By the previous step and Montel’s theorem, there
exists a subsequence {fy, }» and a holomorphic function g : U — C such that
{1/ fn. }x converges uniformly on compact set to g. If g never vanishes, then
{fn. }x converges uniformly to the holomorphic function 1/g : U — C. If g
vanishes at some point, then by Hurwitz’s theorem, g = 0 (since 1/f,, never
vanishes). In turn, {f,, }» converges uniformly on compact set to co. m

13 Picard’s Big Theorem

In this section we prove Picard’s big theorem.
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Theorem 169 (Picard Big Theorem) Letzy € C, r > 0, and let f : B(zo,r)\
{z0} — C be a holomorphic function having an essential singularity at zo. Then
f takes all possible values of C with at most a single exception.

Proof. Without loss of generality we assume that zp = 0, that r = 1. As-
sume by contradiction that f does not assume two values a and b. By composing
f with a linear function, we can assume that f does not take values 0 and 1.
Consider the sequences of functions

fu(2) = f(z/n), z € B(0,1)\ {0}.

In view of the previous theorem, taking K = 0B(0,1/2), we can find a sub-
sequence { fn, }r such that {f,, }x is equibounded in dB(0,1/2) or {1/f,, }x is
equibounded in 9B(0,1/2). In the first case, there exists M > 0 such that

|f(z/nk)] < M for all z € 9B(0,1/2)
and all k. In turn,
|f(w)] <M for all w € B(0,1/(2n4))
and all k. It follows by the maximum modulus principle that
|fw)| <M forall 1/(2n; +1) < |2| < 1/(2ng)

and for all k. But this implies that f is bounded in a neighborhood of zy, and so
it has a removable singularity at zo by Theorem [I19] which is a contradiction.

Similarly, if {1/ f,, }x is equibounded in B(0,1/2), then 1/f is bounded in
a neighborhood of zp, which implies that 1/f has a removable at zg, again, by
Theorem [T19] that is, there exists

1
lim — =/¢ € C.
e

If £ # 0 then f has a removable singularity at zgp, while if £ = 0, then f has a
pole at zg. This is again a contradiction. m
Wednesday, March 4, 2020

14 Entire Functions

We begin by reviewing infinite products.

14.1 Infinite Products

Definition 170 Given a sequence {zp}n of complex numbers, we say that the

infinite product
oo

H(1+Z")

n=1

(6]



converges if there exists

k
lim H 142z,)=¢eC.

k—o0

The following theorem gives a necessary condition for the convergence of an
infinite product.

o0
Theorem 171 Given a sequence {zy }n of complex numbers, if the series Z|zn|

n=1
[eS)

converges, then the infinite product H (1+42,) converges. Moreover, the product
n=1
converges to 0 if and only if 1 + a,, = 0 for some n.

Proof. By Theorem lim,, .o 2, = 0, and so there exists n; € N such
that |2,| < 1 for all n > n;. By Exercise 36, for = € W N B(0,1),

logy (14 2) Z

o 2"
— 66
1 (66)
where W =C\{z€ C: z=2x+0i, z <0} and logy, is the principal branch of
the logarithm. In particular, if [z <

| logyy (1 + 2)| gz%gz = Z|| 2|z]. (67)

For k > ny we use to write

k k n
[T a+20) = T s = exp < 3 logyy(1+ zn)> '

n=ny n=ny n=mny

o0
By @), |logy (1 + 2,)| < 2|z,| and since Z|Z”| converges, by the com-
n=1

parison test, the series >3°°  |logy (1 + 2,)| converges. Hence, the series

Zn:nl logy (1 + z,,) converges absolutely. In particular, there exists

lim Z logyw (14 2z,) =L € C.

k—o00
n=mni

By the continuity of the exponential function, there exists

k n
li 1+42,) = li 1 1+42,) | =€
Jim JT (14 20) kEEOGXP<Z og ( +Z)) e

n=ni n=ni
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In turn,

k ni k mni
[Ta+z) =TI +z) [T A +20) = ]+ 20)e".
n=1 n=1 n=ni n=1

This concludes the first part of the proof.
k

If 1 + 2, = 0 for some m, then H(l + z,) = 0 for all kK > m and so the

n=1
infinite product converges to zero. On the other hand, if 1 + z, # 0 for all n,
k ni

then by the previous part we have that H (I42,) — H (1+42z,)e’ =: £1. Since
n=1 n=1
et # 0, it follows that £, #0. m
As a corollary of the previous theorem we have the following result.

Theorem 172 Let U C C be an open set and let f, : U — C be holomorphic
functions, n € N. Assume that for each n € N there exists a,, > 0, such that

[fn(z) =1 <a, forallzeU. (68)

oo oo
If Zan converges, then the infinite product an(z) converges uniformly to a
n=1 n=1
holomorphic function P : U — C. Moreover, if f,(z) # 0 for all z € U and all
n € N, then P(z) #0 for all z € U and

P'(z) [ or all »
P@)_Z;Md for all z € U.

Proof. Let ny € N be such that a,, < % for all n > nq. In view of 1) and

@),

[logw fn(2)] = [logy (1 + (fu(2) = 1))| < 2[fn(2) — 1] < 2an

for all n > ny. Taking the supremum over all z € U gives
Syﬂ%whwﬂﬁ%n

and so the series
(oo} (oo}
Z sup | logy fu(2)] < Z 2a, = R :< 0.
n=ni U n=ni

This implies that the series of functions Z;L”:nl logyy frn converges uniformly in

U and that Zi:m logy frn(2) € B(0,R) for all k > ny and all z € U. Since
w +— e is continuous, it follows that

k k
96(2) = [ fule) = exp ( S logy fn(2)>

n=mni n=mniy

7



converges uniformly in U to some function g : U — C, with

g(z) = exp < Z logy, fn(z)> . (69)

n=mni

By Theorem (160} ¢ is holomorphic and g;, — ¢’ uniformly on compact sets of
U.
Define

P(2) = g(2)h(z), h(z):= [[fal2),
k
Pu(2) i= [[fa(2) = 9u(2)(2)
Then

sup |Pp(2) — P(2)] = sup |h(2) (gx(2) — g(2))]
= sup |h(2)] |gr(2) — g(2)]
< Lsgp l9x(2) — g(2)| — 0

as k — oo, where we used the fact that |h(z)| < L for all z € U by (68), with

ny
L:=J]Q+an).
n=1

Next, assume that f,(z) # 0 for all z € U and all n € N and fix a compact
set K C U. Since g is the exponential of a holomorphic function g(z) # 0 for
all z € U. In particular, |g(z)| > dp for all z € K. Moreover, by assumption
h(z) # 0 for all z € U and so |h(z)| > ¢; for all z € K. This implies that
|f(2)] > 0100 =: 02 for all z € K. By uniform convergence we have that

1
|Py(2)] > 551 for all z € K and all k > kq, (70)

where k; depends only on K. Since g;, — ¢’ uniformly on compact sets and
Py, = hgy, then P] = h/g + hgj, converges uniformly on compact sets to P’. In
turn, by , P| /P, — P’/P uniformly in K. Using , we get

) P)
5 Pl

Pi(z) <~ fulz
Py(x) ‘Z o

uniformly in K. In particular,

for all z € K. Since this holds for every compact set K C U, this concludes the
proof. m



Exercise 173 Prove that

Hint: Use Exercise[1{9

14.2 Entire Functions of Finite Order

We begin by proving Jensen’s formula.

Theorem 174 (Jensen formula) Let U C C be an open set containing 0 and
let f: U — C be a holomorphic function such that f(0) # 0. Then for every for
closed ball B(0,7) C U such that f has no zeros on 0B(0,r), we have

r

n 2m
g £0) = Y tog (Z) 4 5 [T roglsoeian, )
k=1 0

where z1,...,z, are the zeros (if any) of f inside B(0,r) counted with multi-
plicities. Here, if n =0, we take 22:1 = 0.

Proof. Step 1: Assume first that f has no zeros inside B(0,r). We claim
that

2m
oz (0] = 5- [ togl (e an. (72)

Consider an open ball B C U containing B(0,7). Since B is simply connected,
by Corollary there exists a holomorphic function g : B — C such that

f(z) =9 forall z € B.

Taking the modulus on both sides we have
|f(2’)| _ ‘eg(z)| _ ‘eRe g(z)+iIm g(z)| — |eRe g(z)ei Im g(z)|

_ ‘eReg(z)||ez’Img(z)| _ eReg(z)

and so log|f(z)| = Reg(z). We now apply the mean value formula (see
Theorem [110) to Reg, to get (72)). m
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Proof. Step 2: Next assume that f(z) = z—wyq for some wy € B(0,7)\{0}.
We claim that

|w0| Lo i
log |wo| = log + o log |re*” — wy)| df. (73)
0

Writing log (lwﬂl) = log |wg| — log r and

log |rei9 —wp| = log(r|ew —wp/r]) =logr + log |ei9 —wo /7|,

we have that formula is equivalent to
27 ) 27 )
0= [ logle® ~ Glds = [ loglei* ~ Gyl s
0 0
2 ) o 27 ) )
= [ togleie —emretolds = [ log(e - eRqalds  (7a)
0 0

27
:/ log |1 — €¢o| ds,
0

where |(p] < 1 and we have made the change of variables § = —s. Since the
holomorphic function h(z) = 1 — z(y does not vanish in B(0,1), we can apply
Step 1 together with the fact that h(0) = 1, to get

1 27‘( .
0= tog [h(0)| = 5 [ 1og[1 = G| .

which proves in view of .

Step 3: Let f1 : U — C and fy : U — C be holomorphic function such that
f1(0) # 0 and f2(0) # 0, and f1 and f2 have no zeros on 0B(0,r). We claim that
if f1 and f, satisfy Jensen’s formula , then so does their product fi fs. Let
Z1y.-+y2n, and wy, ..., Wy, be the zeros of f1 and f; inside B(0, r), respectively.
Then f; fo has zeros 21, ..., 2z,, and wy,...,w,,. Moreover,

log [(f1£2)(0)] =10g(|f1( )£20)]) = log | f1(0)[ + log | f2(0)]

2m
_Zl (lm) 2171'/0 log | f1(re™)| df
27
+Zm%?)+;41mmwmw
. w 27 .
_ZI<M0 Zl(”0+;ﬂlmmmwww
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Step 4: We are finally ready to prove the general case. Let f : U — C be a
holomorphic function such that f(0) # 0 and f has no zeros on dB(0,r). Let
21, ..., 2n be the zeros of f inside B(0, ) counted with multiplicities. Since the
zeros are counted with their multiplicity and are isolated, by Corollary [T12] the
function

f(z)

z—2z1) (2= zpn)

q(z) = (

is defined in U, holomorphic, and does not vanish in B(0,7). Hence, Jensen’s
formula holds for ¢ by Step 1. On the other hand, by Step 2 it holds for
each function z +— z — 2. Since

f(2) =a(z)(z = 2z1) - (2 = zn),

the conclusion follows from Step 3 and an induction argument. m
We now define functions of finite order.

Definition 175 Given an entire function f : C — C and a > 0, we say that
f has an order of growth less than or equal a if there exist constants A, B > 0
such that

If(2)] < AeB1" for all z € C. (75)

We define the order of growth of f as ay = infa, where the infimum is taken
over all a > 0 such that f has an order of growth less than or equal to a.

The function f(z) = e has order of growth 2.

Theorem 176 Let f : C — C be an entire function that has an order of growth
less than or equal to a > 0. For every r > 0 let n(r) be the number of zeros
counted with their multiplicity inside B(0,r). Then

n(r) < Cr* forallr>1 (76)

and for some constant C > 0. Moreover, if {z,}n are the zeros of f different
from zero and counted with their multiplicity, then for every b > a,

1

When needed, we write ny for n to highlight the dependence on f.
Proof. Step 1: We first show that if f(0) # 0 and if f does not vanish on
0B(0,r), then

s 2T

r 27
/ @ds:i/ log | f(re'®)| d6 — log | £(0)].
0 0

In view of Jensen’s formula, it is enough to show that
" n(s) - |2 |
—=ds = log [ —

[ as= s ()
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where 21, ..., z, are the zeros of f inside B(0,r) counted with their multiplicity.

To see this, observe that
n r 1
> s
|zk| S

S (2)-

k=1
Write "
n(5) =D X(Jzul,00) (5)-

k=1

Then
n r r n r U(S)

Z ‘ ‘*dS—Z ‘Zk"oo) dS— ZX(VH’ dS— o TdS,
k=1" 1%k

which completes the proof of this step.
Step 2: To prove , we first assume that f(0) # 0. Take r > 0 such that
f does not vanish on dB(0,2r). Since n is increasing,

n(r)log2 = n(r)log 2l — n(r) /27" 1 is < /gr @ N

s s
( 27
< [T o= L[ ioglstere) o - 10g s
0
where we used the previous step with r replaced by 2r. On the other hand by
()R

1 27T . 1 27T a a
— 1 2re') | do < — log(AeB2" ") do
5 | toelrtrelds < o [ iog(aem )

1 2

=5 [log A + log(eP%"")] db
=log A + B2%r°.
Combining these inequalities gives

n(r)log2 < log A + B2r¢.

Taking 7 > 1 and C' = (log A + B2%)/log2, we obtain for all r such
that f does not vanish on 0B(0,2r). Fix r > 1. Since the number of zeros in
B(0,2r+1) is finite, we have that f does not vanish on 0B(0, 2r +2s) for all but
finitely many s € (0,1). Consider a sequence s — 07 such f does not vanish
on 9B(0,2r 4+ 2s;). By what we just proved and the fact that n is increasing,

n(r) <n(r+sg) < C(r+ s)°

for all k. It suffices to send k — oo.
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Step 3: Next we prove , in the case f(0) = 0. Assume that ¢ is the
multiplicity of 0. Then the function g(z) := f(z)/2* is holomorphic, n, differs
from n; by ¢. Moreover, for |z| > 1,

o)) < N < A

On the other hand, since g is holomorphic, there exists Ay > 0 such that
l9(2)] < A < AyePF

for all |z| < 1. Hence, by replacing A with max{A, 4;}, we have that g also has
an order of growth less than or equal to a. By applying Step 2 to g we get

ng(r) < Cr*  for all r sufficiently large,
say for r > 1 and for some constant C' > 1. In turn,
np(r) =ng(r) +L < Cr* + £ < (C+ O)r

Step 4: We prove . If the number of zeros is finite, there is nothing to
prove. Thus, we assume that there are infinitely many zeros. Then by ,

1 = L1
Z | n|b Z Z |Zn|b SZ Z 9jb :Zonf(zﬁ >ﬁ

|zn|>1 7=02i<|z, |<2i+1 7=02i<|z, |<2i+1
92(j+1)a ©°
<oy P - Ly
<C 27b j(b— a)

j=0

Since there are only finitely many zeros in B(0,1), (77) =
The next example shows that we cannot take b to be the order of growth of

f
Example 177 Let f(z) = sin(nz). By Euler’s identity

iTZ —iTz

e —e
Hence,
f(2)] < e,
so f has an order of growth less than or equal to 1. Taking z = —ix gives
] e _ T
fliz) = 9

which shows that the order of growth is 1. Note that f(n) = sin(rn) =0 and

1
> =
n=1

3

Friday, March 20, 2020
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14.3 Welerstrass Theorem

In this section we show that given a sequence {z, }, of complex numbers whose
moduli converge to infinity, we can construct an entire function which vanishes
exactly at each z,.

Theorem 178 (Weierstrass) Let {z,}, be a sequence of complex numbers
such that |z,| — 00 as n — oo. Then there exists an entire function f: C — C
such that f(z,) =0 for all n and f # 0 otherwise. Moreover, any other entire
function with the same property is of the form f(z)ed*), where g : C — C is an
entire function.

The natural choice of f would be

o0

72) = T[] = 2/20).

n=1

However, in general the infinite product will not converge.
Proof. Step 1: Define

Ey(z)=1—2, E,(2)=(1-2z)exp(z+ %2’2 +-+ lz”). (78)

We claim that if |z] < 1/2, then
11— E,(2)] < 2e|z|™*.

By Exercise for z € W N B(0,1),

s Z
1 (1- —
ogy ( z) ]; s

where W =C\{z € C: z=240i, v <0} and logy is the principal branch of
the logarithm. Writing 1 — z = €!°8w(1=2) e have

1 1
En(z) = exp <10gw(1 —z)+z+ 522 +o nZ”) (79)
ok
= exp (— Z Zk) =:e".
k=n+1
In particular, if [z| < 1,
= i < n+1 = |Z|kin71 < n+1 J < n+1 2 n+1 < 1
wi=| 3 < 3 B eyt <y Zgj 1
k=n+1 k=n+1 Jj=0

(80)
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Hence,

S PR =Y RN
=B = - e =[S T < S = 3
k=1 k=1 k=1

oo 1 .
<fwl ) 7 = [wlle—1) < 2(e — 1] -,

which proves the claim for z € W N B(0,1/2). For z € B(0,1/2) we can use the
fact that F,, and |z|"T! are continuous functions.

Step 2: We are now ready to construct the function f. Since |z,| — oo, by
relabelling the sequence, we can assume that

|21] < 22| <+ < 2wl < 2nt]

for all n. If 0 is one of the numbers z, with multiplicity ¢ we define
f(z) = ZEHEn(z/zn),
n=1

while if zero is not, we take ¢ = 0 and set z° := 1 in the previous definition.
Fix r > 0 and consider z € B(0,r). Let ny > 1 be such that |z,| > 2r for all
n > ny. Then |z/z,| < 1/2 and so by the previous step

11— En(z/20)| < 2€|2/2,|" Tt < 2e/27H

o0

Since the series ) = converges, by Theorem (172} the infinite product

n=nji 2m
0o

H E,(z/z,) converges uniformly to a holomorphic function P : B(0,r) — C.
n=ni

Moreover, since E,,(z/z,) vanishes only at z,, we have that if E,,(z/z,) # 0 for
all z € B(0,r) and all n > ny. Thus, again by Theorem [172] P(z) # 0 for all
z € B(0,r). Since

’ﬂlfl

we have that f is holomorphic in B(0,7). Moreover, since P # 0 in B(0, R),
E,(z/z,) vanishes only at z,, we have that f vanishes only at those z,, n =
1,...,m1 — 1, which are inside B(0,r). By the arbitrariness of r > 0 this
concludes the first part of the proof.

Step 3: Let h : C — C be an entire function such that h(z,) = 0 for all
n and h(z) # 0 otherwise. If wy is a zero of h and f with multiplicity mg, by
Corollary applied f and h we can write

hz) = (z —we)™hi(z),  f(2) = (z —we)™ f1(2),

where hy and f; are holomorphic functions in some ball B(wy, ) which do not
vanish in B(wy, ). Hence,

hz) _ a(2)
f(2) fi1(2)

for all z € B(wg,rg) \ {wg}-
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This shows that h/f has a removable singularity at wy and does not vanishes
in B(wg, 7). By the arbitrariness of the zero wy and the fact that the zeros
are isolated, we have shown that h/f can be extended to C as a holomorphic
function which vanishes nowhere. We now apply Corollaryto write h/f = e9
for some entire function g : C — C. This concludes the proof. m

The functions E,, are called canonical factors and n the degree of the canon-
ical factor.

Corollary 179 Let f: C — C be an entire function. Then the following hold:

(i) if f(z) # 0 for all z € C, then there exists an entire function g : C — C
such that f(z) = e9%) for all z € C,

(ii) if f has finitely many zeros z1,. .., z, counted with their multiplicity, then
there exists an entire function g : C — C such that

P2 = (2= 21) (2 — z)es)
for all z € C,

(i) if [ has infinitely many zeros {z,}n counted with their multiplicity, then
there exists an entire function g : C — C such that

flz)= 2t HEn(z/zn)eg(z)

for all z € C.

Proof. Item (i) is Corollary Items (ii) and (iii) follow as in Step 3 of
the previous proof. m

Note that Weierstrass theorem shows that any entire function with infinitely
many zeros can be written as the product of the function constructed by Weier-
strass and an exponential function. Thus, it provides a way to represent entire
functions. This is why this theorem is called Weierstras representation theorem.

The next theorem shows that if f has finite order of growth, then the function
g in the exponential is a polynomial.

Theorem 180 (Hadamard) Let f : C — C be an entire function which has
growth order a and infinitely many zeros z,. Then

£(2) = e T [ Ea(z/z0).

where p is a polynomial of degree less than or equal to |a], £ € Ny is the order
of the zero of f at z = 0.
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15 Prime Number Theorem
Throughout this section p denotes a prime number.

Theorem 181 (Prime Number Theorem) Given x € R, let w(x) be the
number of prime numbers which are less than or equal to x. Then

m(z) ~ og s as x — oo.
Consider the
— 1
= — C, R 1. 81
((2) WE:an, z€C, Rez > (81)

This function is called the Riemann zeta function.

Lemma 182 The function ¢ converges absolutely and uniformly on compact
sets of U :={z € C: Rez > 1}. Moreover,

p prime
In particular, { has no zeros in U.

Proof. We have

|7’LZ| — |ezlogn‘ _ t,:,(Rez)logn _ nRez

and so if Rez > 1 + ¢, with £ > 0, then

1 o}

> 1
YD) pi EE
n=1 n=1

which implies that there is uniform and absolute convergence in the set {z €
C: Rez > 1+¢}. In particular, there is absolute convergence in U. Hence, we
can rearrange terms in the series. ®
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Proof. Let {p,}, be the ordered sequence of prime numbers. For each
¢ € N let Sy be the set of all natural numbers which are not divisible by pq, ...,

pe. We claim that
¢ 1 1
I (1-2) =3 & (52)
=1

For £ =1 we have p; = 2 and so

since we removed all the even natural numbers. Hence, the base case £ = 1 is
true. Next assume that the claim holds for ¢ and let’s prove it for £+ 1. By the
induction hypothesis,

Multiply both sides by 1 — pzl to get
41

l+1 1 1 %) 1
1-—)=(1- —
6(2)11;[1 ( pf) ( pfﬂ) n%;e n*

which proves the claim.
Letting { — oo in gives

ad 1 1
£(2) llzll (1 pf) im | e 1,

where we used the fact that Sey1 C Se and (N,2, Se = {1}.
The last part of the statement follows from Theorem and the fact that
ﬁ;«éOforallzeU. ]

Exercise 183 Let z € C with Rez > 1. Prove that
>*1 1 * 1 1
[lae b [ra-lot
1 tF z—1 n A1 n*  xF

Lemma 184 The function z — ((z) — =25 can be extended as an holomorphic

function to the half-plane {z € C: Rez > 0}.

for every n € N.
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Proof. By the previous exercise

1 =1 <1 = Mmoo
-2 Fe=-2/ <nzw>dt

n=1 n=1
e n+1 z
=2 St dsdt.
n=1vm n S

Note that

n+1

- ‘ dsdt

x n+1 n+1
z z
por dsdt’ < / /
S n n S

1
< = .
— |Z| SGE“}%L)EFH ‘S‘Reerl |Z|nRez+1

Hence, the series >, fsﬂ [¥ &+ dsdt is absolutely convergent for every z €
C with Rez > 0. m
In view of the previous lemma, the Riemann zeta function can be extended
as a meromorphic function to {z € C: Rez > 0} with a simple pole in z =1
and no other poles. Next we study the zeros of (. The Riemann hypothesis is
1

the conjecture that all zeros of ¢ lie on the line Rez = 3.

The following lemma shows that there are no zeros for Rez > 1.
Lemma 185 The Riemann zeta ¢ has no zeros in {z € C: Rez = 1}.

Proof. Step 1: Let U := {z € C: Rez > 1}. Since ¢ has no zeros in U,
using Lemma and Theorem

!
0w by B8 g

z z

p prime 1—p~ p prime 1—p~ p prime

where we used the fact that p* = ¢*1°8? and so (p*)’ = e*!°¢Plogp = p* logp.
Using the geometric series we have that

oo

_ —kz

-z Zp :
k=0

Hence,

(o]
zz - Zp D% logp=— > > p " logp.

p prime k=0 p prime n=1

Step 2: Assume that ¢(1 +4y) = 0 and consider the function

9(2) = (C(2))° (C(= + i) *¢ (= + 2iy).
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Note that ¢ has a simple pole at z = 1, so (((z))® ~ o7 while Gi(z) =
¢(z +iy) has a zero of order n € N at z = 1 so ({(z +iy))* ~ ci1(z — 1)*, and

C2(2) := {(z + 2iy) may have a zero of order m € Ny at z = 1, so {(z + 2iy) ~
co(z — 1)™. It follows that

9(z) ~ EEE (z = 1) (z — 1)™ = ¢(z — 1)4ntm=3

as z — 1. Thus g has a zero at z =1 of order 4n +m — 3 > 1. Hence,
9(2) = (z = D" h(2),
where h is holomorphic near z = 1 and h(1) # 0. In turn, by ,

g'(2) _ (4n+m—3)(z - 1irmd L)

9(2) (z — 1)tntm=3 h(z)
_dn+m -3 h(2)
o z—1 h(z)
and so (2)
i T2 tm— .
anll(z—l)g(z) =4dn+ 3>0 (84)

On the other hand, for z € C with Rez > 1, by and the previous step,

7)) | (Gt tiy) | e+ 2iy)
o 0 Y Gt T i)
((z) (z+iy) (24 2iy)

o) T eriy T2

==3 > > p™logp—4 > > pplogp— Y Y pFpilogp

p prime n=1 p prime n=1 p prime n=1

(oo}
=— > ) B+4p ™ 4 p 2 )p " logp.

p prime n=1

=3

Taking z = = > 1 we have that

’ o)
Reg -T) _ Z Z(Re(3+4p—ny1 +p—2nyz))p—nr Ing

p prime n=1

=— Y > (3+4cos(ny) +cos(2ny))p"" logp.

p prime n=1
Since cos(260) = 2cos? § — 1 we have that

34 cos 0+cos(20) = 3+4 cos 0+2 cos? —1 = 2(1+2 cos O+cos? §) = 2(1+cos §)>.
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Hence,

/
lim (z —1)Re g(@)
z—1+ g(z)
which contradicts (84). =
Wednesday, March 25, 2020
The following theorem is of independent interest.

Theorem 186 Let f : [0,00) — C be bounded and locally integrable and let

g(z) := /OOO ft)e #dt, Rez > 0.

Assume that for every z € C with Rez = 0 there exists r, > 0 such that g can
be extended holomorphically to B(z,r,). Then the generalized Riemann integral

/0 Tt at (85)

is well-defined and equals g(0).

Proof. Using Corollary and a compactness argument for every R >
1 we can find § = 6(R) € (0,) and M = M(R) > 0 such that g can be
extended to a holomorphic function g in an open set Ugr containing the set
Cr = B(O,R)N{z € C: Rez > —0} and |g(2)] < M for every z € Cg.
Consider the counterclockwise contour 7 given by the intersection of 0B(0, R)
and the segment Rez = =4, |z| < R. Also denote by 74 and ~_ the parts of
in the right half-plane Re z > 0 and in the left half-plane Re z < 0, respectively.

Let I'y and I'_ be their ranges. Let 7' > 0 and consider the function

1 z

hr(z) == g(z)e*T (z + R2> , ze€Ugr\{0}

If g(0) # 0, the function hp has only one pole at 0 with residue resy hy = g(0),

while if g(0) = 0, then hr is holomorphic in Ug. It follows by the residue’s
formula

1
27ig(0) = 2mwiresy hy = / hrdz = /g(z)eZT ( + Z2> dz (86)
~ ~ z R

1 z 1 z
o zT zT
_[H g(z)e <z+2) dz—i—[Y g(z)e <z+R2> dz.
If z belongs to the range of v, then by (85)), we can write

T [e%e]
g(z) = / ft)e dt + / ft)e t*dt =: Sp(2) + Ry (2). (87)
0 T
Consider the function

qr(2) == Sp(2)e*T <i + ;) , z€B(0,R+1)\{0}.
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Again by the residue’s formula

27iS7(0) = 2miresy gr = / grdz = / Sp(z)e*T < + 2) dz
8B(0,R) 8B(0,R) R

1 1
= Sr(z)e*T ( ) dz+/ Sr(z)e*T ( ) dz
o Rr? 8B(0,R)\T'+ R?
(88)

1
/S’ ( )dz—i—/ Sr(— _“’T< +R2)dw
where we have made the change of variable z = —w. Subtracting from

(86), and using gives
2i(g(0) - Sr(0)) —/ Ro(2)e”T <i +;2> o

[ sreod (L) e -

+L g9(z ( +R2> dz=:1+II+1III.

We now estimate I, I1, and II. Let z = x + iy with x > 0. Since f is bounded,
say, | f(t)] < L for all t € [0, 00), we have

s} [e’s) t—o0 —Tx
|m@»s/|ﬂMk”Wgc/'emw[leﬂ e
T T z

t=T

On the other hand, for z € 9B(0, R), we have that

z
z z Rez T
TRTRT R TR

In turn, for z € 'y,

1 z e Tz T 1
2T xT _
O e e L
Hence,
1 T
|I] < ﬁﬂ'R =& (91)
Similarly,
T T t=T Tz Tz
1 -1
N AL e e
0 0 X t=0 X s
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In turn, for z € 'y,

1 1 z elz 1 g 1
A F| Lt RS T e T B
It follows that R
<=2 (92)

E.
It remains to estimate I11. Along the segment Y given by Rez = =4, |2| < R
we have z = —§ + iy and so

LY P R R
B SHTreSs e

Since |g(z)] < M for all z € Cr, In turn,

lg(z)e”™| |- +ﬁ < Me™07 <(15+]1%>
and so
/g(z)eZT <1+Z> dz| < Me™°T (1+1) /R 1dy (93)
5 z R? 0 R)J_p
= Me™ T (2R—|—2>.
]
|

Friday, March 27, 2020
Proof. On the other hand, on v_ \ ¥, we have x = Rez < 0 and |2| =

Using we have

1 M zT |£L’|

|g(2 zT| RZ

R2

Since —§ < x < 0 we can parametrize these two arcs by ¢(z) = z++iv R? — 22,
Then
2 R R
, T
¢ (2)] R R Ry A

since RZ > 1 > i > §2. Hence,
/ MewT |

/ g(z)e*" <1 >
7-\E
M M 1
- R2/ e Ttdt = s [—We_Tt (Tt + 1)}
0

<M<1_1 T5(T6+1)>

—_

t=0

t=0

=r\12  12°
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Together with (93]) this shows that
2R M
< N (i [
|[I1I| < MT ( 5 +2> + 272

Combining this inequality with and , it follows from that

: T 7 m _sT [ 2R M
s <4+ 24 Z T (24 M
|27i(g(0) ST(O))|_R—|—T—|—R+M6 ( 5 +2)+ —

We now choose R = 1. This determines § = d(¢) and M = M (g). Since
: K _or (2R M
Tlﬂo[T—kMe (5 +2>+R2T2 =0,
taking 7" sufficiently large, we have that
127i(g(0) — S7(0))| < 27e + ¢,

which proves that S7(0) — ¢g(0) as T — co. ®

Define
0(x) == Z logp, ze€R.

p prime<z

Theorem 187 The generalized Riemann integral
(oo}
0(z) —
/ bla) ~z 4,
1 X

lim —— = 1. (94)

r—oo I

converges. In turn,

Proof. Step 1: We claim that there exists a constant C' > 0 such that
0(z)| < Cx

for all x > 0 sufficiently large. For n € N, by the binomial theorem

o= () e () () =i

n—1
ZHMZ H p = explog H D :explogM

!
k=0 TL. n<p<2n n<p<2n HPS"
= exp Z logp — Z logp | = ef(2r)—0(n)
p<2n p<n
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where in the last inequality we used the fact that (2:) is an integer (this can be
proved by induction). Taking logarithms on both sides gives

2nlog2 > 0(2n) — O(n).

Hence for m € N,

0(2™) =) (6(2") —0(2"1)) <log2» 2" = (2" —2)log2 < 2" log 2.

n=1 n=1
Given x > 1 find m € N such that 2! < z < 2™. Since 6 is increasing,
O(z) < 0(2™) < 2™ 1og2 < z4log?2,

which proves the claim.
Step 2: Observe that in view of the previous step, for Re z > —1 the integral
Jo° e ETDt0(et) dt is well-defined. Indeed,

|67(z+1)t‘ _ eft(Rez+1).

Let p, be the n-th prime number. If p, < ! < p,.1, then
o)=Y logp=0(pn),
p prime<e?

or equivalently, 6(e*) = 6(p,,) for all logp, < t < logp,+1. Also (e’) = 0 for
0 <t <log2=1logp,. Hence, for Rez > —1,

oo > log pn+1 s log pn+1
/ e_(z"’l)tﬁ(et) dt = Z/ _(Z+1)t9 Z (pn / e~ (=Dt gy
0 n—=1"1ogpn n=1 i

0g Pn

e (z+1)t:|t log prt1

=N " 0(p,) |-
Z |: z+1 t=log pn

1 1
- 8(pn)p D) — O(pp_1)pCHD
z—l—lz Pn) z+1Z Pi-1)

o0

1
=— 27 og2 4+ —— N (0(pn) — 0(pn_1))p; Y
Z+1 082+ n§:2( (pn) = 0(Pn—1))ps,
1 _2(2+1)
= 9=t e+ —— (z+1) e
z+1 82+ z+1 an oep z+1

where in the second to last equality we used the fact that 8(p,,)—0(p,—1) = log p,,
and we set k =n + 1 and where

1
d(z) := Z Ogip, z€C,Rez > 1.

p prime

95
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4

)

p*(zﬂ)
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Proof. Step 3: We prove that the function z — ®(z) !

— -7 can be
extended as a meromorphic function to the half-plane {z € C: Rez > 1/2} and

is holomorphic for all z € C with Rez > 1. Using the identity

1 1 1
p*—1 p* p*(p*—1)

by we can write

¢'(») ) logp 3 logp log p
= . = st Z el — 1)
C(Z) p prime p* = 1 p prime p prime p (p 1)
logp
=®(x)+ Y
pprimep (p N 1)

Note that for Re z > %, and p > 4,

1
|pz_1|2|pz|_12pRez_1>7 Re z

=z 2p
and so
log p < 2logp
pz(pz _ 1) — pQRez )
Since the series -
Z logn
2R
—_ n ez
converges, the series > . pz}‘;%f 7y is absolutely convergent for Rez > 1
Moreover, by Lemma CC/((ZZ)) is a meromorphic function for Re z > 0. Hence,

@(Z) = —CI(Z) — Z loi

p*(p* — 1)

p prime

can be extended as a meromorphic function to Rez > % with poles at z = 1
and at the zeros of (.

Step 4: Consider the continuous bounded function

f(t) =et0(e") — 1.
By Step 2 for Rez > 0, we have that

- > o d(z+1) 1
/ F(t)e = dt = / e~ 1Y) dt — / o7 gt — Q(z+1)
0 0 0

z+1 z

It follows from Step 3 that % —i can be extended to a meromorphic function

g for Rez > —%, which is holomorphic for Re z > 0. Hence, we are in a position
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to apply Theorem [186| to conclude that the integral fooo f(t)dt is well-defined
and

/O (e 9(6)—1)dt:/0 F(#)dt = 9(0).

By considering the change of variables = = ef, that is logz = t, so that %dm =dt

we have that
/ mdm - / (e*0(e") — 1) dt = g(0),
1 0

x2

which proves the first part of the statement.
Step 5: We prove . Assume by contradiction that
0
lim sup @ > 1.
T— 00 T

There there exists an increasing sequence x, — oo such that 0(x,) > (14 ¢)z,
for all n € N and for some 0 < ¢ < 1. Since 6 is increasing, if x > x,,
0(z) > 0(xyn) > (1 +&)xp, and so

/““m 0@ —z, /“*E”‘” Atz -z,

2 z2

‘n

_ / e -5,
1

52

Tn

where we made the change of variables x = x,s so dz = x,ds.
On the other hand, since

T —
im [ T gem
T—o0 1 X
there exists T, > 0 such that

/Sﬁ(m)—xdx

T 2

(14¢) 1 _
< / Ate)—s,
1

52

for all ST > T.. Hence, by taking n so large that =, > 7. we obtain a
contradiction.
Similarly, if
lim inf @ <1,
T—00 x
There there exists an increasing sequence y,, — oo such that 0(y,) < (1 —€)y,
for all n € N and for some 0 < ¢ < 1. Since @ is increasing, if y, > =,

0(x) < 0(yn) < (1 —¢)yn, and so
Yn _ Yn o _
/ de S/ wdx
( (

2 2
1—€)yn x 1—€)yn T

1 J— —
:/ A=) =s, _p
1

52

—&
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where we made the change of variables © = y,s. On the other hand, there exists

S: > 0 such that
s 1
0(x) — 1—¢)—
/ )~z ) < / d=e) =5,
T T 1—e S

for all S,T > S.. Hence, by taking n so large that (1 — &)y, > S. we obtain a
contradiction. This shows that

which would complete the proof. m
We turn to the proof of the prime number theorem.
Proof of Theorem For every ¢ € (0,1) and z > 1 we have

O(x) = Z logp < Z logz = w(z)logx

p prime<zx p prime<x
while
O(z)= > logp> > logp
p prime<z zl—e<p prime<z
> Z logz' ¢ = (1—¢) Z log
zl—¢<p prime<z zl—e<p prime<z
=(1—¢)logz(r(z) — m(x'™9))
> (1 —¢)loga(m(x) —2'™°).
Hence,
ﬂ'(wx) > 0(x) >0 _E)W(f) B Clogsx.
log x z log x x
Letting x — oo gives
0
lim inf ﬂ-(f) > lim B(z) > (1 —¢)limsup W(Tz)
Tr—00 Tog Tr—oo I T—00 gz

It suffices tolet e = 17. m

Wednesday, April 1, 2020
16 Conformal Mappings
Definition 188 Given two open set U,V C C, a bijective holomorphic function

f:U —V is called a conformal map. If such a map exists, the sets U and V
are said to be conformally equivalent.
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We have seen in Corollary that the inverse function of a injective holo-
morphic function is also holomorphic. Hence, the inverse of a conformal mapping
is still a conformal mapping.

Exercise 189 Consider the upper half-plane
H:={2€C:Imz>0}

and let )
i—z
= H.
fl) =717 #€
Prove that f : H— B(0,1) is a conformal map.

Mappings of the form
az+b

cz+d’
where a,b, c,d € C are called fractional linear transformations.

Z —

Example 190 Given n € N, the function f(z) = 2" is a conformal mapping
from the sector S = {z € C: 0 < argz < w/n} to the upper half-plane H.
Its inverse is f~1(w) = w'/™, defined in terms of the principal branch of the
logarithm.

Exercise 191 Let 0 < a < 2. Prove that the sector S ={z€ C: 0 < argz <
ar} and the upper half-plane are conformally equivalent.

The Riemann mapping theorem proves that any simply connected open set
which is not the entire space is conformally equivalent to the open unit ball. To
prove the Riemann mapping theorem we will need the following auxiliary result.

Theorem 192 (Schwarz’s lemma) Let f : B(0,1) — C be a holomorphic
function such that f(0) = 0 and [f(2)| < 1 for all € B(0,1). Then |f(2)] < |2|
for all z € B(0,1) and |f'(0)| < 1. Moreover, if |f(z0)| = |z0| for some zy €
B(0,1) or |f'(0)| = 1, then f(z) = az for all z € B(0,1) and for some a € C
with |a| = 1.

Proof. Since f(0) = 0, we can write
flz) = ianz", z € B(0,1).
n=1
Hence the function
h(z) := i anz""t,  z€ B(0,1)
n=1

is analytic in B(0, 1), since the radius of convergence is the same. In turn,

_ [ 19 e B(0,1),2#£0,
9(z) = { o) =0,
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is holomorphic (since g = h near 0). For every r € (0,1) and every z € 9B(0,r),
lg(2)] < 1/r, and so by the maximum modulus principle |g(z)| < 1/r for all
z € B(0,7). Letting r — 17, it follows that |g(z)] < 1 in B(0,1). Moreover, if
lg(z0)| = 1 for some zy € B(0,1), then g must be constant, which shows that
f(z) = az for all z € B(0,1) and for some a € C with [a| =1. =

Exercise 193 Let z,a € C be such that 1 — @z # 0.

(i) Prove that

<1
1—-az
if |2l <1 and |a| < 1 and that
a—z|_y
1-az

if |2l =1 orla] < 1.

(ii) Given o € B(0,1), the function v, : B(0,1) — B(0,1) given by

Prove that v, is a bijection.
We turn to the proof of the Riemann mapping theorem.

Theorem 194 (Riemann mapping) Let U C C be an open simply connected
set. Then U is comformally equivalent to a sphere.

Proof. Step 1: Since U is strictly contained in C there exists « € C\ U.
Hence the function z — 2z — « never vanishes on the simply connected set U and
so by Exercise we may define the holomorphic function f(z) := logy (2 — ).
Since e/ (*) = z — &, we have that f is injective. Fix zo € U. We claim that

f(2) # f(z0) + 2w forall z € U. (95)

Indeed, if f(z) = f(20) + 2mi then by taking the exponential on both sides we

get
z—a=el(?) = )42 — of(20) 2mi — (51 _ o)1,

which implies that z = zp and in turn that f(z) = f(20). This contradicts the
fact that f(2) = f(z0) + 27i. Hence, the claim holds.

We claim that there exists r > 0 small such that B(f(zo)+2mi,7)Nf(U) = 0.
Indeed, if not then taking r = X we could find 2, € U such that f(z,) —

n

f(z0) + 2mi. Again by exponentiation

2y — = efn) — F(20)+2mi — o f(20) 2mi (20 — a)l,
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which implies that z, — 2z, and in turn that f(z9) = f(z20) + 2mi, which
contradicts . It follows that the function

1
F(z):= —, ze€eU
& e (G0 2
is holomorphic. Moreover, since |f(z) — (f(z0) + 27i)| > r > 0 for all z € U, we
have that F' is bounded. By a translation and a rescaling we can assume that

F:U — B(0,1)

and that 0 € F(U). By the open mapping theorem the set F'(U) is open. Since
F:U — F(U) is a homeomorphism and U is simply connected, it follows that
F(U) is also simply connected.

Since U and F(U) are conformally equivalent, it suffices to prove that F'(U)
and B(0,1) are conformally equivalent. m

Friday, April 4, 2020

Proof. Step 2: In view of Step 1, by replacing U with F(U), without loss

of generality we may assume that U C B(0,1) and that 0 € U. Let

G :={g: U — B(0,1) holomorphic, injective, g(0) = 0}.

The family G is nonempty since the identity belongs to G. Since, |g(z)| < 1 for
allzeUaundOEU,by7

Ok [ WOl 2
< — S e < 220
Ol 5 [ s o

for all g € G and for r > 0 such that B(0,r) C U. Let

s :=sup{lg’'(0)] : g € G}.

Consider a sequence {gy}, in G such that |g/,(0)] — s. Since the family G
is equibounded, by Montel’s theorem there exists a subsequence {gy, }x which
converges uniformly on compact sets to a holomorphic function g : U — C.
By uniform convergence, g(0) = 0 and ¢ : U — B(0,1). By Theorem
lg,,(0)] — |¢’(0)] = s. Since s > 1 (since the identity has derivative with
modulus one), the function g cannot be constant and thus by Theorem it
must be injective. Since g(U) is open, it follows that g : U — B(0,1). It follows
that g belongs to G.

Step 3: It remains to show that g is onto. Assume by contradiction that
there is a € B(0,1)\ g(U). Consider the diffeomorphism 1), : B(0,1) — B(0,1)
given by

a—z

Ya(z) =

Cl-az
Note that v, interchanges 0 with «, since ¥,(a) = 0 and 9,(0) = a. The
set V := (o 0 g)(U) C B(0,1) is open and simply connected and 0 does not
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belong to V since a € B(0,1) \ g(U) and 9 () = 0. Hence, by Exercise [10]]
the function hy : V' — C given by

hi(w) := ezlosvw — Vw
is holomorphic and injective and hy : V — B(0,1). It follows that the function

91 = Vpi(a)oh109Yaog
is injective, holomorphic, and
91(0) = ¥, (o) (1 (¥a(9(0)))) = Vny(a) (h1(¥a(0)))
= Yy (o) (1 (a)) = 0.
Hence, g1 € G.
Next consider the function hs(w) := w? and ¢ := ;1 o hy o 1/);11(&). Then
pogri=1," ohyo l/fﬁll(a) oY (ayoh1oYaog
= ohgohioaog =1 oaog=g
and
9'(0) = (¢ 0g1)'(0) = ¢'(0)g1(0)
and so
s =1g'(0)] = [¢'(0)]g1(0)].

The function ¢ : B(0,1) — C satisfies all the hypotheses of Schwarz’s lemma,
but it is not injective since hg is not injective. Hence |¢'(0)| < 1, which implies
that |g7(0)| > s and contradicts the maximality of s. Hence, g is onto and the
proof is complete. m

Remark 195 In view of Exercise[I04 the Riemann mapping theorem continues
to hold is instead of assuming U simply connected, we assume that

/f@:O
,

for every holomorphic function f : U — C and for every closed oriented Lip-
schitz continuous curve with range contained in U.

An important consequence of the Riemann mapping theorem is the following
characterization of simply connected open sets.

Theorem 196 Let U C C be an open connected set. Then the following are
equivalent:

(i) U is homeomorphic to an open ball,

(i) U is simply connected,
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(iii) fyfdz = 0 for every holomorphic function f : U — C and for every
rectifiable closed oriented curve v with range contained in U.

Proof. Assume that U is homeomorphic to an open ball, say B(0,1). Then
there exists an invertible function ¥ : U — B(0,1), which is continuous to-
gether with its inverse and consider a continuous closed curve, with parametric
representation ¢ : [a,b] — C such that ¢ ([a,b]) € U. Define the function
h:la,b] x [0,1] — C by

h(t,s) = 0 (5 (o (1)),
Then h ([a,b] x [0,1]) C U,

h(t,0) =W (0) forallt € [a,b], h(t,1)=¢(t) foralltc [a,b],
h(a,s) =T (s¥(p(a)) =Vt (sU(p(b)) =h(bs) forall sc0,1].

Hence, U is simply connected. Hence (ii) holds.

Conversely, assume that U is simply connected. Then by the Riemann map-
ping theorem U is homeomorphic to a ball. This shows that (i) and (ii) are
equivalent.

To show that (ii) and (iii) are equivalent, note that if U is simply connected,
then (iii) holds in view of Theorem [08] Conversely, if (iii) holds then by Remark
U is homeomorphic to a ball and so it is simply connected by the equivalence
between (i) and (ii). m

Next we study the behavior of conformal mappings at the boundary.

Definition 197 A set E C C is locally connected if for every e > 0 there exists
0 > 0 such that for all zyw € E with 0 < |z —w| < ¢ there exists a compact
connected set F' C E such that z,w € F' and diam F' < ¢.

The range of a continuous curve is locally connected.
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Exercise 198 Let FEq, ..., E, be locally connected. Prove that their union is
locally connected.

Exercise 199 Let
R
E= Yy <lL,0<y<1 - —+1].
fatiy: v<i\ U [0+

Prove that OF is not locally connected.

Theorem 200 Let U C C be an open bounded simply connected set and and let
f map conformally B(0,1) onto U. Then the following conditions are equivalent

(i) f can be extended continuously to B(0,1),
(i) OU is the range of an oriented closed curve,
(iii) OU is locally connected,

(iv) C\ U is locally connected.

In general the extension of f to dB(0, 1) will not be injective.

Example 201 An ezample of a simply connected domain whose boundary is not
the range of an oriented simple closed curve is U = B(0,1)\{z: 0 <z < 1}.

Indeed, we have the following result:

Theorem 202 (Carathéodory) Let U C C be an open bounded simply con-
nected set and let f map conformally B(0,1) onto U. Then f has a continuous
and injective extension to B(0,1) if and only if OU is the range of an oriented
simple closed curve.

17 Runge’s Theorem

Next we proof another important theorem. There is a more general statement
but we will prove first a simpler version.

Theorem 203 (Runge) Let U C C be an open set, let K C U be a compact
set with C\ K connected, and let f : U — C be a holomorphic function. Then

there exists a sequence of polynomials p, : C — C such that p, — f uniformly
in K.

Exercise 204 Let K C C be a compact set.

(i) Let B be an open ball such that K C B and let z; € C\ B. Let f(z) :=
zle. Prove that there exists a sequence of polynomials which converges
to f uniformly in K.
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(i1) Assume that C\ K is connected and let zo € C\ K. Let g(z) := ZEZO.
Prove that there exists a sequence of polynomials which converges to g

uniformly in K.

Lemma 205 Let U C C be an open set and let f : U — C be a holomorphic
function. Then there exist finitely many oriented segments ~v1, ..., Yn with
range in U \ K such that

n

f(z):Zeri/%g(f)ng

k=1

forall z € K.

Proof. Let d := dist(K, 0U) and partition C into squares of side-length less
than %d. Let Q1,...,Q¢ be the closed cubes which intersects K with 0Qy
oriented counterclockwise. Since K N Qy # ) and @Q has diameter less than d,
each @y is contained in U. Let 71, ..., 7, be the oriented sides of these cubes
which do not belong to two adjacent squares. Then each 4 does not intersect
K since otherwise 7, would belong to two adjacent cubes intersecting K. Let
z € K and assume that z is not on the boundary of one of the cubes. Then
there exists a unique j such that z € @Q;. It follows by Cauchy’s theorem and

Theorem [0F] that . 10
1= 5 [, For G
On the other hand for all k # 7,

1 f(Q)
211 aQ; C— z

¢ = 0.

Hence, if we sum these equalities we get

n

227”/8@ C—chzn:;m/kg

k=1 k=1

where in the second equality we used the fact that integrals over the sides of
adjacent cubes cancel out. This proves the result for all z € K not on the
boundary of a cube Q. Now if z € K and z belongs to the boundary of a cube,
then z does not belong to any of the segments ~; and so by continuity we have

that the formula
1 f(©)
?) = kzzl o a6

holds for all z € K. m

Lemma 206 Let «y be a Lipschitz continuous oriented curve in C parametrized
by ¢ : [a,b] — C, let f: ¢([a,b]) — C be a continuous function, and let K C C
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be a compact set with K N ¢([a,b]) = 0. Then for every e > 0 there exists a
rational function R : C\Jj_{z;} — C, where z; € ¢([a,b]) such that

f(©)
Lg_z%—Jﬂd

Proof. The function

<e forallzeK.

gty = L) e b x K

p(t) — 2’
is uniformly continuous, therefore we can find a partition a = tg < t; < --- <
t, = b such that
t t;
Fle®)  flelt;)) < for all (¢,2) € [tj_1,t;] x K,
p(t) =z plty) =2z~ M(b—a)

where ||¢’ |0 < M. Define

=1 p(tj) — =
Then
Q) . [P fle®) — flety) [Y
- (Y fe®) )
=t (@(t) —2 olty) ) v (e) dt
and so

L@dC—R(z)' gfj/tj

j=1"7%ti—1

This concludes the proof. m
Wednesday, April 8, 2020

Lemma 207 Let G C C be a set and let F(G) be the family of functions f :
G — C for which there exists a sequence of polynomials p, such that p, — f
uniformly in G as n — oco. If fr, € F(G) and fr — f uniformly in G, then
feFG).

Proof. The proof uses a diagonal argument. Since f, € F(G) there exists

a sequence of polynomials p,, ; such that p, ; — f uniformly in G as n — oc.
Hence we can find ng > k such that

T =

sup |pnk(2) — fr(k)| <
zeK
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for all n > ny. Define
Qe (2) = Py k(2).
Then

1) = @) = 113) = a2 < ) = S|+ 1ul) = P s(2)
< 1f()— () + 1.

Taking the supremum over all z € G, we have that the right-hand side converges
uniformly to zero in G as k — co. m

Lemma 208 Let K C C be a compact set such that C\ K is connected. Given
z0 € C\ K, let g,,(2) := ZEZO. Then there exists a sequence of polynomials

which converges to g,, uniformly in K.

Proof. Let F(K) be the space of all functions f : K — C such that there
exists a sequence of polynomials p,, : C — C such that p,, — f uniformly in K.
Note that if f,g € F(K), then fg and f + g € F(K). Moreover, if f, € F(K)
and fr — f uniformly in K, then by the previous lemma, f € F(K).

Step 1: Let R > 0 be so large that K C B(0,R), let z; € C\ B(0,R),
and let g.,(2) := —=—. We claim that g,, € F(K). Find 0 < 7 < R such that

z—2z1 "

K c B(0,r). For z € K, write
11
2—2z zll—i'
Then
z r
— | < ==:0<1
ZliR

and so we can use geometric power series to write

1111%(12>’c
z— 2 nl- = St 21 )

Since this geometric series converges uniformly in K (since the number ¢ is inde-

4

k
pendent of z), we have that and the polynomials —% Ei:o (1 — Z) converge
uniformly to g,, in K.
Step 2: Let w; € C\ K and assume that g, € F(K). Let 0 < ¢ <
1 dist(w, K). We claim that for every wy € C with |wy —ws| < § we have that

Juw, € F(K) in K. To see this we proceed as in the previous step to write for
ze K,

(2) 1 1 1 1
z) = = = .
Guw z—wy z—w; — (w —wsy) z—wll—%ﬂ?

Then |z — wy| > 46 and so

1

w1 — Wa
— =-<1
4

)
< =
46

Z — W1
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and so we can use geometric power series to write

1 1 1 & fwp—wp\*
_ _ Z 11— W
Gua(2) = z—wpl— W2 5 gy (zuq) ’

zZ—w1 k=0

where this geometric series converges uniformly in K. Hence, the sequence of

functions
¢ k
<w1 - wg)
Z z—w
k=0 1

converges uniformly in K as ¢ — oo. Since g, € F(K) we have that g, €
F(K). In turn, (w; — wg)kgff,l € F(K) and so

14
> (w —wn)* gl € F(K).
k=0

k
Hence, Y2, (“;1_;15‘12) € F(K) since the series converges uniformly in K. It

follows that gy, € F(K), since it is the product of g,,, and this series.

Step 3: Let R > 0 be so large that K C B(0,R). Let z; € C\ B(0, R).
Given zg € C\ K, since C\ K is connected, we can find a polygonal path ~ that
joins zg and z; with range I'in C\ K. Let 0 < § < 1 dist(T', K). Without loss of
generality we can assume that the endpoints of the segments of v have distance
less than §. Hence, we can apply Step 2 starting from z; until we reach zp. =

We turn to the proof of the theorem.

Proof of Runge’s theorem. By Lemma there exist finitely many

oriented segments 71, ..., v, with range in U \ K such that
n
_ 1 f(©)
I& =2 55 | =3%
k=1 Tk

for all z € K. By Lemma[205] for each £ > 0 there exists a rational function Ry,
such that
1 f(©)

——>=d( — Ri(2)

213 ), C—2

<e/n forall z € K.

Hence,

<eg forall z € K.

‘f(z) =Y Ru(2)
k=1

Now each Ry is a sum of rational functions whose denominator has the form
2_120 for some zg € U \ K. We now apply Lemma |

iday, April 10, 2020

We now present a more general version. Let S? := 9B((0,0,0),1) be the

unit sphere in R3. We can view the complex plane as the plane the plane

{(z,y,0) : x,y € R} inside R3. Let N = (0,0,1) € S? be the north pole. Given
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a point z = x + iy there is a unique line passing through N and (z,y,0) which
intersects S? at a point S(z) € S? \ {N}. The map S gives a bijection between
C and $? \ {N}. Indeed, given (X,Y,Z) € S?\ {N} consider

X Y

y=-—"

iy 1-Z

Conversely, given z = z 4 iy € C we have that

S@)::< 2z 2y x2+y2—1)
2+ 4+ 12+ y2+ 1722 +y2+1
1
14|22

(2Rez,2Im z, |z|? — 1).

If we set S(0o0) := N we have a bijection between Co, and S%. Note that
S(z) — N in R3 if and only if |z| — oo in C.

Hence, we can regard C as a subset of R?. In turn, the metric in R3 induces
a metric on C,,. We leave as an exercise to show that this metric is given by

= 2|z — w| d(z,00) = 2
VIF RV F w? ’ V1422

for z,w € C and that this metric induces the same topology in C. Note that
since S? is compact, 50 is Cqo.

d(z,w)

Theorem 209 (Runge) Let U C C be an open set, let K C U be a compact
set, let E C Coo \U be such that E contains at least one point in each component
of Cw \ K, andlet f:U — C be a holomorphic function. Then there exists a
sequence of rational functions r, : C\ E — C with poles in E such that r, — f
uniformly in K.

We will need two more lemmas.

Lemma 210 Let V,W C C be two open sets with V C W and OV NW = (. If
H is any component of W and HNV # 0, then H C V.

Proof. Let H be as in the statement and let z5 € H N V. Then there exists
a connected component G of V' such that zg € G. To conclude the proof, it is
enough to show that H = G.

We have that G C H, since G is a connected subset of V' (and so of W)
containing zp and H is the union of all connected subsets of W containing zj.
Write

H=GUH\G) =GU((HNIG)U(H\QG)).

But HNOG C WNOG C WNOV = (. Hence, the connected set Hjs the union
of two disjoint open sets. Since G is nonempty, it follows that H \ G = (}, which
shows that H = G. =
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Lemma 211 Let K C C be a compact set, let zyp € C\ K, let g(z) := ﬁ, and
let E C Cy \ K be such that E contains at least one point in each component
of Coo \ K. Then there exists a sequence of rational functions R, : C\ E — C

with poles in E such that R,, — g uniformly in K.

Proof. Step 1: Let B(FE) be the space of all functions f : K — C such
that there exists a sequence of rational functions R,, : C\ E — C with poles in
E such that R,, — f uniformly in K. Note that if f,g € B(FE), then fg and
f+ g € B(E). Moreover, if fi € B(E) and f; — f uniformly in K, then by
Lemma m (which continues to hold if we replace polynomials with rational
functions), f € B(E).

Step 2: Assume that E C C\ K . Let W := C\ K and let V be the set of all
w € W such that g,, € B(E), where g,,(z) = 1, z € K. We claim that V is an
open set. To see this, let wy € V and w € B(wg, r), where r := dist(wg, K) > 0.
For z € K, write

1 1 1 1

_ _ _ _ _ _ w—wg ’
z—w z—wo— (w—wy) z—wpl —

Then |z — wp| > r and so

w—wo| _ |w —wo|

=d<1
r

Z — Wo
and so we can use geometric power series to write

1 > fw—wp\"
o — wo
1_11)—u10_§:<z_w0>

Z—wo k=0

Since this geometric series converges uniformly in K (since the number 0 is

k
independent of z), and Zi:o (“"“’3) belongs to B(E), because is it given by

products and sums of functions in B(E), by Step 1, 17%0 € B(E), and so
w0
also g,y € B(FE). This shows that B(wg,r) C V. Thus, V is open.
Next we claim that OV N W = (. Let w € 0V and find w,, € V such that
wy, — w. By what we just proved, if |w, —w| < dist(wn, K), then w € V. Since
w ¢ V, it must be that

|wy, —w| > dist(w,, K) > dist(w, K) — |w, — w].

Letting n — oo gives dist(w, K) = 0, which implies that w € K, since K is
compact. Recalling that W := C\ K, it follows that w ¢ W.

This proves that all the hypotheses of the previous lemma are satisfied. Let
H be any component of W = C\ K. By hypothesis there exists w € EN H.
Moreover g, is a rational function itself with pole in E. Hence, w belongs to
V. By the previous lemma, it follows that H C V. This shows that V = C\ K,
that is, that for every w € C\ K there exists a sequence of rational functions
R, : C\ E — C with poles in E such that R,, — ¢,, uniformly in K. =
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Proof. Step 3: Assume that co € E C Cy, \ K. Since K is bounded, there
exists a unique unbounded connected component H of C\ K. If wg € H and
|wo| is very large, then the Taylor series of g, converges uniformly in K (see
Lemma [208). Thus, wy € B(S).
By applying Step 2 to (EU{wo})\ {00}, we conclude that for every w € C\ K
there exists a sequence of rational functions R, : C\ ((EU{wp}) \ {oc}) — C
with poles in (F U {wo}) \ {o0} such that R, — g, uniformly in K. Write

R, = Qn+5na

where the poles of Q,, are in E \ {oo} and S, is either zero or has only a pole
in wg. Since S, can be approximated uniformly in K by polynomials, by a
diagonal argument, we can find a sequence of rational functions with poles in
E\ {oo} converging uniformly to g, in K. This concludes the proof. m

We turn to the proof of Runge’s theorem.

Proof. We proceed as in the proof of Theorem with the only difference
that in place of Lemma [208| we apply the previous lemma. =

17.1 Mittag-Leffler Theorem

This is the analog of Weierstrass representation theorem for meromorphic func-
tions. In the statement we will use the fact that if U C C is an open set and
E C U is a set with no accumulation points in U, then F is countable.

Theorem 212 Let U C C be an open set, let E = {w, : n € I} C U be a set
with no accumulation points in U, where I C N and let

An 1 Qnp, 0,
S (2) = e Tk
n(2) z—wnjL +(z—wn)ék

Then there exists a meromorphic function f: U\ E — C whose only poles are
at E and whose principal part at w, is S, .

Proof. Step 1: Let Ky := 0 and

K; :=B(0,j)N{z e C: dist(z,C\U) > 1/4}.

Then K; C K3, and U;‘;l K;=U.
Note that

Coc\K; = (Co\ B(0, ) U(B(0, )\U) Uz € UNB0,5) : dist(,C\U) < 1/5}.

(96)
We claim that each component of Cy, \ K; contains a component of Co, \ U.
Indeed, since Coo \ U C C \ K, if we consider the component G of Co, \ K
which contains oo, it must contain the component H of C, \ U which contains
oo (since H is connected, co € H and H C C \ K;). On the other hand,

since K; C B(0,7), we have that G contains C \ B(0, j), since the latter is
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a connected set contained in C \ K;. It follows that if D is a component
of Cs \ K; which does not contain oo, then D C B(0,j) and so by , D
contains a point zg € C with dist(zo, C\U) < 1/j. It follows from the definition
of distance that there exists wy € C\U C Cu \ K with |29 —wo| < 1/j. Hence,
29 € B(wo,1/7). But B(wo,1/j) € Cx \ K;. Indeed, let w € B(wg,1/5). If
w € (Cx \ B(0,7)) U (B(0,7) \ U) there is nothing to prove, so assume that
w € U and |w| < j. Since wyg € C\ U,

dist(w,C\ U) < |w —wp| < 1/4,

and so by the definition of K;, w ¢ Kj.

Thus, z9 € B(wo, 1/j) € Co\K;. Since D and B(wo, 1/j) are connected and
contain zg, DU B(wp,1/j) is connected. But D is maximal, so B(wy,1/j) C D.
Let D; be the component of C\ U which contains wg. Then D C D; again
because D C C\ U C C \ K; and wy € D. This proves the claim.

Step 2: Let

Ij = {n el: w,€ Kj \Kj,l}.

The sets I; are disjoint and each I; has only finitely many elements, since £
has no accumulation points in U. Define

Qj = Z Snv

nel;

if I; is nonempty and (); = 0 otherwise. Then @); is a rational functions with
poles in K; \ K;_;. By Runge’s theorem with £ = C\ U, there exists a rational
functions R; with poles in C\ U such that

1Qj(2) — Rj(2)] <1/27 forall z € K;_;.

We claim that the function
f(2) = Q1(2) + > _(Qj(2) — R;(2))
=2

Jj=

is well-defined and has all the desired property of the theorem. To see this let
we beging by showing that f is holomorphic in U \ E. Note that since each wy,
is isolated and don’t accumulate at points of U, U \ E is open. Let K C U\ E
be a compact set. Then there exists m such that K C K,,,. If j > m + 1, then
K C K;_; and so

1Qj(z) — Rj(2)] <1/27 forall z € K.

It follows that the series 207\, (Q;(2) — R;(2)) is uniformly convergent in K.
Since Q1(z) + Z;.n:Z(Qj (2) — Rj(z)) have poles in E or in C\ U, we have that
f is holomorphic in K°. By considering an increasing sequence of compact sets
Ty, with T; C Ty, ; and Uj T, =U \ E, we have that f is holomorphic in U \ E.
]
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Proof. It remains to show that f has poles at each w,, and that its principal

part is @Q,. Since wy, is isolated, there exists r > 0 such that |w,, — w,| > r for
all j # n. For z € UN B(wy,r) \ {w,} we can write

and the function f — S, is holomorphic in U N B(wy,,r) since the poles of R;
are in C\ U for all j and @), has poles in w; ¢ B(wy,r) for all j # n. Thus, S,
is the principal part of f at w,. =

18 Simply Connected Domains

Using Runge’s theorem we can give another characterization of simply connected
sets. Given z € C and a Lipschitz continuous closed oriented curve v with range
not containing z the winding number of v around z is defined as

ind (=) == / = (97)

It is also called the index of z with respect to 7.

Theorem 213 Let v be a rectifiable closed oriented curve in C with range T.
Then

(1) for every z € C\T, ind,(2) is an integer,

(1t) if z,w belong to the same connected component of C\ T, then ind,(z) =
ind, (w),

(i1t) ind,(z) = 0 for all z in the unbounded connected component of C\T.

Proof. (i) Fiz z € C\T'. Assume that v is a polygonal path. Let ¢ : [0,1] —
C be a parametrization of v and consider the function

e,
0= [ o

Then g is absolutely continuous and ¢’'(t) = Wf;)(t_)z for L'-a.e. t € [0,1]. Define

By the chain rule,
W(t) = ¢'(t)e ™9 — (p(t) — 2)e” "My (1)

iyt ey P'(t)
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for £L1-a.e. t € [0,1] and since h is absolutely continuous, it follows that h is
constant,say h = 1. Since (0) = ¢(1) we get

1= e = c(p(0) — 2) = clp(1) — 2) = e

and so
d¢
1= efw sz,
which implies that fv % is a multiple of 2mi. Hence, ind,(2) is an integer.
On the other hand, if v is only rectifiable, by Lemma for every 0 < e < %
there exists a polygonal path . with the same endpoints of v such that

lind, (z) —ind,, (2)] < e.

Since ind,,_(z) is an integer, letting & — 0 we conclude that ind,(z) is also an
integer.

(ii) Since the function ind, : C\T' — Z is continuous and it is integer-valued,
it must be constant in any connected component of C\ T'.

(i) Let C > 0 be such that |p(¢t)| < C for all ¢t € [0,1]. Hence, for
|z| > R > C, we have that

lp(t) — 2 = [2] = |@(t)| > |2] — C >0,
and so

o (1) M M
‘w(t)—z ST -2 " [-C

provided R is sufficiently large. It follows that for |z| > R,

<

ind, ()] <

)

= DN | =

and since ind, takes only integer values, in
from part (ii). m
Another important application of Theorem ?? is the following.

~(2) = 0. The result now follows

Theorem 214 Let U C C be an open set and let 1 and 2 be two continuous,
closed, oriented curves that are homotopic in U. Then

ind"fl (Z) = ind’Yz (Z)

for all z € C\U. In particular, if U is simply connected, then ind, (z) = 0
for every continuous closed oriented curve v with range contained in U and for
every z € C\ U.

Proof. Fix zp € C\ U and let 7; and 72 be as in the statement. Since the
the function f(z) = —— is holomorphic in U, it follows by Theorem that

zZ—Zz0
f% Ciio = f,m Ciio, and so ind,, (29) = ind,, (20). On the other hand, if U is
simply connected, then every continuous closed oriented curve g; is homotopic
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to a point. But for a curve 7, with constant parametric representation we have
that [ =% =0, and so by the first part of the theorem, ind., (29) = 0. m

Y2 C—20
Given n closed continuous oriented curves 71, ..., 7,, the family = :=
{71,.--,7va} is called a cycle. The range of Z is given by the union of the
ranges of v1, ..., v,. Given a point z € C not contained in the range of =, we

define the winding number of = around z to be the integer

n

indz (2) := Zindvk (2).
k=1
Theorem 215 Let U C C be an open set and let K C U be a compact set.
Then there exists a cycle = with range contained in U \ K such that

. |1 ifzeK,
de(Z)_{ 0 if2eC\U.

Proof. Let 0 < § < 1 dist(K,dU) and consider a grid of squares of diameter
less than d. Since K is compact, only finitely many closed squares Q1,...,Qn,
intersect K. If z € Q; for some j, then dist(z, K) < §. Hence, Q; C U. Also if
Q; and @y, have a side S in common, then if we consider the closed curves 9Q);
and 0@}, oriented counterclockwise, then S will be traversed in both directions
and so the integrals of any continuous function over S* and S~ will cancel out.

Let S1, ..., S, be the segments which are the sides of only one the rectangles.
Note that if one of these segments S; intersects K then necessarily there must
be two rectangles which intersect K, which contradicts the definition of S;. It
follows that S, C U \ K.

If z € K, then there exists j € {1,...,m} such that z € R;. If z € R}, then

indpg, (2) ! / d< =1,

2 Jop, C— 2

= omi C(—z ’

: 1 d .
indsr, (%) / ¢ 0, k#j.
OR

Hence, summing these two identities

n

indz (2) = Z indgg, (2) .

k=1

If z belongs to OR;, then either z is a vertex, in which case it belongs to four
rectangles, say R;,, Rj,, Rj;, Rj,. Then, setting R = U?Zl R;,,

‘ 1 ¢ 1 g
Zlndale(Z):Z%/ , " 2mi 6R<_Z:1

since all the integral along common edges cancel out. On the other hand,

, 1 d¢ o
mdaRk(z):%/aR i k ¢ {j1,j2, Js: Ja}-
k
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Hence, as before indz (2) = 1. Finally if z belongs to JR; but it is not a
vertex, in which case it belongs to two rectangles, say R; , I%;, Then, setting

R= Ul2:1 R;,, as before
2

2
Zindale(z):Z%m/ a1 . _ |
=1 2

—~ RhC—z 27w Jap C — 2

Also, On the other hand,

. 1 d o
indon, () = 5= [ E-=0. k¢ (i)
k

This shows that indz (z) = 1.

If z€ C\ U, then z ¢ Ry, for any k and since z belongs to the unbounded
component of C\ ORy, indgr, (2) = 0 for all k, which shows that indz (z) = 0.
This completes the proof. m

Friday, April 17, 2020

Theorem 216 Let U C C be an open connected set. Then the following are
equivalent:

(i) Coo \ U is connected,
(i) U is simply connected,

(#1) ind,(z) = 0 for every continuous closed oriented curve v with range con-
tained in U and for every z € C\ U.

Proof. Step 1: We prove that (i) implies (ii). Assume that Co \ U is
connected. Fix an holomorphic function f : U — C and a rectifiable closed
oriented curve 7 with range T' contained in U. Taking F = {oo} in Runge’s
theorem there exists a sequence of rational functions 7, : C — C with poles
in oo such that r,, — f uniformly in I". But this implies that these rational
functions are polynomials. Since each polynomial has a primitive, by Remark

77,
/rn dz = 0.
.

Letting n — oo and using uniform convergence in I'; it follows that fy fds=0.
Thus (ii) holds. In view of Theorem it follows that U is simply connected.

Step 2: That (ii) implies (iii) follows from Theorem [214]

Step 3: Assume that (iii) holds but that C, \ U is not connected. Since
Cs \ U is closed, its connected components are also closed. Moreover, since
C is compact, so is any closed subset of C,,. Hence, we can find two disjoint
nonempty compact sets C and K (with respect to the metric in Cy,) such that

Coo \U=CUK.
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Moreover, since U C C we have that co € Co \ U, s0 co € C' U K. Assume that
o0 € C. Then oo ¢ K and so K must be bounded, since otherwise we could
find a sequence {z, }, in K such that |z,| — oco. This would imply that oo is an
accumulation point of K and so it would belong to K since K is closed. Thus
K is compact in C.

Let V := C\ C. Then V is open and contains K. By Theorem there
exists a cycle E with range contained in V' \ K such that

. 1 ifzeK,
de(z)_{ 0 ifzeC\V.

But V\ K = (C\C)\K =C\(CUK) = C\ (C\U) = U. Hence, the
range of = is contained in U but indz (z) = 1 for all 2z € K C C\ U, which
contradicts hypothesis (iii), since the winding number of each closed curve in
the cycle should be zero. m

Remark 217 Note that saying that C, \ U is connected is not equivalent to
saying that C\ U is connected. Indeed, consider the set E ={z=xz+1iy: y €
(0,1)}. Then its complement is not connected in C\ U but it is connected in
Co \U.

Corollary 218 Let U C C be an open bounded connected set. Then U is con-
nected if and only if C\ U is connected.

Exercise 219 Let U C C be an open set. Prove that Co, \ U is connected if
and only if every component of C\ U is unbounded.

19 Proof of Caratheodory’s Theorem

Given an open set U C C an oriented continuous half-open curve v in U is an
equivalence class of continuous equivalent functions ¢ : [a,b) — U. We define
the length of v as

L(y) := lim Vare.

r—b= [a,r]

We say that the curve v ends at b if there exists

lim p(t)=beU.

t—b—

Exercise 220 Let v be an oriented continuous half-curve with range in some
open set U C C. Prove that if v has finite length, then it ends at some point
beU.

We begin with a preliminary result.

Lemma 221 Let V C C be an open set and assume that f : V — f(V) be a
conformal map with f(V) C B(0, R) for some R > 0. If zo € C and

C(r) :=V NIB(z,r),
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then orR
inf L(f(C(r) € ————v, 0<p<l.

privs ToB(1/7)
In particular, there exists rn, \, 07 such that L (f(C(r,))) — 0 as n — co.

Proof. Let D, := {t € [0,27] : 29 + re € V} and define p(t) = zo + 7€',
t € D,. The set D, is the union of disjoint intervals, Let I be one of these
intervals and consider [a,b] C I. Then fo ¢ : [a,b] — C is a curve of class C*
and so

Lot = [ )0l

Letting [a,b] /' I if needed, we get

/u DIl (1)) dt.

Summing over all disjoint intervals in D, we obtain

In turn, by Holder’s inequality

(/ [ (e®)lle'( )Il/zlw’(t)l”z’dt> S/D Iw’(t)ldt/D |/ (0071’ ()] dt

r

< 271_7,/[) \f/(ap(t))|2|<pl(t)| dt = 2777‘/; |f/(Z() + Teit)‘Qrdt-

It follows that

/ (g(r))*— <27r/ / (20 4 re™)|?r dtdr
0 0
:27?/ |f(x + iy)|*dxdy
U

where we used polar coordinates. Recalling that

. 8u(z,y) Zi(x,y)
/ 2 Ox 0
|f@+wﬂ—dm<g%ww e

(see (10])), using the theorem on change of variables for Lebesgue (or Riemann)
integration we get

| @)% <2 [ 17+ in)Pasdy = 221 0)
0
Since f(V) C B(0, R) we obtain

1, 1 Ve dr
—log— inf < 2= <on’R2
3108, dnf (o)< [ )T <20
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Dividing by log % proves the first part of the theorem, while to prove the second
part of the statement it suffice to observe that @ —0asp—07. m

3
Exercise 222 Let U,V C C be open sets and let f : U — V be continuous,
one-to-one, onto, with f~!:V — U continuous.

(i) Let {z,}n be a sequence of points in U such that z, — zo € OU. Assume
that there exists
lim f(zp) =wp € C.

n—oo

Prove that wg € OV

(i1) Assume that U = B(0,1) and that f can be extended continuously to
B(0,1). Prove that f(0U) = 0V
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Given a closed set C C X, where X is a metric space and z,y € X\C. We say

that x,y are separated by C' if they belong to different connected components of

X\ C. We say that are not separated by C' if they belong to the same connected
component of X \ C.

Lemma 223 ( Janiszweski) Let C1,Cy C Co, be two closed sets such that
C1 N Cy is connected. If the points a,b € Cy \ (C1 U Cq) are not separated by
either Cy or Cy, then they are not separated by Cy U Cs.

Proof. Assume that a = 0 and b = oo (the other cases are similar). Since
o0 ¢ Cy, we have that Cy is bounded, since otherwise we could find a sequence
{#n}n in C} such that |z,| — co. This would imply that oo is an accumulation
point of Cj and so it would belong to Cj since Cj is closed. Hence, C} is
compact. Note that 0 and oo belong to the same connected component U of
Cs \ Ck which is open and connected. Since Cf, is bounded, with Cy C B(0, Ry)
we have that the connected set C \ B(0, Ry) is contained in U. Thus, U \ {co}
is open and connected in C and so pathwise connected. Thus we can find a
simple infinite polygonal path vj joining 0 with oo (we can take it to be the
union of a half line and a simple polygonal path of finite length). Since the
range of T'y is connected and C \ T’y is connected, by Theorem C\ Ty is
simply connected and does not contain 0 and co. Hence, by Theorem [I00] we
can define a branch fi of the logarithm in C\ I'y. The connected set C; N Cy
lies in one connected component F' of C\ (I'y UTy). If C; N Cy is empty we
take F' to be any connected component of C\ (I'; UT3). In the first case, by
adding a constant we can assume that f; = fo in F. Since the compact sets
C1 \ F and Cy \ F are disjoint, we can find disjoint open sets V; and Va2 such
that Cp \ FF C Vj, C C\ Ty, k = 1,2. Define

| fx(2) z€ Vi, k=1,2,
fz) = { f1(z) = fa(z) z € F.

Then f is holomorphic in the open set V := V3 U Vo U F which contains C7 U Cy
and e/(®) = z for all z € V.

Assume by contradiction that C; U Cs separates 0 and co. Then the con-
nected component G of Co, \ (C; UC3) which contains 0 is bounded. Note that
0G C 9(C1 UCs) and since V contains C7 U Cy we have that 9V NOG = (). Let
0<o< %dist(@V7 OG) and consider a grid of closed squares with diameter less
than § and such that 0 lies in the interior of one of these squares, say 0 € Q3.
Note that @)1 is contained in G. Let @1, ..., Q, be the closed squares contained
in G. Since G C V and 0 < § < $dist(0V,0G), we have that the sides of
Q1,...,Q, which are not counted twice are contained in V. Since f/(z) = % for
z € V, we have that

n

- d
ind= (0) = 3 indag, (0) = 3 i /BQ ?C — [ 1o
k=1 s =

k=1 =

120



On the other hand,

1
indan (0) = 7/ dfc =1,
Q1

271 ¢
. 1 d
lndan(O):m/th ?CZO, kZQ
k

Hence, summing these two identities indz (0) = 1, which gives a contradiction.
|

We turn to the proof of Theorem [200]

Proof. (i) = (ii). Assume that f can be extended continuously to
B(0,1) and still denote by f the extension. Then by the previous exercise,
f(0B(0,1)) = 0U. Tt follows that we can parametrize OU as

o(t) = f(e"), telo,2n],

and so OU is the range of an oriented closed curve.

(i) == (iii) This implication follows from that fact that the range of a
continuous curve is locally connected.

(iii) = (iv) Assume that OU is locally connected. For every ¢ > 0 let
0 < & < € be such that if z,w € U with 0 < |z — w| < § there exists a compact
connected set F' C QU such that z,w € F and diam F < €. Let z,w € C\ U
with |z — w| < §. If the closed segment [z, w] does not intersect OU, then we
take F = [z,w]. If [z,w] NOU # 0, let 2’ and w’ be the first and last points
of [z, w] where [z, w] intersects OU. Since |2’ —w'| < § and 2/, w’ € U, there
exists a compact connected set F C OU such that z/,w’ € F and diam F < «.
But then [z, 2] U F U [w’,w] is a compact connected set in C\ U with diameter
less than 3e which contains z,w. Hence, C\ U is locally connected. m

Wednesday, April 22, 2020

Proof. (iv) = (i) Assume that C\ U is locally connected. Without loss
of generality we may assume that f(0) = 0. Since U is bounded, there exist
Ry < R such that

B(0,Ry) C U C B(0, R). (98)

We claim that f is uniformly continuous in B(0,1)\ B(0,1/2). Fix 0 < ¢ < Ry.
Since C\ U is locally connected we can find 0 < ¢ < ¢ such that if 21,20 € C\U
with 0 < |21 — 22| < ¢ there exists a compact connected set FF C C\ U such that
21,29 € F and diam F < €. Let 0 < p < 1/4 be such that 27 R(log(1/p))~'/2 <
J.

Let z,w € B(0,1) \ B(0,1/2) with |z — w| < p. We claim that

1f(2) = f(w)] < 2e. (99)

Assume by contradiction that

£ (2) = f(w)] = 2e.
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By applying Lemma with V' = B(0,1) and zp = z we can find r € (p, /p)
such that
L(f(C(r))) <d<e, (100)

where C(r) := B(0,1) N 0B(z,r). There are two cases. If B(z,r) C B(0,1).
Then C(r) = 0B(z,r) and f(0B(z,r)) is the boundary of the simply connected
open set f(B(z,r)) which contains f(z) and f(w). Since |z — w| < p < r, we
have that z,w € B(z, p) C B(z,r), and so f(z) with f(w) belong to the interior
of the closed curve f(9B(z,r)). Consider the segment S joining f(z) with f(w)
and extend it on both sides until it meets f(0B(z,7)). The resulting segment has
length bigger than 2¢, which contradicts the fact that L (f(C(r))) < ¢ < e (the
length is the supremum of the length of all polygonal paths made of segments
with endpoints on f(C(r))).

Assume next that B(z,r7)NdB(0,1) # 0. In view of and Exercise
the continuous rectifiable curve f(C(r)) has endpoints a and b € 9U C C\ U.
In view of (100), |b —a| < L(f(C(r))) < ¢, and so, since C \ U is locally
connected there exists a compact connected set F' C C\ U such that a,b € F
and diam F' < . Then F'U f(C(r)) is a connected set and

FuUf(C(r)) € B(a,¢). (101)

On the other hand, by , the fact that a € 9U and ¢ < Ry, we have that
0 ¢ B(a,¢). Since |f(z) — f(w)| > 2, it follows that either f(z) or f(w) does
not belong to B(a,e). Denote this point by ¢, so ¢ ¢ B(a,e). Using the fact
that 0 ¢ B(a,¢) in view of we have that ¢ and 0 are not separated by the
connected set F'U f(C(r)). On the other hand ¢ € U and f(0) =0 € U and so
¢ and 0 are also not separated by C\ U. Note that (FU f(C(r)))N(C\U) = F,
which is connected. Hence, by Janiszweski’s theorem ¢ and 0 are not separated
by FUf(C(r))U(C\U). Since the C\ (FUf(C(r))U(C\U)) =U\(FUf(C(r))
is open, its connected components are open, and so pathwise connected. Hence,
there exists a polygonal path in U \ (F U f(C(r)) which joins ¢ and 0. Let
v = [¢]. Since f is a conformal map, f~! o ¢ is a curve joining f~*(c) € {z,w}
and 0. Moreover, its range its contained in B(0,1) \ C(r) = B(0,1) \ 9B(z, 7).

Since z,w € B(0,1) \ B(0,1/2) with |z — w| < p < r, we have that z,w €
B(z,p) C B(z,r), while dist(0, B(0,1) \ B(0,1/2)) = 2 > \/p > r. Hence,
0 ¢ B(z,7r). In turn, any curve joining 0 and either z or w would intersect
OB(z,r), and so we have a contradiction. m

Let £ C C be a connected set and let z € E. We say that z is a cut point of
E is E\ {z} is no longer connected. If we have a continuous simple arc, then
every point except the endpoints is a cut point. If we have a closed simple curve
then no point is a cut point.

Theorem 224 Let U C C be an open bounded simply connected set and let f
map conformally B(0,1) onto U. Assume that OU is a closed oriented curve
and denote by f the continuous extension of f to B(0,1) given by Theorem ,
Then z € OU is a cut point of OU if and only if the set f~*({z}) has more
than one element and the components of OU \ {z} are f(I}), where Ij, are the
components of 0B(0,1) \ f~1({z}).
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Proof. Let m = card f~1({z}) € NU {co}. Since f : B(0,1) — U is

continuous, the set f~1({z}) is closed and so dB(0,1) \ f~1({z}) is relatively

open and thus it can be written as a countable union of disjoint open maximal
arcs Ir. In turn, we may write

m

U\ {z} = f(OB(O,1)\ f~'({z}) = f (U Ik) = f).
k=1

k=1

Since f is continuous and the sets Ij, are connected we have that the sets f(Ij)
are connected. Note that if f~!({z}) is a singleton, then U \ {z} = f(I1),
which is connected, and so z is not a cut point of OU.

Conversely, assume that m > 2. Then the endpoints a and b of I; are
distinct. Consider the oriented closed segment ab and let p(t) =tb+ (1 —t)a,
t € [0,1]. Consider the continuous curve v parametrized by f o . Since f is
injective in B(0,1) and f(a) = f(b) = z, we have that 7 is a continuous simple
closed curve with range in U U {z}. Let ¥ = f(¢([0,1)) be its range. By the
Jordan’s curve theorem, C \ ¥ has two connected components V;, and V,,, with
Vi bounded and V,, unbounded, and with 0V, = 9V,, = £ = f(¢([0,1)).

Note that B(0,1) \ (ﬁ) U f~1({z})) has two connected components E; and
E5. Since f is continuous and f(B(0,1) \ a_>b) CC\X=V,UV,, and since f
maps connected sets into connected sets, we must have that f(E;) and f(Es)
are contained in V;, or in V,,. But since f : B(0,1) — U is open, if we take
zo € ab \ {a, b}, we can find a small ball B(z,r) such that f(B(zor)) is open
and so there exists B(f(z20),9) C f(B(z0,7)). Since f(zy) € X = 9V}, = IV,
there must be points of B(zg,r) which end up in V}, and points which end up in
V.. Thus f(E7) and f(Fs) are contained one in Vj, and the other in V,,. Thus
f(I1) and -, f(I;) are not connected. In turn, z is a cut point of OU. m

There are examples in which f~!({z}) has countably many elements.

We are now ready to prove Carathéodory’s theorem.

Proof. Let U C C be an open bounded simply connected set and let f
map conformally B(0,1) onto U. If f has a continuous and injective extension
to B(0,1) then OU is parametrized by f(e'), t € [0, 2], which is an oriented
simple closed curve. Conversely assume that QU is the range of an oriented
simple closed curve. In particular, QU is locally connected and it has no cut
points. Then by Theorem f can be extended continuously to B(0,1). By
the previous theorem the set f~!({z}) is a singleton for every z € OU, which
implies that f is injective on dB(0, 1). This concludes the proof. m

Remark 225 Note that we actually proved that f has a continuous and injec-
tive extension to B(0,1) if and only if OU is locally connected and it has no cut
points.
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20 Elliptic Functions

We are interested in meromorphic functions f : C — C, which have two peri-
ods, that is, there exist wq,ws € C\ {0} such that

flz+wi) =f(2), flz4w)=f(2)
for all z € C. A function with these properties is called doubly periodic.

Exercise 226 Let f : C — C,, be a doubly periodic meromorphic function with
periods wy,ws € C\ {0}. Assume that 7 := wy/we € R. Prove that f is either
periodic with simple period or constant.,

In view of the previous exercise, we can assume that Im 7 # 0. Since 7 and
% have imaginary parts of opposite sign, by interchanging w; and ws, in what
follows we can assume that Im7 > 0.

Consider the function

4() = f(wnz), zeC.
Then

9(z+1) = flwrz +wi) = f(wiz) = g(2),

g(z+ 1) = flwiz +wiT) = flwiz + wa2) = fwiz) = g(2).
Moreover, g is meromorphic if and only if f is and it has the same number of
zeros and of poles. Any other property of f can be deduced by the analogous

property of g. Thus, in what follows we assume that f has periods 1 and 7,
where Im 7 > 0. By induction we have that

f(z+7i+kr)=f(z) forall ze C and j,k €Z. (102)
Consider the lattice
N:={j+kr: jkel} (103)

We will show that A partitions C into pairwise disjoint parallelograms congruent
to
Py={2z€C:z=2+yr,0<2<1,0<y<1}. (104)

To be precise,
C=J (G+kr+ P
J,kEZ

We say that 1 and 7 generate the lattice A and we call Py the fundamental
parallelogram of f.
We say that z,w € C are congruent modulo A if

z=w+j+kr

for some j, k € Z and we write z ~ w. Note that z —w € A.

124



Remark 227 If f : C — C is be a doubly periodic meromorphic function with
periods wy,ws € C\ {0} such that wy/we ¢ R, then we define

Pp={z€C:z=aw; +yws, 0<z<1,0<y <1}
the fundamental parallelogram of f.

Theorem 228 Let f : C — Cu be a doubly periodic meromorphic function
with periods 1 and 7, where Im 7T > 0. Then

(i) every point in C is congruent modulo A to a unique point in the funda-
mental parallelogram Py,

(ii) given j,k € Z, every point in C is congruent modulo A to a unique point
in the parallelogram j + kT + Py,

(iii) we have
C=J (G+kr+ P,
k€T

where the interiors of the parallelograms are parwise disjoint,

(iv) the function f is completely determined by its values in Pp.

Proof. (i) Since the vectors 1 and 7 form a basis over the reals of the two-
dimensional vector space C, given z € C, we can write z = z + 7y, for some
z,y €R. Let j,k€ Zbesuchthat j <z <j+1land k <y <k+1. Then

wi=z—j—kr=(x—-j)+{y—kr

is congruent to z modulo A. Moreover, 0 <z —j<land 0 <y—k <1, and
so w € Fjy.

To prove uniqueness, let wy,wy € Py be congruent modulo A. Then w; =
x4+ y;7, where 0 <2y <land 0 <y, < 1,1 =1,2. Since wy ~ wy we have that

T+ YT — Xy — YoT = wy —wo = j + kT

for some j,k € Z. But since 0 < z1,22 < 1, we have that —1 < z1 —x9 < 1
and so j = x1 — a9 = 0. Similarly, ¥k = y; — y2 € (—1,1) and so kK = 0. Thus
w1, = Wwa.

(ii) Let P := jo + kor + Py, where jo,ko € Z. Given z € C by item (i)
there exists a unique w € Py with z ~ w. In turn, jo + ko7 + w € P and
z ~ jo + ko7 + w. By the uniqueness in part (i), it follows that jo + ko7 + w is
the unique point in P which is congruent to z modulo A.

(iii) By part (i) each z € C is congruent to some w € Py modulo A, which
means that z = j + k7 4+ w for some w € Py. Hence, z € j + kT + Fy.

On the other hand, if P, = j; + k17 + Py and P> = jo + koT + Py, and
z € PLN P, then

z:j1+k17'+w1 :j2+k27'+’IU2
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with wy, ws € Py. This means that z ~ w; and z ~ wy. Again by the uniqueness
in item (i), w; = we. In turn, j3 + k17 = jo + ko7, which implies that j; = jo
and kl = k‘g.

(iv) In view of (102),

f(z)=f(w) ifz~w.

The result now follows from item (i). m
Next we show why we are taking meromorphic functions instead of holomor-
phic functions.

Corollary 229 Let f : C — C be holomorphic and doubly periodic with periods
1 and 7, where Im7 > 0. Then f is constant.

Proof. Let M := maxp; |f|. By item (iv) of the previous theorem for every
z € C there exists w € Py such that f(z) = f(w). Hence, |f(2)| = |f(w)] < M.
It follows by Liouville’s theorem that f is constant. m

Definition 230 An elliptic function is a meromorphic function which is doubly
periodic with periods wy,wy € C\ {0} such that wi/ws ¢ R.

We begin by showing that an elliptic function must have more than one pole.

Theorem 231 Let f: C — Cy be an elliptic function. Then f must have at
least two poles.

Proof. Without loss of generality we may assume that the periods are 1
and 7 with Im7 > 0.
Step 1: Assume that f has no poles on 0Fy. Then by the residue theorem

n
fdz= 27rineszk 1
k=1

OPy

where z1,..., 2, are the poles of f inside Py. Note that there must be at least
one in view of the previous two theorems. With a slight abuse of notation we

write
1 147 T 0
fdz:/fdz—l—/ fdz+ fdz—l—/ fdz.
OP, 0 1 1+71 T

Note that by (102)),

1 T 1 0
/Ofdz+ 1+dez:/0 fdz—i—/1 f(r 4+ w)dw

zfolde/lOf(w)dw:/Olfdz—/olﬂz)dz:o,
/11+de2+/70de:0.
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Hence,

0= fdz= ZWineszk f.
k=1

OPy

If n were 1, we would have 0 = res,, f, which would impliy that f has a remov-
able singularity at z; by Theorems and . This would contradict the previous
corollary. Hence, n > 2. m
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Proof. Step 2: Since poles do no accumulate in the interior, it follows that
f has a finite number of poles in Py. Hence, if B(0, R) contains P, then by
periodicity f has a finite number of poles in B(0, R). In turn, for € > 0 the
function f.(z) := f(z + (1 + 7)) has no poles on dFy. By the previous step we
find that f. has at least two poles in Py for every ¢ small. Letting ¢ — 0 we
conclude that f has at least two poles. m
The number of poles of an elliptic function in its fundamental parallelogram
counted with their multiplicity is called its order. Next we show that the number
of zeros of an elliptic function equals the number of poles.

Theorem 232 Let f: C — C, be an elliptic function of order £. Then f has
{ zeros in its fundamental parallelogram counted with their multiplicity.

Proof. Without loss of generality we may assume that the periods are 1
and 7 with Im 7 > 0. Since zeros and poles do no accumulate in the interior, it
follows that f has a finite number of poles and zeros in P.

Step 1: Assume that f has no poles and no zeros on 9F,. By the argument
principle,

/
L, f—dz
27 aP, f

(number of zeros of f in Py) minus (number of poles of f in Fp)
=:n, —{.

Since fTI is doubly periodic with periods 1 and 7, reasoning as in the previous
theorem, we can show that ﬁ fBPo fT/dz = 0. Hence, n, = /.

Step 2: Since poles and zeros do no accumulate in the interior, it follows
that f has a finite number of poles and zeros in Py. Hence, if B(0, R) contains
Py then by periodicity f has a finite number of poles and zeros in B(0, R). In
turn, for € > 0 the function f.(z) := f(z + (1 + 7)) has no poles or zeros on
0P,y. By previous step we find that the number of zeros of f. in P, is the same
as the number of poles of f. in Py for every € small. Letting € — 0 we conclude
that the number of zeros of f in Py is the same as the number of poles of f in
P, m

The next natural question is the existence of elliptic functions. We will
construct an elliptic function of order two. The idea is to consider the function

> wrop

2
weA (Z + w)
but the problem is that this double series does not converge absolutely. Indeed
we will see below that for a double series to converge we need the exponent to
be bigger than 2. To fix this problem, we follow the approach in your homework
for cot and we define the function



where A, := A\ {0}. This function is called Weierstrass p function. Note that

1 1 w? — 2% — 2200 — wW?

_ —22 — 22w 2z
(z4+w)?2 w2 w?(z + w)? w2z +w)? w3

as |w| — oo.
Theorem 233 The Weierstrass g function is an elliptic function of order two.
We begin with a preliminary result.

Lemma 234 The double series
2 : >
(4,k)€Z2\{(0,0)} (|J| + |k‘) jkreA, |j + k7'|

converge if and only if r > 2.

Proof. Step 1: Assume that r > 2. For every j # 0 we have

1 1 1 1 1
2GRy T GF T 2 W T 2 G AT

171 kEZ\{0} 171 keN

1 11 > d 1 2 1
=Tt ) ﬁﬁ-*ﬂf?/ T T e R

U R go@nlilm =1l

Hence,

1
2 (1 + kD"~ 2 (0+| b 2 Z (il + \kl

(4,k)€22\{(0,0)} + keZ\{0} JEZ\{0} kEZ
1
<2y g+ ¥ (G ) <
= glm =11
jEZ\{0}
since r > 2.

To prove that the second series converges, it suffices to show that there exists
a constant ¢ > 0 such that

lj + k7| = e(li] + |k])

for all (j,k) € Z2\ {(0,0)}. Write 7 = = + iy, where z € R and y > 0. Then

1
i+ k7| = V(G + k)2 + k22 > (15 + bl + [ky).

If z =0, then

21+ kol = 2y g,
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Assume that = # 0. If |j| < 2|kz|, then

. Y 1 1|y
-+ k| + lryl > Pyl = k] %+ Gyl > 3 1+ 5l
lmin{1/la 1)
> WM 1 1 1 o).
If |7] > 2|kz|, then
. . 1. min{l,y} , .
5+ kel kgl > 1] — lka + kol > 5h|+¢kylz——4§§——l03w+|M)

This concludes the proof of the case r > 2.
Step 2: Assume that r < 2. If 1 < k < j then j+ k < 2j and so —+ > L.
Then

2 (|J|+|k| ZZ

(4,k)€22\{(0,0)} j=1 k:1 3:1 k=1

To prove that the second series diverges, it suffices to show that there exists a
constant ¢ > 0 such that

j 4+ k7| < c(lj] + |K])
for all (j,k) € Z%\ {(0,0)}. We have
9+ k| < g+ k7] = [5] + [k]l7] < max{1, [7]}(|5] + [K]),

which concludes the proof. m
We turn to the proof of Weierstrass theorem.
Proof. Let R > 0 and let |z| < R. Write

I oy

=I+II+1I1I.

To estimate 111 observe that for |z] < R and |w| > 2R,

1 1
2wl 2 fol = o] 2 5ll + R— |2 2 5l

and so
1 1] |-2%2-2zw < 2R2 + 2R|w|
(z4+w)?2  w?|  |w2(z4+w)?|~ |w]4
4R|w| 1
<2 = —_—
T e jwl?
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Hence
1

III[ <8R > e

JtHkTEA,
which converges by the previous lemma.
The term IT is a finite sum and so it is a meromorphic function in B(0, R)
with double poles at those w € A, inside B(0, R).
This shows that g is well-defined and meromorphic with double poles at each
point of the lattice A. To prove that p is doubly periodic with periods 1 and 7
we compute the derivative of p. We have

- 2 2 2
©'(2) = 23 wg*(z+w)3 u;\(erw)g-

Note that by the previous lemma the series converges absolutely whenever z ¢ A.
Let’s prove that ¢’ has periods 1 and 7. Since w+1 € A and w+7 € A whenever
w € A, we have

/ 2 2 /
W(Z"‘l):—Zm:—Zm:P(z),

weA CeA

/ 2 2 /
P(Z+T):—Zm:—2m:@(z)~

wEA CeEA
Hence, there exist a,b € C such that
plz+1)=p(z) +a, p(z+7)=p(2)+0b (105)

for all z € C\ A.
Using the fact that w € A if and only if —w € A we have that

This shows that @ is even. Taking z = —% and z = —3 in 1] gives a = 0 and
b = 0. We have proved that g is doubly periodic with periods 1 and 7. Since
the only element of A inside the fundamental parallelogram is 0, p has order 2.
]
Wednesday, April 29, 2020
Next we show some important properties of the function g.

Theorem 235 The function g satisfies the equality
(9'(2))? = 4(p(2) — e1)(p(2) — e2)(p(2) — e3),

where

eri= p(1/2), 3= p(r/2), es:=p((1+7)/2). (106)
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Proof. Since p is even, g’ is odd, and so using also the fact that g is
periodic of period 1,

©'(1/2) = ¢/ (=1/2) = —¢'(-1/2+ 1) = —¢/(1/2),
which implies that ¢’(1/2) = 0. Similalrly,

©'(7/2) = =¢'(=7/2) = =/ (=7/2+ 1) = =¢/(7/2),
and so ¢'(7/2) = 0. Finally,

O (1+7)/2) ==/ (-(1+7)/2) = =/ (-(1+7)/2+ 1+ 7) = —p/(1 +7)/2),

which implies that ©'((1 4 7)/2). Since ¢’ is an elliptic function of order 3, it
follows from Theorem that it has three zeros in the fundamental parallel-
ogram P, (already counted with their multiplicity). Hence and HTT are
simple zeros of p’ and they are the only ones in Py.

Since the function @ — e; is elliptic of order two, and it has a double zero
at % (since its derivative has a simple zero), it follows from Theorem that
@ — e1 has no other zeros in Py. Similarly, p — e2 and @ — e3 have a double zero
at 5 and HTT, respectively, and no other zeros in F.

Consider the function

9(2) = (p(2) — e1)(p(2) — €2)(p(2) — e3).

The only zeros of g in P, are at %, 5, and HTT and they have multiplicity 2.

Moreover, g is an elliptic function of with poles at A. Since 0 is the only pole in
Py, it has multiplicity 6 by Theorem 232] Thus, every pole in A has multiplicity
6.

On the other hand, since @’ has poles of multiplicity 3 at A, (p’)? has poles of
multiplicity 6 at A. Also, by what we did before it only has zeros of multiplicity
2 at %, %, and H’% Thus, if we consider the function (p’)?/g, we have that
it has removable singularities at each point of A and at %, 7, and HTT (and
their periodic translates). Hence, (p’)?/g can be extended to an entire function.
Since it is doubly periodic with periods 1 and 7, by Corollary (¢")?/g is
constant.

We have seen in the proof of Theorem that if we take R > 0 so
small that B(0,2R) N A = {0}, then the function 3_ .,z [# -1 } =

(z4w)? w?

1
’ 929 92

Y wen. {ﬁ - w—g} is holomorphic in B(0, R). Hence,
lin% 220(2) = 1.

Similarly,
lim 2%/ (2) = —2.

z—0
It follows that 6/ N2
¢=lim > (¥) :é
z—0 28¢(2) 1

This completes the proof. m
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Remark 236 The numbers %, 5, and HTT are called half-periods. It follows
from the previous proof that @' restricted to Py has three simple zeros at the
half-periods and no other zeros. Hence, for every a € Py, the function p — p(a)
has a double zero at a if a is a half-period and otherwise a simple zero at a and

—a since p 1S even.
We now demonstrate the importance of the function gp.

Theorem 237 FEvery elliptic function f : C — C, with periods 1 and 7, where
Im7 > 0, is a rational function of o and .

Proof. We want to construct a doubly periodic elliptic function g using g
which has the same zeros and poles of f.

Step 1: Assume that f is even. Then if f has a zero or a pole at some
a € Py\ {0}, then it also has a zero or a pole at —a. Note that —a is congruent
to @ modulo A if and only if a is a half-period. Indeed, if

a=—a+j+kr

for some j, k € Z, then a = 1j+1kr € P,, which can happen only if j, k € {0,1}.

Substep 1: Assume that f has no zeros or poles at the origin and at the
half-periods. We recall that by Theorem [232] if f has order ¢, then it has ¢
zeros. Let ai,...,ap € Py \ {0} be the zeros of f in Py counted with their
multiplicity and let by,...,b; € Py \ {0} be the poles of f in Py counted with
their multiplicity. We claim that

Indeed, let g denote the function on the right-hand side. In view of the previous
remark o — p(a,) has a simple zero at a, while the function m has a
simple pole at b,. Thus, the function g has the same zeros and poles in P, as
f. Tt follows that f/g has removable singularities at a,, and at b,, n =1,...,¢.
Thus f/g can be extended to a doubly periodic entire function, and so it must
be constant in view of Corollary 229 Using the fact that

lim 2%p(z) =1,
we obtain that the constant must be f(0).

Substep 2: If f has a zero at at a half-period a, then the zero must have
even multiplicity. Indeed f2"+1) is odd and we can reason as in the proof of
Theorem [235| to show that f("+1) vanishes at all the half-periods. Similarly,
if f has a pole at a half-period a, then % is still an even elliptic function with
the same periods and so the pole must have even multiplicity. Recalling that
p — p(a) has a double zero if a is a half-period and a pole of multiplicity two
at the origin we can find integers ko, ..., ks € Z such that p* behaves like f

near z = 0 and (p(z) — ¢;)%, j = 1,2,3, behaves like f near %, 7, and H?T,
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respectively. Let ay,...,a, € Py \ {0, 3,2, 7} be the other zeros of f in P,
counted with their multiplicity and let b1,...,b, € Po\ {0,%,%, 57} be the
other poles of f in Fy counted with their multiplicity. Consider the function

3
9(z) = 9" (2) [T (p(2) —ej)

j=1 J

1(@(2) - @(%’))E M7

n

ki 1

where
2(k0+k1+k2+k2)+n—m=0

by Theorem [232] The function g has the same zeros and poles in Py as f. It
follows that f/g has removable singularities at 0, 0, %, % HTT, and at all the a;
and bg. Thus f/g can be extended to a doubly periodic entire function, and so
it must be constant in view of Corollary

Step 2: If f is odd, then f/p' is an even elliptic function and so by the
previous step it can be written as a rational function of p. Finally, in the general
case we can write f as the sum of an even function and an odd function, to be

precise,
£(2) = 31 + F(=2)] + 51) — F(-2)L

This concludes the proof. m
Friday, May 1, 2020
No class.
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